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Notation and list of symbols

As a rule, each notation is explained where it first appears. Nevertheless, we collect here
(see below) some of the notations used frequently in the text. The symbols N, Z, Q, R and
C stand for the basic sets (positive integers, integers, rationals, real and complex numbers
respectively). Vectors are boldfaced, so typically we note z* = (z,y) € R? and an asterisk
superscripting a vector or a matrix denotes its transpose. Holomorphic functions that are
real valued for real arguments will be called “real analytic”. Equations and formulas in
chapters are numbered in the following way: the leftmost digit corresponds to the chapter,
the second correspond to the section and the rightmost one is the number the formula
makes up in this section. So, for example, label (3.5.4) denotes the fourth formula of
the fifth section in the third chapter. Statements of theorems, propositions, lemmas and
definitions are slanted. This is not the case neither for examples nor for remarks, so the
symbols (<) and (&) are used as endpoints of the former and of the latter respectively.
Similarly, the end of proofs (of theorems, propositions, lemmas...) are marked by a square
(8). In the following list of symbols, we do not include those with highly specific and long
definitions as, for instance (see appendix 3.2.41), those of the norms |- |,, | |,&,... and so
on.

List of symbols

(a)r  the generalized factorial (Pochhamer symbol): (o), = a(a+1)---(a+ k — 1),
(a)g =1
[m,n] (m, n integers; m > 0, n. > 0) the remainder of the integer division of m by n
z for z € C, its complex conjugate
between real numbers, their ordinary product (3 -2 = 6)
da

x differentiation with respect to time: & = 77

(u,v) the standard inner product of two vectors, so (u,v) = > "

Y. n
i1 uv; foru,v € R

e appearing in formulas: the base of the natural logarithm, i. e., e = exp(1). In the
text both notations e and exp(1) are used indistinctly

1 the imaginary unit: i = /—1
meas Lebesgue measure

|z ] the integral part of z € R

xi



xii Notation and symbols

™ the standard n torus: T" = S"™ = (R/27Z)"

X between sets, the set (Cartesian) product; between real numbers, their ordinary
product (3 x 2 = 6)

Z, the non-negative integers, i. e.: Zy =N U {0}

{f,g} Poisson bracket of the functions f and g

A* if A is a n x m matrix, A* denotes its transposed

I, the identity n X n matrix

I the matrix of the standard symplectic form, i. e.: J, = (_(}n Ig)

Lof  Lef =1/, 9}

W The principal branch of the Lambert W function. See page 78



Introduction

In this memoir, the main topic is the study of the dynamics close to resonant (in the
sense we are going to precise) periodic orbits. We focus on real analytic three-degree
of freedom Hamiltonian systems and our objective is to investigate the quasi-periodic
bifurcation phenomena linked to one parameter families of periodic orbits undergoing
1 : —1 resonance. To be more concrete, we assume that the orbits of the family are
first linearly stable; for a critical value of the parameter, the nontrivial (i. e., those
different from one) characteristic multipliers of the corresponding periodic orbit collide
(the so called Krein collision) on the unit circle: this corresponds to the critical 1 : —1
resonant or simply resonant periodic orbit. Then, if certain generic conditions are met,
the characteristic multipliers leave out the unit circle to the complex plane, hence the
family looses its (linear) stability and the periodic orbits become complex unstable.

This transition stable-complex unstable is not a strange or uncommon phenomenon,
so examples can be found in several fields of science, from astronomy —galactic dynam-
ics (see Martinet, 1984; Pfenniger, 1985b, 1990; Ollé and Pfenniger, 1998), planetary
theory (e. g. in Hadjidemetriou, 1985)-, to particle accelerators (Howard et al., 1986).
Moreover, not only in three degrees of freedom Hamiltonian systems, but also in higher
dimensional problems. For example, in Ollé et al. (1999) were found families of periodic
orbits with transitions stable-complex unstable for the spatial elliptic three-body problem
(three and a half degrees of freedom): two pair of characteristic multipliers collide, while
the third stays on the unit circle.

On the other hand, three-degree of freedom Hamiltonian systems can be investigated
through Poincaré (or first return) four dimensional maps (see appendix B, section B.2
for a short description of Poincaré maps paraphernalia). This reduces the study of a
Hamiltonian system in R® to that of symplectic maps defined on a certain four dimensional
surface of section. It turns out that each element in the dynamical backbone of the flow
has its map counterpart. So for instance (and particularly interesting for us): periodic
orbits and two dimensional invariant tori on the system are pictured as fixed points and
invariant curves on the map respectively. Even more, the eigenvalues of a fixed point (we
mean, those of the linearization of the map around that fixed point) are given by the
nontrivial characteristic multipliers of the periodic orbit of the flow it comes from.

Hence (despite the interest they could have on their own), the study of symplectic maps
are often used to envisage some qualitative properties of Hamiltonian systems. With this
aim, in order to explore the motion close to complex instability, several researchers have
investigated one-parameter families of symplectic diffeomorphisms with a fixed point un-
dergoing Krein collisions between its characteristic multipliers. Particularly, in Pfenniger
(1985a), and Ollé and Pfenniger (1999) two symplectic generalizations of the Froeschlé’s
map, Ts, T; : R* — R?*, were explored (see section 1.3.2 of chapter 1 for a more detailed

xiil
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description). Both T and T} have a fixed point at 0 and depend on a parameter L in such
a way that, for values L less than some critic value, L..;;, the fixed point is linearly stable
(its characteristic multipliers lie on the unit circle), when L = L..; a pairwise eigenvalue
collision there takes place, and for L > L..; they leave the unit circle to the complex
plane. In addition, we shall assume that the argument of the two complex conjugate
multipliers of the fixed point for L. (i. e., when eigenvalue collision takes place) are
not commensurable with 27 —one speaks then about irrational collision—. Therefore, for
T, stable invariant curves unfold for each L > L. (so, on the “unstable side”, since
for these values of the parameter, the fixed point is complex-unstable). This is known
as the direct bifurcation. For the map 7T;, though, unstable invariant curves rise, for
L < L..;; “on the stable side”™ they appear thus in a similar way as limit cycles do in the
classical Andronov-Hopf bifurcation (see Andronov et al., 1959, chap. VI, §4). We shall
also mention that rational collisions (where the argument of the characteristic multipliers
is 2m-commensurable at collision) can occur. Then, generically, multiple periodic points
unfold. This situation is likewise investigated at the first of the papers quoted at the
beginning of the paragraph (and analytically, in a more general context, in Bridges, 1990,
1991). However, as we are interested in quasi-periodic motions, irrationality is assumed
throughout.

With T, and T; as paradigmatic examples, we wonder if such behavior (well understood
from numerical research) could be dealt analytically in a general symplectic context,
as Bridges, Cushman and Mackay (1995) did for symplectic maps and Van der Meer (1985)
for the Hamiltonian Hopf bifurcation at equilibrium points in two-degrees of freedom
Hamiltonian systems (also, see Meyer and Schmidt, 1971; Schmidt, 1994; Meyer, 1998).
The improvements of this work can be summarized as: (i) We rely on normal forms
as one of the key tools of our approach, deriving in a constructive way and up to any
(arbitrary) order, a versal normal form of the Hamiltonian around the resonant periodic
orbit. Analyzing the (truncated) normal form, we describe the mechanism of the 2D-
invariant tori unfolding, according to the Hamiltonian Hopf pattern, identifying those
parameters which govern not only the bifurcation, but also its character. We remark that
this is not a merely qualitative process for, in addition, accurate parametrizations of the
families of invariant tori are derived in this way. (ii) We compute “optimal” bounds for
the remainder of the normal form, so one expects to prove the preservation of a higher
number (in measure sense) of invariant tori —than, indeed, with a less sharp estimates—.
(iii) And, finally, we apply KAM methods to establish the persistence of most (in the
measure sense) of the bifurcated invariant tori. A more detailed explanation of these
points is given below.

In chapter 1 we state the problem. So let us consider a real analytic three-degree
of freedom Hamiltonian, H(¢), ¢* = (£&1,&2,&,m1,m2,m3) € R with the corresponding
system _

¢ = Jzgrad H(Q), (1)
being J3 the matrix of the standard canonical 2-form in R® (see appendix B, section B.1).
Suppose that this system has a non-degenerate family of periodic orbits, {M;} .g, such
that for some value of the parameter, say o = 0, the corresponding (critical, resonant)
periodic orbit, M, has a collision of its nontrivial characteristic multipliers. To be more
precise (see figure 1.2 in chapter 1), suppose that, for 0 < 0, these characteristic multipliers
of M, lie on the unit circle, they approach pairwise as o goes to 0, for this value they
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collide and separate towards the complex plane when ¢ > 0. Moreover:

(i) As it has been already mentioned above, we assume the collision is irrational:
more precisely, if 27y, is the characteristic exponent corresponding to the characteristic
multiplier Ay of the resonant periodic orbit M (so \g = €?*7%), then v, ¢ Q.

(ii) We suppose both, non-degeneracy of the family of periodic orbits, —that is, we
ask the twist condition—, and non-degeneracy of the collision, since one requires the
eigenvalues to leave the unit circle for ¢ > 0. These assumptions imply that the mon-
odromy matrix of M, should not have trivial (diagonal) Jordan blocks, neither those
corresponding to the (double) eigenvalues A, X nor the (non-diagonal) block associated to
the (double) eigenvalue 1.

Prior to the normal form computations, we need to perform some previous reductions.
The objective is to transform the initial raw Hamiltonian into a new one that eases the
application of the normal form algorithm. This process involves: (i) the introduction of
local coordinates around the orbit M, (ii) Floquet reduction of the quadratic part of the
Hamiltonian and (iii) complexification to make this quadratic part as simple as possible.

Next, we use Giorgilli-Galgani algorithm (see definition 1.7 in chapter 1 and the ref-
erences given there) to carry out the nonlinear reduction. The reasons for the choice
of the Giorgilli-Galgani machinery to compute the nonlinear normalization are basically
two: one of them is motivated by the practical implementation of this methodology. So,
if one plans to apply normal form computations to our problem (we mean, a three-degree
of freedom Hamiltonian system with a family of periodic orbits undergoing a transition
stable to complex-unstable), then the Giorgilli-Galgani algorithm is a very efficient way
to carry this process out (see Giorgilli et al., 1989; Sim6, 1989; Delshams and Gutiérrez,
1996). In this sense, we want to stress that the solvability of the homological equations
(with the intricacies due to its Jordan block structure) has been discussed in chapter 1
in a constructive way, we mean: not only the resonant terms are identified, but also we
issue an algorithm to compute them explicitly, as well as the coefficients of the generating
function (compare with Schmidt, 1994; Bridges, Cushman and Mackay, 1995).

The second reason is of a deeper technical nature, so it is a more involved task to
discuss it here. However, we can try to give a systematic outline: first of all, it is well
known that in presence of resonances, normal forms do not converge in general. Hence, a
natural question (that in the present context is discussed in chapter 2) is to ask what is
the optimal order up to which the normal form should be computed. As this order is not
known a priori, a good idea to obtain it a fortiori is to perform nonlinear normalization as
a composition of canonical transformations such that, at any step, the first order correction
of the corresponding transformation kills all the terms not left in normal form after the
previous step (see, for instance Nekhoroshev, 1977, 1979; Perry and Wiggins, 1994). In
the process, one sets up and solves homological equations holding monomials of arbitrary
high order, and finally is precisely the number of steps what determines the order of the
normal form. However, though this process works well in the semi-simple(®) case, in our
context, if we try to solve the homological equations at any order, the solution is no longer
convergent (even when we have good arithmetic properties for the frequencies). Thus it
will be clear that, to derive the optimal normalization order, one has to proceed order by

(At least locally at o = 0, so if w(0) is the frequency of the critical periodic orbit, My, then it must
be w'(0) # 0

(2)We mean, when the monodromy matrix of the periodic orbit has pairwise different normal eigenvalues.
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order and then, closed algorithms become much more efficient and, among them, that of
Giorgilli-Galgani, fits specially well to our purposes.

Consequently, it is worth remarking here that the homological equations we have to
solve in order to determine the generating function cannot be transformed into diagonal
form —as happens when one normalizes around semi-simple periodic orbits—. This makes
the derivation of the structure of the normal form a more involved task. At the end, we
are able to give, in theorem 1.24 on page 37, a versal normal form for three-degree of
freedom Hamiltonian around the 1 : —1 resonant periodic orbit M. Below, a (short)
version of this result follows.

Theorem 1. Consider the above Hamiltonian system (1). Under the forementioned con-
ditions, H can be reduced, by means of a symplectic change defined in a neighborhood of
the periodic orbit My, to a real Hamiltonian which (keeping the same name for the old
and the transformed one), is given by

H(Hlamallay) = WIII T Wy X T+ %|y|% + ZT (%|$|%,1—1,y X CB) +%(r)(917$7[17y)7
with the notation,
|z|s = (ﬁ +x§)1/2, lyl2 = (y% + yg)l/{ T XY =2T1Y2 — T2Y,

wy being the frequency of the resonant periodic orbit and wo/w; (assumed not commen-
surable with 2w), the characteristic exponent of the critical periodic orbit, My, respec-
tively; Z,(u,v,w) a polynomial of degree® |r/2] beginning with quadratic terms and
R0, x, I,,y) 2n-periodic in 0, holding terms of “degree” higher than r (see chapter 1,
section 1.7, for a precise definition of what means degree in our context).

The quadratic part of the Hamiltonian plus Z,(---) in the statement of this last
theorem will be denoted by Z(, i. e.,

Z(r)(éB,Il,’y) = C{JIII + WYy X T + %|y|§ + Zr (%|$|§,I1,’y X CB) .
Moreover, to formulate some results, it will be convenient to express the polynomial Z,
as,
1

Zy(u,v,w) = §(au2 + bv? + cw?) + duv + euw + fow, (2)
with a, b, ¢, d, e f real coefficients. Z(") is the (real) normal form up to order (degree)
r and is proven to be integrable, whereas 3" stands for the (non-integrable) remainder.
Then, from section 1.8, and up to the end of chapter 1, (") is dropped so only the

dynamics of the normal form is accounted for.
Parametrization of the family of periodic orbits: it is immediately seen that

01 = (w1 + 022,(0,1,,0))t + 69,
I, = const., (3)

T =To=y1 =y =0,

(3) Throughout the text, the symbol |-| will mean the integral part, i. e., for z € R,

|z] =max{z € Z:z < x}.
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is a family (with I, as parameter) of periodic orbits of the Hamiltonian system Z(),
which will match the family M, of the complete Hamiltonian. Whence, the characteristic
exponents associated to the normal directions can be computed in terms of the action I;
to give

+

Oéh_lu)g—l-fjl \/—dfl—i—O [2 —|—O [2 (4&)
Bi = —i(ws + fI) £ /—dI; + O(I2) + O(I7}), (4b)

from these expressions we see that if |I;] is small enough, the sign of the content inside
the square roots, depends mainly on the sign of —dI;. This opens two possibilities:

Case 1. d > 0, The family of periodic orbits (3) is complex unstable for I; < 0, and
(linearly) stable for I; > 0. See figure below.

Case 2. d < 0. The family turns out to be (linearly) stable for I; < 0 and complex
unstable for I; > 0, as it can be appreciated in the figure.

Im Im _
) . . A (X+1 v . Gll‘rf L] GT
u'lw.iiiiiT (X|1 e 1 (]Ili ) (o] 10, !
Re : : Re
S R _ by B 1B . : 1
B|1 B|1 1w, - - T, 4 L
v B|1 4 B|, B‘l"’ ¢ Bll
1,<0 1,=0 1,>0 1,<0 =0 ;>0
(a) d > 0. (b) d < 0.
Figure 1: We note that when I} = 0, then oy = aa’ =iw2 and By = 63‘ = —iwsy (collision of characteristics exponents).

Therefore, the family changes its linear character from complex-unstable to stable (when d > 0, fig. 1(a)), or vice-versa
(when d < 0, fig.1(b)).

On the quasi-periodic solutions: further, the quasi-periodic solutions (note, solutions
of Z(M) we seek are more easily derived if first the symplectic change,

I
1 = +/2qcosby, Yy, = —\/—;_qsin92+p\/2qcosﬁg,

I
Ty = —y/2¢qsinfy, y, = —\/—;_qcosﬁg—p\/QqsinHQ,

is applied to Z(") introducing thus an extra angle, 6, and its conjugate action, I,. Taking
these new coordinates: (61,0s,q, I1, I, p), the corresponding Hamiltonian equations are
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bound to be, '
0 = w + 02 (q, 1, 1),

. I
O = wy+ 2—2 + 052,(q, I, I5),

q = 2qp,
: (6)
-[1 = 07
ig = 0,
12
p = —pP+-2—-02(q 1, L)

4q?
So one might compute 2D-invariant tori as equilibrium points of ¢ = 0, p = 0. With this
idea, the next theorem follows naturally (see section 1.9, page 41).

Theorem 2. Let the coefficients a, b and d be those in Z,. Then:

(i) If a # 0, there exists a real analytic function T : U C R*> — R, defined in some
neighborhood of the origin U C R?, such that the functions {T (t; J,8°),t € R} jey g0c12>
with J* = (J1, J2) and,

2(J)t + 6°
r(J)
T(t;J,0% = Ji cT?’xR* (T?= R?*/277%), (7)
21,7 (J)
0

T = wr + B2, (T(T), J1, 217 () (8)
QZ(J) =wsy + J2 + 8327" (T(J)a Jla 2J2T(J)) ) (9)

are solutions winding a two-parameter family of 2D-tori of the system (6) with intrinsic
(or basic) frequencies given by (8) and (9).

(1) If, in addition, b—% # 0, the invariant tori of the first item are non-degenerate, in
the sense that the matriz of the derivatives of £2° = ({21, {2) with respect the parameters
J* = (J1, o) is not singular at the origin, i. e., det (0792(0)) # 0.

In particular, the second item means that the frequencies 2y, {2, in (8), (9) map
diffeomorphically (locally at the origin) the space of the parameters into the space of
frequencies, so the tori in the family could be described equally well using the frequencies
(2 instead of the parameters J.

Remark 3. From the expression for the polar coordinates in (5), and the parametrization
of the family of invariant tori follows that only those values of the parameters J;, Jo
making 1'(.Jy, J3) > 0 will determine real quasi-periodic solutions. As 1°(.Jy, J3) is obtained
applying the implicit function theorem (section 1.9, proof of theorem 1.27) at (0,0), in
particular, one can compute its expansion around the origin. Up to second order in Jy, Js,
results:

d 1
Ty, Jo) = ——Ji+ EJS +...,
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so real invariant tori are assured for J in a neighborhood of the origin if, for instance, the
two additional conditions

d
_EJI >0 and |J2| < |J1|a,

with @ > 1/2 are simultaneously fulfilled. 2

Before studying the linear character of the invariant tori, we note that, if through the
change (5) we transform back to the normal form coordinates, the family of invariant tori
given above is expressed as 6, (t;J,0°) = 2, (J)t + 9§0), I, = J; and,

—/ Y (J)sin(2o(J)t + 69
s gy - (VTSm0
T(J) cos(2x(J)t + 69)

— /27 (T) sin(2,(J)t + 69)
— 2D () cos(2(I)t+09) )

Therefore, in the phase plane (z1,z3), the family of tori plots as a family of invariant
circles of radii (¥'(J))'/? and centered at the origin where the periodic orbits are placed
(analogously in (y1,¥2)). In this sense, the (bifurcated) 2D-invariant tori appear “around”
the periodic orbits.

Normal behavior of the invariant tori. Next, to study the linear stability of the family
of invariant tori (7) one first sets up the variational equations of system (6) around one
of the real torus of the family in the normal directions, say 7 (t;J,8°), for some .J € U:

y(t;J,0°) = (

X =2r(J)Y,
(10)

Y =— (TQ({;Q) + 01, Z,(Y(J), 1, 2J2T(J))> X,

and sees that,

0h, 0 = £/~ 42 = 20 ()0, 2,(T(J), J1, 217 (J))

are its characteristic exponents, but expansion of the stuff inside the square root with
respect to J yields:

0 = /200, — 6T + ... (11)

so, under the reality conditions in remark 3 the normal behavior of the invariant tori
is determined —for |Ji|, |J2| sufficiently small-, just by the first term 2d.J; inside the
square root. Hence, suppose first that the coefficient a is positive. Then, under the
reality condition d.J; must be negative, so by (11) the invariant tori will be elliptic and
the periodic orbit with I; = .J; is —linear—, unstable (see figure 1). Otherwise, let a be
negative. Now the reality condition forces d.J; > 0, which implies hyperbolic tori and
the periodic orbit surrounded (in the sense specified above) by the invariant tori is stable
for I = J;. These considerations motivate the proposition 1.29 at the end of chapter 1,
which we also write here.
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Proposition 4. Under the assumptions of theorem 2 —including the reality conditions of
remark 3—, the type of the bifurcation is determined by the sign of the coefficient a. More
precisely:

Case 1. a > 0 then, we say that the bifurcation is “direct”: there appear elliptic tori around
complex-unstable periodic orbits; and if

Case 2. a < 0 the bifurcation is “inverse™ hyperbolic invariant tori unfold around stable
periodic orbits. In this case, the family contains also parabolic and elliptic tori.

In this way, we have determined the parameter, a, that governs both, the existence
and the type of quasi-periodic bifurcation.

Chapter 2. Thus far the formal part of the memoir. Indeed, it is worth studying
the whole Hamiltonian (normal form the plus remainder) and to inquire whether quasi-
periodic solutions still persist (or not) after the remainder is added. So, one has to mess
around with some type of KAM perturbation methods, but this implies some knowledge
—or, at least, some hypothesis—, about how large the perturbation could be (because is this
size which determines the order of the measure of the gaps). For us, two approaches are
possible at this point: one can deal with the normal form as an integrable Hamiltonian and
then add a generic perturbation —considered as small as one might need— or work in a more
quantitative direction, asking, if R is the distance to the resonant periodic orbit, what
could be the order, 7o, = rop:(R), of the normal form leading to the smallest remainder(*)
in this R-neighborhood. Thus, one surely will be able to derive R-dependent “optimal”
effective bounds, say M(R), such that ||9R(r*)|| < M(R). In the analytical context, and
assuming Diophantine frequencies, one typically expects to obtain exponentially small
bounds for the remainder as a function of R. Something like:

W~ 0 e ().

for certain ¢, ca > 0 (¢ typically depends on the exponent of the Diophantine conditions).
However, this works for semi-simple homological equations (even when resonant periodic
orbits are dealt). In our case, though, the Jordan structure of the homological equations
causes that when one solves for the coefficients associated to a monomial of certain degree,
n, the associated small divisors appear not just raised up to the first power (as happens
in the semi-simple case), but up to a power which depends on the degree n. Heuristically
speaking, the amplification factor n”, (7 > 1 independent of n) of the terms of degree n
of the solutions of the homological equations, is replaced by a factor that can be guessed
to be close to n™". The bounds obtained in the present resonant non semi-simple case are
given in proposition 2.19 on page 81. We summarize below —omitting technicalities—, the
main results described there:

Theorem 5. If the frequencies w* = (w1, ws) in the Hamiltonian H of theorem 1 satisfy
the Diophantine conditions,

|<k,w>|z# ke 7%\ {0},

for 7 > 1 and for a certain v > 0. Then:

(Wor, at least, that optimizes some suitable bound of the remainder.
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(i) There is Ry > 0 such that, for a given distance R to the critical periodic orbit with
0 < R < Ry, the optimal normalizing order —according to our bounds—, 1s given by
Topt = | 7|, with 7 depending on R through,

where e = exp(1); c3, ¢y are two constants independent of R and Wy denotes the prin-
cipal branch of the Lambert-W function —see section 2.6.1 and references therein® —.

(ii) The remainder of the normal form (theorem 1) is bounded by,

R 1 R Top;(R)il
m(ropt) < 1— — — 12
el < (1-7) (ag) (12)

in this R-neighborhood of the critical periodic orbit. Here, cs is a constant indepen-

dent of R.

(iii) Moreover, Rort) goes to zero faster than any analytic order, i. e.,

Rrort) = o <<%>n> . (R/Ry — 0%),

for any positive integer n.

Therefore, in a small enough neighborhood of the critical periodic orbit, the remainder,
R (ort) can be thought of as a perturbation of the normal form, and justifies the application
of K AM methods in the next chapter. Of course, the setting of a very explicit constructive
scheme to compute the normal form plays an essential role in the derivation of the bounds
given above.

Chapter 3 is devoted to the discussion of the persistence of the bifurcated invariant
tori derived in chapter 1. First, we note that we have different possible situations where
persistence can be investigated: we can consider the case of direct bifurcation (a > 0) or
the inverse (a < 0). Furthermore (and depending on the case) we can study the persistence
of (real) elliptic, parabolic or hyperbolic tori. What we have done here is to study in detail
the case of elliptic tori in the direct bifurcation. We have chosen the elliptic case because
the context of elliptic tori is always the most difficult to deal with, and contains almost all
the difficulties inherent to this (degenerate) problem. Likewise, we think that is important
to stress here the main difficulties (and differences) of this problem with respect to others
results of persistence of invariant tori (see Sevryuk, 1997; Poschel, 1989) which make
interesting by itself the methodology that we have followed in chapter 3. To discuss this,
let us start giving a new parametrization of the unperturbed (i. e., those coming from the
normal form) bifurcated families of 2D-tori. This parametrization will be more suitable
if —as in our case— one wants to control the real character of the tori (see theorem 3.1 o
page 98):

(5)Here, it is enough to known that for any z € R, z > —1/e, is w = Wy(2) & we®” = z with w > —1.
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Theorem 6. If the coefficient d in (2) is d # 0, then the function T : R x ' x T? — R,
defined by

T(&m;09) = (2(6,m)t+0©, £, T(¢,n), 26n,0) (13)

with: T C R? a neighborhood of (0,0), T an analytic function on T, defined implicitly by
the equation

772 =02, (&I(é‘a 77)7 2&”) ’ (14)

and the vector of frequencies, £2* = ({21, §25) given by the components,

Q& n) = wi + 0Z.(§,Z(E,n),28n),

15
D(E,m) = wa + 0 + (6 T(E ), 260): (13

constitutes a two-parameter family of solutions of (6) winding the corresponding family
of two-dimensional invariant tori.

In terms of these new parameters, the characteristic exponents of the unperturbed
family are given by,

Ne(€,) = £/~ — 206 — 2608, Z5(€, T(&,m), 26m), (€, €T, £> 0.

Then, the first difficulty arises when we have to choose the suitable set of parameters to
characterize the tori of the family along the iterative KAM process. Let us mention that
we have three frequencies to control: the two intrinsic ones, 21, {25 of the quasi-periodic
motion and the normal one (the real part of A, ), but just two parameters to control them
&, 1. So, we have to face the so called “lack of parameters” problem (see Moser, 1967;
Sevryuk, 1999, or chapter 3 of this memoir for a more detailed explanation).

Typically, on applying KAM techniques for low-dimensional tori, one sets a diffeo-
morphism between some neighborhood of the origin in the parameter space (§,7n) and
a vicinity of (wy,ws) in the space of intrinsic frequencies ({2, (2;) (similarly as stated
in item (ii), theorem 2). Hence, the characteristic exponents Ay may be put also as a
function of the intrinsic frequencies. For elliptic tori, besides the non-degeneracy of the
these frequencies, one needs to ask the normal frequencies to “move” as a function of §2,
this forces to impose suitable “transversal” conditions in the denominators of the KAM
process (see Sevryuk, 1999; Jorba and Villanueva, 1997a). In our case, for { = (£,7) in a
small neighborhood of the origin the invariant tori will be elliptic when a > 0 (and £ > 0),
as follows easily form the expression for A\.. However, the typical transversal conditions,

Im (gradg (€, A\(£2))|,_.,) & Z*, for any £ € Z* with 0 < |[{;] + |la] < 2, €4 # b,

(where A" (£2) = (A, (£2),A_(£2))), does not work, because the derivatives of A(£2) are not
defined for £2 = w (the elliptic invariant tori are too close to parabolic). We have overcome
this situation taking as basic frequencies for the unperturbed tori not £2* = (£2;, {25), the
intrinsic frequencies, but A* = (u, {2) with 1 = |\, | and then, the first component of
the intrinsic frequencies, (2, as a function of A, i. e.: 1 = (2(A). In other words:
we “label” the (elliptic) invariant tori with their normal frequency and second intrinsic
frequency. It is checked that, with this parametrization, the small divisors do change in
the normal directions, so one can proceed with to the KAM iterative scheme, which —due
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to the forementioned proximity of parabolic tori—, involves a more tricky control on the
different terms of the Hamiltonian appearing at each successive step.

As we have implicitly mentioned, we will look for reducible elliptic tori (see J. Puig,
2002, for a survey on quasi-periodic reducibility), and hence the normal frequency will be
well defined. So, in our approach we have not taken into account the machinery allowing
to work with non-reducible elliptic tori (see Bourgain, 1997). A non-reducible approach
complicates strongly the formulation, with no significative gain in the measure estimates.
However, reducibility is a very important trick in order to simplify the resolution of the
homological equations, which, in our case (and in spite of these simplifications) have some
additional difficulties. To be more precise: the way we choose the basic frequencies, forced
by the nondegeneracy conditions yields a coupling between some of the equations. This
bind us to a very careful determination of the compatibility term which allows to keep
the basic frequencies fixed at any step of the iterative process. On page 106 we state
theorem 3.9, gathering the results related with the preservation of the (direct) bifurcated
elliptic invariant tori. Here we present a shortened version:

Theorem 7. Consider the Hamiltonian in theorem 1, assuming that the coefficient a of
the quadratic part of the normal form (see (2)) is positive. Moreover, we define p = |\,|,
A" = (u,§25). Then, there exists a symplectic change:

U:DXxACT?xRxREZxRxA— T!xR?xR xR
where A is a Cantorian of the initial set of basic frequencies A, such that:

(1) The measure of A is plenty in the following sense: let M(R) denote the bound for
R(ort) given in theorem 5 and Ag denote the subset of basic frequencies of A in a
R-neighborhood of w* = (0,wy), then the Lebesque measure:

o

meas (Ar \ A) ~ (M(R))2,
being 0 < a < 1, a fized constant.

(2) The transformed Hamiltonian H = H o U4 can be cast into:

H(O, 0.1, A) = 0(4) + (R(A), ) + 5(2, BA)2)+

+%(I,C(0; AI) + (2, E(A)T) +H,(08,q,I,p; A), Ac (16)

where 2°(A) = (4(A),$2); B, €, C are 2 x 2 matrices (B, € depending only on
A whereas the matriz C depends also on @), and H. holds the terms of order greater
than two in z, I.

(3) For every A, the corresponding Hamiltonian (16) has a (reducible) invariant torus at
z =0, I =0, with vector of intrinsic frequencies £2(A)* = (£21(A), (25), and normal
frequency given by pu.

(4) (0,A) € T?> x A T(0,0,0,0, A) is a parametrization of a Whitney reqular Canto-
rian manifold holding the family of invariant tori, which can be embedded in a C*
reqular manifold, in such a way that the measure of the extension of the Cantorian
manifold to this reqular manifold, is of the same order than the measure of the gaps
coming from the elimination of frequencies in the KAM process.
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In appendix A, we gather some auxiliary lemmas used to prove the different results
spread along the text and finally, appendix B includes some basic background on Hamil-
tonian systems, stability of periodic orbits and transformation theory (Lie method series).
Longer than our initial purpose was, it is included only to make this work as self contained
as possible.



Chapter 1

An analysis using normal forms

In this chapter, we issue the formal part of our study. The objective is to analyze the
dynamics around the 1 : —1 resonance which appears when a family of periodic orbits
changes its stability from elliptic to a complex hyperbolic saddle passing through degen-
erate elliptic.

Our analytical approach consists of computing, up to some given arbitrary order r,
the formal normal form around that resonant (or critical) periodic orbit. This involves
the following steps.

Step 1. We change the system of coordinates to a suitable one: the adapted coordinates
around the resonant periodic orbit by means of a symplectic change.

Step 2. We apply a canonical Floquet transformation to reduce the normal variational
equations of the orbit to constant coefficients.

Step 3. We complexify the Hamiltonian, making a linear complex change plus an ex-
tension of the transformed Hamiltonian to a complex domain.

Step 4. Finally, we proceed with the nonlinear reduction and describe, in some tricky
and constructive way, the normal form.

Dealing with the truncated normal form itself and the differential equations related to
it, the following results arise.

Result 1. We derive the existence of two families of invariant 2D tori which bifurcate
from the critical orbit.

Result 2. We identify the coefficient of the normal form that determines the linear
stability of the bifurcated tori. This allows us to show the Hopf-like character of the
unfolding: normal hyperbolic tori unfold “around” elliptic orbits while elliptic tori appear
around hyperbolic orbits.

The (formal) analysis of this chapter is followed by: (i) As the normal form at all
order is not convergent in general, if we want to apply some perturbative technique, it is
necessary to have some account of the smallness of that part of the Hamiltonian which
has not been reduced to normal form. This is done in chapter 2. Our goal there is to
prove that, if the order r of the normal form is conveniently taken as a function of the
distance R to the resonant periodic orbit, then the norm of the remainder goes to zero
as R does, but faster than any analytic order. (ii) in chapter 3, an application of KAM
method —adapted to low dimension tori—, shows that most (in measure sense) of the tori
of the 2D family still persists when the whole Hamiltonian is considered.
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1.1 Overview of the chapter

Let us sketch, more detailed, the contents of this chapter 1. After the statement of the
problem and two examples of transitions stable complex-unstable (see section below and
section 1.3), we introduce (local) adapted coordinates around the resonant (degenerated,
transition, critical) periodic orbit. The purpose of this change is to separate the dynamics
along the periodic orbit, described now by and angle # and its conjugate action I from the
movement in the normal directions, which will be accounted by the positions &, & and
their corresponding momenta 7, 1,. In the next section Floquet or [inear reduction is
applied. The final goal is thus to arrive —through a linear symplectic 27-periodic change—
to a “clean” Hamiltonian in the sense that its quadratic part H, (see (1.5.21)) does not
depend on the angle variable #. Moreover the transformations are chosen to put this
quadratic part in Williamson normal form (with respect to the normal directions). See
the appendix 6 of Arnol’d (1974) and the references to the works of Galine and Williamson
given there (. Albeit not strictly necessary, the linearly reduced Hamiltonian is still com-
plexified (section 1.6) to simplify the structure of the homological equations arising in the
nonlinear normalization (normal form) process, which begins in section 1.7. There, we
introduce the Giorgilli-Galgani algorithm (definition 1.7). This will be canonical transfor-
mation device used to derive the normal form. From its recursive structure, we determine
the form of the homological equations and, heuristically, the reduction algorithm. Never-
theless (and hence the “heuristicness”), it is assumed for such algorithm to success that, at
any order s = 3,4, ..., one can solve the corresponding homological equations in both the
generating function Gy and its corresponding compatibility (complementary, resonant)
term Z; (see equations (1.7.11)). Such “solvability” question is answered affirmatively in
theorem 1.20, which gives the form of the resonant terms Z,. Our goal is to derive its
proof in a constructive way, we mean, giving explicit (computable order by order) ex-
pressions for the coefficients of G; and Z;. In fact, this discussion constitutes the stuff of
sections 1.7.1 and 1.7.2 whereas theorem 1.20 is presented as a way of conclusion at the
end. Therefore, the formerly guessed reduction algorithm is fully justified and stated in
section 1.7.3 by proposition 1.21 which, as noted in the text, is formally identical to the
corresponding ones in Giorgilli et al. (1989) and Sim6 (1989). However, and for the sake
of completeness, its proof has been also included in this memoir. At the end of the same
section, theorem 1.24 gives the versal normal form at which the (initial) Hamiltonian can
be reduced in a neighborhood of the resonant periodic orbit. Actually, it can be casted
into this normal form and a remainder —see (1.7.67) and (1.7.68) for the real and complex
normal form respectively—. So far the (formal) normalization computations. From this
point, and up to the end of the chapter, we study the dynamics of the normal form itself,
i. e., without taking the remainder into account. In particular one sees that, outside a zero

(D1n fact, in the classification for the normal forms of quadratic Hamiltonians given in the appendix of
the Arnol’d book, the one corresponding to our case should be H = £1(:5¢7 + ¢3) — b°p1g2 + p2q1, but
the trivial symplectic change:

q = —byi, p1 = 5561,
q2 = €Y2, b2 = —€x2,

(with € = £1) will —after identifying b = w> and changing, if necessary, the sign of the time ¢ — et—, yield
the desired form #, given in (1.5.21).
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measure set, the normal form is integrable, for three functionally independent integrals
—equations (1.8.4)— are found. Further, it can be seen that (locally around the critical
periodic orbit) the family of periodic orbits are, in a quite natural way, parametrized
by the action ;. With this parametrization, we set up the variational equations around
the periodic orbits and derive explicit expressions for their characteristic exponents. The
transition from stable to complex instable may then be easily described in terms of the
expansion of these exponents with respect I (see figure 1.7). This is done in section 1.8.1.
In section 1.9 we seek for quasi-periodic solutions. In fact one realizes that these solutions
can be more easily seen if the polar symplectic change (1.9.1), which introduces a new
angle and a new conjugated action, is first applied. From the Hamiltonian differential
equations in this new coordinates, the existence of a two-parametric 2D-family of invari-
ant tori are derived and stated in theorem 1.27, which also gives a parametrization of the
family. The next step is, with that parametrization, to set up the variational equations
around the tori, compute their characteristic exponents and discuss their normal linear
behavior. This discussion is formalized in proposition 1.29, which establish the linear
character (elliptic, hyperbolic) of the bifurcated tori. The similarities from the present
unfolding of invariant tori “around” (see figure 1.9) the family of periodic orbits and the
classical Andronov-Hopf bifurcation can be appreciated from this last result. Finally a
study of the dynamics of the fourth order normal form closes the chapter.

1.2 Formulation of the problem

Let H(¢) with ¢* = (&1,&2,&3,m,m2,m3), be a real three degree of freedom analytic Ha-
miltonian, with its associated Hamiltonian system

¢ = Jsgrad H(C), (1.2.1)

where Js is the matrix of the standard canonical 2-form in R® (see appendix B, sec-
tion B.1). Suppose that this system has a nondegenerate family of periodic orbits,
{Ms},er, such that for some value of the parameter of the family o, say o = 0, the
corresponding orbit M, (from now on, the critical or resonant periodic orbit), has an
irrational (in the sense to be fixed later) collision of its nontrivial Floquet (characteristic)
multipliers.

To be more precise, we suppose that, for ¢ < 0, those nontrivial characteristic mul-
tipliers of M, lie on the unit circle, they approach pairwise as o goes to o = 0, for this
value they collide and separate towards the complex plane when ¢ > 0. This evolution is
plotted in figure 1.2.

It remains to precise what is meant when we say that the collision of characteristic
multipliers on the unit circle is irrational. In few words: if 271y is the characteristic
exponent corresponding to the characteristic multiplier Ay of the resonant periodic orbit
M, (and so \g = €?™™?)  the collision is irrational if vy & Q.

Remark 1.1. When this is not so and vy = p/q € Q (and hence the characteristic exponent
is commensurable with 27) then, generically, phenomena of multiple-period bifurcation
take place. It can be easily described using symplectic maps. For instance, if we consider
a one parameter symplectic map, say F, : R* — R*; g-periodic points x,

Fg(mo) = Ty
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Ao \ Ho
=H
uc 0 0
AU
1y,
Ly,
1N,= Ui
1, ¢ 1,
0<0 0=0 o>0

Figure 1.1: The transition from linear stability to complex instability for the family of periodic orbits { Mg} g, takes
place through a collision of the nontrivial (i. e. different from 1) eigenvalues of the monodromy matrix corresponding to
Mop.

unfold. A general theory for the bifurcation of period-¢ points can be found in Bridges
and Furter (1993). As an example, we mention Pfenniger’s paper (1985a), where families
of g-periodic points bifurcating from a resonant fixed point are found numerically for two
generalizations of the standard Froeschlé map (see the example of section 1.3.2)(2). '

Remark 1.2. Assuming generiticity of the collision, the monodromy matrix of the orbit
My, Y (M,), has the following Jordan normal form Y,

Y = 1.2.2
'y (1.2.2)

1% O
1 1/X

Thus, none of the Jordan blocks of the monodromy matrix at the resonance is trivial
(e. g. diagonal). In particular, the nontrivial character of the first block —corresponding
to the eigenvalue equal to 1-, follows from the nondegeneracy of the family of periodic
orbits (this is equivalent to the “twist” condition on the family of periodic orbits. If w(o)
is the frequency of the orbit M,, then we have that w'(0) # 0). 2

1.3 Complex instability: two examples

The instabilization process just described is known in the literature as the transition form
stability to complex instability, and there are several Hamiltonian systems and symplectic
maps where it takes place. In the present section we shall account for two representative
examples.

1.3.1 The Restricted three body problem

We consider two bodies —called primaries—, moving on circular Newtonian orbits around
their common center of masses. To this two body problem, we add a massless particle

() The one parameter symplectic map could be a Poincaré map around the critical periodic orbit using
the energy as parameter.
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whose movement is influenced by, but does not change the orbit of the primaries. The
motion of this third particle is the widely study Restricted Three Body Problem (see
Szebehely, 1967). To simplify the equations, the units of length, time and mass are
chosen such that the sum of their masses, their mutual distance and the gravitational
constant are equal to one. With these units,the period of the orbit of the primaries is 27
(so the angular velocity is equal to one). Moreover, in the RTBP it is common the use
of rotating or synodical coordinates, where the origin is fixed at the center of mass of the
two primaries, the x axis is given by the line defined by the two primaries and oriented
from the smaller of the primaries to the bigger one. The z axis has the direction of the
angular momentum of the motion of the primaries and the y axis is chosen to form a
positively oriented system of reference.

If o and 1 — g with 0 < p < 1/2 (called the mass parameter), are the masses of the
primaries, in the synodic system, their positions are given respectively by (x—1,0,0) and
(1,0,0). In this system, the Hamiltonian for the motion of the third particle is

1 l—p p
H(x,y, 2, pas Py =) = 505 + Py + ) + ypa — 7y — T (1.3.1)

where the momenta p, = & — vy, p, =y + 2 and p, = 2 and ry,ry are the distances from
the particle to the primaries: 7} = (x — p)? +y*> + 2%, r3 = (x — p+ 1)* + y*> + 2. Note
that then, the (z,y) plane is invariant by the flow, so we can restrict the Hamiltonian to
this plane. This restriction is known as the planar RTBP. Through all this section only
the spatial case is considered, so we shall refer (1.3.1) simply as the RTBP.

Its associated Hamiltonian system has five equilibrium points. Three of them located
on the x axis (the collinear or Euler Ly, Ly and L3). The other two (the triangular or
Lagrange equilibrium points Ly, Ls) form two equilateral triangles with the primaries;
their coordinates in the phase space are Ly(—1 + p, —@, 0, @, —3 +1,0), and Ls(—3 +
1,30, -2 14 0).

In what follows we shall study the stability of the Lyapunov vertical family of orbits
around Ls (see below), but due to the symmetries of the problem, the same results will
be valid for L4. It is convenient, first, to bring the origin to L;. This motivates the
translation,

V3

1
- X _ - —y .Y -7
T 2—|—u, Y +2, z
V3 1
5 py =Py — = +p, p. = Py.

px:PX_ 5

With this translation, the coordinates of Ls are (0,0,0,0,0,0) and the transformed Ha-
miltonian (1.3.1) is

~

DO | —

1 V3 1—pun 7
YPy — XP - — X—-——Y - - — 1.3.2
R Y+<2 “) 2 B Ry (Y
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now with,

The quadratic part of the Hamiltonian (1.3.2) is:

1 1
HZ:§(P§+P§+P§)+YPX—XPY+§X2—
5 1 V27 (1 1
—Y? 4 2P s ) XY+ op(l—p) — =, (1.3.3
Rt AR <2 u) +opl—p) =5, (1.33)

and the corresponding linearized system is Z = &7, being & the constant matrix:

0 1 0 100
—1 0 0 010
0 0 0 001
6= ,
—-1/4 v 0 0 1 0
v 5/4 0 -1 0 0
0 0 1 000
with v = —@ (% — u). Computation of Spec & gives the eigenvalues,
. 11
At =1, >\2,3:\/—§i§\/1—27/~0(1_ﬂ),
and A\j13 = —\;,7 = 1,2, 3; since & is an infinitesimal symplectic matrix.

The pair +i gives rise to vertical oscillations with angular frequency equal to 1. The
others are the ones of the planar RTBP. All the eigenvalues are purely imaginary and
different if 0 < p < pg = (1 — 1/23/27) ~ 0.03852, (the Routh’s mass parameter). For
it = pg the planar frequencies collide on the imaginary axis. This produces a change in
the linear stability and for up < p < 1/2, Ls becomes unstable.

Since A; is purely imaginary and since for 0 < p < 1/2 the quotients i—f, i—i’ are
never integers, the Liapunov’s center theorem (see Siegel and Moser, 1971, chapter 2,
§16), assures the existence of a family of periodic orbits, depending analytically on a real
parameter: the so called vertical family of Ly (and the orbits of this family can be locally
parametrized by the vertical amplitudes).

A point to note is that if ;1 # pg, and at least for small vertical amplitudes, the linear
stability of the family is the same as Ls. Nevertheless, the linear character may change for
large enough amplitudes. Actually, we can identify Ls; with the periodic orbit of period
27 and zero amplitude so the monodromy matrix of this orbit is given by £ = exp(27®).
Of course, this matrix has two (trivial) eigenvalues equal to one (those which come from
the pair +i of ®). By the considerations above, when 0 < p < ug, the four nontrivial
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eigenvalues of the corresponding $) lie on the unit circle and collide when p = pg. We
can thus continue (numerically) this resonance with respect to u and the amplitude of the
orbit. In fact, it be can continued with respect to any regular parameter of the family.
Figure 1.2 shows the curve corresponding to this resonance. The parameters plotted are
1 and the vertical velocity 2 of the periodic orbit when it cuts the hyperplane z = 0 in
the positive direction (see Jorba and Villanueva, 1998).

As an example, we fix = 0.05 (> pg, so Ly is complex unstable) and compute the
vertical family for this particular value. To do this, we take the hyperplane z = 0 as
the surface of section, fix an energy level corresponding to a small amplitude and search
for a fixed point of the reduced Poincaré map (see section B.2.1, appendix B). This can
be done first approximating by the solutions of the linearized system (which are known
explicitly) and then refining by a modified Newton method. The arc step method (see
Gomez et al., 1993) is applied to continue numerically the fixed point with respect to the
energy.

For each orbit in the family, we have computed also the associated stability indices by,
by (see section B.2.2 of appendix B) and represented them with respect to Z (as before,
the positive vertical velocity at z = 0). This is done for a range 0 < Z < 1 in figure 1.3(a).
Note: the index ¢; which appears therein is defined from by, by through ¢; = %(bl + by),
(see remark B.19, appendix B).

On the other hand, figure 1.3(b) shows the path traced by the family in the Broucke
diagram (appendix B, section B.2.2). Therein, we select six orbits —numbered from 1 to
6-, and represent them in figures 1.4, 1.5 and 1.6. Their initial conditions and period are
specified at table 1.1. From both figures 1.3(a) and 1.3(b), it can be seen that a change
complex-instability to stability takes place (the critical orbit is marked with number ’3’).
Another transition to even semi-instability can also be appreciated for higher values of z.

T x Y

0,628 318 536 168 +-01
0,628 777272368 +01
0,630089 232495 +01
0,631599 927537 +01
0,633 840714636 +01
0,637 047835699 +01

—0,450 000 109 572 4-00
—0,458924 515931 4-00
—0,481 245 305933 4-00
—0,501046 769 737 400
—0,516 359 489 344 +-00
—0,469 443 622 028 4-00

0,866 025 333 494 +-00
0,860 261 746 326 +00
0,845 561 510 888 +-00
0,832415959 636 +00
0,823 417455682 +00
0,860 308 810 893 +00

Pz

Py

P2

O Uk W N TR ot w o Tk

—0,866 024911 750 +-00
—0,825 060 390 352 400
—0,711 590 543 355 4-00
—0,583 483 428 082 4-00
—0,383984 492 470 4-00

0,161132747195 03

—0,449999 890 428 +-00
—0,440138 145163 400
—0,404 832774 245 +00
—0,350 428 498 869 +4-00
—0,237 527 444 586 4-00

0,136 748575021 —01

0,999 999 457 892 —03
0,286 536 941 211 400
0,544 945 235 936 +00
0,717 405 223 842 400
0,886 984 840 039 +00
0,999 044 666 550 +00

Table 1.1: Initial conditions and period of the periodic orbits marked by numbers 1,..., 6 in the Broucke diagram of

figure 1.3(b). T is the period and the initial value of the vertical position is z = 0, so it is not listed in the table
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21 0sf =
® !
07F
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05F
0 7
04F
03t
02F
01t
0 = !
0 000 082 083 004 005 006 007 008

0 005 01 015 02 02 03 03 04 045 05

(a)

Figure 1.2: 1.2(a) Change of the linear character of the orbits of the vertical family at Ls. Figure 1.2(b) represents in more
detail the neighborhood of the critical value ¢ = pr. In both figures, the mass parameter is plotted on the horizontal axis,
while on the vertical axis Z (the positive vertical velocity when z = 0) is represented. The numbers enclosed by circles

denote the stability types according to the section B.2.2 of appendix B (figures B.3 and B.4).

(b)

Figure 1.3: 1.3(a) Stability indices of the Liapunov vertical family of L5 and corresponding to a value of ;x = 0.05 of the mass
parameter. In 1.3(b) the path of the family in the Broucke diagram (appendix B, section B.2.2) is shown. See explanation

at the text.



1.3. Complex instability:

two examples

z 0.001
0.0008:
0.0006:
0.0004
0.0002

0
-0.0002
-0.0004
-0.0006:
-0.0008

-0.001

0.8660249

0.866025

0.8660251

0.8660252

0.8660253

-0.4500002

-0.4500001

-0.45
X

-0.4499999

-0.4499998

(a) Orbit # 1

Figure 1.4: Two complex unstable periodic orbits. They correspond to the initial conditions 1 and 2 listed at the table

02

0.1

-0.47

083 046

08 -0.44

0.86
043

(b) Orbit # 2

above. In the Broucke diagram of figure 1.3(b) they are pointed with their number besides white dots (O).

0.4

0.2

0.7
0.72
0.74
0.76
0.78

0.82
0.84

-0.38

(a) Orbit # 3

Figure 1.5: Orbits 3, 4, in the Broucke diagram (figure 1.3(b)). In particular 3 is the critical orbit, so the coefficients (a, 3)

0.6

0.4

0.29

(b) Orbit # 4

of the characteristic polynomial of its monodromy matrix represented there lie on the arch P; P».
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z 19
081
0381
067
06
049 04]
0.2 02
od 0
-0.24 -0.2
_0.4] -04
06] 06
~0.8]
0.8
1]
04 06 0 ~06
05
05 0.2 -0.4
0.4
0.6 X y o 02
y 03 X
07 e 06 0
0.8 02 0.8 02
(a) Orbit # 5 (b) Orbit # 6

Figure 1.6: Orbits 5, and 6 in the Broucke diagram (figure 1.3(b)). Note, by comparison with the two previous figures (1.4
and 1.5) that the shape of the orbits remains the same, but their amplitude in the vertical direction increases notably along
the family.

1.3.2 The Froeschlé’s generalized mappings

Pfenniger (1985a), introduces the maps

T x1 + Ksin(zy + xo) + Lsin(zy + 29 + 23 + 4)
x T+

Ts 2 = ! 2 . mod (27)
T3 x3 — Lsin(x; + 29 + w3 + x4)
Ty T3 + T4

and

T xy + Ksin(zy + xo) + Ltan(xy + x9 + 23 + x4)
x T+

T;g 2 = ! 2 mod (2m),
T3 x3 — Ltan(zy + xo + x3 + x4)
Ty T3 + T4

which are symplectic, with respect to the two-form o? = dxs A dz; + dxs A dzy. By
conjugation we can define two new mappings 7. and 7} as

Ti(x) = 8"'Ty(Sw), Ti(x) =S 'Ty(Sx);

S

0001
being S = <‘f 59 8). These are symplectic mappings, now with respect to the standard
0001
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two-form w? = dz; A drs + dxy A dry. Explicitly, T! and T} are given by,

T xy — Lsin(xy + 29 + w3 + x4)
T To+ @

Tsl 2 — 2 4 mod (27)
T3 1+ T3
Ty Ty + KSiII(IL'Q + 1‘4) + LSiH(l‘l + 22 + 23 + IL‘4)

and

T ry — Ltan(zy + o + 23 + x4)
x To+ T

Ttl ? = ? ! mod (27).
I3 T+ T3
T4 x4 + K sin(zy + x4) + Ltan(zy + x9 + 23 + 24)

Both maps 7 and 7} have the same Jacobian matrix around the fixed point x = 0. We
put DT.(0) = DT/(0) = A, and making the computations

1-L —-L —L —L
0 1 0 1
A= . (1.3.4)
1 0 1 0

L K+L L 1+K+L

Nevertheless, their non-linear behavior are different (see the referenced paper of Pfenniger,
and also the work of Ollé and Pfenniger, 1999).
From the characteristic polynomial of the matrix A,

pA) =M — 4+ K)\* + (6 +2K — KL)A\*> — (4+ K)A +1,
we identify (section B.2.2) the coefficients «, 5 and the discriminant A,
a=—-4+K), =6+K(2—-L), A=K(K-+4L).

The transition to complex instability requires A = 0, so if we keep fixed the value of K, the
critical value of the parameter L, L..;; = —K/8. Moreover, the transition stable-complex
unstable corresponds to a point on the arch PP, in the Broucke diagram (figure B.3).
This restricts K to the interval —8 < K < 0.

After these two examples, we go again to the general problem, as described in sec-
tion 1.2.

1.4 An analytic approach

As a first step to proceed with our approach, we shall introduce (see Bruno, 1989, 1994,
and references therein) local coordinates around the critical periodic orbit M, through
an analytic 2m-periodic change of variables,

i=1,2,3 and with € = (;51, ;52), 1 = (1, 12). Furthermore, we shall ask the change (1.4.1)
to satisfy the following properties:
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P1.4- 1. Tt maps the product set U = T' x (2, where {2 is a five-dimensional open set
around the origin, onto some (possible small) neighborhood, U, of M.

P1./- 2. The orbit M, is given by £ = n =0 and I=0 (and parametrized by 9)

P1.4- 8. The change (1.4.1) is symplectic with 0, € and I, 7] the new conjugate positions
and momenta respectively. So in this coordinates, the system (1.2.1) is transformed into
another Hamiltonian system,

g-ofi o o8
ol 06
~ (1.4.2)
~  OH . (‘)H
fi:—~: Ni: 1=1,2.
on; 7 85,

For an explicit construction of local canonical coordinates such like the ones just described,
(see Jorba and Villanueva, 1998).

The transformed Hamiltonian, H , defined in %, is analytic and 27-periodic in 5, S0 it
can be expanded in a convergent Taylor series,

ﬁ[(é; ga T) ﬁ) = Z %k,l,m(a)fkg'ﬁm, (143)

k,ilm

cla~mi~mo

with the standard multi-index notation E’ﬁ §2 ny '15*, which we shall use through-
out the text. The index k, and the components ofl = (Iy,13), m* = (my, my) range over

the nonnegative integers, while the coefficients hy j ,, (#) are analytic 2r-periodic functions
and can be expanded in Fourier series. If we restrict the system (1.4.2) to the periodic
orbit My, and take into account the development (1.4.3), we get

0="nhho(d), 0="io(d), 0=hoe(d), i=1,234, (1.4.4)

(e; is the i-th unit vector in R? and 0 is the zero of R?), since by the condition P1.4-2,

5 77 0 and I = 0, on the periodic orbit M. B
From equations above, it follows that hg 0(9) = const., so we can set hg o = 0.

Now, let 1/w; be the mean value of 1/hy o, therefore,

— =1+ (aycosnb + b, sinnd).
hi,0(0) nz=:1

Note that 71,1,0(5) # 0. Since M, is a periodic solution, there is no stationary points on
it.
We introduce a new change, which involves only I and 6

I= zﬁl o(0), 0=7r(), (1.4.5)

w1
where f(0) is defined by integration of the quotient wy /A1 o(6), i. e.

f(g) _Jhlo(ﬁ) z‘x’:% ay, sin kO — bkcoskg).
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It is straightforward to see that dI A df = dI A df, so the change (1.4.5) is canonical.
Moreover, on My, # = wq, so = w;t + const.; but M is a periodic orbit with period
T(M,), therefore we have wy = 27/Tj. In other words, wy is the angular frequency

of the periodic orbit. Thus, if we expand the new transformed Hamiltonian, H 0,1 5 n),
like in (1.4.3) and as before, restrict the corresponding Hamiltonian equations to the orbit
M, we shall obtain the following relations

~ o0~

hg 0(9) 0 hl 0 — &+ hO,el (9) — 0 1= ]_, 2, 3, 4 (146)

Here, /ﬁk,l,m(ﬁ) are the 2m-periodic coefficients of the Taylor expansion of the Hamiltonian
transformed by the change (1.4.5). In this way, we have determined the constant and
linear terms of the Hamiltonian.

1.5 Linear normalization

Consider now the following low order terms of the expansion of the Hamiltonian:

/ﬁ1,0(9)[+ Z /f;o,l,m(e)gﬁm = wp <I+% < ¢, I(0) E>> ; (1.5.1)

Imf1 -+l =2

being ¢ = (€,7) and I'(6) a 4 x 4 matrix whose coefficients are real analytic 2r-periodic
functions. Furthermore, the norm |v|; = ), |v;| has already been introduced.

To achieve the linear normalization, we skip the higher order terms in the Taylor
development of the Hamiltonian and consider the normal variational equations around
the orbit, which are given by the following linear Hamiltonian system,

0=w, I=0, (1.5.2)

¢ =wi Jol'(0)C. (1.5.3)
Combining the first of the equations (1.5.2), and the normal linear system (1.5.3), one
obtains

¢

6
Let X (0), be a fundamental matrix of the solutions of (1.5.4). Then

X (0 +21) = X(0) M,

= J,I'(0) . (1.5.4)

where Mp is a constant nonsingular matrix which, apart from the block (19) of (1.2.2),
has the same Jordan block structure than the monodromy matrix of the periodic orbit
M. Since (1.5.4) is a Hamiltonian system, M, is a (2w-periodic) canonical matrix to be
fixed later. We introduce the following linear substitution,

¢ = B(0)z,

z* = (x*, y*), with B(f) a canonical and 27-periodic on # matrix to be determined later.
Therefore, the system (1.5.4) transforms to another linear Hamiltonian system:

d
d—z = J,(B*T'B + B*J,B') z, (1.5.5)
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here, the asterisk, (*), denotes the transposed matrix. Now, let us assume the following
hypothesis (discussed below):
H1.5- 1. A constant symmetric matrix, Ny, exists such that M, admits an exponential

representation of type,
M() = exp(27rJ2N0), (156)

H1.5- 2. There exists a constant canonical matrix D, and a matricial normal form G,
to be chosen later such that the matrix /Ny can be expressed as a product like,

Ny = D*GD.
Assuming H1.5-1 and H1.5-2, we take for B(6),
B(0) = X(0) D" exp(—0.J,G), (1.5.7)

and it is easy to check both, the 27m-periodicity of B(f) and that the transformed sys-

tem (1.5.5) turns out to be,

dz
@ = JZGZ.

Next, we come back to the Hamiltonian H and perform the transformation,

1
9:91, [:[1+§<Z,B*J2B,Z>,
Z: B(Hl)za

which can be checked out to be canonical and 27-periodic in . Here, B(f) is the matrix
given by (1.5.7). Direct substitution shows that the quadratic part (1.5.1) of H transforms
to

Ho(0r, I, 2) = wi ) + % (2,(B*T'B + B*J,B') z)
w1
= w1[1 + ? <Z, GZ> . (158)

It remains to fix the matricial normal form G. If Ay and 1/)\¢ are the two double
eigenvalues of the monodromy matrix of M, (as shown in figure 1.2), let v be a real
number such that A\ = e”>™; then the matrix G can be written as,

00 0 v
0 0 0

G= g , (1.5.9)
0 v €¢2r 0

—-v 0 0 ¢/2m
(with € = £1). Then
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Remark 1.3. Actually, we take GG such that the infinitesimal symplectic matrix 275G is
in normal form with respect conjugation by elements of Sp(2, R). For purely imaginary
eigenvalues —see Van der Meer (1985), and also the reference of Burgoyne and Cushman
(1974) quoted therein—, we get in sp(2, R) the two normal forms,

0 0 A O 0 —a € 0

0 0 0 X a 0 0 €
and (1.5.10)

-1 0 0 0 0 0 0 —a

0 =X 0 0 0 a 0

(A1, A2, @ may be positive or negative and € = £1) correspond to the semisimple (diago-
nalizable) and non-semisimple (and also non-nilpotent) cases respectively. '

It is possible to establish the following.

Proposition 1.4. With the choice of G above, the two hypothesis H1.5-1 and H1.5-2 are
fulfilled.

To prove this result we shall first introduce the next (structural) lemma —see also Bridges
and Furter (1993)-.

Lemma 1.5. Let A € Sp(2,R), with
Spec(A) = {e*’}, 0 € (0,7) and dimKer (A —e™L) = 1.

Then, there exists C € Sp(2,R), such that,

Ry | €R
ctAC = | ) (1.5.11)
0 | Ry

with Ry = (fgfn% Sind ), and, as before, € = 1, which is an invariant of the collision.

Proof of lemma 1.5. We define A = e®?; and let z and w be the geometric and gener-
alized eigenvector of A, respectively, so

Az =)\ z, (1.5.12)
(A — )\_|_]4) w = )\+Z, (1513)

we note that the existence of such generalized eigenvector w follows immediately from
the canonical normal form of matrix A which, from the hypothesis of the lemma, must
be composed by the two Jordan blocks (7 %) and its complex conjugate, (? %)

Let us now introduce the 2-form w?(u,v) = u*Jyv (i. e., the standard canonical two
form in C?", see example B.5 of appendix B). As A is a symplectic matrix, taking into

account the definitions (1.5.12) and (1.5.13), we have,
wQ(za w) = (,{)Z(Az, Aw) = (,{)2()\+z, )\+z + )‘er) = )\in(z, (.U),

s0 (1 = A1) w?(z,w) = 0 and then, w?(z,w) = 0, since [Ay| =1 and Ay # £1. In the
same way,

w(z, W) = w?(Az, AW) = W?*(\y2, \,W + )\, Z) = w’(2,0) + w(2, %),
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(here, the bar denotes complex conjugation), and it follows w?(z,Z) = 0. On the other
hand
Wi (w, w) = W (Aw, AW) = W*(A\yz + \jw, \,Z + A\, W) =
= w?(z,2) + w’(z, W) + w’(w,w) + v (w, z).

Then: w?(z,w) = —w?(w, Z) but, due to the skew-symmetry of w?, this last product
is equal to w?(Z,w), and hence w?(z, W) = w?(z,w), so w?(z,w) is a real number. To
summarize,

wiz,w) =0, w?(z,Z)=0 and w?(z,w)€R. (1.5.14)

Precisely, we shall define A as,

A = w?(z,w) (1.5.15)

and the new scaled vectors, z’, w' as

R = (1.5.16)

Viar oAl
as w?(z',w') = A/|A| = sign(4), it is convenient to introduce the quantity,
A
€:= ar
Then, e = £1, and it is easy to realize that it does not depend on the chosen z, so it

is a sign characteristic of the collision. To continue, we substitute w’ by w” = w’ +iaz’,
with @ € R taken to make w?(w”, w") = 0. As

W w", w") = WA (w' +iaZ W —iaZ)
=W (w, W) — iaw?(w', Z) +iaw? (2", @) + *w?(2',Z)
= W (w', W) + 2ice,

we can take,

w(w', w')
o=_TW) (1.5.17)
21e
(Note that w?(w',w') = —w?(w',w’), and thus w?(w’,w') is purely imaginary). At this

point it is important to remark that neither the scaling (1.5.16), nor the choice of w”
alter the two first properties of (1.5.14); thus, it is checked that
W2 w") =0, w(Z,Z) =0,
and moreover:
W2\ w") = Wi (2, W —iaZ) = Wi (2, W) — i (2, 7)) = e
We have,
Azl =\, 2/,
Alew") = eA(w' + iaz2')
= el 2 Fedjw Ficed 2
= (eAp)2" + Ae(w' +iaz')
= (edp)2' + A pew”,
A(ew") = ed,w" — ed (—Z),
A(—=Z") = (2.
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So, in the (complex) basis B = %z’, %w”, %E”, ;12’}, the matrix A takes the form

Ao 0 ’
0
—€eX_ A

(A4 = A_, by definition). 9B is a symplectic basis, for

P ew') = el w') = 0,
W2 ew") = ew? (2, w") = £ =1,
(z,E’)zO
w(ew 6W'): w?(w' ):
P!, ) = e, B) = T = @ = 1,
(ew Z') = w?(ew"”,2') = 0.

Now, if we consider the (real) basis B’ = {u1, ug, us3, us}, with w;, i = 1,2,3,4 given by,

2+ 7 P w" +w" w" — w"
= = —e— —e—— 1.5.18
(251 9 , U2 2i , U3 € 9 , Uy € 2i ) ( )
so the matrix of the change from B to B’ is
1 1 0 0
V2 V2 L
0 0 —= —=
~ \/5 1\/§
C =
0 0 1 -1
2 12
-1 1 V2
— 0 0

V2 V2

It can be checked out that C*.Jo,C = Js (i. e., C is a canonical matrix) and also,

cosf sinf ecosf esinf
A — G140 — —sinf cosf | —esinf ecosl
0 cos@ sinf ’
—sinf@ cosf

but this is just the matrix (1.5.11) of the statement of the lemma. This ends the proof. [

The basis, B’ can be written as, B’ = {Rez’, Im2/, eRew"”, eImw"}. So, the
columns of the matrix C' of the global change are formed by the vectors of this basis.
We shall write,

C = (Re2'|Im z'|eRe w" |cIm w") , (1.5.19)

In the next example, we construct the basis 8’ and the matrix C' for a given specific
matrix.
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Example 1.6. For the matrix (1.3.4) of section 1.3.2, the critical values of the parameter,
L, were L = L..;; = —K/4. This produces a degenerate (or critical) matrix A..;, of the
form

1+ 1Kv 1I( 1K 1I(
4 4 4 4
0 1 0 1
Acrit - y
1 0 1 0
1 3 1 3
CK 2K K 14+°K
4 4 4 + 4

with —8 < K < 0. It turns out that Spec(Aqit) = {A+}, being

Ao =14 K+ BIR] - K2
If we put A, = cosf + isinf, we can identify
cosf =1+ LK and sinf = 1/8/K| - K2, (1.5.20)
and compute the geometric and generalized eigenvectors:
o ( K-}-i\/84\K|7—K2 K+i\/84u(|7—1(2)

wt = (4+K+i\/8\K|—K2 2i\/8|K|-K2  20+3K+3i
- 4 ) K ) 07

717 17

Vo=

4

so, in this case, A = w?(z,w) = z*ow = K + 8 > 0; and thus, € = sign(4A) = 1. From
here, we can normalize to compute 2’ and w’. Then, the corresponding «, as defined
by (1.5.17) is,

043K g
2VEK + 8

and the matrix C' of the change (see (1.5.19) and consider € = 1), can be taken as:

K 1 [8|K|-K2  V2(K+12) V2| K|(K+4)

a/Kj2+4 LV K/2+4 8VEK+8 8(K+8)
1 0 0 V2IK|(K+12)

O /K244 2K (K +8)
o 1 0 0 /2| K| (3K +20)

VEK/2+4 2K (K 18)

K 1 [8|K|-K? V2(3K+20)  /2[K|(3K+28)
a/Kj2+4 LV K/2+4 8VK+8 8(K+8)
So, the conjugate matrix is a block matrix, of the expected type, i. e.. C7'A,.;,C =
(6 ¢, with the block cx defined by the 2 x 2 matrix,

0 CK
1+ 1K TV8IK|— K?
—1/8IK| - K? 14+ 1K

Thus, taking into account the former identification (1.5.20), it is clear that this is a rotation
matrix (i. e., cx = Ry), then it has been checked that the matrix C is the transformation
matrix we were looking for. O

Cg =
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Applying now the lemma 1.5, it is straightforward to prove the proposition 1.4.

Proof of proposition 1.4. If we put Sy = exp(27.JoG), it can be seen that:
R V%4 GR TV
Sp= | — il
0 ‘ 73f27r1/

Applying lemma 1.5, a (real) canonical matrix, C, exists such that C~'MyC = Sy, so

My =D 'SyD = D 'exp(2n.JoG)D = exp(2r.J,D*G D),

with D = C'~! (and therefore a canonical matrix). Then, Ny = D*GD, and the proposi-
tion is proved. O

Hence, the quadratic part of the Hamiltonian, as expressed in (1.5.8), and with the
normalized matrix G of (1.5.9) is,

w
%2(917 93,11;’!/) =wi ]y +w1l/(yl$2 - yle) + 6—1

1 (y7 +y3)-
T

Next, we make the symplectic change,

. wlx' 2T,

—_ € — =€

1 ot 1 n Wy Y1»

Yy — (,{)11‘, . 2 ’
2 o 23 Y2 \l Wy Yo

Ilzﬁjl, 9126911.

and

With this last change, the quadratic part of the Hamiltonian takes the form (tildes and
primes have been dropped),

€

2(yf + ).

Ho(01, 2, I1,y) = ew ) + evw (Y122 — yox1) +

Now, we define ws = vw;; and changing the sign of the time, if necessary, t — et, it is
obtained finally a new linearly reduced Hamiltonian, whose quadratic part is:

1
7’[2(91, €T, [1, y) = (.U1[1 + WQ(yll‘Q — y21'1) + 5(29% + y%) (1521)

This will be the quadratic part of the Hamiltonian we shall consider henceforth, and
whose complete expansion can now be written as,

HOv 2, ILy) =Moo+ D huma(0)z™y" (1.5.22)

2l+|m[1+|n[1>3
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1.6 Complexification of the Hamiltonian

Before continuing with the nonlinear normalization, and in order to get the homolog-
ical equations in a simpler form, it is convenient to introduce the following (complex)
coordinates,

Q1P Lt Q2+ 2=

Ty = ) ) - .
\/5 2 i\/§ Y1 \/5 Y2 i\/§

These last relations define a canonical change, (x,y) = S(g,p) which transforms the
Hamiltonian (1.5.22) into

) (1.6.1)

H(01,q.11,p) = Ho+ Y humn(0)Ig™p", (1.6.2)

2[+|m\1+|n\123

where Hy is the quadratic part (see (1.6.4)). As usual, we have put ¢* = (¢1,¢2), p* =
(p1,p2) and hyp, n(601) are analytic 2r-periodic functions. For p > 0, R > 0, we define the
set

D(p,R) = {0 I,q,p) € C° : [mb| < p, |L] < R*, |z| < R} (16.3)

with z* = (g*,p*) € C* and | - | denotes the supremum norm of a complex vector.
We shall consider the Hamiltonian H defined in D(p*, R*). Therefore, S(D(p*, R*)) C
D(p*,v/2R*), and we shall ask p*, R* small enough such that this last domain is included in
the complexification of the transformed —through all the changes described in sections 1.4,
1.5— neighborhood, i, of the initial periodic orbit M.

Also, by direct substitution of (1.6.1) in the Hamiltonian (1.5.22), it can be seen that
the quadratic part in (1.6.2) is,

Hy = wi Iy +iwe(qip1 + @2p2) + @201 (1.6.4)

This will be the lowest-order term in our normal form. Note that, in the change (1.6.1)
x and y will be real, provided

61 = —P2, 62 = D1, ]_91 = @2, p2 = —(q1, (165)

If the above relations are assumed to hold and, as the complex Hamiltonian H is the
transformed of a real Hamiltonian H, it must be H = H. So, if we consider the expansion
of H in Poisson (Taylor-Fourier) series,

H(0y,q,11,p) =Y Y hismnli p" exp(ik6y), (1.6.6)

keZ lmmn

it is readily checked that the coefficients A i, mo.nin, must satisfy the following symme-
tries, B
hk:l:mlymZ,nlyn2 = (_1)m1+n2h*kylynmnl,mmml' (167)

Reciprocally, if the complex coefficients of an expansion of type (1.6.6) satisfy the sym-
metries (1.6.7) above, then composition with the inverse change, S, transforms it back
to a real Poisson series.
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1.7 Nonlinear normalization

Here, we shall apply a normal form process to reduce the higher (greater than two) degree
terms of the Hamiltonian (1.6.2). As we are interested in bounding the remainder, it is
advisable to use some “closed” transformation algorithm in the following sense: instead of
applying to the function f = )_,., fi a sequence of transformations {qﬁle}sZg obtained as
time unit flow of the Hamiltonians G, for s = 3,4, ... (and hence the transformed function
is given by f o g[)f?’ o---0 ¢y o), one looks for a generating function G = ) ., G
of a single canonical change: ¢“ such that Tgf = fo¢% = Y F,. This kind of
algorithms provide recursive formulas to compute the terms Fy of degree s = 1,2,....
In particular, throughout this work, we shall use the Giorgilli-Galgani algorithm (see
Giorgilli and Galgani, 1978, 1985; Giorgilli et al., 1989) applied to formal series of type,

f = Z fl,m,n(gl)jiqmpn (171)

(Lm,n)eZ 4 xZ% X735,

my m2

with the multi-index notation: ¢™ = ¢"'¢y"?, p™ = p'py? and with Z, = NU {0}. On
the other hand, the coefficients f; m, n are 2m-periodic functions of its (complex) argument
f; and we suppose that they can be expanded in Fourier series

fl,m,n(gl) = Z fk,l,m,n eXp(ikel)- (1.7.2)

keZ

l m,n

Now, given a monomial hy , pn(61)I;g™p™ in (1.7.1), we define its adapted degree (so its
degree from now on) as

deg (himn(01)I1q™p"™) = 21+ |m|; + |n|;, (1.7.3)

where | - |; denotes the moduli-summation norm, i. e., if u € R" (or C") it is |ul; =
> i, uil. Thus, the degree of the action variable is counted twice with respect to the
degree of coordinates and momenta. Furthermore, throughout this section, € will denote
the space of the formal Taylor-Fourier series —in 6y, q, I, p— of type (1.7.1) and &, the
subspace of those ones with (adapted) degree s; so given f € €, it can be expanded
degreewise as f =Y o, fs, with f, € &, for all s = 1,2,... With this notation we can
define now (see Giorgilli et al., 1989).

Definition 1.7 (The Giorgilli-Galgani algorithm). Let G € € be given by the sum
G = zs>3 G, we define the map T : € — € in the following way: if f = zl>1 fi € €,
then -

Tef =) F, (1.7.4)

s>1

where

Fs = Zfl,s—la (175)
=1

and the terms f s can be computed recursively by the formulas,

— j
fio="1n fis=), Sl frs—i (1.7.6)
J=1
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Here L, = {-,u} (see section B.3 of appendix B). In our case, when f,g € &, their
Poisson bracket can be written as,

of (9g\" Of (dg\"  of, (9g\"
9} =5, <azl> ol <391> T2 (82:) !
with this definition, deg({f, g}) = deg(f) + deg(g) — 2, and by induction, it is easily seen
that deg(fis) =1+ s. The adapted degree is here the key to extend the Giorgilli-Galgani
formulas to functions in the space €.

In the first and the third of the references quoted at the beginning of the section,
the algorithm was applied to polynomial series for computing normal forms around
equilibrium points, while in the second —i. e., in Giorgilli and Galgani (1985)—, the
method is used to transform a Hamiltonian of type H(q,p,c) = h(p) + £f(q,p), with
p*=(p1,...,pn) € G CR"and ¢* = (q1,...,q,) € T", the n-dimensional torus. Never-
theless, therein, only a finite number of harmonics in the expansion of the perturbative
term, £f (g, p), are considered.

In addition, it can be shown that the coordinate transformation given by 6, = 10}, I, =
Teli, ¢; = Taq, and p; = Tgp), with (i = 1, 2) is canonical. Furthermore, if f € €, and the
function F' is constructed as described in 1.7, then F (01, 1{,q",p') = Taf(0\,11,¢",p") =
f(Tet,, TcI;, Taq', Tep'). For an account of these properties, together with their corre-
sponding proofs, see Giorgilli and Galgani (1978).

Remark 1.8. We will not use new names neither for the transformed functions, nor for
the new coordinates so, to simplify the notation, the primes will be omitted. 2

The idea is thus to take f = H, the Hamiltonian function, and employ the algo-
rithm 1.7 to cast it into a simpler form (its “Normal form”), removing all the nonreso-
nant terms. With this purpose, we construct an ad hoc generating function of the form
G =) ,.3G; and both, G, and the resonant terms, Z;, can be determined recursively.
The first two steps of the reduction process are formally indicated below(®).

So we want the transformed Hamiltonian, T; H, to have the form T H = Z14+Z5+- - -+
Zs+ ..., with Z; = 0 and Z, = H,. Accordingly with the notation of definition 1.7, we
shall put H, o = H;. Therefore, by the formula (1.7.6): H,; = Lg,Hp = 0. If we suppose
that this is true also for Hy; withi =1,...,s—1, by (1.7.6), H, ;, = 25:1 %LGH].HLS,J- =
0. Thus, by induction H; ; = 0, for all s € Z and hence, joining (1.7.4) and (1.7.5),

s—2
TeH=> Y Hizsis

§>2 1=0

with H, ¢ given by (1.7.6). From this last expression, we can identify

s—2
Z, =) Hpyss i, (1.7.7)
=0

for s > 3 and, as it has been already prompted, Z, = H,. So, for example,

Z3 = Hy; + H3p.

(3)This is a formal construction, if one wants convergence, we have to truncate G at a finite order.
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Here, using that Hy; = L, Hy and Hsy = Hj, the expression above can be arranged as,
LH2G3 + Z3 = Hg. (178)

As Hj is known from the development of the initial Hamiltonian; and, we accept (see
section 1.7.1) that this homological equation can be solved in G3 and Z3. In the same
way,

1
Zy=Hyo+ Hsy +Hyg= -Lg,Hoy + La,Hog+ Lg,H3o+ Hap,

2
and, since Hy; = Z3 — Hj3, Z4 can be expressed as
1 1
7y = §LG3Z3 + §LG3H3 + Hy+ Lg, Ho.
Now, if we define
1
F, = 5Lng3 + 1L, Hs + Hy, (1.7.9)

the fourth-degree homological equations result
Ly, Gy+ 7y = Fy, (1.7.10)

from which, as before, we suppose that G4 and Z; can be determined.

This process can be carried out recursively, provided we know an explicit expres-
sion for the right hand side term, F,, as a function of the previous computed terms
Z3yeoyZs 1;Gs,...,Gs 1. plus the components Hj, ..., H; of the initial Hamiltonian
—as in (1.7.10) for s = 4-. But, indeed, it first requires (for i = 3,...,s), the existence
of G; and Z; as solutions of the corresponding homological equations (above, it was only
assumed for i = 3,4). So, before describing the “reduction algorithm” (see section 1.7.3)
for computing the normal form; we need to investigate the solvavility of

Lu,Gs+ Z, = F,, (1.7.11)

for a given function F;. This constitutes the subject of the next section.

1.7.1 Algebraic properties of the homological equations

Here, we shall consider (1.7.11) with Fy € €&, being €, C € the subspace of the formal
Poisson series of type (1.6.6) having all their monomials degree s. More precisely: F' € &,
if and only if,

F= Y frimnll q™p" exp(ikt)). (1.7.12)

2Hlmly +|nly=s
kez

Furthermore, it is assumed that the coefficients of Fj satisfy the symmetry relations
of (1.6.7). To account briefly for this fact, we introduce the following definition.

Definition 1.9. We say that h € € satisfies the S-symmetries, or that h is S-symmetric,
if and only if the relations

Ek,l,ml,mz,nl,ng = (_1)m1+n2hfk,l,nz,nl,mz,ml7 (1713)

are fulfilled by all the coefficients of the monomials in h. The sets € (€5) are those
subsets of € (&) with all their elements satisfying the S-symmetries.
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Our target is to show that if F, € &, there exist Gy, Z, € € verifying identically
equation (1.7.11). What we shall do is to set Z; = 0 and to investigate the solvability of

the equations
Ly,Gs = Fj. (1.7.14)

In particular, we shall find out the possible resonant monomials in F§, which will determine
the form of Z; in (1.7.11).
The keystone for the proof is the way how operator Ly, acts on a monomial g =
It g gy py ph? exp(ikfy) € €,. Tt can be seen, by direct computation from the definition
of Ly,, that
Lu,g={9, H>} = (Q 2 nﬂ) 9, (1.7.15)
01 D2
where 2 is introduced as,

Q= Qk,|m|1,\n\1 = 1w1k + 1w2(|m|1 - |n|1) (1716)

On the other hand, the quotient ¢2/¢; does not appear if the monomial g has m; = 0.
Similarly for the quotient p; /p,. With this remark, the expression (1.7.15) is fully justified.
Immediately from there, it follows that Ly, preserves:

(i) The value of k € Z of the monomial g.
(ii

) The degree of the action, I.
(iii) The sums of the degrees |m/|; of g, and |n|; of p, respectively.
)

(iv) As a consequence of the last two points, the global degree s is also preserved. This
is consistent with our definition of the adapted degree.

In a natural way, we can consider the subspaces &;; s n, given by the Poisson series
F € &, of the form

F= E fk,l,m,Mfm,an,n[i qi”q%”’mpi"’”p’;}” exp(ikb,), (1.7.17)
0<m<M
0<n<N

with 2] + M + N = s. Therefore,

&= P G

keZ
2l+M+N=s

Hence, since every one of the subspaces €, 5/ n is invariant under Ly,, we can split the
homological equations for the degree s into “boxes” with fixed k and fixed [, M, N verifying
20+ M + N = s.

Another point to note is that the coefficients of a F' € € ys v are readily determined
by just a pair of indices because, in view of (1.7.17), it is advisable to denote: f,,, =
frtm—mnN-nn (we skip both, k£ and [ since they are held fixed).

With this notation, the homological equations (1.7.14) restricted to the different finite-
dimensional subspaces, & ; a n, can be translated into an algebraic system of linear equa-
tions for the (complex) coefficients. Explicitly,

Ql~c,M,N Gmpn + (m + 1) 5m,M Im+1n — (n + 1) 5n,N Immn+1 = fm,na (1-7-18)
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where g” = 1— 6, being ¢;; the Kronecker’s delta, and gy, n, frmn (for 0 < m < M,
0 < n < N) are the coefficients of the projections (on &5 n) of the generating function
G5 and the right hand side term F of (1.7.14), respectively.
To investigate the existence of solutions of (1.7.18), we first write them in a convenient
matrix form of type,
Ag=f. (1.7.19)

Here, g = g, yy v and f = f, 5, nx are the arrays holding g, and fy,, respectively, for
0<m<Mand0<n<N (M+N =s-—2l fixed). Suppose that these coefficients
have been ordered through the following claim: ¢, 5 < gar (945 Precedes goo) if 4 > «
or, when = a, if § > o (the same for f,,,). Therefore, g and f will take the form,

*

g :(g?\/[ag*M—la"'agg)a f*:(f*Maf*M—la'-'afg)a (1720)

still with g% = (975, 97N-1,97N—2,---,911,90), for J = 0,..., M (and identically for
f). Tt is then straightforward to check that the system (1.7.19) is written by blocks as,

Dy 9u I
Eyv Dy gn—1 T
Ey -1 Dy 9n—2 T
=1 (1.7.21)
Eys Dy 9. I
Ey Dy 9 Jo

The different blocks stand for E; = j - In41 (i. e., the product of the integer j with the
identity (v+1)x(N+1) matrix, for j = 1,2,..., M), whereas Dy = Q- Iy, — Py, with
1 = Qg ar,y and being Py the (v+1)x(N+1) nilpotent matrix,

Py N-110 : (1.7.22)

It follows from this description, that the matrix A in (1.7.19) —now identified with
the one of the linear system (1.7.21)-, is a band matrix where all the entries different
from zero are placed at the main diagonal and on two bands (sub-diagonals) below the
main diagonal. Moreover, the elements of the diagonal are all them equal to 2. Hence, if
Q2 # 0, this specific part of the homological equations (we mean their components in the
subspace & .n), has an unique solution. Also, the next lemma is readily deduced.

Lemma 1.10. A necessary condition for fi,;mnliq™p"™ exp(ikb;), a monomial of Fy (see
equation (1.7.11)) to be resonant (i. e., non removable by the choice of an appropriate
generating function, Gs) is that k = 0 and |m|, = |n|;.
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This results from: (i) the definition, at the end of section 1.5 of wy = vw;, where 27v
was the characteristic exponent of the critical periodic orbit, (ii) our assumption v ¢ @,
corresponding to the hypothesis of irrational collision (see page 3), and (iii) the definition
in (1.7.16) of Q, as a linear combination of the two frequencies w; and wy with integer
coefficients. Clearly, the result works for all s = 3,4, ...

Definition 1.11. A monomial f = fix1mnliq™p™ exp (ik6,) € €, is said to be of M-type
if k=0 and |m|, = |n|,.

Remark 1.12. Before continuing with the study of the (possible) resonant terms —those
of M-type just defined—, it is important to stress that if, as assumed, the right hand side
F; in (1.7.11), satisfies the S-symmetries of definition 1.9 and does not contain M-type
monomials, then the solution of the system —the generating function G,—, verifies also the
S-symmetries. This is a consequence of their preservation under the Poisson bracket, and
can be checked directly from the solutions of the linear equations (1.7.21):

1
Ik, MN = G SN (1.7.23a)
__ N—n+1 1
G, MN-n = g~ IkMN-n+1 + g Sk M N—n, (1.7.23b)
_ 1 _ M-m+1
Gk,M-m,N = g Je,M—m,N Uy Tk M—m+1,N (1.7.23c)
_ 1 f _ M-m+1
9k, M—m,N—n — Qearn  k-M-m,N-n Qe 9k, M—m+1,N—n
N—n+1
+ Qk MmN 9k,M—m,N—n+1 (1723(1)

(m=1,...,M;n=1,...,N); here, the index k has been explicitly written. By complex
conjugation of the first equation, Gy vy v = frarn /s but frou v = (=)Mo,
and Qv v = Qg v, therefore g, v = (=1)*Ng_p v s Thus, (1.7.23b) is true for
n =1, since,

_ | ~ _
Je,M,N-1 = q (N kMmN T fk,M,N—l)
k,M,N
(—1)MH+N-1
= 7@ (f—lc,N—n,M - Ng—k,N,M)
—k,N,M

but by (1.7.23c), interchanging M and N, this last expression equals to g_i y—1,1. Now,

suppose all the previous gx arn—2, Gk MN—3, - - - » Gk M,N—n+1 Satisfy the S-symmetry. Then,
for gx a1, N—n, using (1.7.23b),
_ 1 _ _
Ik, M,N—n = g ((N —n+ )Gk n—ni1 + flc,M,N)
k,M,N—n
(_l)M—I—N—n

=T e (foeN—np — (N =n+1) gk Nont1,Mm)
—k,N,M

which equals —again by (1.7.23b)-, to (=1)"*¥""g_; y_, ». The reader can apply the
same induction arguments to (1.7.23b) and (1.7.23c) to prove that also:

(_1)M+N—m

Ik M—m,N = Gk, N,M—m

and Gg pr—mN—n = (—1)MmAN=n

9—k,N—n,M—m- 4
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With this remark, we can complete the lemma 1.10 adding.

Lemma 1.13. If the monomials of Fs € € satisfy the S-symmetries and none of them
are of M-type; then, the equations (1.7.11) have an unique solution, Gy € &, which
fulfills also the S-symmetries.

1.7.2 An study of the M-type resonant monomials

Now we are going to investigate the solvability of the homological equations when M-
type monomials are taken into account. Thus, we restrict the linear operator Ly, to the
space €y C €, (s =20+ 2M). Even more, consider the space Py, of homogeneous
polynomials of degree 2M in qy, q2, p1, p2, with complex coefficients,

M
FePusF=Y F.dq 7 p'" (1.7.24)
J,w=0
Therefore, €y = {I'F, with F € Py}, and we put symbolically €,y = I'Py.
Moreover, the operator L is defined by,
/[: :Pu — Pu

~

F — LF={F, H)},

with Hy given in (1.6.4) and being {f’, Hy}=%7, (gi %ﬁ? — gi %Zliz). L can be thought
of as the restriction of Ly, on Pj;. It has then full sense to consider the reduced homo-

logical equations defined on P,; by
LG+ Z=F. (1.7.25)

So, if é, Z € Pu satisfy the above equation, then Il@, I'Z will be a solution of (1.7.25).
Moreover, the following decomposition works,

Py = Range L@ KerLt (1.7.26)

where L' is the adjoint operator of L. In fact, Ker LT = (Range /[:)i (the kernel of the
adjoint operator of L is the orthogonal complement of its image). Thus, the resonant
terms will lie in this space.

If should EH2 (and hence E) be self adjoint, giving rise to diagonal homological
equations, then Ker L = Ker L'. But in view of (1.7.15), this is clearly not the case,
and we need to introduce a suitable inner product in P;; to determine easily the ad-
joint Lt. According to Elphick et al. (1987), given two homogeneous polynomials F' =
me Frng™p™ and G = Zm,m, Grr@™ p™ , we define their bracket by,

gmi1tmatngtng

A )
— E rel my My "2
<F|G> = le’mQ’nl’n2Gm,1,m,2,n,1,n,2 3q1ﬂ1 3q;n23p?1 31);2 (q1 qy “P1 Do )

mi,mg,n1,ng

(1.7.27)

(0,0,0,0)
rodr g
ml,m2,n1,n2
= E ! Tt I mo! rel
ml.mz.nl.nz.le,mz,nl,nszrl,m/z,nll,n/zéml,mrl (5m2,m/2 6n1,n’1 6n2,n’2 (1728)
ml,m2,n1,n2

! ! ! !
my,mo,ny,ny

= E ml! m2! 7’L1! TLQ! le’mz’nl,nszhmz,nth. (1729)

mi,ma,nq,ny
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8m1+m2+n1+n2
) 3(];”13(];”231)?13])32
w. r. t. q;, my times w. 1. t. to ¢ and so on. It is straightforward to check that this
bracket satisfies all the properties of a (complex) Hermitian product: (F|G) = (G|F),

and so on. In particular, for two polynomials of P,,, say

takes the partial derivatives m; times

Obviously, in this last formula

Z Fioalay 7plps (1.7.30)
7,v=0
and
M
Z G g 7 pM =" py (1.7.31)
the bracket (F|G) results,
A~ o~ M ~ =
(FIG) =Y 1 (M — ) (M = v)! ! F,G, (1.7.32)
Jw=0

and the next lemma determines the operator L.

Lemma 1.14. The operator Lt = {-,HQT}, with Hg = qip2, 15 the adjoint operator ofi
with respect to the Hermitian product defined by (1.7.32).

Proof. Let F and G be two polynomials in Py expressed both as in (1.7.30) and (1.7.31).
Direct computation shows,

M-1 M
LE=3"3 "G+ Eual a7l ~p}
7=0 v=0
M M-1
— Z (l/ + 1) E] v+l ‘h ‘JQ ]p{v[ ps,
_7:0 v=0
M M .
LG=3"3S"(M—j+1)Giorudl o p s
7j=1 v=0
M M
M-
— ZZ(M—I/—FI)GJV 1‘]1‘]2 ]piw ps-
]:0 v=1

Now, writing explicitly the product (LF|G)

EFIG) = S0+ DL = )L = )10t B, G
_Z - G (M — ) (M )(y+1)'FJ,,+15 (1.7.33)

=0 v=0
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and, in the same way,

M M .
(FILTG) =3 gt (M — j+ D)UM = )W F, Gy,

j=1 v=0

M M o
SN M =DM = v+ D) Ey, Gy (17.34)

which equals (1.7.33), as a shift j — j + 1 in the indices of the first sum and v +— v+ 1 in
the indices of the second shows. Then, (LF|G) = (F|L'G), and the proof of the lemma
is completed. O

Now let F' be a polynomial in Py, then F € Ker L if and only if L' F = {F, H}} = 0.
Thus, F must be a solution of the partial differential equation (see Schmidt, 1994),

ou ou
—prr—+q=—=0. 1.7.35
P2 op1 o 0qs ( )
A function u is a solution of a first order linear equation like this, if and only if it is a
first integral of the associated characteristic system (see Arnol’d, 1978, Chap. 2, §7.B, or
eventually, any textbook on differential equations).

For (1.7.35) the mentioned characteristic equations (i. e., the Hamiltonian equations
¥
of Hy) are,

(jl - 07 (j2 = {1, b1 = —P2, 152 - 07 (1736)

then, the functions, g1, ps, q1p1 + gopo are first integrals of the system (1.7.36). If we want
solutions in Py, we have to consider the following first integrals

1
&L= B (@1p1 + @2p2) §2 = qip2. (1.7.37)

(Note that &, & are real under the symmetries (1.6.5) introduced by the complexification).
Therefore, any homogeneous polynomial S of degree M in &;,&,

M
S=3 a7, (1.7.38)
j=0

will be a solution of (1.7.36), and hence it must be in KerL!.

Remark 1.15. With the same aim of remark 1.12, we introduce here the subset P, consti-

tuted by those polynomials of P, satisfying the S-symmetries, i. e., for Fe P, written
as in (1.7.30),

ﬁ € ,P]‘\S/[ -~ F]‘,V = (_1)j+uﬁy’j.

One can check that Pg, is a real linear subspace of Py, with dimP$, = (M + 1)2, the
number of independent real coefficients, taking into account the symmetries —see the proof
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of lemma 1.16-. On the other hand, the Hermitian product defined by (1.7.32) restricted
to Py, is a real inner product. To see this, take F',G € P$; and realize that,

(FIG) = ...+ " (M = )I(M —v)!W F; G+
oo+ V(M =) (M — ')!ﬂﬁu,j@u,j :
= (DTN = (M = )L F G+

+

which is a real number®. Thus, (F|G) = (G|F) and the rest of the properties for the
real inner product follow. R
Moreover, as the S-symmetries are preserved under Lp,, and hence under L, we

can consider the restriction of L to Psr (say, IS = Z|pfl ) and apply there the same
decomposition (1.7.26) to have P, = Range (L) & Ker (LS)T. '\

Lemma 1.16. Q = {7 7&)} 0.1, with &, & given by (1.7.37), is a basis of the kernel
of the adjoint operator of L°, considered as a real subspace, i. e.,

Ker(LS)" = Spang. (1.7.39)

Therefore, any S in Ker(LS)! can be expressed by a linear combination as in (1.7.38),
now with real coefficients.

Proof. First of all, we stress that ffw—jfé € Ps, forall j =0,..., M, since

B B B Ve M
G =-D2G=p,D0 =0 Dh=—q0=>§& =& 4.

Next, let Fe Pg,. As any monomial q{qéw_jpf/[_”pg, can be written as,
MMy (q111)7 (q2p2)" (qapr)M 777 itj+v<M, (1.7.40)
142 1 2 = . . o 7.
()M (@ep)M I (qupe) ™ i j+v > M,

F can be written into the form,

M M
F= Z U Z Fomon T+ Z U Z Gomml M35 (1.7.41)

v=1 v+m+n=M v=0 v+m+n=M

where,
m=aqiP1, "2 = qiP2, N3 = q2P2, 74 = 42P1 (1-7-42)

and with the symmetries,

fl,m,n = (_1)m+nfl,n,ma and E\l,m,n = (_l)m—l—n/gl,n,m' (1743)

(4)Observe that if j = v, then the coefficients ﬁj,,, and C/?\j,,, are real.
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Then, it is clear that,

M={nyn"ny :1<v<Mandv+m+n=M}
U{nininy :0<v<Mandv+m+n=M},

are a basis of Py, hence, the dimension of P§, is given by the number of real independent
coefficients. It is not difficult to check that, for a fixed v in the sums above, the quantity
of real and imaginary parts —not related by the symmetries (1.7.43)—, necessary to form all
the complex coefficients ﬁ,mn are M —v+1 (and the same for g, ). Thus, summation
over v gives,

M M
dimPy =Y (M —v+1)+ > (M —v+1)=(M+1)"
v=1 v=0

Let & and &4 be the two degree polynomials defined as

1
£ = 5((11291 — (2P2), §4 = q2p1, (1.7.44)
and we introduce the system of (M + 1)? vectors of Pg; through

T={gred1<v<Mandv+m+n=DM}
U{&erey - 0<v<Mandv+m-+n=>M}, (1.7.45)

(with &, & defined in (1.7.37)). It turns out that they are linearly independent in Py,
because the map (&1, &3) — (11, 73) is linear and invertible, in fact (g) = (i//Qz _1{52 )(m);
so T constitutes a real basis of P§, (in the sense that all the elements of P§, can be put
as linear combinations of elements of ¥ with real coefficients). We observe that,

(1) T completes the basis 9 (see lemma 1.16) to a basis of Pg;, since Q C %.
(i) For a given F' € PS,\ Span 9, there exists G € P$, (not unique) such that LSG = F.

To show this last point we take F and G and write them down in the basis <, so

F= > Fan&&8+ Y Guma&i€le (1.7.46a)
0<v<M 1<v<M
v+m-~+n=M v+m—+n=M
(with n#0)

G=" > fomnSG+ Y Gma G (1.7.46b)
1<v<M 0<v<M
v+m+n=M v+m+n=M

Remark 1.17. We note here that F' does not hold resonant terms (these would be precisely
the ones with n = 0 in the first sum, but this value for the index n has been explicitly
excluded). Further, we stress that the sums defining F' and G are arranged in a different
way (note specially the ranges of the index v). A
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On the other hand, the operator LS acting on the elements of the basis ¥ produces,

LS (eperen) = g (»5251 &) {6 Ha} + 5 (»5251 &) {61, Ho}
+ ? (&5 {&s, H2}7
LS (evepey) = 5 (5451"53) {60, Ho} + 5 (545{"53) {61, Hy}
+ a—gg (Everen) {&, Ha),
but,
{&,Ha} =0, {&, Hy} = =28, {&,Ha} =&, {&, Ha} =0.
Therefore,

L5 (gyemen) = —2uey Lementt 4 neyemenle,,

and when 1 < v < M, we can arrange the second term on the right using that £&¢&, =
—€2 €2 5o n€y EmEr 16 E, = —ngy e TR - ngy T EmERT which when it is joined
to the first term

LS (&epey) = —(2v + n)&yemept! — ngy~lepr2en !, (1.7.47)
with 1 <v < M and v +m +n = M. Similarly,
LF (€rerey) = ney T epey (1.7.48)

for 0 <v <M, v+m+n=M. With (1.7.47) and (1.7.48) we can compute the action of

LS on G and write down explicitly the equation LSG = F in the unknown real coefficients
fomn QL<v < M,v+m+n=M), and gymn (0 <v <M, v+m+n=M). In this
way, one gets,

M
=g YT (20 + 1) frmn T+ iy §T2ETY)
v=1

v+m+n=M
M
D& Y g G (1.7.49)
v=0 v+m+n=M
M-
= Z & D foma&G +Z§4 > GomallE
=0 v+m+n=M v=1 v+m+n=M

(n£0)
By comparison of coefficients in the second sums of both sides, we arrive to the relations:

— Jvmn (1.7.50)

g_177 1
v m,n—+ n+17

with 1 <v < M (v+m+n = M). But (1.7.50) do not determine g, o (v +m = M),
so these can be chosen arbitrarily (for they play no role in the homological equations). In
particular we shall set them to zero, i. e., we take: g, ,,0 =0 (v +m = M). Similarly,
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comparison of coefficients in the first sums on the left and on the right hand side of (1.7.49),
with 0 < v < M held fixed, leads to the linear system,

ﬁ/,O,M—V = — (M +v+1)foy0m—v-1, (1.7.51a)
ﬁyl,Mfufl = — (M +v)for1,1,Mm—v—2 (1.7.51Db)

ﬁymnyme = —(M+v-—m+1)for1mmMm v m1
— (M —v—m~+1)foitm—2M—v—mi1 (1.7.51c)

with 2 < m < M — v — 1 in the last equation. If we introduce the vectors f, fe RM-v
by,

fu+1,0,M7V71 fv,OJVf—V
fz/-l—l,l,M—u—Z fV,l,M*V*l
fz/+1,2,M—u—3 ~ fl/,Z,M*V*Q
f= _ : f= _ : (1.7.52)
fu+1,M7V72,1 ﬁ,M—V—2,2

fz/-l—l,M—l/—l,O J/t:/Mfufl 1

for v =0,..., M — 1. Then, the equations (1.7.51a)—(1.7.51c) can be expressed in vector
notation as,

ANf=F (1.7.53)
with the (M —v) x (M — v) dimensional matrix A" = A/, given by,
—(M+v+1)

0 (M)
(M—v—1) 0 —(M4v—1)

—(M—-v—-2) O —(M+v—-2)

A = (1.7.54)

—2 0 —(2v+2)

which is nonsingular for every 0 < v < M. We conclude, then, that every F in the
complementary space of Span £ belongs to Range LS, but Span 9 C ker L®, so this implies
Span Q = ker LS. These considerations close the proof of lemma 1.16. 0

Remark 1.18. Observe that in the proof of the last lemma, we have set up the homological
equations for the M-type monomials, but to solve them and compute the corresponding
terms of the generating function, we need to write the elements ' € Pg; from its natural
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form F = Z;'M,a:o Fj o q{'qéwfjp{‘/[’o‘pg‘ to a polynomial in &, &, & and & of type,

M M
F=Y & Y [fu88+) & > gw;86,

v=0 v+9+4+j=M v=1 v+9+j=M

to easily identify the projections of F' onto Range LS and ker(/[:S)Jr (see the next lemma
below). By direct substitution it can be seen that the relation between the coefficients of
the two expressions for F' are,

m+n=M—v
guaog =1" > (=1)"C(m,n,9) Fpp, if1<v<M (1.7.56)
m+n=M—v

and the form factors C'(m,n, ) defined by,

min(¥,n)

Clmn )= Y <ﬁfﬁ><g>(—1)ﬁ—ﬁ. (1.7.57)

B=max(0,0—m)
Satisfying, in addition, the symmetries,
C(n,m,0) = (=1)"C(m,n, ). (1.7.58)

Then we can check immediately that the coefficients (1.7.55) and (1.7.56) are real. For
example,

foo;=(=1)’ Z (=1)"C(m, 1, ) F n—npi—m

m+n=M —v

= (—i)? Z (=D)™(=1)"C(n,m,9)(=1)* "™ " For s

m—+n=M—v

= iﬁ Z (—1)mC’(n,m, ﬁ)FMfm,an

m+n=M —v

which equals to f,y; after the interchange of the dumb indices m and n. Identical
computations show Gu9; = Gvo,j- |
Lemma 1.16 clearly proves the next one.

Lemma 1.19. For any Fe PS,, there exist homogeneous polynomials é, 7€ P, satis-
fying the reduced homological equations (1.7.25), with

LSG=m(F) and Z=ny(F),
being My, My the projections of the space P§; onto Range LS and ker(ES)T, respectively.

Furthermore, The complementary term Z can be expressed as an homogeneous poly-
nomial of degree M in &1,& —see (1.7.37)—, with real coefficients.
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Lemmas 1.13 and 1.19, considered together, answer the question of the (formal) solv-
ability of the homological equations (1.7.11), and allow us to end the present section with
the theorem.

Theorem 1.20. The homological equations (1.7.11), with Fy, € €5, s > 3, are identically
fulfilled with Gy, Z, € €5, where Z, = 0 when s is odd or, when s is even, Zs can be
written as an homogeneous polynomial of degree s/2 in I, 5(qip1 + ¢2p2), (1P2,

s/2 s/2—1

: J
1 e
Zs = E E Zs,l,jI{ (5((]1]91 +(J2p2)> (Q1p2)s/2 : ‘7; (1-7-59)

1=0 j=0

with real coefficients Zs ;.

1.7.3 The reduction algorithm

Once the solvability of the homological equations has been determined, we can go back to
the application of the transformation algorithm described at definition 1.7 and continue
with the study on how it can be used to reduce formally the initial Hamiltonian (1.6.2). In
this sense, our early discussion (in the last paragraph before section 1.7.1) can be revisited
and we may adapt a classical —for semisimple elliptic equilibrium(® point— result which
furnishes the necessary recursive formulas.

Proposition 1.21. Consider the Hamiltonian H =) ., H, defined in the complex do-
main D(p*, R*) given by (1.6.3), with -
Hy = wi ) +iwa(qipr + q2p2) + q2pr
and
H, = Z hk,l,m,n[iqmpn exp (ik6:),
kez
2l+\m|1+|n|1:s

for s > 2. We shall assume, in addition, that the frequencies wi,ws appearing in the
quadratic part Hy are rational independent, so wy/wy & Q. Then,

(i) There exists a generating function G = 3", G, such that TgimH = ZT) + K™,
Here, Z") is the normal form up to order r, whereas R\") stands for the remainder.

(ii) The normal form can be expanded as Z" = S"_, Z,, with Z; = 0 when s is odd,
and the following relations are satisfied:

ZQ - H2
(1.7.60)
LH2G5+Z5:F5, 823,
where,
FS = H37

s—3 ] 5=2 ] (1761)
Fy=) slen, Zoj+ ) 5 Haeje 524
j=1 i=1

(5) Generically, we shall talk about semisimple equilibrium when the linearized differential equation has
a diagonalizable coefficient matrix’ (as, for example, in (Haller, 1999)).
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Here, the quantities H;j may be computed recursively from the formulas (1.7.6) of
the Giorgilli-Galgani algorithm 1.7, 1. e.,

[ﬁﬁ ::[ﬁa
koo
j (1.7.62)
Hyy = Z ELGQH Hije—;.
7j=1
(iii) The remainder R is given by the sum:
"= )" F. (1.7.63)

s>r+1

with Fy those computed from (1.7.61) taking Zs_; =0 when s —j>r+1 (s >r+1
and 1 < j<s—3).

Remark 1.22. Diophantine conditions are not required to ensure convergence of G for a
given (and fixed) r, despite the presence of divisors of the form kw; + (M — N)w,, because
M — N ranges between —r and r and therefore, for all £ € Z, these divisors are bounded
from below whenever w; /w, is not rational. 2

Remark 1.23. Note that F; depends on G, Z, for v = 3,...,s — 1 through the recursive
application of the Poisson bracket; but this operation preserves the S-symmetries. Thus,
it is straightforward to realize —accepting the results of the proposition 1.21-, that the
generating function G, the normal form Z) and the remainder R, will satisfy the
reality conditions if H does. 'y

The proof of proposition 1.21 is formally identical to the proof of the corresponding
classical one in Giorgilli et al. (1989) and in the memoir presented in the same year
by Simé. There, the authors considered a n-degree of freedom polynomial Hamiltonian
with quadratic part Hy = izyzlequj; but the homological equations deduced from
the transformation algorithm in these papers are exactly those at the second item of the
preceding proposition (see also below). Thus, the proof of 1.21 is included here only for
the sake of completeness.

Proof of proposition 1.21. By proposition 1.20, the analysis done at the beginning of sec-
tion 1.7, shows that Z3, G3, Z;, G4 can be found satisfying (1.7.60) and (1.7.61) identically.
Assume the same is true for » < s — 1. From (1.7.7), we must have, for s > 3

s—2
Zs=Hy, o+ Z Hypjs i

7j=1

s ; - (1.7.64)

= Z S_—2LG2+]‘ Hys—j—2+ L, Hy + Z Hijs—j—2.
j=1 7j=1
Hence,
s—3 . s—2

LinGo+Zs=Y 81—2LG2H Hysjor+ Y Hapjsjoo, (1.7.65)
7j=1

i=1
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and one wants to prove that the right hand side of this equation equals to F in (1.7.61).
To show this, we substitute (1.7.7) and (1.7.6) into (1.7.61) to obtain,

s—3 j s—j—2
F=) 5L, (Z Hopms—j m_z)
Jj=1 m=0
s—3 ] 5—j—2 m
+ ; s—2 ( mz:l mLGHmH?H,s—j—m—z) + H,, (1.7.66)

We split the first term in two pieces, the ﬁrst holding only the term with m = 0. In
the latter part, we permute the sums »_°~ Iy = D im>1jem<s 2 = S ;;T_z
and then exchange the names of the summamon (“dummy”) indices m,j. After these
manipulations such part is similar to the second term and they can be grouped together

adding their corresponding coefficients: ™ + (s—j—n;;(s—Q) = ;7= Therefore,

s—3 . s—3 s—j—2
7 m
F, = . 2L02+j Hy o j_o+ E a9 2LG2+mH2+j,s—j—m—2 + H,
s—3 . s—
- 2 H
- 592 Gayj 25] 2+ 2+7,5—j—2-
Jj=1 Jj=1

Finally, proposition 1.20 assures that now G, and Z; can be found from the equation
Ly, Gs+ Zs = F. O

The following result is readily deduced from propositions 1.20, 1.21 and will be the
starting point of the next section.

Theorem 1.24. Consider the Hamiltonian system (1.2.1). As described in section 1.2,
we suppose it has a family of periodic orbits depending on a parameter o, { My }secr, such
that for some value, say o = 0, the monodromy matriz of the (critical, resonant) periodic
orbit My, can be put in the Jordan form (1.2.2). Moreover, let ¥ = 2wv be the nontrivial
characteristic exponent of My. We assume v € Q.

Then, the initial Hamiltonian H, can be reduced by means of a symplectic S-symmetric
change defined in a complezified neighborhood of the periodic orbit My, to a (complex)
Hamiltonian given by the sum

H(01,q,1,p) = Z7(q. I, p) + R (01,9, I, p), (1.7.67)
(we keep the same name for the new Hamiltonian), where the normal form Z") s given
by the sum
=27
§=2

with
Zy = wi Iy +iws(qipr + q2p2) + Gapr,
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being wy the frequency of the periodic orbit My, ws = vwy and Zs for s > 3 are the ones
described in proposition 1.20; that is, Z; = 0 for s odd or an homogeneous polynomial of
degree s/2 in
i
2
with real coefficients, when s is even.
As the generating function verifies the reality conditions (1.7.13), it is advisable to
apply additionally S™' ~the inverse of the complezifying transformation (1.6.1)-, to get a
real transformed Hamiltonian (again without using new names for the functions),

Iy, (@1p1 + @p2),  @1po,

HOy,z I, y) = 2" (z, I, y) + R (0, 2,11, y). (1.7.68)
Now, with 0,1, z,y real and the terms in Z") are given similarly by
Zy = w1 + Wy (Y172 — y221) + %(y% + y%), (1.7.69)
and, for s > 3, Z; = 0 when s is odd or an homogeneous polynomial in
ot ), T sl — ),

with degree s/2, if s is even.

The sums Z( = Y"_, Z, which appear in (1.7.68) and (1.7.69), are referred as the
complex and the real normal form of the initial Hamiltonian respectively. Usually it is
said that the initial Hamiltonian has been reduced to normal form up to order r. Under
the hypotheses stated in theorem 1.24, it is clear that the described normal form process
can be carried out up to any arbitrary order r.

1.8 Dynamics of the normal form

In this section we concentrate on the study of the normal form itself, so, from now on and
up to the end of the present chapter, the Hamiltonian to consider will be the real normal
form, Z (i. e., we skip the remainder ] off). In view of theorem 1.24, Z(") may be
put into the form,

Z" =l +woy X @ + Lyl + 2, (|z)3, L,y x ) , (1.8.1)
with the notation,
|y = (2} +29)'%, |yla= (7 +15)"*, @ xy=z140 — 22
and Z,(u,v, w) being a polynomial of degree |r/2|, beginning with quadratic terms. We
shall express it in the form,

1
Z.(u,v,w) = §(au2 + bv? + cw?) + duv + euw + fow+

+ {Z3§j+m+n§\_r/2] frmpulv™w", if r > 6

(1.8.2)
0, if r<6
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writing apart the terms of degree two, because their coefficients will play an essen-
tial role in the dynamics of the normal form (see below), also we define n([;,x,y) =
(3|3, 11,y x x), hence )

Zrom =2, (%|m|27[17y X Cl?)

and the Hamiltonian equations corresponding to the normal form can be written as,

0, =w + 02, 0,

I, =0,

T1 = woTo + Y1 + 12032, oM, (1.8.3)
Ty = —woT1 + Yo — 11032, 07,

U1 = Walo — 1012, oM + Y2052, oM,

Uo = —woyy — 201 Z,0m — y1 B2, oM.

Moreover, the normal form (1.8.1) is integrable, since it can be seen that the three quan-
tities,

=1L, Ih=xxy and 1I3= %|y|3 + Z, (%|:c|§,[1,a: X y) (1.8.4)
are functionally independent first integrals outside the zero measure set defined by:
Y1 = 0, Yo = 0, 812, = 0,

and invariant under the flow of (1.8.3).

1.8.1 Parametrization of the family of periodic orbits

It is straightforward to check that these Hamiltonian equations have a one-parameter
family of periodic orbits given by

) = (w1 + 022,(0,11,0))t + 69,
My, : < I} = const., (1.8.5)

$1:$2:y1:y2:0,

This implies that the action I; is a good parameter for the (local) description of the initial
family of periodic orbits. So it can be denoted by { M, }1,er-

Remark 1.25. One may wonder if such parametrization is preserved when the remain-
der is added to the normal form and the complete transformed Hamiltonian is consid-
ered. In fact, the only monomials in 9" which could destroy the given parametriza-
tion are: xd I1{ ig;’;gll} and yd IT{ "%} or ~when complex remainder is considered—,
¢ It exp(ik0,) and pJ I exp(ik6,); with m = 1,2, k € Z, j = 0,1 and | € N such that
J+20 > r. It can be readily seen then, that the denominators associated to these monomi-
als are (k£ jv)w; with v ¢ Q (and k, j in the same range than before). So, small divisors
do not appear here and the proposed (semi) normal form additional transformation —
constructed as the limit of the successive canonical changes removing those monomials—,

will be convergent in the appropriate domain. 2
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The linearized equations around these periodic orbits in the normal directions (x,y),
as obtained from (1.8.3), are

T 0 09 1 0 T
T2 o —09 0 0 1 T2 (1 8 6)
n —01 0 0 o9 Y1 ’ o
Y2 0 —o1 —0oy 0 Y2
where o1, 09 are defined as:
o1 := 01 Z,(0,1,,0) = dI, + O(I}), (1.8.7)
and
0y i = wy + 52,0, 11,0) = wy + fI + O(I7), (1.8.8)

being coefficients d and f those appearing in the quadratic part of the polynomial Z,.
(see (1.8.2)).

From here, the characteristic multipliers associated to the normal directions of the
periodic orbits are,

Oé?:l = iO’Z + vV —01

=i(wy + fI) £/ —dI, + O(I?) + O(I?), (1.8.9a)

Blil = —i0'2:|:\/—0'1

= —i(w + fL) £/ —dL +O(I}) + O(I}). (1.8.9b)

Thus, if |I;] is small enough, the sign of the terms inside the square roots at the de-
velopments for ajil and Blil in the above formulas, depends mainly on the sign of —dlI.
Therefore, we must distinguish two cases.

Case 1. d > 0, then the family of periodic orbits (1.8.5) is complex unstable for I; < 0,
and (linearly) stable for I; > 0. See figure 1.7(a).

Case 2. d < 0. In this case the family turns out to be (linearly) stable for I; < 0 and
complex unstable for I; > 0, as it can be appreciated in figure 1.7(b).

In the next section and going on with the analysis of the normal form Z™), we shall see
that, —under certain conditions which depend intrinsically on the Hamiltonian—, around
the just studied periodic orbits there unfolds a two-parameter family of two dimensional
invariant tori. Furthermore, a study of the normal behavior of such bifurcating tori
is done. The global result resembles the classical Andronov-Hopf bifurcation, in the
sense that unfolded stable objects (2D-invariant tori in our case) appear around lower
dimensional unstable ones —here, the periodic orbits of the family—, whereas conversely,
unstable 2D-invariant tori may unfold around stable periodic orbits. Whether the former
or the latter phenomenon takes place, depends again upon the nature of the Hamiltonian.
In the literature —see Van der Meer (1985)—, this kind of bifurcation is known as the
Hamiltonian Andronov-Hopf bifurcation.
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Im . Im . _ .
M oa Y o . O, &----= 0
- i | | 1) I 1
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| 1 | |
Re - Re
| | \ l3+ ) o
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B, B -i 0, L L] -iw, ! ‘
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Bll P, B, B|1
,<0 1,=0 I,>0 ,<0 ,=0 ,>0
(a) d > 0. (b) d < 0.
Figure 1.7: We note that when I; = 0, then o = ag =iws and B, = Bar = —iw> (collision of characteristics exponents).

Therefore, the family changes its linear character from complex-unstable to stable (when d > 0, fig. 1.7(a)), or vice-versa
(when d < 0, fig.1.7(b)).

1.9 An unfolding 2D-invariant tori family

We are interested in the quasi-periodic bifurcation phenomena linked with the transition
stable-complex unstable. We will describe such phenomena using the r-order normal form
AQH

It turns out that the quasi-periodic solutions we are looking for are more easily seen
if we first change to (canonical) polar coordinates,

I
1 = +/2qcosfy, y; = —\/—;_qsin92+p\/2qcosﬁg,

; (1.9.1)
Ty = —y/2¢sinfy, y, = ——QCOSGZ—p\/QQSiHQQ,

V24

with ¢ > 0. This introduces a second action I, together with its conjugate angle 6, while
q and p are the new normal coordinate and its conjugate momentum respectively. With
these polar coordinates, the Hamiltonian Z(") takes the form,

[2
Z(r)(91,92;q,11,[2ap) = wi I} +woly + qp® + 4—2 + Z,(¢q, I, I5), (1.9.2)

(following our convention, we keep the same name for the normal form expressed in the
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new coordinates). From its corresponding Hamiltonian equations,

0 = wi+&Z(q, N, L),

. I
%z=m+i+%&@hb%

q = 2qp,
. (1.9.3)
-[1 = 07
i2 = 07
12
p = _p2+—2_alzr(q7[17[2)7

4¢?
it can be seen that the system generically presents a bifurcating two parameter family of
quasi-periodic solutions. We formalize this result in theorem 1.27 below, but a previous

general definition (borrowed, verbatim, from the book of Broer, Huitema and Sevryuk,
1996) is still needed.

Definition 1.26 (torus with parallel dynamics). Consider a smooth vector field X
on a manifold M with an invariant n-torus T. We say that X on T induces parallel (or
conditionally periodic, or Kronecker, or linear) motion, evolution, dynamics, or flow, if
there exists a diffeomorphism from T to T" transforming the restriction X| to a constant
vector field )i, w;0/0x; on the standard n-torus T" := (R/2Z)" with angular coordi-
nates x1,Ta, ..., T, modulo 2w. In a more familiar notation, this vector field determines
the system ©; = w;, 1 < j < mn, of differential equations. The numbers wi,ws, ..., wy, are
called (intrinsic) frequencies of the motion (evolution, dynamics or flow) on T, but also
of the invariant torus T itself.

Theorem 1.27. If the coefficient a in the quadratic part of Z, in (1.8.2) is different from
zero, there exists a real analytic function T : 4 C R?* — R, (0,0) € U, such that for
(J1, o) € Y, the two-dimensional tours:

Tll,Jz = {(07Q7I7p) S -[I—2 x C x (EZ x C:
¢=T(N, ), L=, Is =217, J2), p=0} (1.9.4)

is invariant under the flow of (1.9.3) with parallel dynamics determined by the intrinsic
frequencies:

O (J1, Jo) = wy + 002, (Y (1, o), J1, 2050 (Jy1, J2)) , (1.9.5a)
Qo (J1, Jo) = we + Jo + 052, (Y (1, J2), J1, 2057 (1, J3)) - (1.9.5Db)
Furthermore, let U, C U be the set:
e =A{(J1, o) € U:T(Jy, Jy) > 0},

then {T5.,7,} (11, 0)est. constitutes a two parameter family of real two-dimensional invariant
tori. The intrinsic frequencies of these tori will be non-degenerated (in Kolmogorov’s
sense) if, in addition:

dZ
b——#0, (1.9.6)
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where the coefficients b and d involved in this last formula are again those of the polynomial
Z..

Proof. 1t is enough to look for the equilibrium points of the the system (1.9.3) restricted
to the normal direction ¢ and its conjugate momentum p. There, we fix p =0, s0 ¢ =0
and introduce the parameters J; and J, by Iy = Ji,Is = 2J5q. Then, from the last
equilibrium point condition, p = 0, we derive the equation,

J2 31 (q, Jl, 2J2Q) = 0 (197)
which has a trivial solution (g, Ji, Jo) = (0,0,0). Therefore, as

0
a_q ( a1 (qa J172J2q))‘(q:0 J1=0,J2=0) a%l (0 0 0)
and a # 0, the local implicit function theorem can be used to establish the existence of,
(i) An open set 4 C R?, with (0,0) € 4, and
(ii) an analytic function 7" : 4 — R,
such that
(i) 7(0,0) =0,
(11’) J22 — 812, (T(Jl, JQ), Ji, 2J2T(J1, JQ)) =0, for all (Jl, JQ) e
Now, it is immediately checked out that the flow of (1.9.3) on the torus 7y, ,, is given by,

(T, Jo) t+ 0
) d?2 90 90 E-[I—Q T ) €l
(Qz(JhJQ)t-l-Hg mod 2, (61, 6;) , (1, o) ,

with (2,(J1, Jo), 22(J1,J2) given by (1.9.5a) and (1.9.5b). Here, J;, J; determine the
invariant torus of the family and 6?, 69 are initial conditions for an orbit on it. This ends
the proof of the first statement of the theorem. Let us point that, if we want real tori, we
have to ask ¢ > 0 in (1.9.1), so the “reality condition” is 1°(.Jy, J2) > 0.

Next, expanding 7" in power series up to first order, one obtains

d 3d? 2d 1
Y(Ji,J2) = — EJ1 + <_a—f300 ﬁfu,o - af1,2,0) Ji

1, 2ed
oyt %JIJ2 + 031, Ja). (1.9.8)

Similarly, a low order expansion of the frequencies (2, (2, yields,

d? 3d? 3d?
91(J17J2)2W1+<b——>e]1 <_a—f300 —f210——f120+3f030>

d 2ed? _2fd
+ EJ22 + ( ¢ {1: ) J1J2 +03(J1,J2) (199&)

a?

ed
_QQ(Jl,JQ) = Wy + <f - —> Jl + J2

3ed? 2ed d?
( f300 —f210——f120+ f201——f111+f021>

2e2d  2cd
+§g+(e Z)Lh+o*hh) (1.9.9b)

a?
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and the determinant of the Jacobian matrix, 33(&’?22)), is up to zero order in .Ji, Jo,
b— %24—01(1]1,{]2) Ol(Jl,Jg) dZ
det :b——+01(J1,J2).
fF=940.(J1, o) 1+0(Jy, o) a

Then, for |.J1],|J2| sufficiently small and if the quantity b — %2 is different from zero, the
frequencies of the invariant tori will change along the family. O

Remark 1.28. From (1.9.8) it can be seen that, in order to check the reality condition
Y(J1, J2) > 0 it suffices, for |.J1|, |.Jz| small enough, to ask

d
_EJI >0 and |J2| < |J1|a, (1910)

with « > 1/2. Later on, in chapter 3, we devise another parametrization for the family
of invariant tori, more suitable to control their real character (see theorem 3.1). [}
J

2

To investigate the stability type (that is, the ellip-
tic or hyperbolic character) of the tori in theorem 1.27,
we set up the normal first variational equations around
an invariant torus 7y, s, of the family: i. e., we con-
sider the system, Z=73022")(Y(J1,J2),J1,2J27(J1,]2))Z, Te- ]
stricted to those normal directions to the invariant
torus. In our case, they correspond only to the coor-
dinate ¢, and its conjugate momentum p. So, writing
these equations explicitly,

Figure 1.8: |J5| < |J1|2/3.

X - 2T(J1, JZ) Y,

o 2.J2 ) (1.9.11)
Y - <T(J1, JZ) + 81,1 ZT|T]1,J2> X7
it is easy to check that ail 2|y, . =a+... and, with the corresponding expansion for
T(, o) = —ng + ... in (1.9.8) we can compute the characteristic exponents, Qi,h, of
the torus
Qi,fz = £ \/_4J22 o QT(JD JQ)a%,IZT(T(Jla J2)7 Jla QJQT(Jla JQ))
6d? 2ed
= 4+ \/2dJ1 — 6J22 + <2f1,2,0 — ?fg,o,()) J12 — 7J1J2 + Og(Jl, J2)
(1.9.12)

This last relation, together with the formulas (1.8.9a) and (1.8.9b) for the characteristic
exponents of the periodic orbits, leads to the following proposition.

Proposition 1.29. Under the assumptions of theorem 1.27 —including the reality con-
dition T > 0, the type of the bifurcation is determined by the sign of the coefficient a
in (1.8.2). More precisely,
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Case 1. a > 0 then, we say that the bifurcation is “direct”: there appear elliptic tori around
complex-unstable periodic orbits; and if

Case 2. a < 0 the bifurcation is “inverse”: hyperbolic invariant tori unfold around stable
periodic orbits. In this case, the family contains also parabolic and elliptic tori.

Proof. Indeed, when a > 0, it must be —in view of the (local) reality conditions—: d.J; < 0.
Therefore the expression (1.9.12) for the characteristic exponents Qi, 7, shows that they
are purely imaginary (as always, provided Ji,J are small enough in absolute value).
Hence, the invariant tori are elliptic. On the other hand, d and J;(= I;) should have
opposite signs for their product to be negative; but then, the corresponding periodic orbit
is unstable (see figure 1.7). Similar arguments apply when a < 0. O]

Remark 1.30. (A note on the parabolic tori). As stated in the last proposition, when
a < 0, also real parabolic tori appear. Let us explain this point in more detail. If we
define g(.J;, J2) as the stuff inside the square root in (1.9.12), i. e.:

O(J1, Jo) := —4J5 =20 (J1, o) 07 (Y (1, Ja), J1, 2050 (1, Ja))

6d? 2ed
= 2dJ, — 6J22 + <2f1,2,0 - ?f:a,o,o) J12 - 7J1J2 + O3(J1, Jo)

then, provided d # 0, application of the implicit function theorem at (J;,.Js) = (0,0)
shows the existence, in the space of parameters (Jy, J5) of a curve Ji(Jo) = 2J2 4 O3(J)2),
giving rise to a one-parameter family of real parabolic tori. The same can be done also
for a > 0; but then (by substitution in (1.9.8)) it can be seen that: 1(J;(J2), J2) =
—2J3 + O3(J5) which will take (at least for J, sufficiently small) negative values leading

thus to complex tori. See similar comment in section 3.2.2 of chapter 3. 2

The solutions winding the invariant torus (1.9.4), can be put back in rectangular
coordinates using the change (1.9.1), and in this way, the corresponding family of solutions
for the system (1.8.3),

91 = Q1t + 9[1], L = Jla
T = V27 cos(Qut +69), v = —V2T Jysin(Qut + 69), (1.9.13)
Ty = —V2Tsin(Qut + 69), Yo = —V21 Jycos(Qut + 69),

where, to abbreviate, it is noted ¥ = 7'(.J1, Jo) and Q; = Q;(J1, J5), for i =1, 2.

Solutions (1.9.13) suggest a bifurcation pattern of the type plotted at figure 1.9, where
the typical Hopf-like unfolding as described in proposition 1.29 can be appreciated. In
particular, as shown there, if we cut the reduced phase space, (1, x9,1;), by a plane
I, = J; = constant, we obtain an equilibrium point (corresponding to the periodic orbit),
“surrounded” by a one-parameter family of invariant circles, which are stable curves when
the equilibrium point is unstable and vice-versa.

1.9.1 A note on the low order (r = 2) normal form

Now we consider the normal form (1.9.2) with » = 2 (fourth order Hamiltonian). It is of
interest to investigate the dynamics of such Hamiltonian by itself (see Heggie, 1985). We
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X

Figure 1.9: Bifurcation of quasiperiodic solutions
linked to the transition stable-complex unstable (J2
fixed). In the figure ticker and narrower traces repre-
sent stable and unstable objects respectively (periodic
orbits and invariant tori). Remark: though they have
been glued together, only the upper or the lower part
of the diagram may take place, since whether the di-
rect or the inverse bifurcation actually occurs, depends
upon the coefficient a, and it has a fixed value for a
given Hamiltonian. 1

begin introducing a more suitable coordinates by means of the canonical change,

Q=+2q, P=py2, (1.9.14)

In these new coordinates, the Hamiltonian Z(? will take the form,
ZO(Q, P, I, I,) = Hy(I, I) + Hi(Q, P, I, I), (1.9.15)

with,

1 1
H()(II,IQ) = wlfl +w212 + 5()[12 + 501—22 + f[ljg,
H(Q,P, I, I,) = Lp2y 1 s AQ* | + BQ*

1 y Ly 41y, 42) — 9 9 Q2 )
with A = —dI; — ely, and B = a/8. The actions I;, I, and also the function H; are
constants of the movement, so Hy(Q, P, I, I) is actually a one-degree of freedom Hamil-
tonian (and hence integrable) of type H(Q, P) = 3P+ V (Q), where the potential energy
V(@) is, by identification with the second equation in (1.9.16),

(1.9.16)

1 [ I?
V(Q) == (=3 - AQ* ) + BQ.
The flow of this Hamiltonian gives the movement in the phase plane (@), P) of the normal
directions. In particular, equilibrium points and periodic orbits of this reduced Hamilto-
nian will correspond to two and three-dimensional invariant tori of the complete (in the
present context) Hamiltonian (1.9.16) (see next section).
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Several different behaviors are appreciated depending upon the coefficients A and B
and on the energy h = H(Q, P). If we suppose that the sign of the coefficient A =
—dI; — ely, appearing in the potential V(Q), is given mainly by the sign of the product
—dI; (assume, for example |I5| < |4||;]), then the results —concerning two-dimensional
invariant tori—, presented here are easily linked with those obtained in our previous study
and also with the ones to appear in the forthcoming section.

More precisely, and as before, we must distinguish two cases which correspond to the
inverse and direct bifurcation respectively.

Case 1. For A < 0 and B < 0. Then for a given 0 < h < —1“6‘—; a 2D elliptic
torus surrounded by 3D tori appear. See figure 1.10(a). When the energy is increased
and —% < h < 123, then a hyperbolic torus unfolds and the 2D torus with its
accompanying family of 3D tori are contained inside the loop formed by the connecting
invariant manifolds of the hyperbolic 2D torus as can be appreciated in figure 1.10(b).

Case 2. When A > 0 and B > 0 and for a given h, an elliptic 2D invariant torus
surrounded by 3D tori appears (figure 1.11). It is worth noting —figure 1.11(b)— that, for
h = 0 the separatrix curve corresponding to the action I, = 0 merges from the origin of
the (@, P) phase plane. It corresponds to the (matching) stable and unstable invariant
manifolds of the hyperbolic periodic orbit with the same value of I;.

As the reduced Hamiltonian we are dealing with is a one-degree of freedom Hamil-
tonian, and the sum of the kinetic term plus a potential V(Q), its phase portrait is
straightforward constructed from the shape of the potential function. This is just shown,
for the first case above and for both 0 < h < — and —2= < h < — at figures 1.12

IBB IBB 123
and 1.13 respectively. The reader can verify the second case and, in the same way, realize

D >

(a) 0<h< —f% .

Figure 1.10: A < 0 and B < 0. Different invariant curves for several values of the action I are plotted given a fixed value of
the energy, h, in the specified intervals. In particular, closed trajectories correspond to 3D invariant tori around the elliptic
2D torus (an equilibrium point marked with a ¢). Also, escape phase trajectories have been drawn. In (b) an hyperbolic
equilibrium point (hyperbolic 2D invariant tori in the complete phase space) together with its invariant manifolds appear.
In both figures, the outermost curve corresponds to Iz = 0.
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(a) —fag < h <0.

(b) h

=0. (c) h > 0.

Figure 1.11: A > 0 and B > 0. As in the previous plot the outermost curve corresponds to I = 0. As pointed in the text,
for h = 0, —figure (b)—, this curve identifies with the stable and unstable invariant manifolds of the elliptic periodic orbit
for the same value of I1. Here, no hyperbolic invariant tori appear. This situation corresponds to the direct bifurcation of

the previous section.

Figure 1.12: (A < 0, B < 0 and 0 < h < T&).
Construction of the phase portrait of figure 1.10(a)
from the potential curves V(Q) corresponding to three
values of the actions I = 0 (thicker line) and 0 <
Iy < I3, where I5 is the action of the elliptic torus
—represented by the point marked with E in the phase
portrait below—. It can be appreciated that, for the

value of the energy, h < f%, and the action 0 <
Iz < I§ pointed at the upper part of the figure, the
flow is whether confined in a 3D-torus (the closed curve
surrounding the elliptic point E), or escape to infinity
following one of the escape trajectories drawn in the
figure.

vQ)

that, when A < 0 and B > 0, we have a two-dimensional elliptic torus surrounded by a
family of 3D-invariant tori. This agrees with the appearance of maximal and lower dimen-
sional elliptic invariant tori around stable periodic orbits. On the other hand, when A > 0
and B < 0, there are no quasi-periodic solutions at all (for @ > 0, the potential V(Q)
decreases monotonically and goes to the infinity as one approaches rightwards to zero).
For a more complete account of the analysis outlined here, see the reference of Heggie

quoted at the beginning of the section.
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Remark 1.31. Of course, the dynamics described in the last two sections corresponds —
as it has been already pointed—, to the dynamics of the truncated normal form, that is
with Z,.(q, I, I) as a polynomial of finite (arbitrarily high) degree r. Actually, after the
normal form reduction process, the transformed Hamiltonian consists of this truncated
normal form plus the remainder —see (1.7.68)—. Bounds on this remainder, ], and the
persistence of the bifurcated 2D-tori (in Cantor sets) for the complete (non-integrable)
Hamiltonian will be the subject of the next two chapters. 2

)m

=
>
@

Figure 1.13: (A < 0, B < 0 and —A?/(16B) < h < Tir).
Detailed phase portrait of figure 1.10(b) from the potential
curves V(Q). As in the preceding figure, the potential
is represented for several values of the actions: Iz = 0,
0< Iy, <Ih < Iy <I§, an a fixed energy level, h, with

Q —lg—z <h< —%. Again, an elliptic two-dimensional
invariant torus (the elliptic point marked with E in the
phase plane), and 3D-tori (closed invariant curves around)
appear. However, additionally, an hyperbolic 2D-torus in
the whole phase space rises. It is represented in the (Q, P)-
plane by the hyperbolic point H, together with its stable
and unstable manifolds. Escape curves are drawn on the
right of the invariant manifolds.







Chapter 2

Quantitative estimates on the normal
form

2.1 Overview of the chapter

Suppose that we transform a function f = ) o, fi € & through the map T in the
definition 1.7 on page 21 to obtain Tif = Y _,., Fr and we are interested in bounding
—using some suitable norm to be defined later—, the sum >, . Fj. Since Fy, s =1,2,...,
are obtained as a combination of Poisson brackets of fi,..., fx;Gs, ..., Gsi1 of type,

FI = fla
Fy, = fo +{f1,G3},

Fy= fot U Ga} + (G} + ({1, Ga}. G}

Then, assuming certain bounds for the components G, j > 3 of the generating function
G =G5+ G4+ -+ G, (see (2.6.30) in proposition 2.19) one may attempt —with the
help of the more specialized recursive formulas of the Giorgilli-Galgani algorithm—, to
obtain estimates for the remainder as the sum R = F..1+ F..o+.... This is done
in section 2.6, using proposition 2.16 stated in section 2.5. This proposition is based on
lemma 2.13, completed with lemma A.12 of appendix A. Particularly, we mention that
is in lemma 2.13 where the assumptions on the size of G;, 3 < j < r are (through the
bounds (2.5.11)) introduced. Next, in the section 2.6.1, we optimize the derived estimates
with respect to the degree r up to which the normal form is carried out. In this way,
an optimal 7., order is obtained as a function of the distance to the critical periodic
orbit. The results concerning optimization of the order are formalized in proposition 2.19.
Finally, in the last section of the chapter, section 2.7, we let f = H, where H will be the
complexified Hamiltonian (1.6.2). Then it is checked that the early assumed bounds for
the terms of the generated function G = G5 + - -- + G, are fulfilled when these are the
solutions of the homological equations (1.7.60). Hence, the optimal normalization order
apply, in particular, to the complex Hamiltonian (1.6.2) and the remainder of the reduced
Hamiltonian satisfy the same bounds of the proposition. Theorem 2.29 summarizes these

51
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results and also, gives an order-independent estimate for the size of the normal form,
which will be useful in the forthcoming chapter 3.

Though, in the paragraph above, we have, essentially, outlined the plot of the present
chapter. However, we have not mentioned that, besides a preliminary section, with some
remarks and notation (see below), there are two sections (2.3, 2.4) devoted to derive
bounds for the solutions of the homological equations, more precisely, to bound the so-
lutions G, Z; of the homological equations (1.7.60) in terms of the norm of their corre-
sponding r. h. s., F;. The main result (used later in section 2.7) is lemma 2.7, given at
the end of section 2.4.

2.2 Preliminaries
We want to point here that, when analogous normal form computations are applied to

a semisimple elliptic equilibrium point of a Hamiltonian (see example B.23), homological
equations lead to a linear algebraic diagonal system in the coefficients g, (of the poly-

nomial G), whose solutions are g ,, = i<:;’:"m>, with |l|; +|m|, = s, # m, and F},, the
coefficients of Fy, (the right hand side of the homological equations). It is usual to intro-
duce some conditions on the frequencies w* = (wy,...,w,). For example, as in Giorgilli
et al. (1989), assume that |(w,v)| > a, for those v ¢ R (being R the resonance module
considered) and such that, |v|; < r. In 2 —the space of homogeneous polynomials of

degree s as defined in example B.23—, one introduces the norm,

1A= D |fiml,

(L1 +|m]1=s

and then the term Gy is easily bounded by ||G;|| < ai||Fs||

When the homological equations are not diagonal, as actually happens, the compu-
tations are more involved. Moreover, we shall work with functions which are no longer
polynomials (see below). Then, it is worth introducing before the appropriate norms and
some notation.

Notation

Let € denote now the space of the analytic functions f(6,, I, g, p), and 2r-periodic with
respect 61, defined on D(p, R), with some p < p* and R < R* —see (1.6.3)—. Later on
though, this domain will be more precisely defined (section 2.5.1). Therefore a function
f € & admits an expansion in Taylor series of type (1.7.1), again,

f = Z fl,m,n(gl)[iqmpna (221)

(I,m,n)eZ 1 xZ2 73

(with Z, = N U {0}). In their turn, the coefficients f; ,» (1), expand in Fourier series,

Frman(01) =D frtman exp(ik)). (2.2.2)

keZ
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We use the developments (2.2.1) and (2.2.2) to introduce in & the following norms,

|fl,m,n p = Z |fk,l,m,n| exp(|k|p), (223)
keZ
Flor =" Y > |fumnl, R2Hm A0 (2.2.4)

2 2
leZ meZ% neZ;

(with the definition of degree given by (1.7.3), section 1.7 of the previous chapter, i. e. count-
ing twice the contribution of the degree in I). Some basic properties of these norms are
given in the appendix A. If the sums defining these norms are convergent, then

sup |fl,m,n(91)| S |fl,m,n|p7 sup |f| S |f
[Im 61|<p D(p,R)

R

i. e., they are bounds for the supremum norms of f; ,, n(61), on the complex strip of width
p >0, and for f on D(p, R) (see (1.6.3)). The use of these norms will simplify many of the
bounds, specially those of the small divisors (see lemma A.1 of appendix A). Alternatively
one could consider the supremum norm and use the bounds in Riissmann (1975).

We have already used the absolute norm of a vector & € R" (C") |x|, := >, |z;;

x € R" (C"). Given a n x n real (complex) matrix A = (a;;),; ;<,, the sum
n
Al = lfgja;%zl: |ai 5] (2.2.5)
1=

defines a compatible matrix norm, since it can be shown that |[Az|, < |A|, |z|, (see
Froberg, 1973, chapter 3). We shall use these norms to bound the solutions of the linear
system (1.7.19) as the first step to get estimates of the generating function.

Moreover, and for shortness, we shall denote by &5, the space of homogeneous poly-
nomials of even degree s, constituted only by M-type monomials, i. e.,

€t = Brrar=s/2€o, 10,0 (2.2.6)

(see section 1.7.1).

2.3 Bounds for the solutions of the homological equa-
tions

Let us return to the matrix formulation of the homological equations given in section 1.7.1
of chapter 1 by the (m+1)x(~N+1) linear system (1.7.21), where E,, v = 1,2,...,N + 1
were the (v+1)x(v+1) diagonal matrices diag[v,...,v], Dy = QIyy1 — Py, with Py the
(N+1)x(N+1) nilpotent matrix (1.7.22), Iy, the identity matrix of the same order and
Q = Qg p o, defined as Qp pry = iwik + iwe (M — N).

We can split each term of degree s of the generating function G, Gy, as the sum
Gy = M+ Gg), with G € ¢y i e, G? contains only M-type monomials (see
definition 1.11)—, and G\ e ¢, \ &, (note that G =0 for s even). This last one gives
rise to linear systems with §2 # 0.
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Our aim in the present section, is to derive estimates on the norm of Ggl) —so0 Q2 #0
will be assumed throughout—, whilst the search for bounds on G will be relegated to
section 2.4.

The first step is, then, to get bounds for the solutions of (1.7.21). This will provide
bounds on the coefficients of the expansion of G, We are going to see that those
solutions can be formally expressed as (if necessary, see section 1.7.1, page 25, to review
the notation)

gM = D&IfMa
v—1
i i _ (2.3.1)
9v-v = Z(_l) (M = v+ 1), ;D" lfoj + D3 far
5=0
v=1,..., M and where the Pochhammer symbols

(@), =ala+1)--(a+v—1), (a):=1,

are used. Indeed, since the solutions of (1.7.21) can be first obtained in the following
recursive form,

gM:DZQIfMa

) ) (2.3.2)
9y, =—(M —v+ 1)DN19M4/+1 + Dy farws

so taking v = 1, g,,_, turns out to be g,,_, = —MDy'g,, + Dy' f1,_1 and substituting
the first of (2.3.1),
gr—1 = —MDY for + Dy Fari,

which coincides with the second of (2.3.1) for v = 1. Now, suppose this same relation
works also for v, with 1 < v < M. Then for v + 1:

9v—v—1 = DﬁlfM—u—1 — (M — V)DNIQM—V

= D]:flfM—u—l - (M - V)szfM—u

—

v—

+ ) (=1)"HYM — ) (M - v+ 1),,_]-D;V”+f—2fM,j.

j=0
Using that,
(M—-vM—-v+1)yj=M-v)(M—-v+1)---(M—j)
=M =v)y_j,
for j =1,2,...,v+ 1, the last formula for g,, , ; can be arranged to,

I v =Dy Far o+ D (DM = v)ya DY T
j=0

This ends the induction and hence (2.3.1) is fully justified. Moreover, if as in section 1.7.1,
we denote the matrix of (1.7.21) by A, it is immediately seen in view of the just obtained
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solutions for g, that its inverse, A=!, can be written blockwise as

(%)
(¥)r2 (oH)m
()ra (M) (M)
A= : : : : (2.3.3)
(Dove (V)2 ()20 o (M)
(M)2wsr (MD)Pa (M73)Pw— (M) Pu—vir = (§)

where, for convenience, we have introduced D, = (—1)""'(v — 1)! D", and used that
(M), = v! (MJ“VV*l). To determine the powers Dy (v = 1,2,..., M + 1), of the inverse
matrix Dy', we proceed from the definition of Dy, so

Dy = (Q-Iyy — Py) 7,

or, equivalently, D" = # (I N4l — éPN)fu and after binomial expansion

N .
—v (_].)'] —V ]
DN_ZQV+j j Py
=0
—v — o~
:#[NJrl_ﬁ(1>PN+ﬁ<2>PJ%+"'+(QV%<N>P]]\¥,

but () =-%, () = ”(V;{l),... and, in general, for v =1,..., M + 1,

—_

yvv+1)--(v+N-1) (=¥

CVV):(_U NI = W (2.3.4)

Direct computation of the powers P]{, yields

0 0 0 -+ 00 0
0 0 0 00 -0

; it (%) 0 0 00 --0
Pv=1 "o PN G I 00 - 0
0 0o J1("?) 00 -0

0 0 0 il 0 0
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Here, the coefficient j! (]]V ) which produces the first row different from zero is placed at
the (j+1)-th row, with j ranging from j = 0 (given the (N+1)x(~v+1) identity matrix) to
j = N. Thus, defining

aj(l/,Q)::%, j=0,1,...,N;

and by substitution in our previous expansion of D", one obtains an explicit expression
for these matrices

(5) a0

(Ve (Y5) ao

(Fe ("Ta (7570
Dy = : : : . (2.3.5)

(e (e (a2 - (V57)ao

(Mov (W)av—t (33)aw—z = (3))av—; =+ (5)ao
Remark 2.1. Before continuing, we stress here that, actually, all the entities involved in
the linear system (1.7.19) do depend, through ©, on k € Z, and M, N non-negative
integers with M + N + 2l = s with [ = 0,1,2,...,[s/2] fixed. From the expression of
the blocks D' just found, where powers of ) are present, it follows, in view of (2.3.3),
that the same applies to the inverse matrix A~'. To avoid, as far as possible, the use of
an excessive number of indices, we shall not write them out explicitly, but ask the reader
to keep these dependences in mind. 2

The next lemma furnishes an estimate on the norm of A~!.
Lemma 2.2. For the corresponding k, M and N (see last remark),
1\ (M + N
AT < <1 + —> — (2.3.6)
st i
Proof. Directly from the structure of the matrix (2.3.3), we have that

) MAL
‘A 1‘1 - Z (V_ 1>|Du|la

v=1

and with the definition of D, given before,

M+1 Y,

A7, =) (w- 1)!< - 1) D],
v=1 v

Then from (2.3.5), it is clear that the norm of D" equals to,

D], =Y (f) |g(2|)+

=0
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This allows to bound |A™!|; in accordance with

S M) ()

v=1 7=0
_ M“( M )(V—nz(y)NzN:(N) 1
(1), <)y = \v—1 =\ er

- <”ﬁ>Nwi(M> a

Finally, using again the binomial formula 32 ™ |QI‘U =(1+ ﬁ)M, we get the esti-

mate (2.3.6). O

Now, we look at the denominators ||, with Q4 as n = ikwy + iwe(M — N) and realize
that, even though w; and wy are not commensurable, values of the integers k£ and the
difference M — N can be chosen which make | ps x| smaller than any previously fixed
quantity.

Thus, to control the size of these small divisors, the frequencies wq, ws are asked to
satisfy the following Diophantine conditions,

(K, w)| > — (2.3.7)
L
for 7 > 1 and for a certain v > 0. Here, k € Z* \ {0} and w* = (w;,ws).
With the definitions,
2(1,7) = {w e R": [(k,w)| > ~|k|;” for all k € Z"\ {0}} (2.3.8)

and,

(1]

(r) = JE(r ), (2.3.9)

>0

the following theorem (see Lochack and Meunier, 1988, Appendix 4) is well known.
Theorem 2.3. According to the values of T, there are three different cases,

(i) 0 <7 <n—1; then =(1) = 0.

(ii)) T =n —1; Z(7) has Lebesgue measure zero and Hausdorff measure n.

(iii) T > n—1; R*\ Z(7) has zero Lebesque measure. More precisely, if Bg is a ball in
R™ of radius R, then,

meas {R" \ Z(1,7) N B} < C,yR"™,

Wl v+ )y = v+1)(v+2) - (v+N)=(v+N) < (M+N)|,sincev =0,1,2,..., M.
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where C is a constant for a fixed T.

In our case n = 2, so taking 7 > 1, the corresponding set Z(7) of “Diophantine”
frequencies has full Lebesgue measure.
From the estimates on [A7![, of lemma 2.2 and the Diophantine conditions just im-

posed, it is now possible to give more explicit bounds of Ggl) in a smaller domain. Given
0<d<pand y =e?, we have

Ls/2]

‘ s p 5,Rx ZZ Z ZZ|gklmM mN—nn| R URIFS) gl (2.3.10)

keZz 1=0 M+N m=0 n=0
=s—2l

(where the sum does not contain terms with £ = 0 and M = N at the same time). But,

M N
‘gk,l,M,N‘l = Z Z | Ghetm, M —m N~ (2.3.11)

m=0 n=0

is the solution of (1.7.19), with the subscripts &, [, M, N written explicitly, so ‘gk,l,MyN‘l <
Ay, M ‘fk,l,M’N‘l (by the consistency property of the matrix norm). Hence, substitu-
tion in (2 3.10), gives the bounds,

[s/2] s—21

‘ 5 p §Ry — ZZ Z‘ k,l,Ms 2 M|y ‘fk,l,Ms ol B¢ Okl +s) grlkl, (2.3.12)

keZ =0 M=0

Introducing now the quantity,

Ggi= sup | Ag) e o], € TUEEY, (2.3.13)
keZ, 0<i<[s/2]
0<M<s—21
(2.3.12) reads,
[s/2] s—21

|G| p— 5Rx—aszz Z | Frins—oin], R (2.3.14)

ke€Z 1=0 M=0
— &l
= Qs ‘FS ‘p,R’
where Poisson series, FY e ¢, stands for the right hand side of the homological equa-
tions (1.7.11), without M-type monomials (see definition 1.11) to conform with our early
assumption 2y n 7 0 for non-negative whole numbers, M, N, with 2l + M + N = s.
Thus, we need reasonable bounds of the factor a,. Using the Diophantine condi-

tions (2.3.7),
~

(k] + M = NJ)T

1] = |kwy + we (M — N)| >

in the bounds for [A7!|, on lemma 2.2

(M +N)..  (2.3.15)

(k] + M — NI)T>M+N (k] + M = NJ)T

At §(1+
‘ kJ,M,N |1 ~ ~
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From here we can derive estimates for the a; constants defined in (2.3.13), explicitly,

(M + N)’ e—5(\k|+M+N)
Y Y

(2) 7\ s+l
§Q+GMHM_ND> sle SURHIM=ND = (93 16)
gl

a<<HﬂMHM—NWYMWW+W—NW

Consider now the function,

h(z) := (1 + %)Sﬂe"h,

defined for z > 0. If 0 < 6§ < 1 is small enough, its derivative,

v = (1+2) o),

with
g(x) = (s +1)72™ t — 627 — &,

has a zero, 7, in the interval § = (xy, z2), where

xlzmax{l,%} and xQZ@’
provided g(1) > 0. Then Z corresponds to a point of (absolute) maximum of h(x)®. To
show this, we first check that g(z1) > 0, g(z) decreases monotonically for z > z; and
g(xe) = =6y < 0., T € J. It should be clear from the expression of the derivative of
h(x) above, that h'(z) > 0, for x € (1,7) and h'(z) < 0, for x > Z. Thus h(z) < h(Z),
whenever 2 > 1. Finally, note that the condition g(1) > 0 is equivalent to the requirement

(s+ 1)1

> 1, (2.3.17)
fors > 3and 7 > 1, v > 0 fixed. Indeed, this can be achieved taking 0 < § < 1 sufficiently
small. In fact, as s > 3, it will be enough to take, § < min{l‘i—Tv, 1}. This considerations

will be contemplated again in section 2.5.1, to conveniently adjust the size of the domain.

Moreover, g(Z) = 0 implies 1 + %T = %W—l, and T < @ with 7 — 1 > 0, so we
have
1+§: T(s—l—l)ﬁfl - T(s+1) (T(s+1) T_lzl T(s+1)\"
y oy oy o 7y o ’

(2)Taking into account that: |M — N| < M + N, so e 0Uk+M+N) < o=0(k[+IM=N|). moreover M + N =
s—=20<s=> M+ N)!' <s!, and (k| +|M = N|)"/y <1+ (k| + |M = N|)" /7.

(3)We take = = |k| + |M — N| and further consider z as a continuous variable, but, |k| + |M — N| > 1,
since M, N, k are integers and both k and the difference M — N can not be zero simultaneously. Hence,
it suffices to define the function h(x) for > 1. Nevertheless, it is easier to discuss the position of its
maximum if both, h(z) and the auxiliary function g(x), are considered in the whole nonnegative semiaxis.

(Y)One checks out immediately that, under the assumption g(1) > 0, there is another zero of g(z) in
the interval (0, min{1,z1}), and no more ones could exist though, because g(z) decreases for z > ;.
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and together with the obvious inequality e =% < e~("=D(+D they produce the following

bound for h(x)

s+1 7(s+1)

1

h(z) < h(7) < <3> (@) o7+ D), (2.3.18)
v

valid for all # > 1. The lemma below summarizes the arguments given in this section
and shows the estimates on the generating function, Ggl), to be used along the rest of the
chapter.

Lemma 2.4. With the notation above, and with 0 < § < p, x = e %, and whenever the

frequencies wy, wo fulfill the Diophantine condition (2.3.7) for some v > 0, 7 > 1, the
piece of the s-th degree term of the function free of M-type monomials, Ggl), s bounded

by,

[ a, |[FY (2.3.19)

<
‘9—6,Rx - pR

with the coefficients oy defined as,

1 s+1 1 T(s+1)
Qg =V 27re2 <S + ) (@) , ZfS > 3. (2320)
v e

Proof. (2.3.16), with the bounds (2.3.18) on h above, give the following estimates for a;

< E s+1 T(S—|—1) T(s+1)
s = . /y 66 )

and with the use of the Stirling’s formula (see Puig Adam, 1939), s! = v/ 27rss+%e’s+%,

for s >0 and 0 < £ < 1. In our case s > 3, so % < 1 and then e < e. Furthermore

s5F2 < (s +1)**, s0 8! < v2me?(s + 1)* e~ +D) Finally, substitution of this bound for
sl in the last inequality leads to a; < a; with oy as defined in (2.3.20). O

2.4 Study of the resonant terms

As it has been repeatedly pointed, up to now, we have only dealt with the solutions of the
“nonresonant” (in the sense already explained) part of the homological equations. Time
has come, then, to revisit section 1.7.2 and face up to the problem of finding bounds for
the solutions of the reduced homological equations (1.7.25).

Additional notation and definitions

To proceed beyond, it is worth revisiting the different variables we use in the represen-
tation of polynomials. Originally, we considered polynomials P € &} ,, with s even —see
definition (2.2.6)—, in the action I;, the positions ¢;, g2 and their conjugate momenta
p1, pe. Later, in section 1.7.2, the coordinates were grouped in the special variables
n* = (1,72, M3, N4), related with the former ones through,

n*(a,p) = (11, QD2 @202, G2D1)- (2.4.1)
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Furthermore, even another set of variables, £€* = (&1, &, &, &), was introduced by means
of a linear change n(§),

—i 0 0 &1
01 0 0 &2
_ 2.4.2
"7(5) 72 0 =1 0 63 ’ ( )
0O 0 0 1 &4
and its inverse £(m),
i/2 0 /2 0 m
0 1 0 0 Up)
_ 2.4.3
&(n) 1/2 0 —=1/2 0 13 249
0O 0 0 1 M4

The homological equations were solved in these variables &, &, & and &4, since when
expressed with respect to them, the independent term was easily separable —by projection
on the corresponding subspaces—, into resonant and nonresonant components. In the
forthcoming, it will be convenient to distinguish explicitly between the expression of
polynomials with respect to those three different set of variables, —i. e., (I1,q,p); (I1,n)
and (I, €). So, given a polynomial P, we shall denote

P(L.,q,p) = P(L,n(q,p)), (2.4.4a)
P(I,m) = P(I,€(n)), (2.4.4b)
P(Iy,&) = P(I,n(£)). (2.4.4c)

In other words, P will stand for the polynomial in (17, g, p) and P, P for its expression
in the sets of variables (I1,m) and (I3, €) respectively. So, if G is the piece of the s-
degree term, G, of the generating function formed by M-type monomials, as pointed in
section 1.7.2, and in accordance with our just introduced notation, ng) may be expressed
as,

GO = > fumallGE + D) Gemn[EEE, (2.4.5)

l4+v+m+n=s/2 l+v+m+n=s/2
(v>1) (v>0)

see equation (1.7.46b). Here, an additional subscript, [, has been added to account for
the degree of the action I;.

Definition 2.5. Given a polynomial P =), ay,2™, defined on the complex domain,
D(R)={z € C:|y4| <R,j=1,2,3,4,5},

we introduce the auziliary norm || - || 5,
1Pl = lam|R™. (2.4.6)
m

Lemma 2.6. The norm defined by (2.4.6) satisfies,
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(i) If P € &, then ||P||z = |P|,.r (where |- |, g is the norm defined by (2.2.4)).
(ii) [|PQlz < [IPllz1Ql 7

(iii) |P()llz < 1P@lz, 1PE)llz < I1P()]z-

Proof. The first item follows immediately from the definition, while the second and the
third ones can be thought of as special cases for polynomials of item (ii), lemma A.2, and
of lemma A.4 (applied to particular transformations &(n), n(€)) respectively, taking into
account that,

Jax (&g < B, and - max {[Ini(&)llz} < 2R
U
With the definition 2.5, the norm || - || gz,2, with x = exp(—6), of G in (2.4.5) is
|G| p2y2 = S Nfwmalt Y. |Gwmal | B exp(—s0). (2.4.7)
l+v+m+n=s/2 l+v+m+n=s/2
(v>1) (v>0)

But in view of (1.7.50), the second of the sums in the r. h. s. of (2.4.7) is bounded without
effort. Indeed, if we express the independent term of the homological equations restricted
to the space €9, in the variables {;, &, & and &,

"= " fumaBEEG Y Guma LG (2.4.8)

l+v+m+n=s/2 l+v+m+n=s/2
(v>0) (v>1)

~where all the coefficients f;,m.n, Giv,mn are real, as in (1.7.46a)—, and we recall that the
coefficients f;, ;0 correspond to resonant monomials, so one can define:

Zs = Z fl,u,m,O Iigé/g{na (249)

l+v+m=s/2
(v2>0)

and hence, according to the norm in definition 2.5 and the relations (2.4.4a)-(2.4.4c), the
functions Z4(q, I1,p), s = 3,...,r, holding the resonant terms, can be bounded, applying
lemma 2.6, as:

1 Zslp.r = 1 Zllr> = 12,1 o2

<Nl = 220 Fulliegs < 27| Fullae = 22| Pl (2.4.10)

Then, we get the estimates,
s/2—1—-1

S lweal= 3 3 e
l,v,m,n n

l+v+m+n=s/2 v=0 v4+m+n=s/2-1
(v>0) (n#£0)

s/2—1—-1

Z Z |/g\l,u+1,m,n—1 (2411)

v=0 v4+m+n=s/2-1
(n0)

IN
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(we recall that the arbitrary coefficients g; .., were taken equal to 0). However, it is a
more involved task to obtain suitable bounds for the first sum in (2.4.7). We have split
such a task into two basic steps.

Step 1. With s and [ fixed, we compute explicit solutions of linear algebraic systems
of type (1.7.53), now, A ,f,, = f,,, with

Jiw41,0,5/2—1—v—1 Jiwo,5/2-1-v
Jiv1,1,8/2-1-0—2 ﬁ,u,l,s/Zflfol
Jivr1,2,5/2-1-0-3 ~ ﬁ,u,?,s/?—l—u—2
Fro= . . fi = | , (2.4.12)
Jivst,s/2-1-v-21 ﬁ,l,’s/Q_l_y_Q’Q
Jiwt1,s/2-1-v-1,

fl,u,s/27l71/71,1

—i. e., they are vectors with the same structure as in (1.7.52), with a new subscript “I”
and s/2 — [ in substitution of M-. In the same way, the matrix A; , is given by (1.7.54),
but with s/2 — [ instead of M everywhere.

Step 2. The components of the vector f,, are directly bounded in terms of those of

f, . Ifin a ition, one introduces the vectors ,AE ,d=(s/2—-1)(s/2 -1+ ,
e I dd d h Lf eRY 2—0(s/2—-1+1)/2

I5 = (f*l,lv f*z,2a f*z,aa S f*l,s/Z—l)7 (2.4.13a)

f*l = (f*z,m f*l,la f*z,27 SR f*l,s/27l71)7 (2-4-13b)

then, the sum |f;[1 = > |fivmn| in (2.4.7) can be bounded as |f;]; < %|fl|1

The first step is accomplished after some direct algebra on the equations (1.7.51a)—
(1.7.51c); from there, the solution of the system

~

At = Fi (2.4.14)
is derived straightforward from the general recurrence relation,

1
Cs/2—l+v—m+1
s/2—1—v—m+1
s/2—1l4+v—m+1

fl,l/+1,m,s/27lfl/fm71 = fl,u,m,s/Qflfufm

(2.4.15)

fl,l/+1,m72,s/27l71/7m+1;
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with 2 <m < s/2 — [ — v — 1. The first terms of the solution are,

1

fivt1,0,5/2-1—v—1 = — fi0,0,5/2-1—
v+1,0,s/ v 8/2—l+1/+1 v,0,s/ 2
f 7
Lwt1,1,8/2—l—v—2 = — Lul,s/2—l—v—1
v+1,1,s/ v 8/2 Ry v,1,s/ v—1;
— 1 £
fl,u+1,2,s/2—l—u—3 - = 5/2,l+,,,1fl,l/,2,s/2—l—u—2

s/2—l—v—1 >
+ (s/2—l+1/—1)(s/2—l+1/+1)fl:V,0:5/2*l*V’

1 —~
fl,l/+1,3,s/271/7l74 - - s/2_l+l,_2fl,V,3,s/2flfl/73

s/2—1—v—2 N
+ (8/2—!+V—2)(8/2—l+ll) fl,l’vl,s/Z_l_V_l’

_ 1 £
fl,u+1,4,s/2—l—u—5 - = 5/2,l+,,,3fl,l/,4,s/2—l—u—4
s/2—l—v—3 =
+ (s/2—14+v—-3)(s/2—14+v—1) fl,u,?,s/?—l—u—?

(s/2—=l—v=3)(s/2—l—v—1) N
T (s/2=14v=3)(s/2—l+v—1)(s/2—I4v+1) fl,v,O,s/Zflfw

and so on. By induction it can be shown that the general term is,

_ 1 r
fl,u+1,m,s/27lfl/fm71 — _5/2 I+v—m+1 fl,u,m,s/2flfufm
lm/2]
11 (8/2=l4Hv—m-1D! (s/2—1—v—m+2a—1)!!
+ E : ) G2 l—r—m=D) (32— Tr—m+2at1) "fl'/m 2a,5/2-1-v-m+2a- (2.4.16)

Indeed, for the formula above has just been checked for m = 2,3, 4. Suppose, thus, that
it works also for 2 < m < s/2 —1 —v — 1. Therefore, substitution in the recurrence
relation (2.4.15), written for m + 1, yields

_ -1 r
fl,l/+1,m+1,s/2—l—1/—m—2 — 5/2,l+,j,mfl,u,m-i—l,s/?—l—u—m—l

+ s/2—l—v—m f
(s/2—l+v—m)(s/2—IH+v—m+2) J Ly,m+1,s/2—l—v—m—1

L(m—1)/2]

(s/2=l+v—m—2)!!(s/2—l—v—m+2a)!!
- E (=)t (s/2—l—v—m—2)1(s/2—I+v—m+2a+2) nflum 1—2a,s/2—l—v—m+2a+1

(2.4.17)

a=1

and after the inclusion of the second term in the r. h. s. into the sum, followed by a
displacement of the index a to a4 1, the last expression arranges to,

_ -1 r
fl,u+1,m+1,s/27lfufm72 — s/2=l+v—-m fl,u,m+1,s/2flfufm71

L(m+1)/2]

e (s/2—l+v—m—2)""(s/2—l—v—m—142a—1)!!
+ Z + (s/2—l—v—m—2)1(s/2—IH+v—m—1+2a+1) uflum+1 2a,5/2—l—v—m—1+2« (2418)

which matches (2.4.16) with m + 1 in the place of m. This completes the induction and
hence the first step.
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The second step begins with the quest for appropriate bounds on the different com-
ponents of f, ,. For m = 0,1 we have directly

|fl,l/+1,0,s/27171/71| = m |fl,l/,0,s/27l7u|7

|fl,l/+1,1,s/27l71172| - m |fl,u,1,s/27l71/71|

while a glance on the general term (2.4.16) of the solution for m > 2 leads to the estimate

|fl,l/+1,m,s/27lfl/fm71| S S/QTIV_"H_I|fl,V,m,s/27Z7V7m|

[m/2] X . (2.4.19)
+ Z 5/2_l+l,_m+2a+1|fl,l/,m72a,s/27lfufm+2a|-
a=1

Let us put M = s/2 — [ and j = m — 2a. Then, note that the coefficient of

|fl,u,m—2a,s/2—l—u—m+2a| = |fl,V,j:M—j—V|7
is m, which is independent of the index « in the sum (2.4.19) above. Therefore:
M—-1-v M—-v—1
Ny ~
Z | frortmm—v—m-1| < Z M—j+1 +l/|fl,u,j,M—j—u|;
m=0 7=0
being

Ny =# {m such that the term |ﬁ,,,,j,M_j_,,| appear in the sum (2.4.19)} ,

but the first m giving rise to |ﬁ7,,,j7M,j,V| is m = j, (and @ = 0), the second is m = j + 2
(and o = 1), the third is m = j+4 (o = 2) and so on. So it must be Ny = |41 41,
Hence:

Ny <%(M—j+u+1)<1
M-—j+1+v - M-j4+v+1 — 2

and therefore:

s/2—1—-1 s/2—-]—v—1 s/2115/2lu1

Z Z |fl1/+1ms/2 l—v—m— 1| <3z Z Z |flu,],s/2 I—j—v

Using this in (2.4.7) and taking (2.4.11) into account,

_ 1,
IGP | r2e < . [Gmal 5 B exp(=sd)
l+u+m+n s/2 I+v+m+4n=s/2 (2420)
(v>0) (v>1)
S S(S ||F ||R2

5
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From the expressions (2.4.2) and (2.4.3) for the linear transformation n(€) and its
corresponding inverse, n(&), it follows that ||&;(n)|l2r2 = X*R? and [|n;(€)||gz/2 < R?, for
i =1,2,3,4. Hence, using items (i) and (iii), of lemma 2.6,

~ L 1 .
GOy my =GP m2ye < NGPr2ye < 5 exp(=s0) | F{?| e

IN

1 ~ 1 =
5 OP(=)IFP s = 5277 exp(—s) |7 e
1
< 525/2 exp(—s0)|F?|,.r, (2.4.21)

which gives an inequality of type,
|Gg2)|p—6,Rx < 58|Fs(2)|p,Ra

with 3, := %25/2 exp(—sd); but B, < ay for s > 3 —with «; given by (2.3.20)—, provided
that the coefficient v in the Diophantine conditions (2.3.7) not to be too large (we can
suppose by the moment that v < 1, see remark 2.10). Moreover, it is:

|Galp-srx = G| p-s.my + G o s.Rx
|F5|p,R = |F(1)

S

pR T |Fs(2)

Ry

so then,

|Gl p-sry = G poamy + |G|ty
< 0| FOpr + Bol FP por
< oy (|[FO|, 5 + |F?
< ;| Fslp R

p,R)

We state this conclusion in a new lemma which extends the preceding lemma 2.4 and
gives the effective estimates for the solutions of the s*"-degree homological equations, G,
to be used in the forthcoming.

Lemma 2.7. Consider the homological equations (1.7.11) for the terms of degree s, with
s=3,4,..., that is:
Ly, Gs+ Zs = F.

With the same notation of lemma 2.4, with 0 < & < p, x = e %, the frequencies w,
wy satisfying the Diophantine condition (2.3.7) for some 0 < v < 1 and some T > 1,
the terms G of the generating function can be estimated —in a slightly reduced domain—,
according to

|G5|p*5,Rx < as|Fs|p,R7 (2.4.22)

where «y is the quantity defined by (2.3.20). Moreover, for the resonant terms Zs, we
have:

|Z5 |P:R S 28/2 |F5 |P:R
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From here, the idea is —once the generating function of the canonical change has
been determined and bounded-, to use such bounds to estimate the quantities f;; in the
recursive formula (1.7.6). As their sum gives the components of the transformed function
Tef,say Fy, with T f =Y .o, F; (see definition 1.7 in the previous chapter), this process
will allow us to bound those components for each degree s. So, if the nonlinear reduction
has been carried out up to some finite degree, r (thus, taking G,,; = G192 = --- =0), to
compute the size of the remainder we still need to determine the size of the sum ) __ Fi.
These questions are investigated in the sections to come.

2.5 Bounds on the transformed function

In order to obtain estimates of the s-degree terms, Fj, in the transformed function F' =
Taf, since Fy, = Zle fis—1, fro = fi, some knowledge about the size of f,, is first
required. From now on and up to the end of this chapter, we shall use the following
notation and definitions

2.5.1 New notation and definitions

We suppose the function f = > ., f; is defined and analytic in the complex domain
D(p*, R*), given by (1.6.3), with B*, p* small enough to make |f],- g~ < +00. Let ¢ be
precisely the norm of f, i. e.,

c:=|flp R (2.5.1)
Next we reduce our initial domain taking Ry and py two positive quantities satisfying the
inequalities,

Ry < min{l,¢, R*}, po < min {l,p*, ejf/r, }fﬁ{} , (2.5.2)

and, still, consider p, R with 0 < p < pp, 0 < R < Ry. Thus, the complex domain is
reduced to D(p, R). From the definition of the norm |- |, z and from (2.5.1) one gets the
following analytic bounds on each f:

R S
|fs p,R S c <§0> ) (253)
for s =1,2,...; they are deduced straightforward since
R\’ R\*® R\?®
|f5 PR = |f8|po,R0 (E) < |fs p*,R* (E) <c <§0> .
Clearly, |fs|p,r- < |flp=,r-, and therefore |fs|, r= < |f|,-,r- < ¢ (this trick has been

used to state the last inequality in the chain above). Nevertheless, we advance that this
last domain, D(py, Ro), will be later successively shrunken down up to a smaller one, in
which all the bounds for the functions f;, should be valid. We define (see corollary A.7
of appendix A):

P2 = p, Pv = P2 — 2 Z 607 (2543')
o=3

Ry =R, R,:=Rexp (—2 > 5(,) . (2.5.4b)
o=3
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In particular, for the sequence {9, }3<,<s12 the following determination is chosen: define
for some r € N, » > 3, and any s > 1 fixed,

1
5= f/_?, (2.5.5)

and then, for the terms ¢,, we take 0, = 5,(,5), with:

0, if3<v<r,
0 =<5 (2.5.6)
- ifr<v<s+2,

s
(s0 65 = 68 = ... = 6%, if s < r — 2). Hence, for the sum of the terms,
5+2 T s+2
g p/16 _ p
5 =Y "¢l 6% = (r —2)8 —r+2)-<(r—1 =L
DA =D 00+ Y 0 =(r =25+ (s—r+2)- < (r—1) 5 =15
v=3 v=3 v=r+1
if s > r — 2. Conversely, if s <r — 2 then
s+2
() _ o5 — P16 _ P
Zéy 50 87"—1<16'
v=3
Therefore, for all 3 < v < s+ 2,
50 < £ (2.5.7)

16

o=3
Remark 2.8. The superscript (s) in definition (2.5.6) of §, was added only to emphasize
their specific de%)endence on the degree s. We want to stress that for any given s; > 1,
the sequence {5,,81)}3§,,§31+2 will determine the successive reduction of the domains only
when we seek bounds for Fs, . For a term of different degree, say Fs, with sy # sy, one
must construct another different sequence, {5,(,81)}3§,,§31+2, letting s = s5 in (2.5.6). Once
this precision is understood, the superscript (s) can be thrown away, as we shall do in
what follows to avoid an overload of notation. '

Remark 2.9. With (2.5.7) and from the definitions (2.5.4a), (2.5.4b), it is clear that,

p/8 < p,,  Rexp(—p/8) <R, (2.5.8)
for all v = 3,4,...,5+ 2. We can take D(7p/8, Rexp(—p/8)) as the common domain
where all the estimates in the norm of f;, will work for all v = 3,4,...,s5 4+ 2, and all
s> 1. a2

Remark 2.10. The condition on py in (2.5.2), together with the definition (2.5.5) for &
guarantees,

(C1) 1 <aj <ay, for 3<j <k <r,because it makes y(de)” < 1 in (2.3.20). Indeed,
T X T X T X T ]'
(S exp(1))” =7 (42 Sy (o) S5 (H2722) =9 =1.

r>3) <po) Y

Note also that with this choice of py the condition v < 1 in lemma 2.7 can be
dropped.
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(C2) With p < py, the condition (2.3.17) is fulfilled. Really,

(s+1)7 N

1287(y+1
. ~ (y+1)

_ 1+ (r—Dr 1287 1287 _
=16 — - o s V=1

Y o2 Sy >

-y >
(3<s<r) (p<po) ° K

Item (C1) states that the r — 2 quantities ag, ay, .. ., @, form a nondecreasing sequence
with all its terms greater than 1. This will play —as we shall see later on in section 2.7—,
an important role in the process of bounding the terms of the generating function. [}

To state lemma 2.13, which provides bounds for the terms f;, (those given in defini-
tion (1.7.6)), we need to introduce a pair of definitions —included also in appendix A—
(lemma A.11).

Definition 2.11. Let m, n be two nonnegative integers, with n > 0; then

m,n]:=m—n {%J : (2.5.9)

i. e., the square bracket of the integers m > 0 and n > 0, [m,n|, is the remainder of the
integer division of m by n.

Definition 2.12. Consider the sequence of r — 1 numbers, {[s}o<s<r, such that,
1=0<B3< By <+ < By < B

Given two positive integers r, s, the quantities W(r, s) are defined by the products,

Tin [s,r—2

r—2 L ]
W(r,s) == (H 3,,+2> I] B2 (2.5.10)

With these two previous definitions in mind, we go on with the enunciation of the just
mentioned lemma.

Lemma 2.13. For some given r > 3, let s > 1 be a fized integer, consider the sequence
{00 }s<v<st2 defined by (2.5.6)), the corresponding sequences {pv}s<v<sro, {Ru}s<u<sto
introduced in (2.5.4a) and (2.5.4b) respectively and {B,}2<,<, a non decreasing sequence
with By = 1. Assume that,

I 3%
|G3] pgt65, R expls) < P3b <—> ;

R
" a3 [ R\ (2.5.11)
|GV|pu+63,Ruexp(53) < BBy .. BVW <§0> , d3<v<r.
3
(with a, b positive constants). Then, the following bounds on f,, apply,
dyc [ R\
|fl7V|py+27Ry+2 < W(T, I/)W <§0) (2.5.12)
3

(®)With the superindex (s) dropped, (see remark 2.8).
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foralll,v e N withl > 1,0 < v <s. Here, the terms 19, are defined recursively through,

190 - ]_,
R i (2.5.13)
9, = Z ~a’ 7 dY,;, 1<v<s e
6y+2 o1 14
with the constants d = 17{’;;5(1) and ¢ given by (2.5.1); whilst the symbol W(r, s) stands

for the products (2.5.10) introduced in definition 2.12.

Remark 2.14. We note that to obtain the bounds for f;, we have stated a priori esti-
mations for the terms G, of the generating function, where the constants a, b will be
conveniently exacted later in proposition 2.28. '

Remark 2.15. Before proceeding with the proof of lemma 2.13, we point out that bounds

for sums of Poisson brackets of type Z]V 1 u{fl v—j, Goyj} will be required, but every term

therein can be bounded directly applying corollary A.7, so

v
Z %|{fl71’_j7 G2+j}|pl/+2le/+2 S

j=1

17 exp(1
A Z V2R25u+25a+2 [ fr—ilo- it2: Ry J+2|G2+J|ﬂ2+J+52+],R2+J exp(d2+4;) (2.5.14)

This provides recursive bounds on these sums. Without explicit mention, we shall apply
the above formula throughout. 'y

Proof of lemma 2.13. The estimate (2.5.12) works for » = 1 and for all [ > 1,

|fl,1|f13,R3 = |{fl,07 G3}|03,R3

17exp(1) ex

= 26 6 R2 Ro> 3 p3+53,R38Xp(53)
< 6317bcexp(1) <£>l+3
- 20303 R? Ry ,

but W(r, 1) = f; this, together with the arrangement 7z (£)"*? = }%2)(1%)“rl and further

identification of the constant d, will lead to

< )= | =
w WD (1)

which agrees with (2.5.12) for v = 1, for according with (2.5.13), is ¥y = d. Assume
thus, the same inequality is verified also for 1 < v < k — 1; therefore, taking the norm
at both sides of f;, = 2521 2{fik—j,G2y,} —see remark 2.15-, and realizing

| ' |,0k-+27Rk'+27
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that G,.1 = G,,5 = --- =0, one deduces readily,

min{k,r—2}
17 exp(1) J ) )
Prt2Rrt2 = 2R2535, ., k |fl,k—3|pk—j+27Rk—j+2|G2+J|pj+2+5j+2ij+2 exp(d;42)
j=1

| fik

min{k,r—2}

17bexp(1) j j—1 . c R brkt2
< 2R25303 42 E : k@ ﬁk—jﬁ3"'ﬁj+2w(rak —J)—ég(kfn&g(rl) (R_0>

Jj=1

c (53

min{k,r—2} - () R I+k
— | == J1Tbexp(l) j—1y9 —_
w2785 oo (1)

j=1

19kc<R>l+k
= W(r, k)—— [ = :
( )5§k Ry

where to obtain the first inequality we apply: d;40 = d3 for 7 < r — 2, and for the third
we use that, according with lemma A.11, it must be

B3ﬁ4 e Bj+2w(ra k— ]) S W(’ra k)a

for all 1 < j < min{k,r —2}. Finally, identification of the constant d in the sum between
parenthesis and the whole sum (times the quotient d3/d;.2) with the term ¥y close the
proof. O

The lemma above may be completed with lemma A.12 of the appendix A, which pro-
vides bounds for the terms ¥, and, on the other hand, the bounds (2.5.11) are proved to
be valid —for the solutions Gj, ..., G, of the homological equations (1.7.60)—, in propo-
sition 2.28, at the end of this chapter. This yields estimates for the norm of f;,, [ > 1,
s > 1 in the somewhat reduced domain, D(7p/8, Rexp(—p/8)). Such result constitutes
the matter of the next proposition.

Proposition 2.16. Under the same hypothesis of lemma 2.13, the following estimates on

fis apply, l
cdg*~' [ R +s
abssescom < Wi 5= (1) 2515)
where,
g = max{1, ed + 2ae}, (2.5.16)
and a subscript r has been added to remark the dependence of 6 on r,
p/16
0p = ——.
r—1

These estimates will be the keystone to deal with the bounding of the remainder.

2.6 Bounds for the remainder of the transformation

Let us precise what we mean when talking about the “bounding of the remainder”. Up to
now, we have been considering the formal transformation T f = Fy+Fo+F3+- - -+ F,.+. ...
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This is an infinite process, which in practical computations is carried out only up to some
finite order (degree) r —i. e., the last term computed is F,—. So it is natural to define, the
remainder of order r of the transformation (or of the transformed function) as,

%(7‘) - Fr+1 + Fr+2 + Fr+3 + ... (261)

In the previous section it has been justified that one can consider the functions f;, and
the terms F, Fy, ..., F,,... defined in the domain, D(7p/8, Rexp(—p/8)). To avoid an
overload of notation we introduce the following convention for the norm,

1-{l=1- |7p/8,ReXp(fp/8)- (2.6.2)

This will not cause any confusion, because the domain will no longer be reduced along
this section. Keeping in mind the definition of the Giorgilli-Galgani algorithm, definition
1.7, one realizes easily that,

HEall] < ol + [ 1]+ a2l + -
o sl a1

[ Er2ll] < [l frszolll + (sl + (112l + - -
s a2l W sl + 2l + [Pl

HEr sl < W frasolll + [ o2 Il + [ fraralll + -
o s+ W faralll+ M s+ 2l [+ el

Errll] < 1 fraroll] + N frsr—r 1 A 1 frsr—a2ll] + - -
oot W kvl + el 1|+ 1] e ]
+ N frrrrt I+ 1 ozl + -+ ] frrn—alll;

Therefore, the sum of the norms |||Fy41||| + ||| Frs2|||+- . ., may be grouped in two terms,
Si and Ss, defined as,

St = [|[frsrolll + [ frs20lll + | frasolll + -+ [ framolll + -
+ 1 frall + W el (1] fra2
+ vl + (2l + M fr2lll 4+ k22l + -
+ [ fr—2alll + N sl + N fralll + -+ [ frn—aalll + - -
+ ...

F [ fsr—lll + 1 faralll + W fsr—ll + -+ M frr2palll ..., (26.3)

|+ A el £
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and,

S = |[lforlll + N fsp=tlll + [ fap=alll + -+ U fog=alll + - -
+ Ll + M1+ M sl el
+ el + ol M fara I+ [ forl] 4 - -
i
+ M fize—alll + 1 fozr—alll + [ fs2r—alll + - - - + [ fr2r-all[ 4 - -
e S
+ N frer=slll + [ fo2r=slll + [ fs2r=3ll] + - + [ fr2r-sll] + - -
+ eIl + [ f22r—2lll + [l fs2r—2[ll + - - + [[[ fo2r—2|[ + - .-
+ Az lll + [ fo2ralll + M fs2r-alll + -+ ([ fo2ralll + - -
I
+ M frsr=slll + 1 fozr—ell| + |1 f3,30—6l || + - + ||| frzr—sll| + - .
e e e e e e e e e
+ N far=slll + [ for=slll + [ fs3r=slll + - + [ frar—sll] + - -
+ M ge—alll + 1 fozr—alll + [ fszr—alll + - + [ fozrall[ 4 - -
+ I arslll + [ f2ar—alll + [ fsar—alll + - + [ frarall + .-
I
+ N frar—sll + [ f.ar—sl[| + [ f3,ar=sll] + - + [[[ frar-s]l] + - -
e S
+ W Age—2+lll + I f2e-2alll + - + | frjo—2palll + -
+ M se—22lll + M foie—22lll + - + M i+l + -
+ A ie-2slll + 1 fzie-2slll + -+ frje-2 sl + - -
I
+ frg+ve-2ll + f2gene-2 Il + -+ [l frgroe-2)l] + - -
b

Using the proposition 2.16, we can bound the sums

[ frsrolll + W ezl -0 el + W el s
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entering in the r. h. s. of (2.6.3),

R\ R\
S ol < e (§> +<§0> L

j>r+1
R r+l1 R r—42 g
Al < - — S
2 IFillf= s <R> ’ (R) " (5)

R r+1 R r+2
R r+1 R r+2
(&) ()

Y fsalll < eafiaba

i>r-1

D il < c2B3Ba- - 5,

J=3

with the constants c¢; and ¢y given by,

d
¢ =c cy = “@ (2.6.5)
g

Adding up the terms in all the partial sums above, we get the following bounds for &y,

-1 r+l1
S51<a <1 — %) <R£0> +

2 r—2 R -1 R r+1
g3 (22 (2

and where the geometric series,

+Cg

<£>r+1+ <E >r+2+ (E >r+3+.”:w
Ry Ro Ro 1—-R/Ry
has been summed (R/Ry < 1). If we introduce £ and &; as,
-
Ho (2.6.6)

s—2
65253ﬁ4"'ﬁs<%§> , for3<s<r

and take into account the nondecreasing character of the sequence {3, }3<s<, (with 85 > 1),
the definition (2.5.5) of d,, and that g > 1 (see proposition 2.16), we can derive an easier
estimate for ;. Explicitly,

g ol - 96

<
SL—1—9 1—¢2

(2.6.7)
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For S,, one proceeds in the same way: proposition 2.16 allows to bound separately, every
one of the sums ||| fo,1|l[ + [ fsr—1lll + - + [[[feralll + o [ ralll + o lll 4 +
Ml 1zl -+ [ ol -5 - in (2.6.4), 0 e

Zk22|||fk,r*1||| < eBs3(Bs- - By) |:(R£;>r+1+(}%>r+2+‘”:| (%>r—1,
Seilllfrll < exputmsna) | (£) 7+ (£) 4] (8)
st I fkrilll < c2BsBuBs5 (B384 -+ Br) {(Rﬂ>r+2+ R£>r+3+“.]

2

Zk21|||fk,2r—4||| < eo(BaBa - By)? [( )T3+<R%)2T2+...:| (%) . |

szI |||fk,2r*3||| < 0253(6354 Br) |:<R£)27"—2+ <R£;)2r_1+”‘:|
2r—1
2@1 |||fk,2r*2||| < eaf33B4(BsPy - - Br) (R£> + )
2@1 |||fk,2r—1||| < 2384058354 - - Br) ( >2r+ (Rﬂ>2r+1
3r—4

Zk21|||fl€,3r—6||| < (B3P By)? [( )3r5+<1%)

Z|||fk,j(rf2)+1||| < 0253(5354"'5r)j><
k>1
[ j(r—2)+2 J(r—2)+3 ] j(r—2)+1
oy Gy e Gy
ZkZI |||fk,j(r—2)+2||| < 025354(3334 " 'ﬁr)jx
[ \I(r—2)+3 R \I(r—2)+4 1 j(r—2)+2
X (R_()) +(R_0> “+ ... (%) ,
Z [ feie—2yslll < caBsBaBs(BafBa- - Br) %
E>1
jr—2)+4 j(r—2)+5 j(r—2)+3
x[(%) +(£) +...](é)
Sl fwgene—alll < (BB Br)TFx

k>1
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and, after addition of the terms on the right and on the left of the < symbol (using as
before, the expression for the sum of the geometric series (R/Ro)™ + (R/Ro)™" + ... in
the square brackets), we get —in terms of £ and & defined by (2.6.6)—,

:52_10g

Z (535 + &+ G+ + §r§r72) X
X [&‘67172 + (&‘67172)2 + (&‘67172)3 +oeet (§r§r72)j +... ]
So, since |||R"]|| < S; + S, we shall take such a sum as a bound of the remainder, i. e.,

2r42 r ) . r
| |||_°’;5_ = +cZ{(r—2>54+(Zgje—2> [Z (»sr»s’”)]”fiz- (2.6.8)
j=3

J=0

Therefore, given a fixed order r up to which the normal form is computed, it follows
from the last inequality that the transformation d)G(T) generated by G = S5 G
“i. e., such that f o ¢%"” = Tuu f-, will be defined and analytic in some subset of
D(7p/8, Rexp(—p/8)), provided R < Ry is small enough to satisty,

§E2 <1, (2.6.9)

Conversely, for a sufficiently small R < Ry (hence a fized size of the domain), we may
wonder what should be the order of the normal form, r, to minimize [||93)]||, or at least,
some appropriate bound of it. Thus, as in Giorgilli et al. (1989), “one can look for the
optimal normalization order r,,; as a function of R, by minimizing the bound (2.6.8) with
respect to r”.

2.6.1 The optimal normalization order

Prior to the computations leading to r,,, it is necessary to concrete the analytical ex-

pression of the terms (s, s = 3,...,r. A suitable choice for them (see proposition 2.28)
turns out to be,
€4 T(s+1) s
Bs = c3 (—T) exp | 127 f xlnzdx ), (2.6.10)
P s—1
with the constants,
641
=V2re? (> 1),  o=—0 (>16). (2.6.11)
me

Another point to remark is that, regardless the more or less accurate selection of the
quantities fs, the r. h. s. of (2.6.8) is —as a function of r and £-, too intricate to allow
analytic optimization with respect to r. However, one can appreciate that the most
significative terms of that bound is the product &.£". Hence, to determine r,, it seems
reasonable, for R > 0 fixed, to find the minimum of &.£" 2 as a function of r, and then
ask R to be small enough to make &£"2 < 1. In view of the r. h. s. of (2.6.8), we see
that this optimization assures the analyticity of the transformation, provided the sum
>3 €677 is bounded.

Actually, to simplify even more the calculations, what is minimized is not &.£" 2, but
the bound purposed by the lemma below.
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Lemma 2.17. The product £,£"~' admits the upper bound,

£:E7% < exp {(r —2)In(e5€) + ¢ f rlnzde + 07} : (2.6.12)
2
valid for r > 3 and with the constants cs, cg, c; given by,
Cs = C30, ce := 167 +471n 6—4, c7 = 411In2 — 27, (2.6.13)
p
Proof. Inequality (2.6.12) is derived straightforward from the definition of ., the above
expression for (s, s = 3,...,r, the aid of the (immediate) auxiliary relations,
16
S =22 <Yy since ¢4 > 16; (2.6.14)
o p o
r+1
27”—4—|—7'Zj < 7r for r > 3; (2.6.15)
j=4
2 < 4Jxlnxdm, for r > 3. (2.6.16)

and the evaluation of the integral,

r 2

1
fxlnxdx:%lnr—zﬂ—l—l—ﬂnz (2.6.17)
2
Making the computations explicitly,
r—2
e A
Ty _a(s+1) r—2
< ( ) <§§> exp (127’ ;SI xlnxdm) x (c39&)" 2
o s+1 +2r—4
— exp | 127 rlnzdr | x (cs€*)" 2
(Louy <P p( ZJ ) o)
P

( ) exp (127’ xlnxdm) X (c5€?) 2
2. 6 15)

= exp{(r—2)ln(c5§ ) + 71 In 4 7y lnr+127'fxlnxdx},
p 2

(2.6.18)
but, in virtue of the inequality (2.6.16) and the integral (2.6.17), we see that the sum

r

Tr21nr—|—7r21nc—4 = QTJxlnxdx—i— (Z +Tln%) r’+47In2 — 27
p ) 2 p

< <4T—|—4TIHC—4) fxlnxdm+471n2—27',
P7
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and finally, application of the above inequality to (2.6.18) and further identification of the
constants ¢;, ¢g and ¢7 lead to (2.6.12). O

Let us now consider r a real continuous variable and the function

h(r) := exp {(r —2) In(es€?) + CGJxlnxda: + 07} : (r >3)

2

-i. e., h(r) is defined by the the r. h. s. of (2.6.12)-. We denote by 7 the value of r
minimizing this function. Then, 7 must be a solution of the equation h'(r) = 0, which
may be expressed as,

1
e Inr = —— In(c5&?); (2.6.19)
Ce
and still, letting w = Inr and z = —i In(c5€?), it takes the form,
we” = z. (2.6.20)

Provided z > 0, this equation has just one solution, as the function we" increases mono-
tonically from 0 to +0o when w goes from 0 to co(®. The function W : C — C such
that W (2)e"*) = 2 is a special function known as the Lambert W function —see Corless
et al. (1996), for a concise introduction to the W-logy("—. As a complex function W ()
is multivalued, with infinite number of branches denoted by Wy(z), k € Z. From the
division of the complex plane into branches proposed in the paper of Corless et al.:

(i) the branch Wy(z), called the principal branch, contains the real axis from —1/e up to
00; it has a second-order branch point at z = —1/e which corresponds to w = —1,
with branch cut {z € R : —0o < z < —1/e}. This branch point is shared with
W_1i(2), Wi(z).

(ii) W_1(z), Wi(z) each have a double branch cut: {z € R: —0o < z < —1/e} and
{z € R: —c0 < z < 0}. By convention, the branch cuts are closed on the top and it
turns out that this choice for the closure implies that W_;(z) is real for z € [—1/e, 0),
so Wy and W_,(z) are the only branches of W (z) taking real values.

(iii) All other branches Wy (z), & = 42,+£3,..., have only one branch cut, the one
matching the real negative axis. Thus, these branches are similar to those of the
logarithm.

In our case z will take real large values, since we consider R small (R/Ry < 1); so from
the items above, one deduces that the solutions of (2.6.19) we are looking for will be
conveniently expressed by the principal branch W;(z). More precisely,

i = Wo(ln(ese?) Vo). (2.6.21)

and take as the optimal normalizing order, 7, = [7].

)Tt can be seen easily that for —1/e < z < 0, (2.6.20) has two negative solutions, both in the interval
(0,-1).
(MW -logy: the science of the Lambert W function.
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Remark 2.18. Though it has not been explicitly pointed out, the choice of the principal
branch of W (z) carries out an implicit assumption on the smallness of R, as it is necessary
to impose that c5£2 < 1, or, equivalently:

R _1

Ry cs’
to have z > 0 and hence w > 0, giving rise to solutions 7 > 1, as desired. 'y
In what follows, we assume that the nonlinear normalization process has been carried

out up to the —in the foregoing explained sense-, optimal order r,,.. Then,

groptgroptﬁ < exp {(Tom —2) In(es€?) + ¢ J rInzdx + 07} , (2.6.22)

2

7 ropt

and introducing 0 < x = < 1, we have,

Topt
Co f rlnrdr 4+ c; = 6—26(1 — X)ToptT In 7T + 5 roptr(l —x)In(1 = x)
2

— CZGTZpt + (1l —2In2) +¢;

1 & .
= — 5(1 — X)Topt ln(c5§2) + 567"01,,57“(1 —x)In(1 - )

¢
— 46 o+ co(1—2In2) + ¢7,
but $rep (1 —x) In(1 —x) <0, —%Frgy < 0 (we recall that all the constants are positive)

and also explicit computation glves(

c6(1—2In2) +¢; = (147 + 4Tln—)(1 —2In2) <0.
p
So according with (2.6.22) &, ™2 can be still bounded by,

Topt _92

Er 772 < exp {[ ;pt(l +X) — 2] 1n(c5§2)} < <c5}%> Y (2.6.23)

This last inequality is true, provided R% < é (as pointed in remark 2.18), and small

enough to make 7., (R) > 4. Also, both conditions Will from now on assumed.

It is still necessary to check the bounded character® of zr"pt ;&2 In fact, its terms
decay faster than the corresponding ones in ZPO 1, To show this last point, let us
compute, with 3 < j <r,, — 1, the quotient

€j+1§j_1 . g .2
o gt

Topt

c T(5+2)+2 J+1
<3 (—4T0pt) exp | 127 J rlnzdr | €.
p J

(8)Here, we suppose %4 > 1 —and hence In %4 > 0—, but since ¢4 > 16, this is guaranteed if now (and in
the sequel) we take p < 1.
®)Note that Zr"f; ;€772 should be bounded independently of ., since 7ot (R) = 0o when R — 0.
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By explicit cast of the quadrature one derives, after some arrangements:
Jj+1
127 f zlnzdr <In(j + 1)+ — 37,
j
Now, taking into account:

(i) the value of the constants ¢; and ¢, i. €.,

c3 = V2me? (< e?), Co = 167 +47In %,

(i) j+1<ro < |F] <7,

(iii) and that 7 is the (unique) solution of the equation (2.6.19), so £2 = Li—cor

C5

one has, after some trivial computations:

—1 7(j+2)+2
&’ < [ IS8T 22
£;§02

p

1
= —exp {(T(j +2)+2— 477 In7) lnc—4} x exp {(—1677 + 1375 + 87 + 2) In7},
Cs P
(2.6.24)
but again, using item (ii) above, it is straightforward to check the inequalities,
exp {(T(j +2)+2— 4717 In7) lnc—4} <1,
p
and
exp {(=1677 + 1375 + 87 + 2)In7} < exp{—37rjIn(j + 1)} = (j + 1)7%7,
so, their product times 1/¢5 in (2.6.24) leads to the bound,
§i&! g R 1/cs
= — X =< —— 2.6.25
et X R S G (26.25)

for all 3 < 7 < rge — 1; but the r. h. s. of this last inequality cannot be greater that

ﬁ (we recall that ¢;,7 > 1). This proves our assertion on the decay of the terms in

> 2566772 Using such (i. e., 1/(j 4 1)) rough bound for the quotient above, one finds
that the sum may be estimated according with

iy 11y 1

S gei < (1 +31 )y = (Z) ) 36 < 3l dems £5¢, (2.6.26)
7=3 jza T N

and it is thus “controlled” (for R small enough), since

4T 3
_ 9 2 _ C4 g R
58 = 5352—5 =c3 (;ropt> 52 &P (127Ix1nxdm> A

Topt Topt 2 0

4742 4742

R V

<t <%> Frr2 2l g <@> phr et (2.6.27)
p Ry p
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where the constants ¢3, ¢4 are independent of R. Here, we have used that 7., = [7| <7
and that 7 is a solution of the equation Inr" = ln(cg,R%)_l/C6 (see (2.6.19)), so R% = e
But 7#(R) tends to infinity when R — 0 and ¢g > 0. Then it is clear, from the rightmost
term of the expression above that, taking R < Ry small enough one can make &3¢ smaller
than any prefixed constant, for example £5€ < 1.

With all these elements, we can write down an effective bound for the remainder.
Before the statement of the corresponding proposition (which summarizes the foregoing

discussion), we introduce for the domains, the abbreviations Dy and D; as,
Dy := D(po, Ro), (2.6.28)
D, :=D(7p/8, Rexp(—p/8)), (2.6.29)
with py and Ry given by (2.5.2).

Proposition 2.19. Consider the generating function G = S .Gy, defined in the
domain Dy and such that

R 3
< B3b | =
licall < 5 ()

a*3b <R
Gs S o By | —
MG < s~y

s (2.6.30)
) , 3<s<r,

with the terms,
C4 7(s+1) s
Bs = c3 (—7") exp | 127 J xlnzdx ), s=3,...,1 (2.6.31)
P s—1

and the constants,
cg > 1, cy > 16. (2.6.32)

Furthermore, let f be a complex function defined and analytic in Dy. Then, for 0 < p < poy
and for 0 < R < Ry sufficiently small:

(i) The canonical transformation qﬁGm given by foqﬁGm =Taw f, is defined and analytic
in the domain D;.

(ii) Let
Tonf =Fi+ Fy+ Fy+ -+ F + R,
be the expansion of the transformed function of f, where
%(r) = F,«+1 + FT‘-I—? + FT‘+3 + .

Then, there exists an “optimal” normalizing order roy = ||, depending on R
through,

n(cs-& /e
() = "8 ) (2.6.33)
(where Wy denotes the principal branch of the Lambert W function), such that,

ropt (R) 1

R\ '/ R\ =
Rrord ||| < ¢ (1 — —) <c —) , 2.6.34
] ] < cs R T ( )

and cs5, cg, cg are positive constants which depend upon p, T, v and on Ry but not

on R.
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(iii) The remainder W) goes to zero with R/ Ry faster than any analytic order in R/ Ry.
More precisely,

Rrert) — ¢ <<%>n> , (R/Ry — 0) (2.6.35)

for any given positive integer n.

Proof. The first item and (2.6.33) in (ii) has been already proved. The bound (2.6.34) is
proved straightforward from (2.6.8) and the bound (2.6.26). Finally, the assertion of (iii)
is derived from

1 Topt(R)
RO (RN (RN
Thus, (2.6.35) follows immediately if one knows that Wy(z) tends to (positive) infinity

when z — 400 (see remark below), so limp/ry—0 Topt = +00 and the r. h. s. of the last
inequality —for all arbitrary but fixed n € N—, goes to 0 as R/Ry does. O

—n—1

Remark 2.20. In the semisimple case (i. e., when the eigenvalues of the monodromy
matrix around the periodic orbit are pairwise different), it has been proved (see Jorba
and Villanueva, 1997a), that the remainder is exponentially small with R, with bounds
of type(1?),

1
1\ 71
|98 || < constant - exp (—constant <§> ) :

In this sense, the results shown in the proposition above are worse, as can immediately
be deduced from the behavior of W;(z) at infinity):

W(z) =In(z) — Inln(2) + O <ln 1“) ;

Inz

(see de Bruijn, 1958), for z € R with z > 1. Then, it is clear that, the r. h. s., of (2.6.34)
do decay with R slower than exponentially. 'Y

2.7 On the bounds for G,

It should be clear that the theses of proposition 2.19 are tied to the conditions (2.6.30)
—derived from lemma 2.13—, with the given expression for the quantities 3 in (2.6.31). In
this section, we consider the finite order (degree) generating function, G = G3+---4+G,

(10 The paper of Jorba and Villanueva discuss seminormal forms are around elliptic lower dimensional

invariant tori, so their results can be applied in the particular case of nonresonant elliptic periodic orbits.
(IDIn §2.4 of de Bruijn’s book, it is shown that, for z real and large enough, the solutions of equa-
tion (2.6.20) admit the following (convergent) development:

oo oo

w=Inz—-Inlnz+ Z Z Crm(In1n 2)™ L (In z) ~F—m=1

k=0 m=0

Corless et al. (1996)-using two points not noted in de Bruijn’s proof—, extended this development to give
the asymptotics for all nonprincipal branches of W(z) both at (complex) infinity and at zero.
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set up in chapter 1. There, from an analytic linearly reduced Hamiltonian, H : Dy — C,
H:H2+H3+,Wlth

HQ(‘L [1,17) =wil; + iwz((hpl + Q2p2) + q2p1, (2-7-1)
Hy(0,q,11,p) =Y > higmalig™p™exp(ik)), (s >3), (2.7.2)

kEZ 2l+|m|1 +|n|y=s

G was formally constructed such that the generated canonical change, ¢G(T) transforms
H to give,

Ho ¢Gm(91, q.1,,p) = ZZs(anIap) + m(r)(gh q,1.,p),
§=2

(theorem 1.24). The main target of the present section, is just to discuss whether propo-
sition 2.19 can be applied to such G, If so, this will guarantee the analyticity of the
reduced Hamiltonian in some domain D, C Dy, for R small enough and justify that, at
least locally, the remainder R(") can be dealt as a small perturbation of the normal form
Zn = >y Zs. Hence we must prove that the hypotheses on the size of Gy, s = 3,4,. . .,
asked in proposition 2.19 hold.

In view of the equation (2.4.22), for the bounds of the solutions of the homological
equations, we realize that for the purpose described above, it is worth finding out bounds
of the terms Fj, but these are given in a recursive way by the formulas (1.7.61) in prop 1.21.

Remark 2.21. We shall work assuming for the Hamiltonian H the same conditions than
for the function f in section 2.5.1. In particular, H =) ., H; is defined and analytic in

D(p*, R*), |H p*,R* — (& and hence,
< ’
(&
p,R > RO )

where 0 < p < py, 0 < R < Ry, with py, Ry satisfying (2.5.2). 2

Moreover by (2.4.10), the terms Z¢(q, I, p), 3 < s < r can be bounded in D(p;_1, Rs_1),
as:

|H,

|Z'5|ps—l,Rs—1 S 25/2|F5|ps_1,Rs_1' (273)

Proposition 2.22. Let § be given by (2.5.5) and define, for 2 < k <r,

P2 = p, pr = p2 — 2(k — 2)4,
Ry =R, Ry := Ryexp (—2(k — 2)0).

Furthermore, consider {c;}a<;<r, the non decreasing sequence of positive numbers defined
by (2.3.20), if s > 3 and ay = 1. The following bounds apply,

k1

| | <9 a3yt (R

Hy g Rigr < g -
Prefiht 62k R2k Ry

a3 - 'Oék+10k E
52(k_1)R§(k_1) Ry

2+1+k
> (1<k<r—2), (2.7.6)

k+2
Bl <0 ) esksrez e
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with Fy = Hy and the terms 0y, ..., Mr—2; 010,001, -, 00—1—2 (0 <1 <1 —2) are defined
recursively by the relations

k
2 .
Ok = ’ ;Jﬂjez,k—j (k>1), (2.7.8)
yy £ Lk
2 - — .
% > 2T+ z > itk (k>2), (2.7.9)
=1 j=1
with
17e
P = m =1, bo=1 (foralll>0), (2.7.10)

From the inequality (2.4.22) and the bounds for Fi, k = 4,...,r in the proposition
above, the next corollary follows straightforward.

Corollary 2.23. The terms Gy of order k, k = 3,...,r of the generating functions are
bounded according to,

k+2
Qg+ -+ Qpyoch <R> +
Ry )

nkw 7 (2.7.11)

|Gk+2 |Pk+2+5,Rk+2 exp(d) S

for1 <k<r-—2.

Proof of proposition 2.22. We use the reduction algorithm described in section 1.7.3. For
k =1, and the definition of H,j we have,

Ry — |{H2+l7 G3}|93,R3'
Again, using corollary A.7, with §, = ¢ for all v to bound the Poisson bracket throughout.

17e
|H2+l,1|ps,R3 < W| 2+l|p,R|G3|p3+5,Rsexp(5)

<1_7ea302 Rl Sk
=2 22 \ R,

» agcg R 24+1+1
~ V02RE \ Ry

3
since, |G3|p3+5,Rgexp(5) — |G3|p75,Rexp(76) S a3|F3|p,R — a3|H3|p,R S 3C <R%) ) and

by (2.7.8) 0,1 = 7». In the same way, for k = 2,

R3 = |LG3

1 1
|F4|173,R3 < §|{Z37 G3}|03,R3 + §|H371|03,R3 + |H4|173,R3

17e/2
252 g2 | Z3lpa+28, 1o exp(26) | Gl a4, exoe) +

IN

RB + |H4|p7R

17e/2 59 ase® [ R\* R\"
(52R22/ 3|F3 R+ 91162R% R_O +c RO

(12) 2 4
V2032 asc® (R

< [ =2 + 9 +1 — 1,

S (2 mm 1,1 >62R0 (R0>
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but from (2.7.9), n, = %23/2771771 + %91,1 + 65, and hence,
2 4
Q3C R
| Fl s,y < 5 (E) :
Remark 2.24. We recall here that Z; = 0 for s odd. However, we shall ignore this fact
and use the bounds:

| Zslpocr Roer < 25/2|F5|ps—1,Rs—17 §=3,...,7,
throughout (see (2.7.3)). )
Similarly, Hoyj0 = %{HQ.'_LI, Gs} + {Hat1,0, G4} s0,
17¢/2 17e

|H2+l,2|p4,R4 S W|H2+l,l|p3,R3|G3|p3+6,R3 exp(6) + W|Hl+2,0|p,R|G4|p4+6,R4 exp(d)
_ ﬁe 04303 E I+6 N 04304403 E I+6
=9 "M 5RR? \ Ry 2R simeRe \ R,

3 I+4
Y2 Q3004C R
< o (.11 + 260,072) SRT <R_0>

_ asasc® (R b
SR \Ry)
Assume now that (2.7.6) and (2.7.7) work for all v, 2 < v < k (and k < r — 2). There-
fore (2.7.11) should be valid also for 2 < v < k. Then, for v =k and 1 < j <k,
17e
|{Zk*j+27 G2+j}|pk+1:Rk+l < W|Z’€+2*j|ﬂkq+1ﬁkﬂ'+1|G2+j|ﬂz+j+5,R2+j exp(9)

17e
21262

17e 2(/€+2—j)/277 . Qg Ofk;—j—l—lckij E k—j+2
IR25? T 20— g2\ Ry

Q- - - g o) R i+2
52(]’—1)R§(j_1) Ry '

(k+2—j5)/2 . )
< 2 |Fk*]+2|l)k—j+1aRk—j+l |G2+J |p2+j+5,R2+j exp(J)

IN

X?’]J

Using the non decreasing character of the sequence {a;}s<j<r, 0 @12 < Qg jrit, for all
1=1,...,7, we have

k—j+1 j
Q3 Qp—jp103 - - Q2 = H Q4 H Q42
i=1

i=3
k—j+1 j
< H Q; Hak—j+i+1
i=3 i=1
= Qg Oy

(12)For the third term we use that, by (2.5.2), Ry < ¢, Ry < 1 then

obvious inequality $3 > 1.

> cg- > ¢ together with the

<
’R% 0 =
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Thus, the Poisson bracket above can be bounded as,

k+2
{Zk_is2, Gosj}| < 1_7eg(l'€+2ﬂ')/277 _n_w £ (2.7.12)
k—j+25 245 [ lpky1,Rep1 = k—j J62(k71)R§(k71) Ry : 0

Next, using the induction hypotheses, we can estimate the sum

k . k
J 1 )
Z E|H2+j’k_j|pk+l’Rk+l < % Z] |H2+j7k_j|,0k-—j+27Rk—j+2
j:1 j:l
k—1 P k2
1 , Qs 'ak—j+20k i+l /R
<= . | R H
~k ;]9 k=i 52(k—j)R§(k*J) Ry + [Haik0lp.75
(2.7.13)
and for |Hyy g0, r, it is immediate that
R k42
|Hotk0lpr < (ﬁ)
' (2.7.14)

< O coppic® (R b2
- 52(k71)R(2)(k*1) Ry ’

where it has been used that,

(1) as ¢/Ry > 1, with Ry < 1 it is,
kit (e Bty <[ S| <[ | G
R \ Ry R = \Ro) RE7' 7 \Ro) REZ RV

(2) ag - op_jro < a3y,

for all 1 < j < k. Putting together (2.7.12), (2.7.13), (2.7.14),

k—1 . k .
J J
|Fk+2|Pk+lyRk+1 < Z %|{Zk+2—j7 G2+j}|pk+th+l + Z E |H2+j7k_j|pk+laRk+l
p =1

72 I ¢ o3 appd (R

12 io(k=i+2)/2) 0 4 9., | — R 2%

= (k 2]2 Mitlk=i ng ’k_]> §2(k=1) R2k=1) <R0>
j=1 j=1 0

. a3 - 'ak+lck E 2
= nk_a?(k—URﬁ(’“‘” R, .
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Analogously, making use of the induction hypothesis and the properties (1), (2) above,

k.
J
|H2+l,k|ﬂk+2,Rk+2 < ZE|{G2+]‘7H2+l,k*j}|ﬂk+2aRk+2

j=1

IN

ki o17e
Z Em |G2+j |pj+2+5,Rj+2 exp(0) |H2+lak*j|ﬂk—j+2:Rk—j+2
j=1
kzzll 17e 77.063"'Oéj+20j R j+2><
“ k2R%0* 7 52 R20-D \ R
Qg - - - Oék,j+20k_j+1 R 2+1+k—j
52(k=3) R2F=7) <§0>

n 17e Qg+ -+ Qpyoct E Arlrk
2252 ™ s 260 \ R,

S\ kT 5% R3F R,

ka1 2+1+k
-9 CY3"'Oé/1c+20Jr <R>

IN

X O1g—j

This ends the induction and closes the proof of the proposition. O

Our purpose is to obtain bounds for the terms of the generating function, Gy, s =
3,...,r. Corollary 2.23, just provides estimates of type (2.5.11), (with d3 = --- =0, = 0).
But therein, a factor n; defined recursively in (2.7.9) appears. Hence, it is worth obtaining
estimates for these coefficients. To this end, one defines the quantities,

k
4
ave =7 D ibjouij, for k=20, (27.15)
j=1
k—1
4 1
b, = % Zjbjbk_j + %CLL].;_l, for k > 2, (2'7'16)
j=1

with by = 1 = a;, for [ > 0. Some relevant properties of these coefficients are described
by the next lemma.

Lemma 2.25. The coefficients ay, by defined by (2.7.15) and (2.7.16) respectively, satisfy
the following properties:

(i) by = ay -y, for s > 1.
(ii) ary, > 45 ay oy, for all k > 1.

(1ii) ars = a1, for alll >1 and s > 0.

(13)Using again that Qg Ofp—j4203 " (12 S g Qfp—j 20— 543 * " * A4-2, since (67851 S O —j+i+2,
foralli=1,...,jand forall 2 <k <r —2.
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(v) ayp—1 > Z?:z Jajk—j, for k> 1.
(v) by <45k for all k > 2.
Proof. (i) by = a1 =1 by definition. Assume it is verified from 2 up to s — 1. Therefore,

s—1
4 .
1,61 = — E Jaij—101,s—j—1
5 — 1 . J J )
J=1

and
4 s—1 - 1
by = 5 Z]al,j—lal,s—j—l + ;a1,s—1
7=1
s—1 1

= Q151+ —G1s 1
S s

= a1,5-1,

since s%“lz;:} Jai;-101,6—j-1 = @141, in accordance with (2.7.15) and the induction
hypothesis. This proves the first item.

(ii) follows straightforward from the definition of a;; and from (i). Setting [ = 1
in (2.7.15),

k
4 . 4 k+1
k=7 Z]bjal,k—j > T (b1ay j—1 + kbrai ) =4 0Lk
i=1

(all the quantities b; and a ;—; are positive, by = a; = 1 by definition and by = a1 x—1
by (i)).

(iii) For s = 0 it is satisfied for all [ > 1: ;9 = a;_10 = 1 by definition. If it should
work also for all 1 <k <s—1and [ > 1; then, working with (2.7.15),

S S

4 . 4 .
aps = g E ]bjal,s—j = g E ]bjal—l,s—j = Q]—1,s;

j=1 j=1

because, by the induction hypothesis a;s 1 = a1-15-1,015-2 = Q_15-2,..., 01 = Q11
and, trivially, a;o = a;_1.
(iv) The inequality works for k = 2, since, setting k£ = 2 in (ii),

1+1

2
a0 =82 Zjaj,%j = 2a99 = 2.
j=2

a, >4
Assume the inequality is also valid from 2 up to k. Then,

k
a1 k-1 + A1 p—1 > E JOjk—j+ Q1 g1,
i=2

which implies,
k

a1 41 > Y i

j=1
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and applying now the results of the second and third items:

k+1 k+1 k+1
ary > 4 01k 1>2—Z]a3,k —j :(,)) Z]%Hk —-j

iii

k+1
k+1
=2 L (S - l)as,k—i—l—sa
§=2

(where a shift s = j + 1 in the summation index has been introduced in the last step).
But it is easy to check that 28 (s — 1) > s, when s > 2. This ends the induction and

proves item (iv).
(v) is satisfied trivially for £ = 1, as b; = 1. Let us suppose it works for £ and inquire

what happens for k£ + 1. By (i), bk+1 = ay, and then, by definition (2.7.15):

k k

4 . 4 .
bey1 = T Z]bjal,kfj =7 Z]bjbkfjJrl
=1 =1
4 b k j
1 k . _ k . .
_kzgzu 45Nk —j+ 1) =4 ZEJ!(k—ijl)!,

but it happens that the sum in the las term is not greater than (k + 1)!. Again, we
proceed by induction: it is checked for k£ = 1:

Ll _ 1-1!
27 —j+ =1 -1+l=1< 1+ 1) =2.

Let us assume this works for £ and check its validity for k£ + 1:

! (k—j+2)!=sz:j—j'(’f—3+2)'+(k+l)
j:1]€+1 k+1j:1 g
<Ek:j—ﬂ(k—ﬂl)!(k—j”)*(“”!
_j:1 k
koo
< (k+1) D =k =+ D+ (k+ 1))

<(k+1)(E+1)!+ (k+ 1)
= (k+2)!,

and where, besides the induction hypothesis at the third inequality; we have used the fact
that k —j +2 < k+ 1 for all j > 1 (and hence for all summation indices at the second
term of the r. h. s. of the expression above). This last argument completes the proof. [

Next, from a;; and by we introduce al,k and 7, by the definitions:

Oii = 152y, (2.7.17)

=712 by, (2.7.18)
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with 75 > 1 (in our case 72 = 17¢/2), and the formulas (2.7.15), (2.7.16) for a;; and by
respectively, give rise to recursive inequalities for 6, and 7. Immediately,

n kok?
O = 722" ary

k k
4 o » ,
:%ZJV% 1232bﬂ;c Tolhk= )alk 2%0(k0) > %Z 77]91k —j 2 Z]ﬂﬂzk —j-

j=1

Here, apart from the definitions of @,k_j and 7);, it has been used also that 22/ =9 > 1,
for all 1 < j < k. On the other hand,

M = 75712]62[%
k-1

4o . -1 k—j—1o(k—7)2 j(k—j L ohigke—
:TZ‘]% 27" bj2 71k bkfj22]( ])+E’Y2 '2 12al,k71

j—l

4 1o
’Y2Zﬂk]+2 TiTe_j + EZ

7j=1

Remark 2.26. 2ay -1 > Z?Zl jajk—; (see the proof of lemma 2.25), and 4j(k — j) >
k—j4+2 < (4j—1)(k—j) > 2, forall 1 < j < k—1and forall k > 2, so 22/(k=7) > 2(k=i+2)/2,
for the same values of j and k. From here:

V512 20 4 > Zﬂk 126 0 = Z]M -
j=1

since k2 —1 = (k — ]+])—1—(I€ I+ +2jk—j)—1>(k—j)* foralll1 <j <k
and for all k£ > 1 and 757! > fyz 7 (because 7, = 17¢/2 > 1 and k — 1 > k — j for all
1<j<k). 'y

In particular, it is true that

k
a 2 ~
Ork > " z:;]njgl,k—j, (2.7.19)
yy LK
M > ?232“@ 2 EZ 30ik—i, . (2.7.20)
7=1 j=1

As 51,0 =1=40pforalll >0, andn =2 >n =1, induction shows that gl,k > 0, for all
[,k >0 and 7, > n, for all £ > 1. Indeed, let us suppose it is true for 1 <v < k —1 and
for all [ > 0 and show that therefore it is accomplished also for k. Directly form (2.7.20):

R‘

-1

2 k—
I 2 1]2( RARGT e Z]Q,k —j

| V

Tk

I
3

k>



2.7. On the bounds for G 91

(applying the induction hypothesis term by term), so with the same arguments,

k
O > % Zjnjgl,kfj =0, .
1

j=
Hence, ny < 7 = 75712¥°b;, and using item (v) of lemma 2.25, we state

Lemma 2.27. For all k > 1, the terms n defined by the recursive formulas of proposi-
tion 2.22, are bounded by
Tt L Ly 1 (2.7.21)

forall k > 1.

With the above estimates on the coefficients 7y, if we define

EZZI,

z (2.7.22)
B = 4"2(k — 2) oy, k=3,...,r;
with ay given by (2.3.20), then
. s + 1 s+1 7_(8 + 1) 7(s+1)
= 4572 —9 S
hmare-n (SE) (T
c T(s+1)
p
and using (s + 1)7+26+) < exp (1QT [} zlnz dx) for s > 3, we realize that
By < fBs,  s=3,....r (2.7.23)

with s defined by (2.6.31), and the constants
64
c3 = V/2me?, cy = —T, v = min{1, v},
me
(so c3, ¢y satisfy conditions (2.6.11)). Finally, the above estimates on the coefficients 7

lead us naturally to:

Proposition 2.28. The terms Gs, ..., G, of the generating function G =Y. _, G, satisfy
the bounds of lemma 2.13, 1. e.,

R 3
|G3|,03+(53,R3 exp(63) S /83b <R_> ,
0
auf?)b

|Gz/|pu+(53,R,, exp(d3) S 5354 e BVW (

P (2.7.24)

ﬁo) , d<v<r,

where the quantities {fs}o<s<, are given by

€4 7(s+1) s
Bs = c3 <—7"> exp | 127 jxlnxdx , s=3,...,7,
p

s—1
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with
64
c3 = V2me?, Cy = —T, v1 = min{1, v}, (2.7.25)
1€
c 2¢,
b=— = —. 2.7.26
: -2 (2.7.20

Proof. For Gi:

3
R
|G3|pa+53,R3 exp(d3) < aze <_>

Ry
¢/ R\® c/(R\° ~ (R\®
— () <« ek R A
20[32 R0> _40[3 (R0> ng (R())
R\?
< B3b ?)
0

And, for G,, 3 < v <r, using (2.7.11) and (2.7.21),

Qg O{VCV72

v—3 4v—3 . (v—2)2 E Y
|GV|,0V+637RV eXp((S:g) S 5§(V73)R3(V73) 72 4 (l/ 2)'2 (R[])

(1-4'a3)(2- 42ay) - ((v — 2)4"%a,) ¢ <2720>V3 < R )

520=3) 2\ R} Ry

523 Ry

By By, g R\
< " \R)

3

:gg...gyba”,(za)”

where we have made use of the relations:

22u—62(u—2)2 — —

_ %21/—321/—22(1/—2)2 _ %21/—32(11—2)(1/—1)7 (2727)

ALA2 .. gV=2 — glA2er=2 _ 4(1/—2)(1/—1)/2 — 2(1/—1)(1/—2), (2728)

to pass from the first to the second term on the r. h. s. in the inequality above. O

Therefore, the results of this section justify the use of such bounds for the components
G of the generating function. The theorem below summarizes the quantitative study of
the reduced (or normalized, up to some optimal order r,,) Hamiltonian, i. e.:

H(gla q, -[lap) = Z(ropt)(q, Ilap) + m(ropt)(917 q, Ilap)a (2729)

(see theorem 1.24 in the previous chapter). Where Zort) = 37! 7_yas the normal form
itself while 9(»!) (g, q, I,, p) is now the remainder of the reduced Hamiltonian. In other
words, now we fix the “generic” function f to be the linear normalized and complexified
Hamiltonian (see (1.6.2) in section 1.6 of chapter 1).
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Theorem 2.29. With the hypothesis and assumptions in theorem 1.24, if the normaliza-
tion of the linear reduced (and complezified) Hamiltonian defined in D(poy, Ry) is carried
out up to the order rop = |7(R)|, with 0 < R < Ry small enough and 7(R) given by for-
mula (2.6.21) (proposition 2.19). Then, the normalized Hamiltonian (2.7.29) is defined
in D(7p/8, Rexp(—p/8)) (with 0 < p < py) and the following bounds for the Remainder

ropt(R) _1

R\™"( R\ 7
Rror ||| < g [1— = — , 2.7.30
el <o (1= ) (e ) (2730
and for the sum Z T"pt =yt Zs,
. RS

Z Opt < cg— 2.7.31
i II=<ep (2.7.31)
hold for 0 < R < Ry small enough. Here cs5, cg, cg are constants depending on p, 7,7y, Ry

but not on R and ||| - ||| is the norm stated by (2.6.2), i. e.: ||| - ||| = | - [7p/8,Rexp(—p/8)-
Proof. All this theorem, but the last bound (2.7.31) for the sum Zg + --- + Z,, ,, can be

derived from the proposition 2.19, letting f = H, the linear normalized and complexified
Hamiltonian (1.6.2). To derive (2.7.31), we shall consider the estimate:

R 6
1Zsl1l < & (ﬁ) | (2.7.32)

with ¢g independent on R. Here, we recall that Zz is an homogeneous polynomial of
degree six (we mean, adapted degree, as defined by (1.7.3) in section 1.7 of chapter 1) and
the previous terms in the normal form do not change when this is carried out up to some
higher order). Moreover, using (2.7.3) and (2.7.7) together with the inequality (2.7.32)

given above, it is clear that the sum Z( rort) can be bounded as,

112811 < {+ZZ } ( ) (2.7.33)

being
j—5
- 30y ... 04 R J .
Zi=9o gty o80T [T =T Topiots
=2t () i T

with 77; = 747'27°47-1j1 > 1 (see lemma 2.27). But the ratio between any term in and
its previous one in the sum on the right hand side are computed to be:

Zjn I i1y aimt 1R :
{] = 8\/50’)/2 X ] 1 X (] — ]_) 47 Q1 X 6EoptR2 EO, for ] = 7, co oy Topt — 1.
( 1) 41 iy = Biyy (see (2.7.22)) and according with (2.7.23), it is 3, < f;, for
=3,...,7opt- Therefore the quotient above may bounded as,
Zin LR 4\/ LR
<16V2 X — — —
ZJ \/_ BJ+1 672=opt R e BJ+1 ropt RO,

for j=7,...rop —2, (2.7.34)
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where, in the last step, we have used that by its definition —equation (2.5.16)— in propo-
sition 2.16, is g := max{1, ed + 2ae}, so g > 2ae = 435_%72 (we recall that a = 210%2 is one of
the coefficients exacted in proposition 2.28, see (2.7.26)). Now, by comparison of the last
term in the r. h. s. of (2.7.34) with (2.6.25) one may see that the following bounds for

the quotients

Zuj+1 < 4/05

7, G
hold if 0 < R < Ry is sufﬁciegtly small. In particular, as ¢ is independent of R, this will
imply that the sum Zr-"pt*l Z;, appearing between the braces on the r. h. s. in (2.7.33),

j
may be bounded by a constant also independent of R if

7§j§ropt_1

y _az-rar R
Zr =2 ———— x —
53013,53(1)0 Ry
does. But, with the same arguments than those employed to “control” &3¢ in section 2.6.1
(see (2.6.27)), one may check that, for R < Ry small enough, Z; can be made smaller

than any prefixed positive constant. Hence, in (2.7.33),

Topt—1
55 + E Z] < Co
J=T7

with ¢ > 0 independent of R, for 0 < R < Ry small enough. This ends the proof of the
last statement and thus of the theorem. O



Chapter 3

Persistence of the 2D-family of
bifurcated invariant tori

3.1 Overview of the chapter

This chapter is devoted to the discussion of the persistence of the bifurcated 2-D invariant
tori studied in section 1.9. There are different possible situations where persistence can be
investigated. Here, we shall focus on the case of direct bifurcation. Therefore, throughout
the chapter a > 0 and preservation of bifurcated normal elliptic tori will be investigated.
After the setting of the problem (section 3.2), we devise a new parametrization of the
unperturbed (i. e., those coming from the “formal” normal form) tori. In particular the
new parameters ¢* = (£, 7) are introduced in such a way that, if £ > 0 the corresponding
tori are real, and complex if £ < 0 (see theorem 3.1).

The first difficulty one has to face in this problem is treated in section 3.2.2 and has
to do with the choice of the suitable set of parameters to characterize the tori of the
family along the iterative KAM process. Let us mention that we have three frequencies
to control: the two intrinsic ones, {21, {2, of the quasi-periodic motion and the normal one
(the positive imaginary part of A, ), but just two parameters to control them &, 1. So, we
have to deal with the so called “lack of parameters” problem (see Moser, 1967; Sevryuk,
1999).

When applying applying KAM techniques for low-dimensional tori, one typically sets a
diffeomorphism between some neighborhood of the origin in the parameter space (£, 7) and
a vicinity of (wy, ws) in the space of intrinsic frequencies ({21, {25). Hence, the characteristic
exponents Ay may be put also as a function of the intrinsic frequencies. For elliptic tori,
besides the non-degeneracy of these frequencies, one needs to ask the normal frequencies
to “move” as a function of §2, this forces to impose suitable “transversal” conditions in
the denominators of the KAM process (see Sevryuk, 1999; Jorba and Villanueva, 1997a).
In our case, for ¢* = (£,7n) in a small neighborhood of the origin the invariant tori
will be elliptic when a > 0 (and £ > 0), as follows easily from the expression for Ay
(see (3.2.19)). However, the typical transversal condition (3.2.21) does not work, since
the derivatives of A,,,(§2) are not defined for £2 = w (the elliptic invariant tori are too
close to parabolic). This pit is overcome taking as basic frequencies for the unperturbed
tori not £2* = ({21, {25), the intrinsic frequencies, but A* = (u, £25) with 4 = [A,| and then
the first component of the intrinsic frequencies, 21, as a function of A, i. e.: 2 = 2;(A).

95
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In other words: we “label” the (elliptic) invariant tori with their normal frequency and
second intrinsic frequency. It is checked that, with this parametrization (shown explicitly
in lemmas 3.7 and 3.8), the small divisors do change in the normal directions, so one can
proceed with to the KAM iterative scheme, which —due to the forementioned proximity of
parabolic tori—, involves a more tricky control on the different terms of the Hamiltonian
appearing at each successive step.

The main result of the chapter, theorem 3.9 is proved along the rest of the chapter.
We follow those ideas in Jorba and Villanueva (1997a). See section 3.2.3 for the details on
the methodology, whereas the iterative KAM process is described in sections 3.3 and 3.4.
Nevertheless, the control of the “regularity” with respect to A of the successive trans-
formations (which is important to estimate the measure of the “good” and “bad” basic
frequencies) is carried out here, not through the Lipschitz dependence (see also Jorba
and Villanueva, 1997b), but using the original idea in Arnol’d (1963a,b) so we consider
analytic dependence with respect to A. This forces us to consider a KAM process with an
ultra-violet cut-off (see section 3.3 for details). We point out that, in spite of this analytic
dependence, the limit Hamiltonian will be defined in a Cantor set of the basic frequencies
A and so the regularity is no longer analytic; in fact, is C* in the sense of Whitney (see
Broer, Huitema and Sevryuk, 1996, for an account on Whitney-regularity). Estimates on
the measure of the complementary of the Cantor set of good frequencies are derived in
section 3.5, while an outline on the Whitney-smoothness is exposed in section 3.5.2.

3.2 Setting of the problem

After the nonlinear reduction process described along chapter 1, the initial Hamiltonian
is transformed through a symplectic change into a new complex Hamiltonian (see theo-
rem 1.24),

H(01,q,11,p) = wili +iws (ip1 + @2p2) + @1 + 2, (—@1p2, I, (@101 + G2p2))

. (3.2.1)
+ m( opt)(gla qi, 492, Ilap17p2)-

This Hamiltonian is defined in the complex domain D(7p/8, Rexp(—p/8)), with0 < R < 1
and 0 < p < 1. However, substitutions 7p/8 — p, Rexp(—p/8) — R will only change
the constants cs, ¢ in the expression (2.6.33) for # and the bound (2.6.34) for JR(rert)
(also, the term (1 — R/Ry)~" should be substituted by (1 —e?”/* R/Ry)~" there). Moreover,
this re-scaling will modify, by a factor e®/%, the constant cg in the bound (2.7.31). See
proposition 2.19 and theorem 2.29 in the previous chapter. Therefore, in the sequel, we
shall consider (3.2.1) defined in D(p, R), for 0 < R < Ry small enough and 0 < p < py.
In particular, in (3.2.1), Z,,,(u,v,w) is a polynomial of degree |r,,/2] with real
coefficients, beginning with quadratic terms and such that:

Topt

2o (=D, I, i(@ip1 + @2p2)) = Z Zs(q1, 42, I, p1, p2), (with Z; =0, if s is odd).

§>3

The order 7oy = ||, with 7 = 7#(R) (see (2.6.33)) is taken, for a fixed R small enough,
to give the optimal order of the normal form in the sense discussed in the last chapter
(theorem 2.29). We shall use for Z,, , the expansion (1.8.2), keeping the same names

Topt
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a,b,c,... for its coefficients. PR(r*) is the remainder of the normal form, and bounds
of its size have just been obtained as a function of R (see (2.7.30) in theorem 2.29).
Therefore, if R is small enough, %(»*) can be thought of as a perturbation of the normal
form

Z0 = I + iwa(q1p1 + qop2) + @ep1 + Z:(—q1pa, I, (101 + qap2)),

which was proved to be integrable (see section 1.8). Furthermore in section 1.9, chapter 1
we found a two-parameter family of invariant tori of Z(". To show them up, though, it
was convenient the introduction of a new angle #, and its conjugate action I, through
the symplectic transformation

i0 1 —i0
G = +/qe"”, PL=4/1 p_IQ_q e 2,

(3.2.2)

— P i0> _ —ify

72 = /4 p+12—q e?, P2 = — /qe™"?,

this is the complex counterpart of the real change given by (1.9.1), (see (1.6.1) for the re-

lations between real and complex coordinates). We shall take the new canonical variables,
(0,q,I,p) € C*> x C x C*? x C, in a domain D (M, p, R) defined by the inequalities:

Im@| < min{p,In2}, M <|q| < R2/4, || < R?, < R/4, |p| <

I 1
i ,
(3.2.3)
(M a positive quantity to be adjusted later). ©(M, p, R) has been specified in such a way
that if (0, q,I,p) € (M, p, R), then the coordinates (6, g, I, p) € D(p, R). So, with the

change above, Hamiltonian (3.2.1) transforms to (see (1.9.2)):

2

H(O,q,1,p) = (w,I)+qp*+ i—z + Z(q,I)+R(0,q,1,p), (3.2.4)
where w* = (wy,wsy) (we remark that this Hamiltonian is real when all the coordinates 6,
q, I and p are). Here, the subscript (and superscript) r has been dropped from Z (and
R), and will no longer be written explicitly. In what follows, we shall refer the part of H
which comes from the normal form (and consequently does not depend on the angles, ),
as the unperturbed Hamiltonian, H,, so

%O(qa Iap) = H(Gaanap) _R(eaanap) (325)

On the other hand, the polynomial Z can be split as the sum Z = Z, + Z3, where 2,
contains the monomials of Z of degree 2, whereas Z3 holds the rest of the terms, i. e.,

1

Zy(q, 1) = §(aq2 + b7 + cld) 4 dqly + eqly + fI, 1, (3.2.6)

Z3(q,I) = Z fi,j,kqi[fff, (3.2.7)
3<i+j+k<|r/2]

where all the coefficients are real. Furthermore, it is

Z3(q, I, I2) = Z(ngpt)(QIa%a[laplapQ)a
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where Z(;"g”) is the sum:

Topt

z8m =3" 7, (3.2.8)
s=6
(see theorem 2.29). Then, using the auxiliary norm || - ||, introduced in definition 2.5

and from the relations between the coefficients of the polynomials Z(;gpf) and Zs, it can
be checked that,

125]1re < 12557 | ge = 1285 o,
(ropt)

Then, in view of the bounds for Z3¢"" derived in theorem 2.29 and further application

of the Cauchy’s inequalities (as in lemma A.2) it follows that there exists constants 23,
Z3.4, 232 and Zs3, independent of R (and of r), such that for any R small enough,

1Z5]|re < §3R67 ||8z'ZS||R2/2 < 23;1R4, (3.2.9)
||ai2,jz3||R2/2 < 23;2R27 ||a?,j,kz3||R2/2 < 23;3, with 7,7,k =1, 2, 3. (3.2.10)

3.2.1 An alternative parametrization

Theorem 1.27 gave a real parametrization for the above referred family of invariant tori
of Hy (the unperturbed Hamiltonian in the new coordinates). However, for the pur-
poses of the present chapter (more precisely, to control the real character of the invariant
tori), it should be convenient to introduce a new parametrization. From the Hamiltonian
equations of Hy (see (1.9.3)), we can state a result similar to that of theorem 1.27.

Theorem 3.1. If the coefficient d in (3.2.6) isd # 0, then there exists an analytic function
Z:T CR?— R, with T a neighborhood of (0,0), defined implicitly by the equation

=02, (&,Z(&n),2n), with Z(0,0) =0, (3.2.11)
and such that, for (§,n) € T', the two-dimensional torus

72:77 = {(07Q7I7p) S -|]_2 x C x (EZ x C:
qg=¢& L =I(&n), lr=2n, p=0} (3.2.12)

is invariant under the flow of (1.9.3) with parallel dynamics (see definition 1.26, in
chapter 2) determined by the vector §2* = ({21, {22) of intrinsic frequencies:

Ql (67 77) =W + aZZr(é-aZ(ga 77)7 2677)7

3.2.13
Du(E 1) = wp + 1+ D2, (€. Z(E, ), 261): (3.2.13)

Moreover, for & > 0, the corresponding tori are real.

Proof. 1t follows directly by substitution in the Hamiltonian differential equations. Here
we only stress that the condition d # 0 is the necessary hypothesis for the implicit function
7 to exist in a neighborhood of (0,0), since 07 ,2,(0,0,0) = d. O
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Hence, " = (£, n) are the parameters of the family of tori, so they “label” the concrete
invariant torus of H, filled up by quasi-periodic solutions. Furthermore, we have intro-
duced the vector 2% = ({2, {25) of basic or intrinsic frequencies which changes along the
family according to (3.2.13). In fact,

Qz(C) :afiH0|Tca i:1727

with the following notation: for a given function g : C° — C, analytic and 27-periodic
with respect to its two first arguments, we shall denote by g|7, the restriction of g to 7¢,
the invariant torus of the family corresponding to the parameter . On the other hand,
it is straightforward to derive formally the expansions of the function Z in power series of
the parameters &, . Thus, explicit computation up to second order yields the series,

Z(g,n) = _% _ é <3f3,0,0 . 2af‘2i,10 a®f1, 20) 62 28677 + 5772 + 03(6777)7 (3‘2‘14)
and by substitution in (3.2.13), one obtains for the frequencies
ab
o= (1- %)

3b a?b 2ab 2a 3a?
+ <—Ef3,0,0 - Eﬁ,z,o + ?fm,o + fo10 — Ffl,Z,O + ?fo,?,,o) &+

+ (—%b + 2f> &n+ %772 +03(&,7) (3.2.15a)
2(E,n) =wy + (e— ﬂ) §+n+
a2 2
+ (-ﬁf?,oo ff120 + 2a2ff2,1,0 + f2,01 — gf1,1,1 + %fo,z;) £+

+ (2 — %)g + é 24+ 03(&,m). (3.2.15Db)

Another point here to remark is the qualitative character of theorem 3.1, in the sense that
it does not provide any idea on how large the neighborhood I' could be. However, as the
next lemma shows, one can use the fixed point theorem to determine I'.

Lemma 3.2. Assume (3.2.9), (3.2.10) and, as in theorem 3.1, d # 0. Then if R is small
enough, there exist a constant 0 < ¢ < 1, independent of R, and a real analytic function,
Z, defined on the set

I(R) = {(»s,n) e el < SRl < ;R} | (3:2.16)

satisfying identically (3.2.11), with Z(0) =0 and |Z(&,n)| < R?/2 for all (&,n) € T*(R).

Proof. Let us denote ¢* = (£,7n) and for a fixed ¢ € T'* and consider,

)
F(1:6) = 5 (" — o — 2e6n — 0, Z5(6.1,260)).
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It is clear that Z(¢) = F(Z(¢),¢). We want to check: (i) [F| < R?/2 if |I| < R?/2,
£] < £R? and (ii) F is a contraction with respect to I, uniform for ¢ € I'. Then, suppose
first that |I| < R?/2 and ¢ € I'*; taking norms in the expression above, we get,

1 e 2 c 2 e 3 - 4
1+ |a| + |€|A 1 5 2 2
_— —Zs R | R
= ( T

(assuming R < 1, ¢ < 1 and hence ¢® < ¢). Therefore, if we take ¢ = min {1, %}, it

turns out that

1 1 ~ 1
<24+ =-Z. RP)\R?< ZR?
|f|_<4+|d| 3,1R>R_2R,

if R is sufficiently small. To assure the contractive character, we apply the mean value
theorem,

|8123(§, II: 2&”) - 8123 (57 [7 2577)|
|d|

|f(I,7C) _f([7C)| <

' = 1|
¢er d|

for R small enough. O

Remark 3.3. Note, in particular, from its construction, it follows that, Z is real when &
and n are. Then, one might consider its restriction Z : I' — R, where I" is the real domain:

() = {(€1) € R sle] < SR ol < SR}

In what follows we shall specify whether the parameters (£,n) are taken in I' or in its
complex extension ['*. 2

Remark 3.4. (On the nondegeneracy of the basic frequencies). When applying KAM
methods, it is usual to select an invariant torus of the unperturbed Hamiltonian with
“good” intrinsic frequencies and to ask for the persistence of this torus under small per-
turbations, or, more precisely, if the perturbed Hamiltonian has an invariant torus with
the same frequencies close to the initial one. A way to achieve this, is to assume that the
space of parameters describing the invariant tori (for example, the actions in the usual
context) maps diffeomorphically onto the space of frequencies. Particularly, it is (locally)
guaranteed if,

det (0. £2(0)) # 0, (3.2.17)



3.2. Setting of the problem 101

which is the standard (or Kolmogorov) nondegeneracy condition (1), From the “frequency
map” given by the expansions (3.2.15a) and (3.2.15b), one checks that,

b
det (9:92) = d — % +04(¢).
So, £2(¢) should be a (local) diffeomorphism, provided d —ab/d # 0. Although this is the
classic approach, we shall be forced to choose a different set of parameters to govern the
successive approximations to the family of perturbed tori. This will be discussed in the
next section. Y

Remark 3.5. If, instead of the symplectic coordinates introduced by the transforma-
tion (3.2.2), we consider the real coordinates defined by the change (1.9.1), then it is
clear that,

0= 2Ot +0, o= V2Rcos(BQr+0), 12 =—v/2Esin(2(C)t +0)),
I =1(¢), v =~V sin(2(Q)t +05), 2 = —ny/2E cos(2(Q)t +637),
(with ¢* = (&,m)) is a two-parameter family of quasi-periodic solutions of the (real)

unperturbed Hamiltonian
Hy(01, 21, 29, Iy, y1,y2) = wili + wo(T2y1 — 21y2)
1
+3(+y3) + 2, <§(17% + 3), I, may — x1y2> ,

(see (1.8.1)). So, as we are interested in real tori, it is clear that it is necessary to impose
the condition £ > 0 and this assumption is kept throughout. 2

3.2.2 Linear behavior of the unperturbed tori: normal frequen-
cies and lack of parameters
Again, consider the system (1.9.3) and the family {7¢}.. of invariant tori. Hence, around

one of these tori, the first variational equations in the normal directions are given by the
linear system Z = M¢Z, with the 2 x 2 matrix

0 2%
Mﬁ’":(—%—a—a%,lz?,(f,:f(s,n),zgn) 0 ) (3:215)

and then, the characteristic exponents (or normal eigenvalues) of the unperturbed (real)
torus are,

A(&m) = i\/—4772 —2a§ — 26071 25(€,Z(E,m), 26m), (&) € T(R), £ >0, (3.2.19)

and from the inequalities (3.2.9) and (3.2.10) it follows that, inside the square root, the last
term is of fourth order in R, so we write symbolically: £97,2Z5(&,Z(€,n),2¢n) = O(RY),

(We allow some abuse of notation: through this chapter, £2 will denote both, the vector of intrinsic

frequencies (images of the frequency map for some values of the parameters) and the frequency map itself.
The actual meaning should be clear by the context.
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whereas 41> + 2a£ = O(R?). This implies that —for R small enough—, the hyperbolicity
of the tori of the family is determined by the sign of the first two terms. In particular,
if the coefficient a is positive, then the family only holds elliptic invariant tori, whilst for
a < 0 both, elliptic and hyperbolic invariant tori will be present together with parabolic
ones for, if one considers the equation 4n? + 2a + 2£01125(€,Z(€, n), 26n) = 0, just the
implicit function theorem applied at (£,7) = (0,0) shows the existence —in the space of
parameters (£,7)-, of a path, & = g(n), giving rise to parabolic tori®). For an invariant
torus, with reducible normal variational directions, it is usual to define its vector of
normal frequencies as the positive imaginary parts of the characteristic exponents. One
of the problems intrinsically linked to the perturbation of elliptic invariant tori is the so
called “lack of parameters”. In fact, this is a common difficulty in the theory of quasi-
periodic motions in dynamical systems (see Moser (1967), and also Sevryuk (1999)). As
an illustration of this fact, suppose we select (o € I' such that the corresponding torus is
elliptic with frequencies £2* = ({2, {2) and u = |\, |, satisfy the Diophantine conditions
(Melnikov nonresonance conditions),

| (k, 2(Co)) + Lu(Co)| = Y|k, VkeZ'\ {0}, Vie€Z with [(|<2,  (3.2.20)

and 7,7 positive constants. Here, p(¢) is the normal frequency as defined above (i. e.,
the positive imaginary part of A.(¢)). Since (3.2.20) “controls” the small divisors appear-
ing when one seeks elliptic reducible invariant tori, one could naively expect (as in the
case of maximal dimensional tori) that the perturbed system has a torus with exactly
the same frequencies (both normal and intrinsic). However, this conjecture fails, since
the intrinsic and the normal frequencies are not functionally independent. Indeed: just
assume the perturbation depends only on the actions, say, R(0,q, I,p) = R(I). This will
preserve the family of invariant tori, but changing slightly their intrinsic frequencies to
£2(¢). Therefore, under the nondegeneracy condition on £2(¢) discussed in remark 3.4,
the perturbed system will have an invariant torus exactly with the same intrinsic fre-
quencies, since §2(¢1) = £2({o) for some ¢; € T close to (o, but clearly, u(¢1) # (o)
in general. Thus, generically, one cannot construct a perturbed torus with a fixed set of
(Diophantine) intrinsic and normal frequencies, for the system does not contain enough
internal parameters to control them all simultaneously. All that one can expect is to build
perturbed tori with only a given subset of frequencies previously fixed. But to succeed,
we ask the small denominators to change when these selected frequencies do. This can
be guaranteed adding suitable nondegeneracy conditions on those remaining frequencies.
In the standard formulation (see paragraph below) one chooses naturally the intrinsic
frequencies to pick out the invariant tori, while the normal frequencies are thought to
depend on these basic ones.

Consider the general case in which an n-degrees of freedom unperturbed Hamilto-
nian has an r-parameter family of r-dimensional invariant tori with r nondegenerate (in
Kolmogorov’ sense) intrinsic frequencies. Assume these tori are reducible in the nor-
mal directions, which we suppose elliptic. Abusing notation, let 2 = £2(¢) € R" and
A(¢) € C* ) with A\j, (€) = —Aj(¢) for j = 1,...,n — r, be the vectors with in-
trinsic frequencies and the characteristic exponents respectively, where \; = ip; being

2)Of course, the same can be done when a < 0, but then &, as a function of , will take (at least for R
sufficiently small) only negative values, against the condition for real invariant tori.
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pj € RT the j-th normal frequency for j = 1,...,n — r. By the assumed nondegeneracy
of £2(¢) at ¢ = 0, the normal frequencies can be put as functions of the basic ones in a
neighborhood of this point. Now, working directly with £2 as the parameters of the fam-
ily, one looks up the divisors of the KAM process i(k, £2) + (£, A\(£2)), with £ € 72",
0 < |£]; < 2 and ask them to “move” as a function of 2. Thus, it is enough to impose
the “transversality condition”,

Im (grado (€, A\(2))|o_,) € Z", and {; # iy, ,, forj=1,...,n—r (3.2.21)

where w is the value of the frequency map at ¢ = 0, i. e., £2(0) = w (see Jorba and
Villanueva, 1997a). These, however, do not work to our particular problem. To realize
easily, assume the coefficient a in (3.2.19) is positive, so the characteristic exponents will
be purely imaginary (in a sufficiently small neighborhood of ¢ = 0) and hence an elliptic
unperturbed family of invariant tori unfolds. Next, a glance to (3.2.15a) and (3.2.15b)
shows that the first order expansion, at 2 = w, of the inverse of the frequency map must
be,

d
62 m(gl — (,{)1) + OQ(Q — W),
—ed
n = %(Ql — wl) + (QQ —(.UQ) +OQ(Q — w),

(indeed, we assume d?> — ab # 0). Now, substitution in the above expression for the
characteristic exponents, gives for the normal frequency:

2ad
H= +\/_d2 — ab(Ql —wi) + 02(2 — w).
So the derivative involved in the condition (3.2.21) is not defined at all when w = 2.
Hence, it becomes necessary to choose an alternative set of parameters to characterize the
perturbed invariant tori. From (3.2.15b) and (3.2.19), it can be seen that £ and n may be
expressed as a function of the other two frequencies, {2, and p. In fact, substitution and
some additional algebra lead to the expansions,
2
2
e=t _ —(£2 — w2)? + Os(p, 25 — wy),

20 a

e 2¢ 3
77:(22—w2+<%—%> pe+ (;—Ff> (22 — w2)? + Os(p, 22 — wy),

and then, substitution in (3.2.15a) yields:

d b 3b  2d
Ql (/L, (22) =w; + (g - ﬁ) M2 + (E - ;) (.QQ — (.U2)2 + Og(/L, QQ - (.UQ) (3222)

(we recall that the assumptions ¢ > 0 and d # 0 were made). Now, we can formulate an
alternative to the nondegeneracy conditions (3.2.21) suited to our problem: let us denote
A" = (p, {29); now, the derivatives of the denominators involved in the present KAM
process w. r. t. these frequencies, are

gradA (klgl (A) + kQQQ + é/,b)

¢ :
A*Z(O,wz) = (k2> y kl,kQ,g 6 Z, W].th |£| S 2,
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so the divisors will change with A whenever the integer vector on the r. h. s. is not the
null vector, but in such case, necessarily k; # 0 and hence the moduli of the divisors will
be bounded from below (for R small enough, since 2, (A) does, as seen from (3.2.22)). In
few words: if (2; is taken as function of p and (25, we can guarantee the correct behavior
of the small divisors required for the KAM method.

Remark 3.6. From now on we will refer ;4 and (2, as the basic frequencies labeling the
invariant tori of the system, whereas the denomination of intrinsic frequencies will be
reserved for (21, (2. 2

On the other hand, the size of the domain where p and (2 move, can be derived
from the lemmas below. Before, let I'* and Z, be the set and the function introduced in
lemma 3.2 respectively. In addition, we define the sets:

M (R) = {(p,n) € €+ [u| < cR, |n| < R},

. o 2, 1 — l
N*(R) = {(u, ) € Cilul s gk, [0y —wf < geR g, (3.2.23)

() = {(€.1) € © ¢ < G, Il < e

¢

(clearly, I C ['*), and also the notation:

C* = (5777)7 o= (%77): A= (Ma 92)

With these conventions, we can state:

with 0 < ¢ <

la)

Lemma 3.7. There exists a real analytic function, g, defined in M*, such that if ¢ <

min {g, Z—g} and for R small enough (&, u,n) = (g(o), o*) satisfies identically the equa-

tion,
= AP 20 + 2600, Z5(6, T(C), 260). (3:2.04)
Moreover, it is |g(p,n)| < ¢R?*/8.

Proof. One proceeds exactly as in the proof of lemma 3.2. We define:

2 omr 1
F(&pm) = £ = =5 = 2€0%  Z4(6,T(E,m), 26m).

It can be seen straightforward that g(o) = F(g(o); o*). We must check:

(i) for |pu| < ¢R, |n] < éR and || < €R*/8 with 0 < ¢ < ¢/2 < 11is |F| < ¢R?, if R is
sufficiently small.

(ii) F is a contraction with respect to £ uniform in o.

The first is obviously true:

1 2 & .
IF| < —R? + @R + — Z3, R
2a a 8a
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taking, ¢ < min {g, Z—OE}, and R small enough. Now, to prove the second item, we

introduce:

,=Z&mn), ZI,=Z(,n),
fa:f(g;o-)v .,F:,.:.,F(g,;d),

apply the mean value theorem,

/ L.
|fo- - fo-| < a|§8 Z3(€7 77726 77) ga%,lz?)(é‘aZﬂ?an”

1
< - ( sup 107 11 23] + sup 107 1 ,23] ¥ sup |O¢Z|+

@\ |ql11y 1,15 <R2/2 lal.| 111, Ta ] <R2/2 cers

+ 2| sup |8113 |> & =& < |&|+

lal,ITy 11121 <R2 /2

Y —ella?, 2a(¢, 7, 26)

1/¢~ 1~
<= =Zss+ 233+ 233R+232 & — ¢|R?
a \ 8 2 4

L

for R small enough, where we have used the Cauchy’s inequalities to bound the norm of
the derivative 0¢Z, according with:

R?/2

0T < 1o
S 10T| < s

¢er=
(see lemma 3.2) and this ends the proof of the lemma. O

Lemma 3.8. For ¢, ¢ and and R small enough, there exists a real analytic function h,
defined in N*, such that the equation,

(2 = wy + 1+ eg(o) + fL(g(a),n) + 2eng(o) + 03 25(9(e), L(g(0), ), 2n9(0)),
is satisfied identically by (A, n) = (A, h(A)). Furthermore |h(A)| < ¢R/2, for all A € N'*.

Proof. 1t relies on the fixed point theorem, and is formally identical to those of lemmas 3.2
and 3.7. 0

Thus, the (unperturbed) invariant tori described in theorem 3.1, can be parameterized
by (u, £25) belonging to a neighborhood of (0, ws). Nonetheless, we shall see that only those
tori with (u, {25) in a Cantorian subset will survive when the whole Hamiltonian (in the
sense discussed above) is considered. This is the result of theorem 3.9 stated below, but
previously, we shall introduce:
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(1) po, RO:
1
po = 5 min {p,n2}, R© =2M*(R), (3.2.25)

where M(R) is the bound for R, i. e., the term corresponding to the remainder in
the Hamiltonian (3.2.1) —and computed in the previous chapter—, whereas « is a fixed
(real) quantity 0 < o < 1.

(2) The domains D,(p, R),
D.(5,R) ={(8,z,I,y) e C>x C' x C*x C":
m 6] < 5, |2| <R, [T <(R)?}, (3.2.26)
with 2* = (2,) (s0 D.(5, R) = Da,1 (5, R)),
(3) For a given A > 0, the sets U(A), W(A) and V(A) given by:
UA) = {AeR*: |2y —wy| < A, || < A}, (3.2.27)

WA) = {A € UM) : 2 = wy+ e+ + 26 + FI(C) + DZ,(6,T(C), 26m),

= \/4772 + 2a€ + 2£01125(€,Z(€), 26n), with ¢ € T'(R), £ > 0} . (3.2.28)

v = {ce R < 4, i< Y. (32.29)

With the preceding notation and the results of the previous sections, we can enunciate
the following theorem, whose proof extends up to the end of the present chapter.

Theorem 3.9. Consider the real Hamiltonian H (equation (3.2.4)), in the domain de-
fined by the inequalities (3.2.3), D(M, p, R), where Z = Zy + Z3, with Z5 and Z3 are
given by (3.2.6) and (3.2.7) respectively. Assume, in addition, that the real coefficients a,
d appearing in the development of Z9 are a > 0 and d # 0. Then, for 0 < R < 1 small
enough, there exists a Cantor subset A C R?, such that for any A* = (u,2y) € A, the
Hamiltonian system H has an invariant real 2-dimensional torus with parallel flow, nor-
mal frequency given by pu and the second component of its vector of intrinsic frequencies
equal to (2. Furthermore, these invariant tori are elliptic (i. e., with purely imaginary
characteristic exponents) and reducible in their normal directions (that is, the first varia-
tional equations can be reduced to a system with constant coefficients in those coordinates
which account for the normal flow).

The Cantorian set A is characterized in the following form:

(i) for any R > 0 small enough, and A € A, the Hamiltonian H can be reduced, through
a symplectic change, ¥, depending on A and defined on the set D, (py, R® exp(—3py/8)),
into the (family of) Hamiltonians Hj(loo) =H oV, given by:

H = 60(A) + (209(4), 1) + (2, B(4)2)

(I,C(6; A)I) + (2, E(A)I) + H (6,2, 1,y; A),  (3.2.30)
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Here, the 2 x 2 matrices £, B and the first component of the basic frequency vector (2%00)

depends on the chosen A € A whilst H,EOO) contains terms of degree higher than two (in
the actions I = (I, I5) and in the normal variables z* = (x,y)).

(it) For 0 < R < 1 small enough, if we put A(R) = W(3¢R) N A ~see (3.2.28) for the
definition of W(A)— then,

meas <W <%ER> \m(z%)) < constant - M®?(R),

being the constant on the right hand side independent of R.

(iii) (0,A) € T? x A — ¥(0,0,0,0; A) is a parametrization of a Whitney reqular
Cantorian manifold of invariant tori of H which can be completed to a C* reqular in A and
analytic in @ manifold, in such a way that the measure of the extension of the Cantorian
manifold to this reqular-analytic manifold is of the same order than the measure of gaps
coming from the elimination of (basic) frequencies in the KAM process. Nevertheless, only
those points on the Cantorian manifold will correspond to tori of the Hamiltonian H.

Remark 3.10. In addition, we note here that, for every A € 2, the claimed invariant torus
corresponds to z = I = 0, and, indeed, the flow of Hj(loo) restricted to that torus, is parallel
with frequency given by £2(°). It is also obvious, from (3.2.30), that the first variational
equations in the normal directions, without varying the actions, i. e. taking I = 0 fixed,
are z = J;Bz. This last precision on the variation of I can be skipped if one first removes
the coupled quadratic term (z,E(A)I), by means of an appropriate symplectic change.
In particular, we can consider the transformation (8,z,I,y) — (¢, X, K,Y), depending
on A and defined through:

0=p+B(Z:A), s=X+XK:A), I=K, y=Y+YK:A), (3231
where Z* = (X,Y’), and the functions @, X', ) are defined by:

X £(A)Y

2(2:4) = F-w(a) + L w4
X(K; A) = 5%‘) (w(A), K, (3.2.32)
VK A) = —5-(w(4). K)

We observe that this transformation is symplectic, since as can be immediately seen, is
obtained as the time-unit flow of the (family of) Hamiltonians,

ka1 (o+520) w0,

Here, £ is considered as a function of the basic frequencies, A* = (u, £25) —see lemmas 3.7
and 3.8-, A} =i (see (3.2.19)) whereas w* = (&1,&,1), (i. e., the components of w are
those of the first column of the matrix £(A), see (3.2.38)). Then, the change specified



108 Chapter 3. Persistence of the 2D-family of bifurcated invariant tori

by (3.2.31) and (3.2.32) transforms the (family of) Hamiltonians (3.2.30) to®®):

159 = 0(4) + () (4), K) + (7, B(A)Z)
+ %(K, C)Np; A)K) + H™ (p, X, K,Y; A), (3.2.33)
being,
2(4)

C™®) (5 A) = C™) (5 A) +

A(A),
z

10, X, K.Y 4) = HE) (@ + (25 4), X + X(Z:4), K.Y + Y(Z; ) 4) +

1
LR (€ (2 14) i ) ).
and where (to simplify) we have introduced the matrix A(A), as:
Aii(A) = wi(A)w;(A),  di,j=1,2.

Therefore, the family of Hamiltonians (3.2.33) have, for each A in the cantor set 2 (see
theorem 3.9), an invariant torus at the origin (more precisely at Z = K = 0), with
parallel flow determined by the vector of intrinsic frequencies £2°°(A). Furthermore, in
the normal directions, the variational equations around these tori are Z = J,BZ , and
hence they are normally reducible. '

In what follows, and up to the end of this chapter, we shall develop a proof for
theorem 3.9. The starting point is to pick values (supposed “good”) of u and (2 and
expand the Hamiltonian (3.2.4) around the corresponding unperturbed torus. This will
lead to a more suitable (from the point of view of the applicability of KAM iterative
schemes) Hamiltonian.

3.2.3 Expansion of the Hamiltonian around the unperturbed in-
variant tori

To apply KAM methods, it is convenient for us to put the Hamiltonian (3.2.4) into a
more suitable form. In particular the proof (of theorem 3.9) follows similar ideas than
those in Jorba and Villanueva (1997a): we replace the initial Hamiltonian (see (3.2.4))
by a family of Hamiltonians, Hj(lo), having as a parameter the vector of basic frequencies
A. The Hamiltonian Hj(lo) is obtained from H by placing at the origin the (unperturbed)
invariant torus of H, (see (3.2.5)) with vector of basic frequencies A, and arranging the
corresponding normal variational equations (for the unperturbed part H,) to diagonal
form. So, if we put R = 0 in (3.2.4), then Hg)) constitutes a family of analytic Hamil-
tonians having at the origin an invariant torus with vector of basic frequencies A ({2, is
known as a function of A through (3.2.22)).

(3)To check this transformation, it is useful to take into account that the matrix £(A) can be expressed
wi(A) —EB) y, (A)

as E(A) = <w2(A) EA(’J:)wz(A)) See (3.2.38).
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Our purpose is to perform a sequence of canonical transformations on Hj(lo), depending
on the parameter A, and to analyze for which values of A (in a Cantor set) we can
overcome the influence of the non-integrable remainder R to obtain a limit Hamiltonian
having also an invariant torus at the origin with vector of basic frequencies A (of course,
with a different (). The “regularity” with respect to A of the successive transformed
Hamiltonians is important, because it will be used to control the measure of “bad” and
“good” parameters A along the iterative process. In Jorba and Villanueva (1997a) it was
used Lipschitz dependence (which is enough for measure purposes, see also Jorba and
Villanueva, 1997b). However, we have preferred here to follow the original idea in Arnol’d
(1963a,b) and consider analytic dependence with respect to A. This forces us to consider
a KAM process with an ultra-violet cut-off (see section 3.3 for details). We point out that,
in spite of this analytic dependence, the limit Hamiltonian will be defined in a Cantor set
of the basic frequencies A and so the regularity is no longer analytic; in fact, is C* in the
sense of Whitney (see Broer, Huitema and Sevryuk, 1996, for a more precise description).

In few words, to begin we first select a frequency, expand the Hamiltonian around the
corresponding initial torus and, second, we introduce a linear canonical change to diago-
nalize (the variational equations in the normal directions). These two steps are equivalent
to directly apply the symplectic transformation (6, 92,x,f1,f2,y) — (01,05, q, 11, I, p),
given by:

—~ —~ A 1
q:§—|—x—iy, L=ZT()+ 1, L=2n+1L, p= —+x—|——y, (3.2.34)
A 267 " 2

where A\, = ip (see (3.2.19)) and, though it has not been written explicitly in the equations
above, the parameters £, n must be thought of as functions of the basic frequencies p and
(2. Note also, that the “diagonalizing” change,

B-6 10 e
2¢ 2

is actually a complexification of the real Hamiltonian (3.2.4): the normal variables ¢, p
become complex even though x and y are real, for the transformation involves A, which
is a purely imaginary quantity. Even though the tori we finally obtain will be real tori
(see remark 3.29 for more details). In this way, one obtains a family of Hamiltonians
which can be cast into,

HP(0,2,1,9) = 60(4) + (20, 1) + (= B(4)z) + S(T,cO(A)])

+(I,E(A)z) + HY (2, I,y; A) + HO(0,2,1,y; A). (3.2.36)

Here, z* = (z,y), ¢ = {(A), H! holds terms of order greater than two (these are the
terms in the normal form that we do not write explicitly), H(® is the transformed of the
remainder R (see (3.2.4)), whereas

6 = Hol 29 = 8, H, c(A) = a7 1, Ho (3.2.37)

|T<(A) , “ Te(a)
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(for 4,j = 1,2), and the matrices B, £ given by,

§(A) 92
0 Ay a% ,qHO‘T T AL af ,LIHO‘T
B(A)=<A 0 ) £(A) = 821 N N ) 0] (3238)
+ Iz,q O‘T((A) Ty YIag 0‘7—((11)

We point out here that, if one considers Hg)) for a fixed A and skips the remainder
H ), then IT=0and z =0 corresponds to an invariant two-dimensional elliptic torus
with vector of basic frequencies A and reducible normal variational flow given by the
(complex) diagonal matrix J;B8. However, we also remark that, here, the “neutral” and
normal directions are coupled through the matrix £. In fact, we can eliminate £ by means
of the symplectic change described in remark 3.10 —equations (3.2.31) and (3.2.32)-, but
due to the close-to degeneracy of the problem it is then difficult to control the domains
where the change is well-defined. Hence, we shall keep £ through the iterative process
even though it complicates the solvability of the homological equations. Moreover, note
that, for the change (3.2.34) to be well-defined and analytic, we need that Ay # 0. As
we are assuming a > 0, then, using the reality condition £ > 0 it is not difficult to check
(see (3.2.19)) that, if R is small enough, then the expression inside the square root defining
A, is positive. However, as we want to work iteratively with analytic dependence with
respect to the basic frequencies, we are forced to complexify &, and to allow values of &
with Re& > 0 and Im £ small. This complicates the control of the non-vanishing character
of Ay, which needs additional assumptions on the size of Re£ and Im €.

Let, as in the statement of theorem 3.9, M(R) be the bound for the remainder com-
puted in chapter 2 (see theorem 2.29). Thus ||,z < M(R). Suppose now that we select a
domain in the (complex) space of the basic frequencies p, (25, such that the corresponding
values of the parameters £, n satisfy:

320M/® < Re€ < gRZ, IRen| < gR, (3.2.39)
and for their imaginary parts

Im &] < 4M“, Imn| < 4M¢, (3.2.40)

(these bounds are motivated by the sets introduced in page 104) where 0 < a < 1 is
the exponent introduced in (3.2.25), and fixed later, in section 3.4. Then, in the domain
defined by (3.2.39) and (3.2.40), we can control A, in the following way.

Lemma 3.11. Consider the definition of A\ in (3.2.19) with the coefficient a > 0 and
values of &, n satisfying the restrictions (3.2.39) and (3.2.40). Then, if R is small enough,
the square root defining Ay is (taking the appropriate determination) well-defined and the
following bounds hold:

< xilél, ‘i‘ <X xsMO? <A < xR, (3.2.41)

‘I A

where the constants x1, X2, X3 and x4 do not depend on R.
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Proof. Let us define:
B(€,m) = 011 Z5(€, Z(&,m), 26m),
§(€,m) == 4n” + 2a + 26h(E, 7).
Then, we have:

A+ =+iVa(€n),
where /- - - means now the principal determination of the square root. Moreover:

Re §(€,7) = 4 (Ren)® + 2a (Re €) + 2Re (E(Reg, Re 77)) Re¢

— 4(Im7)? + 2Re (77,(5, 1) — h(Re, Ren)> Re& — 2Im (77,(5, 77)) Imé¢,
and

Im §(€,7) = 8Rey Im 5+ 2alm € + 2h(€, 7)Im £ + 2Im (B(g, 1) — h(Re€, Ren)> Re€.

So, using that (see (3.2.10)):
||ai2,jza||R2/2 < 23;2R2, ||3?,j,kz3||R2/2 < 23;3, with 7,7,k =1,2,3,
and that,
R? )
|Z(§777)|§77 if (5777)€F*

(see lemma 3.2), one has —for R small enough—, the following inequalities:

IRe §(&,m)| > aRe & + 4 (Ren)” — c,oRM°(R),

Tm g(&, n)| < 2aIm &[4 ¢ RM(R),

where the constants ¢;yp and c¢;; are independent of R. Thus, it is clear that

Vi€ n) = VReg(€n) x /1 +imen,

where |E‘;z| < 1, if one takes R sufficiently small. From here:

‘ ‘ |§|1/2 | | |§|1/2 |Re§| + |Im§| < |§|1/2\/ Re€+ |Im€| < X1|§|1/2

19] = Re g(&,m) aRe — cjpRM*(R) —

again, if R small enough. In the same way we can derive the inequality |%| < x2 and
also,

19(&,m)| = [Re §(&n)]
> 4(Ren)* + aRe& — c;oRM(R)
> constant - M“(R) (if R small enough)

and
3(€,m)| < constant’ - R?, (if R small enough)

from which inequalities [\, | > x3M*/? and |\, | < x4 R follow. This closes the proof of
lemma 3.11. O
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Remark 3.12. We note that, if one takes ¢* = (£, n) € T'(R), with £ > 0 (and a > 0) the
inequalities,
‘)\i‘ < i€z, ‘)\i‘ < X2 Al < xaR (3.2.42)
+
can equally be proved, provided 0 < R < 1 is taken sufficiently small. We stress that no
lower bound on £ are required for the above inequalities to hold. If further, one asks for
example & > 16 M*(R), then,

IA] > xsM?(R) (3.2.43)
(again, for R small enough). 2

Let, from now on, M (R) and p(® denote:
MO(R)=M(R),  p© =py, (3.2.44)

with py the one given in (3.2.25). Then, we | can formulate the next lemma, which states
that the norm of the “perturbative” term H( of the transformed Hamiltonian (3.2.36)
can —in D, (p?, R®)- be estimated using the same bounds obtained in chapter 2 for the
remainder R in the “original” Hamiltonian (3.2.1).

Lemma 3.13. Taking ¢ € I*(R) satisfying the restrictions (3.2.39), (3.2.40) and assum-
ing R small enough such that

M®(R) < =R, (3.2.45)

A~ =

the remainder H® of the Hamiltonian H©® i n (3.2.36) is also bounded by M (R) =
M(R), i. e.:
[HO 0 gor < MO(R), (3.2.46)

provided R < 1 is sufficiently small.
Proof. Taking into account the symplectic changes (3.2.2) and (3.2.34) one may write

the coordinates ¢, q2, I1, p1, p2 in function of 6y, =, I5, y and also depending on the
parameters & and 7. Writing them up explicitly,

_ §
AL 1 iei®2 (260 + I
¢ =e f—l-l“—i <2—§l‘+ y>_|_ 1€ (&7 2)7
2 §+x—ﬁy
+Il, (3.2.47)

_ e—102 5—'—{[ — iy <_l' + = 192(2577"‘ -[2)
At K §+fc——y

P e e a— Ly

A
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As ¢ satisfies the restrictions (3.2.39), and (3.2.40) we have:

VA < |vRe] x

14+i—
+1R§

|m§| / L A1/2
< y/Re& x |R §| R,

and then, from (3.2.41) in lemma 3.11, one derives the bounds

3.
T — iy <2 <1 + —C%X1R> M%(R), (3.2.48a)
+ lo,r® 8
Ay o1 1 xa , M*(R)
A+ < IRM® + —2M* = [ X4 R
26772 o = 64Ma 3 (32+ R
L /x4
<= 1) R, 3.2.48h
<5 (5 (3.2.480)

where, in the second, it was used that
€] = [Reg| > 32M7, (3.2.49)

—see (3.2.41)-, together with the assumption M®(R) < ;R. With the bounds (3.2.48a,b),
and (3.2.49) it is straightforward now to apply lemma A.9 of appendix A to estimate the
square roots appearing in transformation (3.2.47). Indeed, assuming also R small enough
to make for example 22'/%x; R < 1, one has:

£ 3172 1 L
f - - 21— — 1+ =¢12
‘ E+x )\+y g¢ 16 +8 xiR) | R

IN

0,R(0)

< 281/2 (2 — \/9 R,
and
1 1/1Vel
{Fo— ﬁy 0,R(® \/1 — 15 (1+ 5" R)

<Lx\/§
ST

‘eiGQ‘ © 0 — ep(O) < e%an — \/5,

In addition, we shall use that

3 <é ) 4020
+—<-c”"R|=zR+4M*(R) | + ————
2| VE| I m <SR (S (B)) + 5ot

3/\1/2 ¢ 1 2
e “R+4M® M2V R
{4C <2 " ) * 42 ’

IN
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(since p® = Lmin{p,In2} < $In2, see (3.2.25)), to get following bounds for |g;|,© g,
il 0 ro, J = 1,2 and |T1] 0 go):
P P

3V2._. 7
1¢1]p0,r0); [P2] p) rEO) < TCI/Q (2 — \/;> R <R,

(we recall that is ¢ < 1)

xa  M*"
G2 0 RO, P10 REO) < (3—2 + f) R?
8 [3p(C 1 )
— 3= “R+A4M* ) + —=M*?*t R< R
+ 11 {40 <2 + ) + o )
(for R small enough)

11| 0 gy < |Z(C)| + 4M>*(R)

2
< % +4M**(R) < R?, (for R small enough)

where, in the last inequality it has been taken into account that |Z(¢)| < %2 whenever

¢* = (&,n) € T*(R) —see lemma 3.2— and f*(R) C I'*(R). Therefore, we have seen that
for R < 1 small enough,

lq|,0 r0 < R, 11| o) o < R?, 1P|, ro) < R,
so, immediate application of lemma A.4 of appendix A leads to the inequality,
[HO 0 por < [Rlyr
and hence, for H©® we have,
|H® o0 ro < MO(R),

which was the desired result. O

Some useful bounds

Prior to set up the iterative scheme, it is convenient to bound the different elements of the
Hamiltonian H®. To account for its dependence on the set of the frequencies, we need to
introduce an appropriate norm. Given a function f(¢) defined for ¢ € £, £ C C" for some
n, and with values in €, C" or My, 5,(C), we define || f||z = sup,z [f(#)|. This definition
can be extended to analytic functions depending on the parameter ¢. So, if f(6, ¢) or
f(0,z,y, p) are, for every ¢ € g, analytic, 2m-periodic on @ and defined on the complex
strip {6 € C" : |Im 0] < p} or D, ,(p, R) (see notation in section A.1 of appendix A), we
may introduce, || f[|z = sup,ez|f[, and || f||z = supyeg [fly,r respectively. On the other
hand, it is clear that all the properties of the norms |- |,, |- |,z (see appendix A) are

translated directly to || - and || -

||5,p ||5,p,R‘
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Let £© C N*(R)\{(1t, 25) € N* : Rep < 0} be the set of (complex) basic frequencies

o

such that if A* = (u, £2,) € £©), then the corresponding &, 1 through the map:

s h(p, £2
n h(lu’a QZ)
satisfy the restrictions (3.2.39) and (3.2.40). Note: here g and h are those of lemmas 3.7
and 3.8 respectively.
Therefore, if the components of the matrix C(® in (3.2.37) are developed explicitly,
the following estimates can be gleaned:
€570 o < 0]+ Zaa R,
||C§?2)||é(0>,p(o> < |f| + Z32R%, (3.2.51)
€521l o < M7 (1 + || M® + 230 R*M®),

and similarly for the components of £, appearing in (3.2.38),

€180 < ||+ 23;232,

€1 2]|50 < xa87%(|d] + 23;2R2)R,

€21 |g0) < M (R + |e|M* + 2/,7\3;2R2M°‘),
|€2,2] 200 < x1(1 + |e| R+ 23;2R3),

(3.2.52)

Remark 3.14. We have used the norm ||+ [[¢w) o for the constant matrix C(*), because the
matrices replacing C(*) along the successive steps of the iterative procedure will depend
on 6. 2

Next, we are going to compute estimates of Y. Before, let us denote by Z3(z, f, ),
the transformed —through the change (3.2.34)—, of the term Z3(¢, I') in Hamiltonian (3.2.4).
Then, using lemma A.4 and the properties of the norm || - ||¢© 0 g, it can be shown
that, for R < 1 small enough, ||Z5(z, I, Y) || 0 g is bounded by a quantity indepen-
dent of R. Moreover, if Q = x — ﬁy, then the terms of order higher than two in the

. 12
quotient -2 can be expressed as
4q )

> Q)l_ Q <Q>2
&n ((1—1—5 1+§+ ¢ +
-1 = -1
+nf2(<1+%) —1+%>+i—i(<1+%> —1), (3.2.53)

but, ||Q/§||g(0),R(0) < (14 x:1R)/8, and if R is sufficiently small, ||1 + Q/§||g(0),R(0) > 3/4;

hence (3.2.53) is, for R small enough, bounded by a quantity independent of R. Of course

(0)

the same can be said for the terms in H'” coming from the product ¢p?® in (3.2.4) and

consequently for 7. To summarize, the foregoing arguments show the existence —for R
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sufficiently small-, of positive R-independent constants: a; < Qia, mﬁ“’, s, and 7 such
that,
ay (M) < A < @,
1C| g0y 0 < (M)~
€| g0 < Ma(M©)~,

| H |00y PO RO) S (),

3.2.54
3.2.55
3.2.56

)
)
)
3.2.57)

(
(
(
(

3.3 The iterative scheme

Now, we are going to describe the iterative procedure used to construct those quasi-
periodic solutions (in particular two-dimensional tori) we are interested in. It is based on
the early idea of Kolmogorov, see Kolmogorov (1979); Benettin et al. (1984), or chapter
5, sec. §2 in Arnol’d (1988) for an overall description —though the method outlined in
this last reference actually corresponds to the Arnol’d (1963a,b) construction—. Thus,
taking the initial Hamiltonian H®, we apply a sequence of canonical changes given by
the time-one flow of a suitable generating function S (see section B.3), in such a way that
it removes from the Hamiltonian those terms obstructing the existence of the invariant
reducible 2D-torus, with a vector of basic frequencies given by A. But that is possible
because, quoting Arnol’d (1988)—: “this procedure of successive coordinate transformation
actually possesses the remarkable property of quadratic convergence”. Let us now show
how these general ideas are developed in the problem on hand: for this purpose we proceed
to describe a generic step of the iterative process. Consider thus a Hamiltonian H® of
the form (3.2.36), and a generating function S (to be determined). Furthermore, we shall
split H©® —i. e., the piece of H® holding the “obstructing terms™—, into:

~

O = 39, + A,

where I—A[(>0])V,0 stands for the terms in Taylor-Fourier expansion of H© with harmonics of

order |k|; > N. To bound the contribution of this truncation in the size of HO = fI(O)oq/)f
(see below), we point that, for 0 < § < p©,

||H(201)v,e g p0—5.20 < H Ol g0) y0) g0y €xp(—0N). (3.3.1)

(which follows from the exponential decay of the Fourier coefficients). If, plus encore, we
define

A9 =g _FO OO _FO gy g = {79, s} (3.3.2)
Then, by corollary B.22:

HO — o) _ ﬁ[g’}w +{H® 5} + HD, (3.3.3)
being,
HO = BS o+ [ (H + (1 - 0{H, 5}) o v dt (3:3.4)



3.3. The iterative scheme 117

and we take N large enough to make f—.ﬂf}ve “of the same order” as the integral term. On

the other hand, the generating function S, must be such that the H") will take the same
form as H(® in (3.2.36), i. e., it must satisfy

HO — T+

/—/H
H/—/
I

D

&

1
(z,Bz) + 5 (I,c(O)I)+ (I,Ez)+HY, (3.3.5)

(the hat in the action variables has been dropped). Moreover, note that the matrices B, £

are left invariant, whereas 21" = (QEI), QSO)). Now, to write the homological equations
in order to determine the generating function, S we expand the Hamiltonian H® in the
form,

1
H® = 0.(0) + (b(6), 2) + (c(8). I) + (2, B(0)2) + (I, E(0)z)
1
+5(L,CO)) +B(6,2, Ly), (3.3.6)
where we have not written explicitly neither the A-dependence nor the (0) superscript

in the different parts of the Hamiltonian. From this last expansion, we introduce the
following notations [H©], ) = B, [H®](1,) = E and, given a function f(0,z,1I,y),

27 27
= 21)2 JI f(0,2,1,y)db,dbs, (3.3.7)

00
{fte=1—(De (3.3.8)

From the decomposition of Hamiltonian H(® in (3.2.36), we have that {a,}g, b, ¢ — £2,
B—B,C—C and E — & are all of order O(H®). So, if starting from Hamiltonian
H©® we were able to remove {a,}s, b, {c1}g, co — {2, keeping the matrix B unchanged,
then we shall obtain an invariant torus with the same basic frequency A (additionally, we
want the matrix £ to be held fixed). Hence, we shall transform H(®), iteratively, by the
successive application of generating functions of the form

S(0,7,1,y) = (€,0) +d.(6)+ (e(0), ) + (£(8), I) + % (2,G(0)2)+ (I, F(8)2), (3.3.9)

where € € C?, (d.)s = 0, (f)¢ = 0 and G is a symmetric matrix. The transformed
Hamiltonian is H) = H©® o ¢7. Now, we may expand H() in identical way as H©,
keeping the same name of the variables, but adding the superscript (1) to a., b, c B,
C, F and U. Then, we ask {a{"}g = 0, 8" =0, {{"}g =0, &) — 2, =0, E® = ¢,
B(lz\: B. This is not possible in general, but can be achieved up to first order in the size
of H®. To show how, we write those conditions in terms of the initial Hamiltonian and
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the generating function, S. This leads to the following equations:

who-((55) 2) -0 fea)

Oe . [(0d\" B
b_a_BQ E€-¢ (80) +BJe =0, (eqz)
{CI}B + 5* af ad* * .
(02—(22 a0.(2+C’ £+ 20 +E&Je =0, (eqs)
~ oG
B(0) — B—%Q—l—BJG GJB =0, (eqs)
~ OF
with the following convention:
0G > 0G;
-2 - 2 Qna
(80 m e 20,
(the same for (3F Q)]m, Jym =1,2). (eqi)—(eqs) are the homological equations, where,

od. od,
0 = — Cfol) &+ - C§°§ &2+ — &1 (e2)g +E12(e1)p, (3.3.10)
891 ") 892 ]

and E, E are the matrices given by,

. [ Oe de oH" od\*\ o
- (G5) - Soe- 2 (e (%)) - 200e] . wam

- e of o od. \*\ oHY
_p_co () _°9 g =)o) - 2
E=E-C ( > E+EIG~ | =2 (“(ao)) e , ).

00 00
(3.3.12)

Remark 3.15. Note that, if S is defined from the solutions of these equations, (eq;)—(eqs),
then it verifies (3.3.5) if we skip the term ?Iﬁ“}v’a. If we want (3.3.5) to hold with the
cut-off in the expansion with respect to 6, we JTUS'C have to replace the expression of H(®
in (3.3.6) by the analogous expression for H(® — I—A[(>0])V p- Moreover, by the linearity (in the
harmonics of S) of (eq1)—(eqs), it is easy to realize that (ignoring for a moment the small

divisors involved), it should be S = O(H®). Then, the integral term of (3.3.4) is clearly

of second order in H( ), whereas H(zj)v,g can be made —taking a large enough number of

harmonics, see (3.3.1)—, of the same order of smallness. Thus, H® = O((H©)2). Hence,
the quadratic convergence of the method follows. It is precisely this property which makes
possible the control of the small denominators (on a suitable nonresonance set). 2



3.3. The iterative scheme 119

Prior to solve completely the homological equations, we want to discuss how to fix
the vector €, as this is the most involved item when solving such equations. We point
out that the vector & is used to adjust the “averaged part” of the equations, assuring the
compatibility of the system when € is chosen appropriately. As we want {2, and p not
to change from one iterate to another, then & must satisfy the linear system formed by
the averages of: (eqy), the second component of (eqs) and the first row, second column
component of the (matricial) equation (eqy). After developing those terms in the brackets
[+ J(z,2) and [---]12) of (3.3.11) and (3.3.12) respectively, one obtains, explicitly,

(ble — 7€ — BJ(e)g =0, (eqy)
(C2)o — 25+ &1 (€2)9 — E22 (€1)g

od, od,
- <C§01) <§1 - 06, ) >o - <C§02) <§2 - 892>>0 -0 (€43):
PO ad, PO ad,
B _ _ T _
(Bi)y — Bua < 1o 0.0 (6 55 {3102, @0 (& 5) 0
83H,E0) 33]’[,50)
+ <8T8y(0’ 0) ) (€2)g — W(e’ 0) ) (e1)g

3 77(0) 3 77(0) -
+ <{%(0,0)}0 {62}0>0 - <{gx%;2(0’ 0)}0 {61}0>0 = 0. (€dq)1,2

Hence, we get the linear system,

(A (<f> ) =b (3.3.13)

(note that, if solvable, the system also furnishes the values of (e;)g and (es)g) where the
matrix A is given by,

=& —&1 -y 0
" —Eip —&ap 0 Ay
AV = (3.3.14)
_Cﬁ)?) (6) _Cg,)z) (0) —E99 Ean
o1 _o°u OHL) o OH

(6,0)

~ 3T020y ~azay® (0:0)  Frag5y (6:,0)



120 Chapter 3. Persistence of the 2D-family of bifurcated invariant tori

and the components of the independent term f are,

bl - - <b1>07
b? - - <b2>07
ad, ad,
hs = — (c2)o + 2+ <C§01)(0) 90, + 0502)(0) 392 >0
OH ad,
hi= = (Brag + Bis+ <8118x8y 391 > + <8128x8y(0 0) (aez> >0

83H>£0) 83 )
+ <{aTay2(0,0)}o {61}0>0 — <{ aan (@, )}0{62}0>0.

Remark 3.16. It is important to stress now that, to solve (3.3.13), the function d and
both, {e1}g, {e2}e are previously required (because they play in the r. h. s., ), but all
them may be computed from the two first (eq);, (eq)s of the homological equations set.
Once (3.3.13) is solved, and hence &, {(e1)g, (€1)g, exacted, all the terms involved in (eqs),
(equ) and (eqs;) become determined, and these equations may be solved in f, G and F
(see below). 2

Remark 3.17. The matrix A (and the averaged equations below) has been written as
a function of the angles. Actually, for this initial step, C(%) does not depend explicitly on
@ and, on the other hand, 7Y in (3.2.36) comes from the the terms gp? + i—% + Z(q,I)
n (3.2.4), where 0 neither appears. However, as it has already been noted in remark 3.14
(but concerning C¥)), the matrices replacing A® along the iterative procedure, will de-
pend on 6. Iy

Hence, it will be necessary to see that the matrix <A(0) >0 of the averaged system (3.3.13)
is not singular and (in order to bound the solutions of the homological equations later
on) to derive suitable estimates for the norm of its inverse. In fact, we can expand

<A(0)>0 = <Ago)>0 + <A,(k0)>0, where <A(()0)>0 is the constant matrix,

—d g —e Ay 0
£d —14 Le 0 At
<At()0)>0: A—+f —A; A+c — L+ Le —2+e )
‘ 1 61> ' ' ¢ 2 g2 )\5 6¢
zf2,1,0 f201+§/\Jr §+%—6f3,0,0 (K) ,\%gﬂLz—z —Zfa,o,o
and,
O(R?) O(R?) 0 0
o | o goum 0
0\ _
Wha=| omy  om)  fomy  om) |

Loy Lomr) (£) omy) Lo

here, £, n must be considered functions of A, and note also that the entries in (Ai0)>9 are all
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of order™® O(R). First, using the expansions above together with the estimates (3.2.54)—
(3.2.56), and (3.2.39) we can state the bound,

1A g0 00 < RS (M), (3.3.15)

and next, computation of the determinant gives,

det(A®)) = ——— (—adé + EO(R)),

M€
but it was assumed d # 0 and a, £ positive, so the above expression leads to,

ald|
2[A4]’

| det(A®),| >

_ _(0)\3 17— 30
for R sufficiently small. Therefore®: || <A(0)>01 [ iii]"/;; Al 50 we can put:

1{ADY oo < T (M©@) =52 (3.3.16)

To solve the homological equations, we expand them in Fourier series and equate the
corresponding coefficients so formal solutions are obtained. Next, we ought to derive
bounds of these solutions, but, as we shall want to use them iteratively, it is worth
clarifying which bounds change from one step to another, and which ones are independent
of the step. Following Jorba and Villanueva (1997a), we take fixed positive constants, m;,
ms, T3, UV, as twice the corresponding initial ones mﬁ“’, fﬁgo), mgo’, ()
the description of the process, N will denote a quantity depending on &y, Qa, My, Mo,
mg, M3, U, po and 7 (see the Diophantine conditions below). To simplify the notation,
N will be redefined along the description of the iterative step to fulfill a finite number
of conditions, but, once determined, it does not vary in the next step; moreover, in the
derivation of the bounds, those terms changing at every iteration are marked with the
superscript “(0)”. Hence, by comparison of (3.2.36) and (3.3.6) and using lemma A.2,

. Furthermore, in

2M©

||a. — d)(O)Hg(O),p(O) < M(O), IIE — &l 0 < (R(O))S’ (3.3.17)
M© 3O

||C_ ‘Q(O)HE(O),/}(O) S (R(O))27 ||B - BHE(O),p(O) S (R(U))27 (3318)
MO 500

||b||g(0),p(0) < RO I|C — C(O)Hg(O),p(O) < (R(U))4 (3.3.19)

Moreover, to prove the convergence of the expansion of S, we need to control the different
small divisors involved in the process. With this purpose, we shall take, basic complex

(Y)The symbol O(R!) is here introduced in the usual “big O” sense, i. e., given a function f, defined on
ﬁ(p,R), we say that f is O(R!) if, for R sufficiently small, there exists a constant , independent of R,
such that: |f|,r < KR!

(5)Given a n x n nonsingular matrix, A, let A to denote its adjoint matrix (i. e., the matrix whose i-th
row j-th column element, A; g 4J=1,...,n,is the adjoint of the corresponding entry of the matrix A.

Then, |4; ;| < (n — YAl and the inverse, A~! = A% s0 |[AY o < < PIALT

th | det A
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frequencies A* = (j1, ;) in a set £ C €2, which will be fully specified later, in sec-
tion 3.5.1, but for now it is enough to characterize £ as the set of those frequencies in
£ which, in addition, satisfy:

(0)(R)
k|7

li(k, 2O + 0, | > 2 (3.3.20)
for all k € Z2\0,0 < |k|; < 2N©; ¢ € Z, 0 < |¢] < 2; with 7 > 1 and certain v(O(R) > 0.

We stress that only the first component of the vector §2 changes at each step. One expects
the measure of £\ £1) to be of the same order of H®, so we take v = (M©))e,

Remark 3.18. We shall accept that,uif EW is the set of basic frequencies taken at the j-th
step of the iterative scheme, then £9) C £U~D for j = 1,2,... This will be justified in
section 3.5.1 (see remark 3.25 there). 2

Remark 3.19. Before going on, it is important to note that, though we take, 23 1)v(0> 02 nd

not the whole H (so only N© harmonics appear in a,, ¢, b, C, B, E), the solutions d,, e
of (eq;), (eq,) are “recombined” in the last three equations with terms that —beyond the
first step of the iterative process—, contain harmonics whose order can be proved to be,
for R sufficiently small, lesser than N . Then, looking at the homological equations it is
easy to realize that the order of the harmonics involved (and hence in the denominators
of their solutions), can be as twice N(©. That is why, in (3.3.20), the | - |; norm of
the integer vector k is bounded by 2N and not simply by N©. In any case, at each
step, we deal only with a finite number of resonances, so the interior of the sets of basic
frequencies £, defined for the first, second and so on steps —and satisfying (3.3. 20) with

the superscrlpts (1) and (0) changed to (j) and (j — 1) respectively for j = 2,3, . is
not empty (as would happen if all the harmonics were considered). This method is known
as the “ultraviolet cut off” (see Arnol’d, 1963a, for the first example). 'y

To bound the solutions of the different homological equations we use the lemma A.1,
with 6(©) (M (0))0‘ as the value of § in the different estimates. In order to simplify, we
assume p(® — K§©® > po/4, where K € N is a fixed integer to be determined at the
end of the descrlptlon of the present step. Furthermore, it will be also assumed that
(M) < RO < 16) Then, one can solve (eq;) — (eqs) in the form:

(eq,) For d., we have

1o = Y e (k.6

0<|k|1<N©® 1<k’ )>

then, by lemma A.1l with the Diophantine condition (3.3.20) in mind, one derives the
bound,

< ]/\}(M(O))lfafa'r‘

o\ el o
d* o < P
e e

(eqs) Let us introduce:
~ od,\"
b=4-&" b 3.3.21
U ) o), 6321

(6)More precisely, we take R(®) = 2(M ()™ —see (3.2.25), and then at every successive step, n, one
must check that: (M(™)* < R(™ < 1 (see section 3.4).




3.3. The iterative scheme 123

then,

b 1 .
{ejto = : - : exp (i(k, 8)) , for j = 1,2,
J 0<k¥N(0> i(k, 2O) + (=1)i+1),

hence in the same way as before,

1 0)\ — T 1 ~
Idallew oo < (71 + (e ) =17 ) Bl s

To bound b, we take norms in (3.3.21), use the first inequality in (3.3.19) and the third
item of lemma A.1,

~ MO ldill g0y 050
. o (0) —Q 3 P 4
||b||5(1),p(o),25(0) < 7 0) + 2o (M) 50 exp(1)

m N(M(O))lf?)afcm'

2m2 =~
exp(1)

< [1+ 2ma N (M(O))l—?)a—cm"
exp(1)

< (M(O))lfa +

Therefore,

1 T T mQN
v < 1 1 M([]) 1-4a—2at
Hedollza oo —z500 < <a1 * (exp(1)> ) ( ! eXp(1)> e

SO we can write,

|| {e}e ||£‘(1),p(0)735(0) S Hl (M(O))1*4a72ar,

with the obvious definition of II;. In fact, we want to bound e. As |le[|z1) 0 _s50 <
{e}ollz) o —350 + [[{€)0ll20) y0 _350, it remains to bound [[{€}elz1) H0)_350). Let us
denote by ¢* = (&, (e)g) the solution of the averaged system (3.3.13). Bounding explicitly
the components of the vector b,

M©)
||h1||é(1)7 ||h2||5(1) S R(U) )
MO od.\ "
v < c© *
e < gy + | (56) .o,

-l 00
(p© — ) exp(1)
7 N
< M(O) 1—2a+L M(O) 1-2a—art
< M) Po exp(l)/4( )

< HQ (M(O) ) 1—204—047’7
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3M© 20 ||od, 20
||h4||g(1) S (R(O))2 + (R(U))4 % 5(1)0+W“{e}0“5(1),0
3M© N 2

(M(O))172a7a7' + Hl (M(U))174o¢72a7

<
= RO T (RO)Texp(1)/4
S H3(M(0))1—7a—2a7’

(RO

we arrive to the estimate:
1Bz < H4(M(0))1*70672a7-,

where Iy, ..., I are quantities depending on @y, 7, My, Ma, po, V. Thus, by (3.3.16)
1¢1le0) = 1CAD)g (AP o¢ |0
< A g LA oC [l gy < TsTLy (@)1 100207,

which, in particular, implies:

1€]l g0y < T5(M©@)1=1007207 i@y sy < (M) 1710020, (3.3.22)

(IT5 depending on the same constants as IIy,...,II; plus T3). So, with N conveniently
redefined, R

el gy por gy < N(MO)H-10a2er, (3.3.23)

(eqs) We introduce ¢, and ¢ by:

T ( {eite ) ,
co — {2y
c={¢}g —CO <g + @Cé”‘)*) + <c<°> <g + (%‘z‘>*> >0 +EJe — (EJe)e,

with this notation the solution of the third equation is:

HO= Y ek, frj=12

o<kl <2N©
To bound f, first we have to bound c¢:

lell gy o _s50 < M€l por_350

A
©) } |l s ), p(0) —25(0)
P P s

mi N

exp(1)

) Fl1E o Il edsllsor oo

< (M(O))I—Qa + m1H5(M(O))1—11a—2aT + (M(O))l—?)a—cw

+ 2m21—[1 (M(O))I—Sa—ZaT
where the r. h. s can be gathered to give an estimate of the form,

el y0_gp0 < Ho(M@)1=Ha=2e
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(with the appropriate definition of Il in terms of the others constants). From here, and

again by lemma A.1,
||f||é(1),,0(0)—45(0) S N(M(O))I—IQOA—BCW—‘

(eq) Let us introduce now B as,

hence, if G = (G;)1<j <2

B.
G..(0) = o
51(6) 2. i(k, 2) +2(=1)it1N, 55,

0<|k|1<2N(©

exXp (i<k7 0>) )

from this last sum we have to avoid the indices (4,1, k) = (1,2,0) and (4,1, k) = (2, 1,0),
because they lead to zero divisors, but the coefficients B, , o, By o are also zero (because
&, (e)g were adjusted precisely to fulfill this condition). Moreover, we note that G is
a symmetric matrix. Hence, to bound G we need to bound B first. Directly form the

definitions we have,

|1B = Bllgw 0 450 < |1B = Bllza) 0 450 + 3lI€]lz0)

lellga (0 —35(0)

) exp(1)

0
615" s 0,50 €]y - Tlew g0 _ss0
(RO) S5 exp(1)

24| H| g0
(RO)

(0, R(©)
3p ||e||é(1>,p(0)_35(0)

and then,

3M© 3y A(M(O))1712a720¢7

1B = Bllza) p0)_450 < (R(©))2 * exp(1)

+ 61/)(M(0))74a <H5(M(0))110a2aT +

+ 24?/\]/\}(]\4(0) ) 1-13a—2ar

Y

which, with the introduction of a new constant II;, allows us to write,
||B - B||g(1)7p(0)7450 S H7(M(0))1—14a—2a77

and therefore (with N conveniently redefined),

1 —Q

1

T

< N(M(O))1—15a—3a7.

1
exp(l)) ’)/(0)) ||§||5(1),p(0)_45(0)
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(eqs;) As before, we define,
E=F— 57

and then, the components of F' are given by,

Bk
F;,(0) = : =il exp (i(k, 8)) , for 5,1 =1,2.
J 0§k|12§:2N(0) i(k, Q) + (—1)+1x,

As for the previous equation, we need to bound this numerator. From its definition,
using (3.3.17), we get

1E = Ellga o550 < NE = Ellz0) 0

||e||é(1>,p(o>_35(0> ||f||é(1>,p(o>_45(o>

81H:” g0 0,50 ldlls,0 50 SIH s 0 g
(R(0)5 1€l + 5©) exp(1) (RO)* lellz) po s,
and, by substitution of the bounds previously obtained,
o 2M(0) ’Ifl\’Llj\7 fﬁ ]/\7
E—E&||lsqy < M(0)1-12a—2ar 2 M (0)1-14a—3ar
1= Ellew < Gy ooy ™ M
+m2j\\[(M(0))1716a73aT + SI/j\(M(O))ff)a H5 (M(U))1710a72o¢7 + ]/\? (M(O))172a7a7'
exp(1)

+83N(M(0))1714a72a77

but, if we introduce a quantity, ITg (depending, as all the previous ones IIy, ..., II; on the
forementioned constants ay, My, Mo, ..., which do not change with the step), the above
inequality can be shorten as,

IE] 501 o _ss00 < Tg(d1O)1= 160307

and from here, A

Now, we use these estimates to bound the transformed Hamiltonian H("), which, using
definitions in (3.3.2) casts into:

7O — FO 4 H(<o])v(0)70 " HI(O) 4 H(ZOJ)V(O%B + H}l)a

this is in fact the same expression as in (3.3.3), but in the term H® —see (3.3.4), we
have separated the contribution due to the harmonics of order > N and those of the
integral term, so we put,

1
AP = [ (87 + 1 - {a®,s}) oyf dt, (3.3.24)
0
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and we shall use lemma A.3 to bound the different Poisson brackets involved in the
expansions above. First, from the estimates on the solutions of (eq,)-(eqs), we derive,

lgrad S| s o) _z50 poy < N(MO)L-18etar, (3.3.25)

and after explicit computation one obtains,

A
=)
~

(0))1—21a—4a7

(

)

(0
[¥is )||g(1>,p(o>_75(o>,R(o> exp(—6(0) <

> (0 N7 —42a—-8aT
(i, SHI g 0850, RO) exp(—260) < N (MO)>- 12087 (3.3.26)
(0 N7 —20a—4aTt
1 |00 0175000, 700) exp sty S N(MO)272007 47, (3.3.27)

but, to bound I—Af}l) one needs to control the effect of the transformation 7. so, if we
assume the condition,

lgrad S|l g o 750 g0 < (B)?6” exp(—1)/2, (3.3.28)

then, by lemma A 8 and (A.2.6), ¢; is well-defined from D (p@ — 86 RO exp(—§0))
to D, (p@ — 76, RO) for any —1 <t < 1and A € EW . More premsely, and from the
second item of the lemma,

17 = Tdlg) o) _850) 7O exp(—s)y < llgrad Sllgw o 7500 o (3.3.29)

for all —1 < ¢t < 1, and A € EM. We stress that, actually (3.3.28) holds whenever

N(M©)1-2la—tar < rp() but this condition could be assured from the inductive restric-

tions. Hence, taking (3.3.26), (3.3.27) and (3.3.29) into account, application of lemma A.4
in (3.3.24) yields:

11501 010500 1200) exp(sgton, < N(M0)?#2a=807, (3.3.30)
Now a look at (3.3.1) allows one to realize that, if, for example, we want H(>])V(0) o t0 have
the same size as H} ), then, we can ask for the condition,
exp( 95 ) < N(M(O))1742a78a'r,
which implies that N(® must be as large as:
NO > In N + (1 — 42a — 8ar) In M© (3.3.31)

- —96()

Note: we assume that o is small enough to make 1 —42a — 87 > 0 (see the definition of
s in the next section). This fixes N(®, which of course depends on the iterate and tends
monotonically to infinity (we should remove an increasing number of harmonics at each
successive step). Hence,

HH M0 01— 0500 1) exp(zsey < N (M) *2a=8ar, (3.3.32)
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Moreover, from the bounds on the norm of I:II(O),

||¢(1) ||g(1 < ]/\}(M )1 2la— 4cm'
||9“> Pllgay < N(MO)L 280t
||C() ||5(1) 0 _g50 < N(M©))1-2a—dor (3.3.33)
IAD — Al 50y o) g < N(MO))1-2edar,
|HM - ||g(1>,p(o> 750) RO) exp(—5(0)) < N(M©)t-2tedor,
Therefore, we take K > 9 and define,
pV = pl0 — K5O RY = RO exp(—(K — 6)5©). (3.3.34)

It is possible to rewrite the bounds (3.3.17)—(3.3.19) but now for the transformed Hamil-
tonian H() on D, (p™, RM). However, to iterate the scheme just described, it is worth
checking that the bounds assumed on H©® to define ]v, still hold on H(M. This is the
subject of the next section.

3.4 Convergence of the iterative scheme

Looking at the bounds of the previous section we define s = 2(1 — 25ax — 4ar) and
(for 7 > 1 fixed), take o > 0 small enough to make s > 1. Assuming N > 1, let us
introduce M® = (NM©)* and note that this is a bound for the norm of H® given

n (3.3.32). Then (provided the hypothesis needed to iterate hold) one defines recursively,

M) = (NM(J DY so MW = (]/\71+§+"'+ﬁM(0))sj. Also, it is convenient to define
=N . Then, since Nttt < II the inequalities:

MY < (TM©@) (3.4.1a)

Ny < (1 ©)*s, (3.4.1b)

are easily checked to hold for 7 = 0,1,2,... Moreover, in order to derive easier bounds, we

shall suppose TIM(© (R) < 1 and that the sequence {M(j)}jez+ decreases monotonically(”,

thus lim,,_,.. M™ = 0. Let us define now g(oo)(R) as the set of frequencies A for which
all the steps are well-defined, and assume that for any A € (‘j(‘x’)(R) the composition of
the canonical transformations determined at each step of the iterative process P(®) =
z/)s(o) o ¢5(1> , 1s convergent then, the limit Hamiltonian, H () 01)(*) will take
the form (3.2.30), with £2(>° (Qf )(A), (2,). Hence, we obtam, for any A € £ a
Hamiltonian with a two-dimensional invariant torus with linear quasi-periodic flow with
frequency 20>

To prove the validity of the inductive bounds, we first check that it is possible to

define, recursively, j-th step constants: mgj), mgj), mgf ). 99 replacing the initial ones,

mgo), mg ), mg ), 2 but still bounded by My, M3, s, ¥ respectively. To do this, we

(Mboth assumptions can be achieved taking R small enough. ) The ﬁrstlone is clear and, to justify
the second, we remark that the quotient MU+ /M) = = N* (M(O))SJJr —s’, then it suffices to ask

MO < N5
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realize that the r. h. s. terms of the inequalities in (3.3.33) can be bounded by N (M(©)s/2
(and the same bound works also for (3.3.25)), then, assume (3.2.55),(3.2.57) and (3.3.15),
(3.3.16) hold for j =1,2,...,n — 1, i. e., assume:

||C(j)||é(j>,p(j> < mgj)(M(j))_a, (3.4.2)
IHD 56 0 pr < PV, (3.4.3)
’p b

IAD [ g) 00 < m (MD)-e, (3.4.4)
I (ADY, " sy < 5 (M)~ (3.4.5)
with ffzgj) < my, fr\ng) < mg, mgj) < Tns, ¥ < D for j =1,...,n — 1, being pl¥) =
pU=D — K5U-D and £9) C £0-1 —the set holding the “good” frequencies at the j-th
step—. These assumptions allow n-iterations of the process and, at the end of the j-th
(1 < j < n) iteration, one derives the analogous estimates to those in (3.3.33), but with
(7) replacing super-index (1) and (j —1) replacing super-index (0) therein. Thus, consider,
at the end of the n-th step, the corresponding —in the recursive sense just described—, to

the third inequality in (3.3.33). Therefore:

1C™ Mg pimr S NCP Dl ginmny iy + €™ = D g0y -1 501

< ||C(n71)||g”(n—1),p(n—1> + N (M1l

< [CT Dl gta2 oy + N(MO2)2/2 4 N (g2
n—1

< (MO) 4y N ()2
j=0

sI+1
< iy (M) 4 3 ([mMO)
J20
s‘+1
(where (3.4.1b) is applied in the last inequality) and the sum ZPO(HM(O))]T is not
only convergent, but also tends to zero as R does. Whence, for R small enough, it can
be made less than mg[’), so the rightmost term in the inequalities above will, in turn, be

smaller than,
iy (M) i (M)~ (M) < 2 (M) = iy (M)~

(here, the assumption, M(®) < 1 has been used). This closes the induction and shows that:
m{™ < @i, for all n € Z,. Similar analysis, applied to the fourth and fifth in (3.3.33)

—as obtained at the end of the n-th iterate—, will lead to T?ng ) < ing, PU) < ¥ respectively.

However, mgj ) < mj3 does not follow in the same way. To check it out, we shall proceed
from the following result, concerning nonsingular matrices.

Lemma 3.20. Let A be a n X n nonsingular matriz with complex components and || - ||
denote a norm in C" and its associated matrix norm. Furthermore, if o > 0. Then:

A < o [[Aull > o Hull,

for all uw € C".
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Proof. Given u € C": ||u|| = ||[A7 Aul] < [[A7Y|||Aul] = [|Au]] > ”A 1” > o u. To
prove the converse, take the vector w = A~'v with ||v|| = 1 and such that: [|[A™'v|| =
|A7']. Hence 1 = [jv|| = ||Aw]| > o7 '|[|[A7'v|| = o7'||A7Y|, which implies: ||A7!|| <
0. [

For any u € C* we have,

A gullgor = A oullser = (Ao — (A o)ull 0 >
> (@) = N(MO)/2) 1Oy u]| - (3.46)

(we stress that the r. h. s. of the fourth inequality of (3.3.33) can be bounded by

N(M©)s/2(p1(©))3a) - Applying the lemma above,
iy

1 — s N (M©)s/2

(A [0y < (M) 2

)

(where we have used that mgo) < m3). If we define

—(0
==(1) mg :

my = — ,
T 1 — W N(M©)s/2

then, it is clear that, for R small enough mgl) < 3. Assume now, for j=1,...,n—1:

(1) ||< on 1IIgm <mf (M©)7 (and hence: < (M ®)=32).

(ii) m | TR T
(iii) Our already stated assumption: Wéj ) < .
Then, proceeding as in (3.4.6), for u € C™ we have:

~

1A gl ) > ((mé"‘”)l (MO) — N (MO=D) /223 )) Jul
> () = ROre ) (el (347

(using that M™H < M) and by lemma 3.20:

To complete the induction, we must check that: mg") = mgo) <H;:& m> < 3.
—ms3

ince N(M0))s/2 N .
Since N(MW)#/2 < (TIM'\")) "z~ (see (3.4.1b)), we have:

—_(n —(0 1
mg)gmg)(n s]+1)'

§>0 1-— mg(HM( ))
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It turns out that the product on the right hand side converges and, actually tends to 1

It
when R goes to zero (as follows from the convergence of ZPO(HM(O))]T, whose sum
goes to zero when R does). The former assertion is derived straightforward from the next
lemma:

Lemma 3.21. The real product:

1 .
Hﬁ’ with v, >0, s > 1,
1

converges for 0 < x < inf {1, (i)l/s}, and

Proof. Since HJ>1 177 = exp {— dis1 In(1 — %‘xsj)}, the convergence of the sum in-

side the exponential implies the convergence of the product. But,
—In(1 — fy*xsj) < 27*ij & fy*a:sj <1—exp (—27*x3j)

and the last inequality holds (see (A. 2 6)) because 0 < 2y,2% < 2v,2° < 1 for all j > 1.
On the other hand, the sum Z >1 1 converges and tends to zero when z — 0, so the
product will tend to 1 when R — 0. O

Hence, identifying v, = m3 and o = (IIM©)/2, it is clear that my” < my (for R
sufficiently small).

Next, we need to check that p™ > py/4, R™ > (M®™)®, From the inductive defini-
tions, p™ = pn=H — 5= R0 = R=D) exp( (K —6)6" D), n=23,...,is
() = pO _ K (5O 4 50 4 ... 4 DY,

and, as we take 6" = (M) if we use M@ < (M) (see (3.4.1a)),

n—1 n—1
Zé(]) - (M( )) S HM ay Z HM oszJrl < 2(HM(0))Oé
=0 =0 >0

provided R sufficiently small. Then, as K is a fixed number, the desired upper bound on
p™ follows. Identically, we have,

R™ = RO exp (—(K - 6) (5 +6=1)
(0)
> RO exp (—%) > R exp <—i> > RT = (M®)2 > (M™)e, (3.4.8)

at least for R small enough.
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3.4.1 Convergence of the change of variables

Finally, to prove the well defined character of the limit Hamiltonian, it only remains to

check the convergence of the sequence {7,/3 " }n€Z+, being )™ = ©) -0 )™ where,
for simplicity, we write @) = 57 j > 0 and also introduce p, = p™ — po/8, R’

R™ )exp( &), for n > 1. Furthermore, we have already introduced the set, £(°) =
N >0 EW , as the set of frequencies A where all the transformations are well defined. We

pick a fixed A € SU(OO), though, actually, the results will be valid for the thole set £(%°)
order to prove the Cauchy character (and hence its convergence) of {t)(™},cz,, we shall
look for (suitable) estimates of [|i)("+1) — ||g(oo),p R Next lemma gathers some

results useful for such purpose.

Lemma 3.22. The following bounds hold,
(i) (9@ —1d) o p¥ T o+ 0 M| 4ery

’pn+17 n+1 < ||w o Id“g(oo)

(ii) 69 00 — Wdllsenrp <®l+W“H~wﬂWMRU%ﬁH2L

PR forv > 0.

n4+1 ~
(iii) Let us define, G 1/) 0---0 w 2 = o - 0 () with componentS'
G() (0*+@ ) l'l(]) )for]—12n>l>1andbemg@l, ),
l ), yl analytic 27r periodic functwns on 0 defined in D(p), 5, R, ,,). Then:
j Po
HQMMW%HMHSp@—mH—gamwa
Po
[ ||g(oo),p LBy S (RV)? — E(R(O))Q,
[EP 1Vl < RO — L2 Ro)
PoE@R) ol LRy LoHEE) o Ry = 32 '

Proof. (i) It is enough to consider )1 o ... 0™ as a function from D(p™+1, R+1)
to D(p¥*1), R¥*1) and then apply lemma A.4 identifying the functions f and F' there
with ™) —Id and () — Id) o p@+Y o ... 0 )™ respectively. To prove (ii), use the
decomposition:
ODo...oyp® _ .
[ o0 Id||5(°°),p’n+l,R’ <

n+1
n—1

< Z (") =Td) o p M o.- -0 w(n)Hfj(O"),p’n_i_l,R,

n+1
v=I

™ —1d[| g0

P B g1?

apply the previous item to every term in the sum, i. e.,

||1/)(l) O"'O'QZ) _Ing(oo)aanrl’ n+1 ZH@Z) Id||5(oo)’pu+1, U+17

and next, the recursive bounds (3.3.28) and (3.3.29) to obtain:

Z 169~ Wllgm e < (ROPE0 4. 50H),
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which is the desired result. From this last item, one has:

||@(j)||5(oo) Bl < (R(l))2(5(l) 4ot (5(n+1)),
VT Ngoor o, < (RO?ED 44+ 60H0) 4 (R )%,
||Z ||g(oo),pn+2,R%+2 < (RM)Y2(5O 4 ... 4 5D + R, .o,

where Zgj)* = (ng)*, ygj)*), 7 = 1,2. Thus, to prove (iii) we only need to check that,

p n
PV = Pz = 55 (RO)? > (ROP (60 4 - 4 510, (3.4.9)
(RV)? — g; (R©)% > (RD)2 (6 + - -+ + 6 ) + (R )%, (3.4.10)
RO _ g_; RO > (RD2(5W 4. 4 50Dy 4 R

Let us show the third one: since by (A.

6) is p0/16 < 1 —exp(—po/8) (for py/16 < 1)
and (see (3.4.8)) R™ > R /2 with v 1,.

2.
0, . for R small enough, we may write,

R(l) g;R > R - R (n+2) + exp(_po/g)R(n+2)

> RO(1 — exp(=2(0" + -+ +60V))) + RLH, (3.4.11)

(where we have used that K —6 > 2), but 60) 4. .. 45+ < Z]>0 ), and it was shown

that this sum is (for R small enough) less that p,/4. Hence 2(5() 4+ 0HD) <
so if we apply (A.2.6) to (3.4.11) the desired result follows (since R() > (RW)?). The
inequalities (3.4.9) and (3.4.10) are derived in a similar way, so we shall not carry out
them explicitly. This completes the proof of the last item and so those of the lemma. [

The difference QL(”H) — zﬁ(”) can be written as:

PO oyt O o ) =
— (1/)(0) —1Id)o YW oot — (w(ﬂ) —Id)o PpWo. o™y
_|_/¢}(1) O+++ 0O ¢(n+1) — rl/)(l) O+++ 0O ¢(n)’ (3412)

Consider the first term on the r. h. s., taking:

o=p"V, o =pl, O0=2RO?

32
— RM — R _ Po poo _ Poplo)y2
R R ) RO Rn+27 X = ].6R ) 39 (R ) )

item (iii) of 3.22 allows us to apply lemma A.5 of appendix A to give,

| —1d) oy o0 — (O —Id) 0y 00 ¢‘"’|Ig(w>,p;+2,m+z =
= (3—0(}%@)) +z _O(R(0>) T ’5,—312z<o>) [p0 0 op ) =g o 0pM|ye Py Rn ™

32 n—+2

x| —1d||g”(oo>,p(1),Ru)
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and hence, using again (3.3.28) and (3.3.29) to bound || — Id| g0y p) g1y, We arrive
to,

||1;<n+1>_1/;<n>||g(oo),p,n+2ﬁ,n+2 (14 A, (TTM®)5720) x

X ||1/) ©r--+0 1/) (D) @Z)(l) ©-++0 ¢(n)||g(0°),/7%+2:RIn+27
where A, depends only on py. Now, the difference ¢! o -+ 0 (1) — 4yl o ... 0 ()
can be decomposed in the same way as in (3.4.12) and then bounded by the application
of lemmas 3.22 and A.5. Therefore, the described process can be applied recursively, and
so, taking o (and R) small enough, one obtains:

Sn+2

) (IIM @)=

5040 = 5l

< H (1 b A, (IM©)*3

n+2

< 2NIM©®) =,

+
where we have used the convergent character of Zj>0(HM( ))*2~, and the fact that this
sum goes to zero when R does. Then, it is easy to prove (with the same ideas worked

S+1
in lemma 3.21) that the product []7_, <1 + A, (TTM©) E ) tends to 1 when R — 0.
From the last bound it is now clear that, if v > r > 0, then

s]+2

||w(u) ||5(oo) ,00/8,Ro exp(—3po/8) < Z HM )) )

j>r

bound that goes to zero as r, v — co. This allows us to conclude that the limit transtor-
mation, 1)(*) is well-defined and goes from D, (po/8, R exp(—3ps/8)) to D.(p, R™).

3.5 Bounds on the measure

We have shown the existence, under the above specified conditions, of invariant reducible
tori for the basic frequencies A* = (u, £2) € £, Now, our purpose is to obtain bounds
for the measure (of the complementary) of a set of real frequencies, £ C £) In fact,
both £ and £(>) may be thought as limit sets of the sequences of domains {£®},cz,
{é (V)}VEZ holding real and complex frequencies respectively and it can be shown that, in
the limit £(°) = £(c) (see remark 3.25 below). Firstly though, one should estimate, given
a R-neighborhood of A = (0,w,), the measure of its subset of (real) basic frequencies
corresponding to values of (real) parameters ¢* = (£, n) with £ negative (complex tori) or
too small (in the sense of the restrictions (3.2.39)). These frequencies must be discarded
from the initial step of the iterative scheme in the KAM process.

Consider the sets U, W, and V defined by (3.2.27), (3.2.28) and (3.2.29) respectively,
and let us denote by 1) the map taking the frequencies A onto the space of parameters ¢,
so we can write ¢ = ¢(A), and conversely, A = ) "1({). In fact, 1)1, is the map used to
define the set W (and it can be checked, that, for R small enough, 1! is nondegenerate
under our early assumptions £ > 0 and a > 0). Hence we introduce the set,

EO(R) =W (SeR) \ v (V (64(M(R)))), (35.1)
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i. e, we must eliminate from W(3¢R), the measure filled by the pre-image of V(R) =
V(64M0‘) N (W(3¢R)). Let us denote W(R) = ¢~ (V(64M2)) N W(3¢R). Therefore,

meas (VT}(R)) = [ da= [ |det Dy (Q)ldc,

W(R) V(R)

but direct computation (applying the bounds for Z5 in (3.2.9) and (3.2.10)) shows that,
| det Dyp='(¢)] < constant - =" and using the first of (3.2.42) —in remark 3.12—, we have
pt <2 s0

meas (W(R)) < f constant - £~ Y2dgdn
V(R)
64M@
< constant - R j £7Y2de < constant' - M2, (3.5.2)
0

This justifies that meas (W(R)) is of order (M(R))*/*,

3.5.1 Measure of the complementary of £(>)

As it has been already pointed out at the beginning of section 3.5, the set we are going
to measure is the complementary of £(°), which is given as the limit set of the sequence
{EV} ez, , (with £V C R?, for all v € Z,). Below, we specify, recursively from £
the elements of this sequence and use them to define the sets £*) —i. e., those holding
the complex frequencies taken at the v-th step of the iterative scheme, see (3.3.20) in
section 3.3—.

Thus, if £©) is the domain introduced in the previous section —equation (3.5.1)-, for
v=1,2,...; E¥ will be the set

37" D(R)

gV = {A € EVD [k QYT (A) + kof2y + | > BT
1

for k € 7%\ {0}, with |k|; < 2N¥Y; and £ € Z, with 0 < |¢| < 2} (3.5.3)

Definition 3.23 (Complex o-widening). Given a set D C R? and a real positive o > 0,
one defines the complex o-widening of D, D + o, as

D+o = U{z'e([:2z|z—z’|§a},

zeD
e., D+ o is the union of all (complex) balls of radius o centered at points of D.

With this last definition we introduce £ as a 2r(*)-widening of £V, i. e.:

EV =W o) =12, (3.5.4)
Let N1 be the order up to which the harmonics (of the “obstructing term”, H -)
are removed at the v-th step of the iterative process. It was shown, at the end of section 3.3

that it suffices to take:
N = [ NCD] 41, (3.5.5)
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being R
N In N + (1 — 420 — 8ar) In M@~
“K§v—D) )
with K > 9. See (3.3.31).
With these previous items we can state lemma 3.26, which gives the convenient choice
(in the sense of remark 3.25) for the width 7). Tt is left without proof because this is
included in that of lemma 3.26 (see below).

(3.5.6)

Lemma 3.24. If the thickness r") in (3.5.4) is given by,

&1 1 1
r®) = Ny =12, (3.5.7)
Co

(being ¢z a constant independent of R), then forv =1,2,...; m=1,2:

(v-1) 7 D(R)
A 65755) —l—mr(”) = |I€101 (A)+k2(22+€u| Z (3—m)T,
1

for k € 7%\ {0} with |k|, < 2NV and £ € Z with 0 < |[¢] < 2. (3.5.8)

Remark 3.25. Thus, with such choice of ), the sets £ + 2r(*) satisfy the Diophantine
conditions (3.3.20) as required. This justifies the definition, in (3.5.4), of £*) as a complex
2r()-widening of £, for v = 1,2...; however, it is necessary to ask ) to be small
enough to make €M + 2r™M C £ One may always achieve this taking R sufficiently
small, since form (3.5.7), (3.5.5), (3.5.6) —we recall that =) = (M®#~D)e— the limit

r”(R) = 0%  when R — 0%,

v—1)

follows immediately for every v = 1,2, ... fixed. Furthermore, we have®: r®) < p=1)

v=1,2,... and lim,_, ") = 0% (for any R fixed and sufficiently small). Therefore, since
by their construction (see (3.5.3)) is £¥) C £~V then: £V + mr® C £¢=1 4 mp=1
for v =2,3,...; m = 1,2. This last point allow us to consider £() also as the limit set
of the sequence {g(u)}uel_,_; but 7 — 0 when v — 400 so £(®) = £ as pointed out
at the beginning of section 3.5. 2

To give estimates of the measure of £ \ £(®) we may consider this set as the limit
of the collection of sets: £© \ £(), which, in turn, can be split as the disjoint union:

s—1
EON\ £6) = U ED\ gUHD), (3.5.9)
j=0

and hence, one should control the measure of £\ £U*) for 5 > 0. To do this, we
consider the decomposition

e = ) | R, (3.5.10)
0<|¢|<2 kezZ?\{0}
|k|1<2N )

(®)If R is kept fixed —and small enough—, N*) monotonically increases to infinity and (*) monotonically
decreases to zero with v € N.
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being
. . , 3vI(R
RY) = {A € ED |k QD (A) + o2y + ] < 7|T|()} , (3.5.11)
1

note, that the set Rl(J,g is a slice of the set U(g¢R) = {A € R? : |[A — Aq| < $¢R}, with
A; = (0,w,) —see (3.2.27)-. Therefore, we take AN A® ¢ R,(_,],)c in this set and such
that AY — A® is (approximately) parallel to the vector (¢, kp), with (¢, k2) # (0,0) (see
remark 3.27 below). Thus, the measure of Rg],)c can be estimated by the product of a
bound of [AY) — A®| by a bound of the measure of the worst (i. e., the widest) section
of a hyperplane (of codimension 1) with the set U (g¢R).

Thus, if AV, A® ¢ R,(_,{,)c, the definition (of Rg],i) above and the triangle inequality
lead to

6vY)(R)

(6 k2), AV — AP < — o
L

+ k1| x |29(AD) — Q9 (A®))] (3.5.12)

and also from (3.5.11), if A € Rg,)c:

k| <

1 <3W‘>(R)

| B) e, k) |A|),
129(4) \ |kl 2z

where | - |5 denotes the Euclidean norm. Now, we use that, if ||(Q§O))_1||é(o) < g (being
9© a positive constant) then —for R small enough-,

12N ey <8 G=1,2,...

holds with, for instance, g = 2g(®). Here, we shall not check this last assertion, but point
out that it can be shown, from the second inequality in (3.3.33), with the same recursive

tricks used of section 3.4 to derive the step-independent bounds (3.4.5) for <A(j)>;1. Hence
kq will, for any A € g("), satisfy the following inequality:

79 (R)
LI

ki| < cal (€, k2)lo + c5 (3.5.13)

where ¢4 and c¢5 are two constants independent of R and on the step.
On the other hand:

{by (3.5.13)} U(R
T k) + e Dy

klL = k1| + | k2 -
k]

<(es+1) x [(l k)|2+ cs5

But then,

(C4 + 1) X |(£, k2)|2 Z |k?|1 — Cs
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and if 0 < R < 1 is taken small enough to make, for instance, cs 7(‘2|(TR) < %:
9 O(R
e+ 1) x [kl > [kl — T
1
1 1 1
> |kli — = > |k|) — =|k|: = =|k
> [kl — 5 > kb — 51Kl = 5[kl
(for, obviously, + < 1]k|y, if |k|; € Z*\ {0}). Therefore,
(€, k2)]2 < co|kli (3.5.14)

holds, for 0 < R < 1 sufficiently small, with ¢s a constant independent on R, k, ¢ and on
the step.

Thus, assuming now that AL — A® is parallel to the vector (£, k,), the inequal-
ity (3.5.12) yields, if both (3.5.13) and (3.5.14) are taken into account:

(4) (4) . .
4D — AP < GIYT@ * ( - cﬁz:@) 27(AD) = 2P(AP)].  (35.15)
1 1

The next “technical” lemma provides bounds for the difference |Q£j) (AW — (29) (A®)].
We delay its proof for the end of this section.
Lemma 3.26. Given A, A" € £Y) the following inequality,
129(A) — QD(A')] < 3¢3R|A— A'|,  j=0,1,2,..., (3.5.16)
holds provided R <1 s sufficiently small.

Applying the result of the lemma in (3.5.15), we can state, for R small enough:

W(R)
AD _ A@ <1, LY
| b =1h |l

and since the diameter of £(°)(R) can be bounded by cs R ~with cg an appropriate constant
independent of R—, from the previous estimates one gets

7(J')(R)

meas (Réj,l) < My B
’ L
so, in view of (3.5.10):
. . , 1
meas (€9 \ £U) <TLRYVI(R) Y ——, (3.5.17)
kez2\{0} [kl:

where II3 does not depend on R, and (to simplify) the sum is taken over all k € Z \ {0},
not only on those such that |k|, < 2NV). Moreover, we recall that for r, v nonnegative
integers, r > 1, is

#kecZ |k, =v}<2r !

) Recall that v = (M) and M) —for 0 < R < 1 kept fixed and sufficiently small-, decreases
monotonically with j. See footnote on page 128.
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and therefore, the sum in the r. h. s. of the inequality (3.5.17) may be bounded by the
sum 4 -, v~7, which converges, since 7 > 1. Resuming (3.5.17),

meas (V) \ £UY)) < 4T3 Ry (R) Z v <ILRYY(R),

v>1

with Y9(R) = (M), Finally, £© \ £() was defined as the limit of the disjoint
union (3.5.9), consequently:

meas (£© \ £(2)) = Zmeas (£ £6+D)

j=0
< II4R ((M“’))a + Z(HM(O))SjO‘> < AT, (M),
j=1
where we have used again the fact that, for R < 1 small enough, the sum
3 (@) (3.5.18)
n>0
is convergent and tends to 0 with R.

Remark 3.27. In the derivation of the inequality (3.5.15) from (3.5.12), it has been as-
sumed implicitly (¢, k) # (0,0). Actually this works for R small enough. Indeed, for if
(¢, k2) # (0,0) and R is sufficiently small, by (3.5.13):

299 (R)

k| < cg————>

| 1| >G5 |k1|7 ’
but, this cannot occur even for j = 0, because k; must be a nonzero integer (since
k € 7?\ {0} and k; = 0). '

Finally, taking into account that measure of W(£¢R)\E© (R) is, according with (3.5.2),
of order (M(®)2/2 we conclude that the measure of the set of frequencies A = (u, £2,),
corresponding to the destroyed tori is of order (M(®)/2. However, such a result is tied
to lemma 3.26, which proof is still owed.

Proof of lemma 3.26. Let N* be the set introduced by the second of (3.2.23). We suppose,
that for 0 < R < 1 small enough,

RIS
oA

<R (3.5.19)

holds with ¢3 a constant independent of R —see expansion (3.2.22)—. Actually, this estimate
can be derived from (3.2.13), the bounds in (3.2.9), (3.2.10) and lemmas 3.2, 3.7, 3.8.
However, it could be necessary to shrink slightly N* (we do not give the details here).

From their construction —see (3.5.3)- it is obvious that always £U) C £6) 4 mr(),
m=1,2,j=1,2,... Then, using the Cauchy’s inequalities:

oY 9v Y

oY - Vs
0A 0A

- 'r(j)
E@) 4rG)

)
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which implies,

007
A

a0

. -
N 127 — 29V 4
r()

£6)4rG)

EG-D4rG-1)
(5( ) 4@ C €01 4 U= see remark 3.25) and applying this recursively,

RIN
9A

20

£G)47G)

Q U
+ Z | e , (3.5.20)

N

since it is assumed (remark 3.25) that r(!) is small enough to let £ + 27() C £0O) then,
as £0 C N*, it should be £V + 1) C N*. Let A, A’ € £9). We shall distinguish two
cases:

First case: if |[A' — A| < r(), one may apply the mean value theorem (because the
segment joining A" and A will be included in £Y) + r0)| so

A" — A|
g(j)+r(j)

Q 4
Z | e )> x |A' = Al (3.5.21)

129 (A") — 29(A)| <

00)
oA
(‘ 900

<

Second case: if |A' — A| > rU). Then, using the triangle inequality,

N*

27 () - 27 (4)] <
< 7)) = 277V + 127(4) - 277V (A)] + 127V (A) - eV ()]
<22 - 2 Vllgo + 127V (4) - 2 V()]

This last inequality can be also applied recursively to give,

m@ma—mWAns<

So, by comparison with (3.5.21) of the first case, it can be seen that the difference,

129 (A") — 29 (A)| is bounded according with (3.5.22) for all A', A € £0)
Next, we take for the radii 7 the value guessed in lemma 3.24, explicitly:

v v—1
22" — 0

r(”)

RIS
oA

)|«
”“”) x |A"— A]. (3.5.22)
N* v=1

(v=1)

p@ = T NGyl — g
Co

where N) is the number of harmonics fixed by (3.5.5) and (3.5.6), whereas c; is a constant
to be suitable fixed (see below). It turns out that such a choice of ) works for v = 1. To
check this out, we take A € £1) and A’ such that |A' — A| < mr("). Therefore, applying
the triangle inequality,

|kt Q0 (A') + o+ 0] > [ 2 (A) + ka2 + L] — [k (21 (A)) — 217 (A))]
— ko (82 — £25) + L(i — p)|
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but, by the definition of £ the the first term on the r. h. s. is bounded from below by
379(R)/|k|., and hence:

3vO(R
ey 2 (A) + ko 2+ 44| > 7|T|(T)—2(|k2|+|£|)|A’—A|—|k1| 1294 = 29 (4)]
1

37O (R)

= TR 2 k|, x |[A"— A| — |k|, x [29(4) — 294)], (3.5.23)
1

with |k|; < 2N© and ¢, is such that |ky| + || < ¢1|k|, for all k € Z%\ {0} and ¢ € Z,
0 < |¢| < 2. Then, using, the mean value theorem and (3.5.19):
27(4) = 27 (4)| < s R| A" - A

so if we take, for example, co = 2¢1 + 2¢3, the 1. h. s. of (3.5.23) becomes greater than:

0 0
37(: — omepNO® > 3T g OO (a0 1 (3_77”)7()
L1 LA LA
(since |k|; < 2N© = (2N©®)=7 < |k|; 7). Now assume (3.5.8) holds for v = 2,...,5 — 1
and m = 1,2 with the corresponding r*) given by (3.5.7). Let us take A € £Y) and, A’
such that |A" — A| < mr(). Then, as before:

37V V(R)
CH |
— (ks x [V V(A - V(A (3.5.24)

|k QU™ (A) + ko 82 + 04| > — 2¢1|k|; x |[A' — A

and one may use (3.5.22) to bound the difference |Q§j_1)(A') - ij_l)(A)| taking into
account:

(a) the second of (3.3.33). i. e.,
127 = 2 Vllger < N(agemD)=2amser,
(b) the inequality,

_1
(MWD) =20 > 9+ N1, (3.5.25)
which is fulfilled for R small enough?.

(10)In fact, it is easier to prove, the inequality:

N@=1 41 o =7

Q)= <2 (%)

(with N*~1) given by (3.5.6)), which implies (3.5.25) —since N*~1) +1 > N1 a5 follows from (3.5.5)
and (3.5.6)—. To check (%), it suffices to write the quotient on the 1. h. s. on the form:

N 41

1
_ 2 - (v—1)\a
(o) 22 — (:r d3:r+d4:rlnx> o(M )Y,

with ds = §1In N, dy = 1-40a_8a7 Thuys () follows if one realizes that 22 + z(dsIn L — d3) — 07, when
z — 0T,
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In particular, from this last one, it follows:

(v=1)

(2N(u—1))—7—1 > fY(V—l) (M(V—l))Za(T-i—l)‘

T, =
Co

(being v~Y = (M¥~1)*). With these items (and also with the estimate on the derivative
of 2% in (3.5.19)) on mind,

J—1 . - —230—
o o N(M(u 1))1 23a—4at
(J-1) (j-1)
27 () — 2/ (4 < <c3R+2§_II(M<V1>)Q(M<H>)2a(m> |4 - 4]
sV 1
< <03R+QZ(HM(O)) 2+>|A’—A|, (3.5.26)
v>0

where the inequality N'(M®-D)3 < (IIM©)% has been applied and we have re-defined
s = 2(1 — 26a — 6ar) asking « to be sufficiently small to let s > 1. Furthermore,

Su+1
2) (MM©)™= <R, (3.5.27)

v>0
will hold for 0 < R < 1 sufficiently small, and then, resuming (3.5.26),
12VV(A") — 2V7V(A)] < (esR+ ¢sR)| A — A < 2¢5|A' — A

Now, this last bound can be substituted in the last term of the r. h. s. of (3.5.24) to give:

G=1)( A7 / o VY o
|k 0277 (A') + ko025 + 0| > R (2¢1 + 2¢3)|k|1| A" — A
1

(-1 -1
> 37 — m02|k|1f)/

= |k|T Co (QN(]‘?I))?Til
1

3/}/0_1)

> e — mlk iV [k
L '

(3 —m)yVV
L

This completes the induction, so (3.5.8) holds for all v € N. Finally, from the inequal-
ity (3.5.22), using (3.5.7) for 7™, v = 1,2, ..., and the inequalities (3.5.25), (3.5.27), one
derives:

129 - 0P (A)] < (ch +2 Z(an))"T) A" — Al
v>0

< 3c3R|A" — A, forj=1,2,...

And we are done with the proof of the lemma. O
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So far, in what concerns the preservation of the invariant tori, the proof theorem 3.9
is almost done. To finish, we define the set

A= |J &

0<R<R«

being R, the largest value of R for which the iterative scheme converges. Hence, most
of those bifurcating elliptic two-dimensional invariant tori found from the normal form in
chapter 1, will survive in the complete system. To be more precise, we have seen that, if
the formal (and so, the unperturbed) elliptic family of invariant tori is re-parameterized
by the normal frequency and one of its internal frequencies —the vector A* = (i, {25) in our
notation—, then, the control on the small divisors needed by the KAMe-iterative scheme,
give rise to gaps in the initial set of such “mixed” frequencies. These gaps are spread at
each iterate, rarefying the successive frequency sets which degenerate, in the limit, to a
Cantorian set with “plenty” measure, in the sense of small measure of its complementary
(in fact, of the order of the remainder of the normal form raised to a positive constant).

3.5.2 Whitney-smoothness of the surviving tori

The third item of theorem 3.9 follows from the application of the inverse approximation
lemma (see Zehnder, 1975) to the sequence of compositions of time-one flow transforma-
tions, {Y)V)} ez, , defined in section 3.4.1. This will prove that ¥ = lim;_,, ) is C33, (A)
(i. e., regular in the sense of Whitney) and also give a bound for the norm: |||¥|||g, where
|| - ||]at; denotes the norm in Cf, () (for a definition of this norm and an account on
Whitney-smoothness, see Broer, Huitema and Sevryuk, 1996, chapter 6).

At this point, we quote the Whitney extension theorem (see Whitney, 1934), as appears
in Wiggings and Rudnev (1997).

Theorem 3.28 (The extension theorem). For any closed set A C R™ there exists
a (non-unique) linear extension operator F : C3,(A) — C®(R?); u — U = Fu, such
that for all the derivatives of u in the sense of Whitney, D*U|y < uy, k = 0,1,... and
U|||re < e|||ul||a, with ¢ a constant depending only on n, but not on the set A.

For definitions of Whitney differentiation we refer Poschel (1989). If the function u
depends on other variables, and if this dependence is analytic, smooth or periodic, then
(quoting from the book of Broer et al.): such variables should be treated as parameters and
an extension operator F can be chosen preserving analyticity (respectively smoothness)
as well as periodicity with respect to these parameters.

_ Thus, selecting an appropriate operator, F one can extend V¥, defined in T2 x A to
¥ = FVU, defined in T? x R?. Alternatively, since ¥ parametrizes a Cantorian manifold
of invariant tori, the extended function ¥ can be thought of a parametrization of the

completed manifold. Let us now deﬁne A(R) = T2 x x (W(g¢R) \ %), G(R) = \I!(Ql(R))
Therefore, as fg( w = f% (here w is the volume form on the manifold and ¥*
is the pullback of \I/) Applymg the estimates for the derivatives of ¥ furnished by the

extension theorem and the inverse approximation lemma, it can be seen that the measure
of the “gaps” on the completed manifold is bounded by: constant - fﬁ(R) do N dA <

constant - M®/?(R), i. e., they are of the same order than the gaps generated by the KAM
process in the domain of basic frequencies.
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3.5.3 Some final remarks

To conclude the chapter we give some hints addressed to fill those aspects not mentioned
explicitly in the previous sections.

Remark 3.29. We may wonder about the real character of the constructed invariant tori.
Actually, one can set up the same iterative scheme described in section 3.3 using the
real Hamiltonian (developed around a selected unperturbed invariant torus), establish the
corresponding homological equations, complexify, by means of the change (3.2.35) but only
to solve them, and apply the inverse transformation to obtain a real generating function
(and so a new real transformed Hamiltonian). In this way one construct a sequence
of real Hamiltonians, {#V},cnuqo; which, in virtue of the properties of the symplectic
transformations satisfy H) = HWoF, j = 0,1,... (where F stands for the complexifying
change) so, by the unicity of the limit, it must hold also for the limit Hamiltonian. Thus,
equivalently, complexification could be applied to the initial Hamiltonian, perform all the
iterative steps and transform back the (complex) limit Hamiltonian to recover the real
invariant tori. However, what is worth here, if one looks for real quasi-periodic solutions
is to force £ > 0 in the change (3.2.2). This was done throwing away those A which maps
to some ¢* = (&, 1) with £ <0 (see (3.2.28)). Otherwise, letting £ < 0, complex solutions
of a real Hamiltonian are obtained. 2

Remark 3.30. In theorem 3.9 it was assumed coefficient a in (3.2.7) is positive (we recall,
that this case corresponds to the direct bifurcation in proposition 1.29 of chapter 1). When
this is not the case, though, form the expression (3.2.19) for the characteristic exponents
of the unperturbed tori, it can be seen —as already mentioned in section 3.2.2—, that these
quasi-periodic solutions could correspond to whether elliptic or hyperbolic tori, on the
sign of

Pt = —4n® — 2a€ — 26011 25(€,Z(C), 2n)

is negative or positive respectively. Then it is clear that the curve u(€,n7) = 0 —which, by
the implicit function theorem can be put, locally at the origin of the (£,7n) plane, as the
graph of a function £(n)—, plays the role of the separatrix between both types of normal
behavior and corresponds to a one parameter family of (unperturbed) parabolic tori.
The persistence of the elliptic tori for this case, can be stated using essentially the same
tricks described along the chapter. Nevertheless those initial domains ¢, W and V should
be more accurately delimited to ensure that the values of the parameters * = (£, n) range
far enough from the separatrix. 'Y



Appendix A

Basic lemmas

The lemmas A.1 to A.4 of this appendix state some basic properties of the norms (2.2.3)
and (2.2.4), introduced in chapter 2 and now generalized to analytic functions depending
on a higher number of angles and normal coordinates (see section below). These lemmas
can be also found in Jorba and Villanueva (1997a, 1998).

A.1 Notation

Previous to the statement of the lemmas, we shall generalize the norm introduced at the
beginning of chapter 2. For some p > 0, and R > 0, we define the set

Drm(psR) = {(0,2,1,y) e C" x C" x C" x C™: |Im 6| < p,|2| <R, |I| < R*}.
(A.1.1)
We put z* = (x*,y*) and | - | denotes the supremum norm of a complex vector (the same
notation will be used for the matrix norm induced). We shall consider analytic functions
f(0,x,1I,y) defined on D, ,,,(p, R), and 27-periodic with respect to 8. We write the Taylor
expansion of f w. r. t. z and I as

f= Y. fs0)r, (A.1.2)
(L,s)ezZ3m <7,
(with Zy = NU{0}). In turn, the coefficients f; s(8) can be expanded in Fourier series,
f15(60) = Z frsrexp(i(k, 6)). (A.1.3)
kezZ"
We use the expansions (A.1.2) and (A.1.3), to introduce the norms,
|fl,s|p = Z |fl,s,k| eXP(|k|1P), (A14)

kezZr

on = 3 fuslpRI T (A.1.5)

(1,8)€Z2m % 7",

f

As in chapter 2, we remark here that, when the sums defining them are convergent, these
norms bound the supremum norms of f; ; (on the complex strip of width p > 0) and of f

(on Dy m(p, R)).
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Moreover, from its definition, the Poisson bracket of two functions depending on
(0,x,1,y) is given by,

o =35 (51) ~51 (56) + 52 (52)
A.2 Lemmata

Lemma A.1. Let f(0) and g(0) be analytic functions of r compler arguments, 2m-
periodicV) in @, with |Im 0| < p, and taking values in C. If {fx}rez- denote the Fourier

coefficients of f, f = ez [rexp(i(k, 8)). Then we have:
(i) | el < [flpexp(=[K[1p).
(ii) 1fglo < |flolglo-

(1ii) For every 0 < ¢ < p,

i,
s dexp(1)’

‘ of

00,

j=1,...,r

(iv) Let {dg}rezrjoy C C, with |di| > p/|kl], for some p > 0 and v > 0. If we
assume that the average of f over the angles @ is zero, i. e., (f)g = 0, then, for any
0 < § < p, we have that the function g deﬁned as

Z —exp i(k,8)),

kezr\{o}

v\ ISl
9lo-5 < <5exp(1)> up'

All these bounds can be extended to the case in which f and g can take values in C™
or M, 1, (C) (the space of the ny X ny matrices with coefficients in C).

Proof. (i) It follows directly from the definition of the norm (2.2.2):
flo= > Ifelexp(klip) = |fil exp(|kl1p),
kezr

for all k € Z", and hence | f| < |f|, exp(—|k|1p). The second item is also straightforward.
Indeed,

satisfies the bound

falo=1 D frgwexp (i(k + k', 0))

k.k'czr o
= > fellowlexp (Ik+K'[1p)
k.k'cZr
< Y Ufwllgwl exp(Ikp) exp(|k|1p)
kk'czr
= |f1pl9lp,

(DIn this context it means f(@ + 2vr) = f(@) for all v € Z", and the same for g.
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since, evidently exp (|k + k'|1p) < exp(|k|1p) exp(|k'|1p), for all k, k' € Z". To prove (iii)
and (iv), we shall use that for any v > 0 and 6 > 0,

ilill) {z7 exp(—dzx)} < <5exz)(1)>7 , (A.2.1)

for it can be seen, directly, that the function h(x) = 27 exp(—dz), with 7,0 > 0 and
restricted to > 0, reach its absolute maximum in this interval at x = v/, but h(%) =

2!
(%) . Therefore,

of
00;

= S Ikillful exp (1Kl (o — 9))

p=8  gezr\{0}

< > |kl exp(—[k[16)| fil exp(|klip)
kezm\{0}

1
< Sexp(l) Z | fel exp(|k]1p).

kezZr

This proves (iii); here, k;, j = 1,...,r is the j-th component of the integer vector k € Z",
then |k;| < |k|;. Moreover, inequality (A.2.1) with v = 1 has been applied. Similarly, for
the last item,

Jr
9l =D |5 exp (|kli(p — 6))
kezr\{0}
L3
< Y Efelexp(|klp) exp(—|k16),
kezr\{0}

but, as k|, > 1 for all k € 27\ {0}, it is |k|] exp(—|k[;d) < (#)7 by (A.2.1).

dexp(l)
Then (iv) immediately follows. O

Lemma A.2. Let f(0,x,I,y) and (0, x, I,y) be analytic functions defined on D, ,(p, R)
and 2m-periodic on @. Then,

(i) If = S mezzna, fra(0)2T°, we have |fial, < |f

(i5) |f9lp.r < |flor|9]p.R-

(1ii) For every 0 <6 < p and 0 < x <1, we have for j=1,...,r and s =1,...,2m:

pR/R|l|1+2\S|1'

ﬁ |f PR ‘a_f < |f|p,R
;| sn dexp(l) |0L| . = (1- )R
o | _ Wl
0zs |,y ~ (L =X)R

As in lemma A.1, all the bounds work if f and g take values in C™ or M, n,(C).
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Proof. (i) As in the preceding lemma, from the definition of the norm in (A.1.5): |f|,r =
D s)ezimzr, | frsl RV > £ | RIH2sl for all (1,s) € Z2™ x Z'.. To prove (ii),
we take the norm of the product fg, so

|fg

p = |27 fral6) g OV 2

’ ’
be s psR

2 :} : I+ +2|s+8’
S |fl,sgl’,s’|pR‘ 42 ‘17

ls s

where the summation indices (I, s), (I’, ") € Z>™ x Z",. Now, by the second statement of
lemma A.1, |fl,s gl',s'|p < |fl,s p|gl',s'|p and then,

| fglor < <Z|fl,s|pR|l|1+2|81> 3 g BV

’ ’
l,s Vs

which is the desired result. The first inequality in (iii) is proved using item (iii) of
lemma A.1,

afl,s

RIUi+2lsh
837

00;

- ¥

PR (18)czim Xz,

S Z |fl73 P R|l‘1+2‘8|1

(L,s)eZ3m <77, g eXp(l)

|f p,R

" Sexp(l)’

a

To derive the other two, we consider the function f(z,1,y) = D s)ezemxzr, | f1.s],24 T2,
defined for |z;|,|y;] < R, j=1,...,m; |I,| < R*, v =1,...,r. Then, applying Cauchy
estimates to f, we have, for instance:

of of of
a, = |5 = sup —
8zk p,Rx 82/6 l2jl,ly;I<Rx, j=1,...m | OZk
|I,|<R2Xx2,v=1,..,r
- - 7] |f|R |f R
<(1-x) 'R sup Ifl | = — e
211y ISR, G=1,....m (1-x)R (1—-x)R
|IU‘SR2,U:1 ..... T
with £ =1,...,2m, and one proceeds similarly for aan ,o=1,...,r. 0
7 lp,Rx

Lemma A.3. Let us consider f(0,z,I,y) and g(0,x,I,y) compler valued functions,
such that f and grad g are analytic functions defined on D, (p, R) and 2m-periodic on 6.
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Then, for every 0 <0 < p and 0 < x < 1, we have:

r|flpr |99 r|flpr dg
{f, g}Hp—s.mx < 5e|X[|)p(1) oI - R2(|1 |_P x?) ‘8_0 .
2mlflp.r | 99 : (A.2.2)
R(1—x) [0z, 5z,
Proof. Tt follows directly from lemma A.2. O

Lemma A.4. Let us take 0 < py < p and 0 < Ry < R, and consider the analytic functions
O, T with values in C", C" respectively, and X, Y with values in C"™, all defined for
(0,z,1,y) € Dym(po, Ro), and 2m-periodic on 6. We assume that |@|, g, < p — po,
1 Z,0.0, < R?, and that max{|X |, ry, |V|p.r0} < R. Let f(p,u,J,v) be a given (2m-
periodic on ¢) analytic function, defined on Dy . (p, R). If we introduce:

F,z,I,y)=f(0+6,X,I.Y)
then, |F|PO,RO < |f|P7R'
Proof. We may expand f(0 + @, X,Z,Y) in Taylor series,
F0.2,1,y)= Y foma(0+O)IT°X™Y",

where the indices s € Zi, m,n € ZT’ (and the dependence of @, Z, X, Y on 0, x, 1
and y has not been written explicitly). Similarly, the coefficients fs (0 + @) can be
expanded in Fourier series,

fs,m,n(e + @) = Z fk:,s,m,n exp(i<k7 0 + @>),
kezZ"
so their norm | - |,, g, is bounded according to,
|fs,m,n(0 + @) |p0,R0 < Z |fk:,s,m,n|| eXp(i<k:, 0+ @>)|p0,R0 (A23)
kezZ"

and, by item (ii) of lemma A.2,

| exp(i(k; 0 + ©))]po,ry < exp ([K[1po)| exp(i(k, @))]po,ro-

Next, expanding exp(i(k, @)), applying the properties of the |-|,, r, norm and taking into
account that |@|,, r, < p — po, one has |exp(i(k, @))|,.r, < exp(|k|i(p — po)). Hence
|exp(i(k, @ + O))|p0,r, < exp (|k|1p) which, in view of (A.2.3) leads to the inequality
|[fomm (0 + ©O)|p0.r < |fsmml,- Finally, from the assumptions of the lemma on X, Y
and Z:

Floio < > fomn(0 + )l ro I |20k (V7

s,mn

< Z |fs m n|pR2‘s|1+‘m|l+|n|1

s,m,mn
=|f
which is the desired result. O

pR>
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Lemma A.5. Let us consider @(j), .'Z,'(j), X9 and yU), j = 1,2, in the same conditions of
the ones of lemma A.4, but with the following bounds: |@Y) |, ry < p—po—0, |V 0.1y <
R? — o, and max{| XD, g0, IV |00} < R— X, with0 <8 < p—py, 0 <o < R and
0 < x < R. Then, if one takes the function f of lemma A.4 to define

F(j)(g7 x, I,y)=f(0+ e, X(j),l'(j),y(j)), with j = 1,2

one has |[FY) — FA|, o < K|f|,r, where if we put Z* = (X*,Y*) then

2m/
|@(1) _ @(2)| R |l-(1) _ 1-(2)| R 1 ) @
K= PO, 70 ! P04 = z - Z .
e D D A
Proof. Tt is based upon the same ideas used to prove lemma A.4. O

Lemma A.6. Let f and g be complex valued functions, f analytic in the domain D, ,,(p+
§, Rexp(0)) and grad g analytic in D, ,(p+ ', Rexp(d')), with 0 < 6,8 < 1/2. Then

|{f7 g}|p,R S A(Ra 57 6,7 T, m) |f|p-}-(5,Re‘S |g|p+5’,Re‘5’ (A24)
with,
r+8m
A ! =
(0,051 m) = o @) (Reexp(7))59

Proof. Using lemma A.3 we obtain,

T|f|p+5,Re5 dg T|f|p+5,Re5 dg 2m|f|p+5,Re5 dg
(o g¥lpn < W leranes | Dg] o |09} 2l lanes |00
dexp(l) [OI],p, R*(exp(20)—1)]06],, Rlexp(d)—1)|0z]|, 5
and the norms of the derivatives may be estimated with (iii) of lemma A.2,
W <l 2 <l
I\, ,~ Re(exp(20) — 1)!70+0m 50| = §exp(1) o Fe”
dg

“< _—
92, = Rlexp(e) — 1) et

This allows us to bound the norm of the Poisson parenthesis of f and g according to,

r/e r/e 2m | flp+s Re5|9|p+5' Red’
< ) )
9} lor < [6(e25’ 1) @ 1) (@1 - 1)] R?
r/e r/e 8m | fps6.Res 9] 16", Re®’
= [Me%'  Sore 55’e5e5'] Iz (4.2:8)
1 2r !
= e | e OO =] Whaneldlyne

where, to state the second inequality we have used that, whenever 0 < x <1,

T

B < 1—exp(—x). (A.2.6)
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So, for example, €2 — 1 = ® (1 — e™2') > 2§’ (26’ < 1, since &' < 1), and similarly
for the other factors of the same kind appearing at the denominators®. Moreover, the
argument of the hyperbolic cosine appearing inside the square brackets in (A.2.5), § — ¢,
must be —3 < §—4' < 3 (since 0 < 4,8 < 1), so cosh(d—¢") < &. Hence, 8m+ 2= cosh(d —
8') < r+8m. But r + 8m is just the numerator of A(r,d,d’,r,m), so the last term in the
expression (A.2.5) —the stuff on the right of the equal sign—, cannot be greater than the
quotient %. This shows the estimate (A.2.4) is fulfilled and concludes the proof
of the lemma. O

The following corollary is gleaned directly from this last lemma, and we use it in
chapter 2 to bound the Poisson brackets {f_;, G24,;} appearing in Giorgilli-Galgani
algorithm (see remark 2.15).

Corollary A.7. Consider p, R > 0 and a finite sequence of positive numbers, {6, }3<y<s+2,
such that their sum satisfies the condition

> 6u42 < min{1/4, p/4}. (A.2.7)
v=1
Let p,, R, forv=2,...,54 2, be the quantities defined by,
P2 = p, Py i=po— 2250, (A.2.8)
o=3

Ry:=R, R,:= Ryexp (—2250> ) (A.2.9)
o=3

Therefore, if f,g are two compler valued functions, such that f and g are analytic in
Dy (ps—jr2, Rs—jr2) and Dy p(patj + 0244, Royjexp 0oy ;) respectively, it turns out that

{f. g}
forallj=1,...,s.

(r+8m)e
ps+2,Rst2 = 2R, 56,40 |f|ps—j+27Rs—j+2 |g|p2+j+52+j,R2+j exp(d2+4;)

(A.2.10)

Proof. Given a fixed j, with 1 < j < s, take

542

=2 Y 4,

o=s—j+3

and,

o Oja+23 00 30, Hf1<j<s—1,
6s+27 ifj:S,

(note that, in particular d,¢" < 1/2). With this choice of § and ¢’ it is true that psio +
6 = ps_ji2, Pst2 + 0 = poy; + doy; (and also Ryigexp(d) = Ry ji2, Rsioexp(d’) =

Ry jexp(da45)). Thus, application of lemma A.6 leads to the inequality (A.2.10) if, in
addition, we use that,

®)In the referred expressions —and to make them shorter—, e = exp(1) and e* = exp(z), with letter “¢”
in roman font, not italicized, as usual when displaying mathematical formulas. This convention is kept
throughout and applied when becomes convenient.
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(A.7-1) exp(d),exp(d’) > 1.
(A.7-ii) 0 > 20442 and 0" > §j49, for all 1 < j <.

(A.7-iii) Ryyo > Rexp(—1/2), as follows directly from » %, d;40 < 1/4 and (A.2.9) for
v=s+2.

And we are done with the proof. O

Lemma A.8. Let S(0,x,1,y) be a function defined on D, ,,,(p, R) with p > 0 and R > 0,
being grad S analytic on D, ,(p, R) and 27-periodic on 0. If we assume that,

0S 0S 0S

- < R2(1 — 2 - et
99| (=X oI 0z

pR

p,R

(A.2.11)

— )

pR

for certain 0 < x <1 and 0 < 6 < p, then one has

(i) ¢} : Dy(p—0, RX) — Dr(p, R), for every —1 <t < 1, where ¢} is the flow time
t of the Hamiltonian system given by S.

(ii) If one writes ¢ —1d = (@7, X7* I, Y5*), then, for every —1 < t < 1, we
have that ©F , I; and Z;* = (X]*,Y*) are analytic functions on Dy, (p— 6, Rx),
2m-periodic on 6. Moreover, the following bounds hold:

05 05
00 0T

oS

[CR P 20

T | sy < ‘

|27 p—s.rx < ‘

R

(A.2.12)

) )
p,R p.R

Proof. Consider (0,z,1,y) € D,n(p— d, Rx). Letting ¢ — Id = (©;*, X%, I8, V),
we define,

0., Ly) = sup{|t| : |©7],—sry <0,

|If|pf(5,Rx < R2(1 - X2)7 |Zts|pf5,Rx < R(l - X)}

Clearly, 7(g,z,1,4) and since @7 is the flow time ¢ of the Hamiltonian S,

t
S oS
O ot < || 57 00 ds <[t 57| <8, (A.2.13a)
0 p—0,Rx p,R
t
a5 oS
I TF o5 < | | 55 © @3 ds <lil-|55|  <R-x), (A2.130)
0 p—0,Rx R
t
S oS
27l s < |) 50 0) ds <l-|52| <RO-wl  (A2130)
0 p—0,Rx p,R

where we have used lemma A.5 and the assumed inequalities (A.2.11). Then, one has,
for =1 < ¢ <1, |0F],5r¢ < 8, [Ti]pome < R(1 =X, |Z7],5m < R(1—x) s0
T(0,2,1,y) > 1 and hence the result of the first item follows. The inequalities (A.2.12) are
derived straightforward from (A.2.13a), (A.2.13b) and (A.2.13c), whereas the analyticity
and 2Pi-periodicity in 8, for —1 <t <1, of @f, l'f, Zf follow from the analyticity and
21 periodicity in @ of grad S. O
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Lemma A.9. Consider £ € C such that |£] > L > 0 and let f(0,x,I,y) be a function
defined in D, m(p, R) such that:

1f(0,z,1,y)|,r < M, with 0 < M < L.

Let g(0,x,1,y), h(0,2,1,y) be given respectively by

1
VE+ f(0.2,1,y)

9(07937 I’ y) = \/§+ f(07a:7 I’ y)7 h(07m7 I’ y) =

Then, one has:

|g(07m7Iay)|p,R < |\/g| (2_ \/2_ %) ) |h(0,$,I,y)|p’R < 71/1|\/g]‘|/[
V-

Proof. To prove the first inequality, we use that |f 9.2.1.y) | < M < 1. Therefore, we can

develop the square root using binomial expansion:
1/2 e, I,y)\’
oot = EX () (TR
7>0 5
and taking the norm |- |,z at both sides:

(1/2> |g(0,$, Iay) Z,R
' 4K

|g(07m7Iay)|p,R S |\/g|z

J=0

< () Z () ()
(- (0 -5 0o ()

- 1V (2 (") (%))
i

= Vel |2 1——),

= V¢l 1+

("7)
and that (162) = 1, by definition. The second inequality of the lemma follows similarly
using the corresponding binomial expansion. Explicitly,

e () (15 00)

j>0

where it has been used that

= (=1)7+! (1§2), for j € N (as one may check easily)
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and, as before, taking norms | - |, g at both sides one obtains:

—1/2 |f033I"J)pR
|h<emry|p,R_|f|z( )

G

vz () ()

since it is straightforward to check that ‘(_;/2) = (-1)(" 1/2) for all j € Z,. Thus the
lemma is proved. O

Remark A.10 (Notation). To avoid any possible confusion with the square brackets, [-],
in what follows, |-| will denote the integral part or the greatest integer function. This
symbol was already settled at the introduction. 'Y

The next results become useful when we look for estimates of those sums f;; =
> =1 2Lay,,; fi,s—j in the transformation algorithm (chapter 2).

Lemma A.11. Consider a non decreasing sequence of positive numbers {fs}to<s<r, with
By = 1. Given two positive integers, s and r > 2, define the product

r—2 LﬁJ [s,r—2]
5) = (HBm) H Buya | (A.2.14)

(definition 2.12 of chapter 2) where [m,n| denote the remainder of the integer division of
m by n (definition 2.5.9 in the same chapter). It turns out that the products above satisfy

W(r,s —j) BB~ Bjza < W(r,s), (A.2.15)
for all the integers s > 1, r > 2 and j =1,2,... , min(s,r — 2).

Proof. Both possible cases are thought of separately. For a given and fixed » > 3, we shall
find out if the inequality (A.2.14) of the lemma is satisfied whether s > r—2 or s < r—2.

Case 1. s > r — 2; let ¢ and p be the quotient and the remainder of the integer

S

division of s by r — 2, i. e., ¢ = [-%5] and p = [s,r — 2]. Hence, p < r—2; ¢ > 1;

r—2
j=1,...,r —2 and according to the formula (A.2.14)
W(r,s) = (B3 5Br)"Bs - -+ Bpa, (A.2.16)
so depending on the values of j, three possibilities (sub-cases) arise.
(i) j < p. We may write s —j = q(r —2) +p— 7, so L%J =qand [s—jr—2]=p—j.
Therefore,

W(T, s — j)53 e '5j+2 = (33 e 'ﬁr)qﬁa e '3p—j+253 e '5j+2
< (Bs-+-Br)105+ Bp—jr2Bp—jts* Bpras

by the monotonic character of the quantities {f,}1<,<;, it is B3 < Bp_jis, s <
Bp—jtas -5 Bj2 < Bpia.
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(ii) j =p. Then, s — j = q(r — 2) and now L%J = q, but [s — j,r — 2] = 0. Hence,
W(r,s —3)Bs- Bz = (Bs-+-53:)"03 - Byya,

so (A.2.15) becomes an equality when j = [r, s — r].

(ii)) j > p. Weput, s —j = (¢ —1)(r —2) +p+r —j — 2. Consequently, it must be
=] =¢—1and [s—jr—2] =p+r—j—2 Notethat p+r—j > p+2
(because j < r —2). Assume first, however, that this last inequality is strict. Hence,

by (A.2.14),

W(Ta § = j)ﬁ?, o '5j+2 = (53 e 'ﬁr)qflﬁ?, o BpraBpys 'Bp+rfjﬁ3 o 'Bj+2
< By Br)" By BpsobBs - BiraBirs - b
= (53 T Br)qﬁ?) T 6;0—1—2,

where we make use again of the non-decreasing character of the sequence. In particu-

lar —as p < j—, apply Bp+s < Bji3, B4 < Bptas -+ Bpyr—j < Br. The discussion of this
sub-case is not complete, though, without seeing what happens when p+r—j = p+2;
then j =r — 2 and,

W(r,s —j)Bs Bjy2 = (B3 BT By - Bpt2Bs+ - Br
= (63 te Br)qﬁ?) T Bp-i-?a

so, as in the previous item (A.2.14) is an equality also for the maximum allowed
value of j, (i.e., j=r—2).
Therefore, all the sub-cases of this first case verify the inequality (A.2.15), which shows
the validity of the lemma when s > r — 2.

Case 2. If s < r — 2, it is readily checked out from its definition through (A.2.14)
that,

W(r,m) = Bafl3++ Bmya
for all 0 < m < r — 2. Accordingly,

W(T, s — j)ﬁ?, e '5j+2 =3 'Bs—j+263 e '6j+2
< By Bs—jyoBs—jiz -+ Boyos

since 33 < Bs—j13, B4 < Bs—jrar- s Bjga < Boyo

Thus, we have exhausted by far all the possibilities, and seen that in everyone of the
different cases and sub-cases, the r. h. s. of the < symbol (=, for a couple of them) matches
the r. h. s. of (A.2.14). This proves the assertion of the lemma. O

Lemma A.12. Consider a,d, 0 real positive numbers; s,r two integers with s > 1, r > 3
and a sequence {0, }s<y<st+2 given by,

0, f3<v<r,
=X (A.2.17)

- ifr<v<s+2.
s
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Let {0, }o<v<s be a sequence defined recursively through,

190 — ]_,
5 TR (A.2.18)
9, = Lod=td9, 1<v<s. o
6,/+2 ; v J — —
Then,
¥y < d(de + 2ae)* . (A.2.19)

Proof. All along this proof, we shall suppose » > 4. This does not mean any loss in
generality, for it may be easily checked out that the assertion of the lemma works also for
r =3 (see remark at the end). By direct computation, we have:

551 , 0 5y (d
—_ —— - = — — 2
U9 54261 —|—54ad 3 <2+ a>d

d
- (5 + 2a> d < (d+ 2a)d;.

So the result (A.2.19) is satisfied for s = 1,2. Suppose now that 3 < s <r — 2, and take
3 <v < s (hence 0, = §). Then, from the definition of 9,,

9, = 0,1 + ol i, + ——a""\d

V6u+2 6u+2 j

ds 5, 03 w=i+1 5
=29, +2 (53 > a‘dd,_1_i + ——a 1d>,

V6V+2 6u+2 v+1 i=1 v 5l/+1

dds 03 < J
14

(A.2.20)

where the indices in the sum have been shifted taking j =7+ 1. Now taking into account

that % < szl, for all the integers 4, v with ¢ > 1, v > 2. Moreover, and with the aid of

the naive inequality a” 'd < 2a” 'd, we should derive,

dos Syt [ 03 <=2 i ., 85 ey
9, < ——1,_ 2 Y, Y=2d
- 7/51/+2 ! + a5V+2 ((51/_1_1 7:21 vV — ]_a ! + 5V+1a

dos Ou41
= 2 _
<V6V+2 + a<5V+2> 19” ! (A221)

< (g + 2@) 191/71
v
S (d + 2@)19,/,1,

(it has been taken into account that 6, = d3 forall3<v <rand v < s <r —2). So we
have for every v, 1 <v <s<r—2,

9, < (d+2a)9,_,, (A.2.22)
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and recursive backward application from v = s down to v = 2 of this last relation, yields
the estimate (A.2.19):

Vs < (d+2a), 1 < (d+2a)*05 o <+ < (d+ 2a)" 1.

Let us now study the case s > r — 2. Assume, first, that s >r—1, and forr—1 <wv <s,
we proceed in the same way than in (A.2.20) and (A.2.21), i. e

r—2 .

do 5
= 1/5:_2 V; Z ! o~ 'dd, —j
= V;lf; Vy1+ % 2 Zj; 1aid19,,,1,i
r—2 .
<t (i Sty
= V(;f; Vo1 + 2ag:: 9,1
= V;;z (d + 2a1/52;’1> y_1,

where identical shift of the summation indices as in (A.2.20) has been made. Also, we
have used again the inequality == Hl < f—fl, for all « > 1, v > 2 and the fact that the sum
from 1 to r — 3 should be less than the corresponding one from 1 to r — 2 (since the latter
contains one positive term more). Furthermore, if v > r — 1, then by definition (A.2.17)
it must be 1/‘5"5—;rl <1, so0

3
v, < (d+ 2a)9, 4, (A.2.23)
V6V+2
whereas for v =r — 1,
1
Y1 < ———— (03d + 2a(r — 1)6,) 9, o
(7" - 1)5r+1
5 J 5 (A.2.24)
3 r 3
= 20— o < 2 _
(5,«4_1 <T— 1 + a63> 191" 2 S 5r+1(d+ G)ﬁr 2

If recursion is now applied backwards from v = s down to v =r — 1,

2
195 S A(d—i_ 2@)195,1 S 63

d+2a)?0,_o < ...
50542 S(S - 1)6s+26s+1( ) 2=

s—r+1
03

: d+2a)* ", .
N S(S—1)"'7"55+25s+1"'5r+2( +20) '

Now using the bound (A.2.24) for ¥, ; and that ¥, 5 < d(d + 2a)"~3, so we obtain

(r — 1)lg5—r+2

Us <
’ S!5r+16r+2 e 55—1—2

(d + 2a)*~'d;
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but, as d,,; = --- = d; = 03/s, the fraction of the r. h. s. in this expression can be
arranged and bounded according to,

(T - 1)!5§—r+2 B (T o 1)!5§—r+2857r+2 87*72

X

S10pp1 v Ogyn slgy " t? s2
— 1! s —1)! s
_=ros 0 =D s
§T2 st (esry (r=1)7"2 !

And the factors in the last term are,

— 1!
ugl, forr > 2,
(r_l)r—2

S

< et fors > 1,
s!

As induction easily shows. For example, the latter is verified for s = 1 and, if assumed to

work for s > 1, then

(s+ 1)t (s+1)(s+1)° s° (1+1>5 <o
S

(s+1)! — (s+1)s! s

(by the hypothesis, and the fact that (14 1/s)® <'e, for all s € N). Hence, we conclude
that v, when s > r — 1, may be bounded by,

¥y < d(ed + 2ea)* !,
whilst, if s = r — 1, then d,_; = J3, and directly

791"71 S 63

(d+2a)9, 5 = (r —1)d(d+2a)" ? < d(de + 2ea)" .
r+1

using that z < e~ !, for x > 1. Therefore, the inequality (A.2.19) works for s > r — 1.
Nevertheless, it was supposed, up to now, that » > 4. To complete the proof, we

discuss apart the case r = 3, for which direct computation from the definition (A.2.18)
shows,

190 = ]-7 191/ = 53d v—1,
V6u+2
and so:
dds dé? dos™* .
Oy=d, Uy=——d, 3= 2, 0= ——— @,
P T as 0 P T 230,05 T $16405 - - 012

and making the same computations as above, it is seen that,

a7t Ao s

ST EOTY AP AP

1
41 < —d(ed) .
S

Thus, estimate (A.2.19) also works when r = 3. O



Appendix B

Background

In this appendix, we introduce the essential facts on Hamiltonian dynamical systems which
will be necessary along the text. First, classical Hamiltonian systems are introduced, then
extended through a geometric point of view, using symplectic geometry. Special emphasis
is put on the transformation theory, and on the subsequent normal form reduction, because
this will be the main tool we shall use along chapter 1.

Most of the theorems —in particular, those concerning with the geometric approach
to the mechanics—, are stated without proof. The interested reader may access to a wide
amount of literature related with this subject, specially significant for us are the book
of Arnol’d (1974) and the one of Abraham and Marsden (1978).

B.1 Hamiltonian systems

Consider first the following system of ordinary first order differential equations on R?",

. _0H . 9H
ql_ 8p27 pl_ 3(]17

(B.1.1)

*

with ¢ = 1,...,n. The variables ¢* = (¢i,...,¢,) € R, are the positions, while p* =
(p1,...,pn) € R™ are referred as the momenta. Both of them, taken together, are often
called coordinates. The system (B.1.1) is said to be a Hamiltonian system of differential
equations, while the function H in (B.1.1) is the Hamiltonian function or many times,
simply, the Hamiltonian. The number n (half times the dimension of the space) is the
number of degrees of freedom of the system.

If now we introduce the notation ¢* = (g*, p*), identifying (; = ¢; and (;4,, = p; for
i=1,...,n, the equations (B.1.1) can be written in vectorial form as,

where .J,, is the matrix of the standard symplectic form (see definition B.2 and theo-

rem B.12 below):
0 I,
In = : B.1.3
() L

159
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being I,, the n x n identity matrix. The vector field of the Hamiltonian equations (B.1.2),
which we shall note by Xz = J,, -gradH, is the Hamiltonian vector field associated to the
Hamiltonian H.

Now suppose that we make a change of coordinates given by z = ®(¢), with @ :
R* — R*' an smooth map. Then, if {(¢) is a solution (B.1.2), z(t) = ® ({(¢)) must
satisfy, £ = S¢ = SJgrad H(¢) = SJS*grad,H (®~(z)), where S% = D;j®;(€) is the
Jacobian matrix of ®, S* the transpose matrix of S and ®~! the inverse of ®. Therefore,
the equations for z are of Hamiltonian type, with a new Hamiltonian function given by
K =Ho®,if SJS* = JW_ A transformation satisfying this condition is called canonical
or symplectic. If this is the case, the transformed equations can be written explicitly,

. 0K . 0K
Qi =~ 3 -PZ = T A~
OP; Q)i
fori=1,...,nand z = (Q, P). It is said that “canonical transformations take Hamilto-

nian systems into Hamiltonian systems”.

The above description corresponds to the classical definition of Hamiltonian systems
and symplectic transformations. There, the space of the positions and momenta (the
phase space) is R" x R™. For many mechanical systems, though, their natural phase space
is not an Euclidean space, but a manifold. For example, the phase space for the motion
of a rigid body about a fixed point is 7*SO(3), the cotangent bundle of the group of
rotations SO(3). See Marsden and Ratiu (1999).

To define a Hamiltonian system on a manifold we need to introduce first several
concepts from the symplectic geometry, but before proceeding we fix some useful notation.

Let M be a manifold, then F(M) denotes the set of smooth mappings from M into R
and X(M), QF(M) the smooth vector fields and k—forms on M respectively. Also, if N
is another manifold and ¢ : M — N is an smooth map, dy stands for the corresponding
differential map between the tangent spaces i. e., doy, : T,, M — Ty, N, with m € M.

When we have: maps, vector fields, forms, defined on a manifold N, and a regular
map ¢ : M — N, from another manifold M to N, there is a standard mechanism to
extend these objects into M. This is known as the pullback by ¢ and is usually denoted
by ¢*.

First, if a € QF(N), the pullback of a by ¢, p*a, is a k-form on M (so ¢*a € QF(M)),
given by

(¢ ), (V1,..., V%) = Cpmm) (dpm - V1, ..., dpm - V),

with m € M and vy,...,v, € T, M. In the same way we define the pull back of a map
g € §(N) by ¢*g = go ¢ and if ¢ is a diffeomorphism, the pullback of a vector field
Y € X(N) as

(¢ Y)(m) = (dpm) ™" -V (p(m)),

for any m € M. Note that ¢*Y € X(M).

If X is a continuous vector field on M, a finite dimensional differentiable manifold,
by the theorem of Peano (see Sotomotor, 1979), there exists, for each m € M, an ¢ =
e(m) > 0 and a C'-map c: (—¢,¢) — M such that ¢(0) = m and ¢(t) = Le(t) = X (c(t)),
for all t € (—&,¢). In addition, if the vector field is smooth, i. e., X € X"(M) (the set

(U This is equivalent to the more usual condition S*JS = S
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of C"-fields defined on M) with r > 1, given two C' curves on M, «; : I; — such that
¢;i(0) =m, ¢(t) = X (¢i(t)) for i = 1,2, then ¢; = ¢y on I} N I,.

The maps ¢ with the properties described in this last paragraph, are called integral
curves of the field X at the point m. The image of an integral curve at m is known as
the orbit or trajectory of the vector field X through the point m.

Now let J,, be the set

Im = (w_(m),wy(m)) = J1, (B.1.4)

Iey

where J is the class of open intervals, I C R, such that 0 € I and there exists an integral
curve ¢ : I — M of the vector field X at m (so ¢(0) = m). J,, is the mazimal interval
of definition of the integral curves through m at ¢t = 0. Then we can define ¢: J,, = M
of class C! and such that ¢(0) = m, ¢(t) = X (c(¢)) for all ¢ € J,,,. This is the mazimal
integral curve through m at t = 0. It is denoted usually by ¢ — ¢(t;m) = ¢4(m) € M.

Consider the set Dy = {(t,m) e R x M :t € J,,}. The flow of X on the manifold M
(we denote it again with ¢), is the map

¢:DCRxM — M
(tam) = ¢(t’m):¢t(m)7

defined by the properties ¢(t;m) = X (4(t;m)) and ¢(0;m) = m. Here, as it has been
introduced before, the dot symbol denotes the derivative with respect to the parameter
(the time) t.

It can be proved (see the book of Sotomayor referenced above), that Dy is an open
set of R x M holding {0} x M, and also that the flow ¢ is a C" map if X is a field of
class C™ on M.

When J,, = R for all m € M, the field X is said to be complete. This takes place,
for example when M is a compact manifold (see the book of Palis and Melo, 1982, for
a proof). Then, ¢, : M — M, t € R, defined by m € M — ¢;(m) = ¢(t;m) € M is a
diffeomorphism and ¢; o ¢, = ¢4, for all ¢, s € R. Moreover, the set {¢,;}, . defines the
one parameter group of diffeomorphisms.

If X is not complete, the relation ¢, (¢5(m)) = ¢yis(m) or equivalently, ¢ (¢; ¢(s;m)) =
é(t + s;m) with m € M holds only whenever both members are defined (that is only if
(s,m), (t,¢(s,m)) € D). In this case, we say that the flow is local.

Remark B.1. In many books, ¢; is used also to denote the flow. When ¢ is fixed, and X
is complete then it denotes a diffeomorphism ¢; : M — M. We shall use this convention
because both meanings can be usually distinguished from the context. 2

Let o € QF(M), be a k-form on M, X € ¥(M) and ¢; the (local) flow of X. The
dynamic definition of the Lie derivative of o along X is given by

d
Lxa— — y
xXQ o o et

This definition, together with the properties of pullbacks, leads to the Lie derivative
theorem,

d
Egb;‘a = ¢; Lxa. (B.1.5)
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(see Abraham, Marsden and Ratiu, 1983, chapter 5).
If f € F(M), the Lie derivative of f along X is the directional derivative

Cxf =df - X,

and the formula (B.1.5) of the Lie derivative theorem has the same expression for func-
tions, i. e.

d
SOiS = LT, (B.16)

where, as above, ¢, is the flow of the vector field X and f € F(M).
For a k-form o« on a manifold M and a vector field X, the interior product or the
contraction of X and «, denoted ixc, is defined by

(ixa),, = am (X(m),v1,...,04.1),

with m € M, and vy,...,vx_1 € T,, M. From this last definition, it is possible to prove
that “the pullback of a contraction, ¢*iya, is equal to the contraction of the pullback”,
i. e.

P ixo =l x P o (B.1.7)

The Lie derivative and the interior product are related by the Cartan’s magic formula
EXa == dix& + ixd&, (BIS)

where d stands for the exterior derivative of the corresponding forms. The reader can
find a proof of (B.1.8) in the chapter 6 of the same referred book of Abraham, Marsden
and Ratiu (1983).

From the commutation of the pullback and the exterior derivative, i. e., dp* = ¢*d
and from the Cartan’s magic formula (B.1.8), it is easy to obtain the following relation
for the pullback of a Lie derivative

' Lxa = Lyxp o (B.1.9)

(€ Q¥(M), X € X(M) and ¢ : M — N, a diffeomorphism). So “the pullback of a Lie
derivative is the Lie derivative of the pullback”.

For a function f € (M), and directly from the definitions of pullback and Lie deriva-
tive: (¢*Lxf)(m) = (Lxf) (p(m)) = dfom) - X (¢(m)), with m € M, but this can be
expressed as

oty - dpm - Ao,y - X (o(m) = d (0 9),, - (" X) (m)
= d(p" ), (9" X) (m) = (Loxi" ) (m),

for all m € M. So the same formula (B.1.9) works also for the pullback of a Lie derivative
of a function; i. e.

O Lxf=Lyxo f. (B.1.10)

A Hamiltonian system is born from a symplectic structure defined on a manifold. Next
we introduce this and other related concepts.
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Definition B.2. Let M be a reqular or smooth manifold. A symplectic form or a sym-
plectic structure, is a two-form w? on M, such that

(i) w? is closed: dw? =0, and

(ii) for each m € M, w2, : T,,M X T, M — R is nondegenerate, i. e.: if w2 (u,v) =0
for all v € T,,M then u = 0.

2

The pair (M,w?), of a manifold M together with a symplectic form w? on M is a

symplectic manifold.

Definition B.3. Let (M,w?) be a symplectic manifold, and H € F(M). The vector field
Xy determined by the condition
ixyw® = dH, (B.1.11)

is called the Hamiltonian vector field of the Hamiltonian function H, and (M,w?, Xy) is
a Hamiltonian system.

Remark B.4. The condition (B.1.11) in the definition above, is equivalent to
w2 (Xg(m),v) =dH,, -v

for all m € M and v € T,,M. Thus, Nondegeneracy of w? guarantees that Xy exists. &

From (B.1.11) it also follows that, on a connected symplectic manifold, any two Hamil-
tonians for the same Xy have the same differential, so they must differ by a constant.

To each Hamiltonian vector field Xz we associate its Hamilton’s equations & = Xy,
whose solutions are integral curves of the field X . This is the “natural” extension of the
Hamilton’s equations (B.1.1) on manifolds.

Example B.5. For M = R*" (or C*) and if w? is the standard canonical two form
w? =" dg; Adp; (so w?(u,v) = u*Jv, with u,v € R*" (or C*")), it is readily checked
that in this case Xy = J, - gradH, and the Hamiltonian equations are the ones given
by (B.1.2). &

Next we introduce the notion of symplectic map. It just generalizes our early definition
of canonical transformation given on page 160 (see proposition B.9 below).

Definition B.6. A map ¢ : M — N between symplectic manifolds (M,w?) and (N, o?)

is called symplectic if ¢*a? = w?. Note: when ¢ : M — M, then ¢ is symplectic if

p*w? = w?.

Example B.7. For M = R?" and w? the standard symplectic two form given in exam-
ple B.5, and a diffeomorphism ¢ : R?*" — R?"; the just given definition of symplectic map
reduces to the condition S*JS = J, for in this case

(go*wQ)I (u,v) = w? (dpy - u, dp, - v) = w*S*J S,

where S is the Jacobian matrix of ¢ i. e., S% = D;p;(x), as before. But the last term
should be equal to w?(u,v) = u*Jv, for all z € R* and for all u,v € R?", so it must
be S*JS = J, which is equivalent to our first definition of canonical transformation,
SJS* =J,

SJS* =J & (JS7) SIS (JS) = (JS™) J(JS) & S*JS = J,
and the property J? = —1I5, is used. O
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The following theorem provides an important result: the flow of a Hamiltonian vector
field is, for each fixed time ¢, a symplectic map which leaves the Hamiltonian function
invariant.

Theorem B.8. Let Xy be a Hamiltonian vector field on the symplectic manifold (M, w?),
and let ¢; be the flow of Xi. Then

(i) ¢y is symplectic; i. e.: pfw? = w?,
(i1) H is constant along the the flow, i. e. Ho ¢, = H.

Proof. The proof of (i) follows immediately from the Lie derivative theorem (B.1.5), and
the application of the Cartan’s formula

d
pl
but dw? = 0, because w? is a closed form and dix,w? = d(dH) = 0. Thus, ¢jw? =
Piow? = w’.

To prove (ii), consider ¢(¢) to be a integral curve of X. Then applying the chain rule
and the formula (B.1.11) of the definition B.3,

% (H o 0)(t) = dHog - X (c(t)

dt
= wey (Xu (c(t)), X (c(t))) = 0.

rw2) = ¢I£XH<’U2 - ¢r (dZ.XHW2 + iXHdu)Z) ,

by the skew-symmetry of w?. So H is constant along any integral curve of Xg. In
particular along those ones given by the flow. O

The Hamiltonian H is often referred as the energy of the Hamiltonian system (M, w?, Xp).
So (ii) states that the energy is conserved.
Now, we define for any two functions f,g € §(M), their Poisson bracket by

{f.9} = (X}, X,), (B.1.12)

where Xy and X, are the Hamiltonian vector fields associated to the functions f and g
as given by (B.1.11).
The Poisson brackets can also be expressed in terms of the Lie derivative, since

Lx;9=tiz,dg= imfiwng = wz(Xf,Xg) = —wQ(Xg,Xf) = —Lx,f,
and therefore
{fag} = _Eng = Eng-
Note that, for M = R?", and for the standard symplectic 2-form, the Poisson bracket

of two functions f and ¢ can be expressed as

_ N9 099 _0f0g
{f’g}_z;a% Opi Opi 3%’

1=

(B.1.13)

or, also

{f,9} = (grad )" J - grad g. (B.1.14)
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in vectorial notation. Here (gradf)” is the transpose of the gradient of f.

Now, let (M,w?) and (N, a?) be symplectic manifolds. A diffeomorphism ¢ : M — N
preserves the Poisson bracket if o* {f, g} = {¢*f, p*g} , for all f, g € F(N).

The Poisson bracket gives an straight characterization of the symplectic maps as those
which leave it invariant.

Proposition B.9. With the notation introduced in the paragraph above, the following are
equivalent:

(i) ¢ is symplectic.
(ii) ¢ preserves the Poisson bracket of any functions f,g € F(N).

(iii) ¢* Xy = X5, for any f € F(N).

Proof. First we see that (ii) is equivalent to (iii), since

o {9} =0 Lx,f=Lox, 0" f={¢"f.¢"g}.

Now consider
2

ix,. w=d(g"f) = o*(df) = p*ix;0° =i x, 0 0
then, by the nondegeneracy of the 2-forms w? and o2, and by the fact that any v € T,, M
equals to some X, (2) for a function h € F(N), it follows that ¢ is symplectic if and only
if p*X; = X -p, for all f € §F(N). So, it is proved that (i) and (iii) are equivalent. This
ends the proof of the proposition. O

Remark B.10. (iii) implies that Hamilton’s equations are preserved under canonical trans-
formations. Recall that from our initial definition of symplectic transformation (page 160
and see also example B.7), we saw directly the conservation of the Hamiltonian equations.
(iii) adds that the converse is also true. 2

Proposition B.9 allows to generalize the conservation of the energy established in

theorem B.8. We do this through the following corollary.

Corollary B.11 (of proposition B.9). Consider a Hamiltonian vector field Xy on the
symplectic manifold (M, w?), and let ¢; be its corresponding flow; then, for any f € F(M),
we have

C(Fob) = (/. HYo b= {f 0 6, H) (B.L.15)

Proof. Using formula (B.1.6) of the Lie derivative theorem and the definition of the Pois-
son bracket in terms of the Lie derivative, {g, f} = Lx,g, we obtain

d d
@(fo@):a(/)ff:ﬂﬁ)@f

where the preservation of the Poisson bracket and the Hamiltonian under the flow ¢; has
been applied. O
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A function g € F(M) is in involution or Poisson commute if {g, H} = 0. Then,
by (B.1.15), g is constant along the flow of the Hamiltonian vector field X . This functions
are called integrals or constants of the motion. A classical theorem of Liouville states that,
if a Hamiltonian n-degrees of freedom system has k& functionally independent integrals in
involution, then the number of degrees of freedom can be reduced to n — k. When k =n
it is said that the system is integrable. Then, and under certain additional hypotheses,
the trajectories of the system in the phase space are straight lines on high-dimensional
cylinders or tori and the Hamiltonian equations can be integrated by quadratures. When
the motion takes place on tori, it is possible (though not always trivial) to introduce the
so called action-angle variables.

For a more precise formulation and for the proof of the Liouville theorem, beyond the
outline given here, the reader is aimed to consult the book of Abraham and Marsden (1978)
and also the one of Arnol’d (1974). In Goldstein (1980), chapter 10, there are several
examples and exercises on integration of mechanical systems by changing to action-angle
variables.

The next theorem states that, locally, it is possible to write the Hamilton’s equations
in the form (B.1.1) of page 159.

Theorem B.12 (Darboux). Consider the symplectic manifold (M,w?) and m € M.
Then there ezists a chart (U 1)), with ¢ (m) = 0; such that

n
W, = Zd%‘ A dp;,
i1

being (q1, ..., qn;P1,y- - -, Pn) the coordinate functions of the chart map . This coordinates
are often referred as symplectic or canonical coordinates.

In particular, it follows that the manifold M is even dimensional. The Darboux’s
theorem allows us to extend, over the whole manifold M, any local result proved for the
standard symplectic manifold (R*",w? = Y7 | dg; A dp;), whenever it is invariant under
canonical transformations. For a constructive proof see Arnol’d (1974).

Henceforth we shall consider that the Darboux’s theorem has been applied so in the
rest of the present monograph we shall work by default with the standard symplectic
manifold; so if nothing is stated in the contrary sense, M = R?" and w? =), dg; A dp;.

We also want to stress that all the definitions and theorems presented on these section
are valid on finite dimensional manifolds. In the different books quoted along the text,
it is possible to find generalizations of the corresponding notions and results on infinite
dimensional manifolds.

B.2 Poincaré maps

Poincaré maps are a useful trick in the study of dynamical systems. They transform
continuous dynamical systems (flows) into discrete (mappings) at the same time that
reduce the dimension. The material we include here is taken from Delshams (1994). Also
good references are the books of Sotomotor (1979) and Palis and Melo (1982).

Consider py € R™ a nonsingular point of a smooth vector field X € X(R™) (not
necessarily Hamiltonian); this means that X (pg) # 0. Let py = ¢(T;py) with T # 0 be
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Figure B.1: Poincaré map

another point on the integral curve of X at py and ¥ a transversal section of the field at
p1, 1. e, ¥y is a smooth m — 1 hypersurface and X (p;) € 1, 2.

We shall suppose that, there exists a regular function h : Uy — R, with U; a neigh-
borhood of py, such that ¥y NU; = {& € R™ : h(z) = 0} and with Dh(z) # 0 for all
x € U;. Now consider the map (x,t) — h(¢(t;x)), defined in a neighborhood of py. By
the implicit function theorem, we have neighborhoods Uy of py, I of T and an unique time
map T : Uy — I such that

o(t;x) € ¥y with (t,z) € I x Uy & t = 7(x).

(in particular, 7(py) = T).
The map z € Uy — P(x) = ¢ (7(x);z) € ¥ is called the Poincaré map. It is a smooth
map, though degenerate in the following sense: given p € Uy, on the piece of the orbit at

p
Ou, (p) = {z = ¢(t;p) : ¢(s;p) € Uy for all s € [0,¢,]}

contained in Uj, the map P is constant, i. e., P(p) = P(x), for all x € Oy, (p) (see
figure B.2). To avoid this degeneration, we select another transversal section, Yy, at
po and restrict Pl 1 3o N Uy — P (3o NUp) (see figure B.2). In fact, the restricted
map is the so called Poincaré map. Furthermore, it is not difficult to prove that P is a
diffeomorphism.

An interesting case is for periodic orbits, p; = ¢ (T;py) = po. Then we can take
Yo = X1, because P(XqNUy)N(2g N Ty) #
(). For this cases we could iterate P and
consider P", when possible. Note that we
have lower in one unit the dimension of
the dynamical system, which now is dis-
crete for it is described by a diffeomor-
phism P: ¥ =Y,NUy — P(X') C X.

Moreover, the dynamics properties of
the flow X are translated to the map P.
Thus, periodic points on the map corre-
spond to periodic orbits of X of the same
hyperbolic type (see below) and if A is an

Figure B.2: Transversal section X at pop.
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invariant set under the flow of X, then the intersection ¥’ N A is invariant under P, and
SO on.

For example, it can be seen the relation between the differential matrices DP and
D¢ = % (for the notation, see remark B.14 at the next section).

For a given orbit (not necessarily periodic), consider the Poincaré map P : ¥y — 3 of
the field X and the transversal sections ¥, 3; defined above. We have p; = ¢ (7(po); po)
and X (pp) # 0. X; are transversal sections at p; so X (p;) € T, %; with i =0, 1.

On U, we can define P(z) = ¢ (7(z); x) with 7(py) = p;. Consider now the direct sum
R™ = Span { X (p;) } &1}, %;; ¢ = 0,1. To fix ideas, suppose we choose two bases for R™, say
{ui,ug,...,up} and {vy,vs,...,v}; given by u; = X (po), Span {us, ..., un} = T, X0
and in the same way, v, = X (py), Span {vo,...,v,} =T, 2.

Next, we apply the relations (see remark B.14 below):

D¢ (7(po); po) - X (po) = X(p1), (B.2.1)
and
DP(po) = X(p1)D7(po) + D¢ (7(po); po) , (B.2.2)
to the vectors of the basis {uy,...,u;,}, to obtain

D¢ (7(po); po) - Uy = vy,
Do (1(po); po) - wi = DP(po) - w; — (D7(po) - u;i) X(p1),

fori =2,...,min the second equation. But note that (D7(pg) - u;) X (p1) € Span {X (p1)}
and DP(py) - u; € T), 3. So the following proposition is proved.

Proposition B.13. Let P : Xy N Uy — Xy be the Poincaré map of the flow of X €
X(R™), with the transversal sections Yo and ¥;. Consider any point py € Lo N Up,
p1 = P(po) = ¢(T;po). Then in the bases {u;},_, ., described above, the
matrices Do(T;po) and DP(py) are related by

1 Q
Dd)(T;pO) = (ﬂw) )

with o = —D7(py) : T,,, X — R.

..........

Remark B.14. D¢(t;py) = %(t;pg), so it is the derivative with respect to the initial
conditions of the flow, and satisfies the following initial value problem:

d
£D¢(t;p0) =DX (@5(75;270)) D¢(t;p0)7 D¢(0;p0) = Iy

(and I, is the m x m identity matrix). Thus, D¢(¢;po) is a fundamental (in fact the
principal at t = 0) matrix of the linear system

T =A(t)x, (B.2.3)

with A(t) = X (¢(t;p0)). We say that the equations (B.2.3) are —for the vector field X,
the first variational equations of the orbit at py. 'y
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B.2.1 Poincaré maps of periodic orbits

For a Poincaré map associated to a periodic orbit i. e., when p; = ¢(T';pg) = po, with
X (po) # 0 and taking ¥y = 3, the matrix A(¢) in (B.2.3) is T-periodic: A(t) = A(t+T).
Then Do(T;py), is a monodromy matriz (since Do(t + T5po) = D(t; po) Dd(T;po)) and
its eigenvalues are called the characteristic multipliers of the orbit. Strictly speaking, the
characteristic multipliers of a system (B.2.3) with ¢ — A(¢) continuous and T-periodic
are defined to be the eigenvalues of any monodromy matrix.

In fact, the characteristic multipliers do not depend on the particular monodromy
matrix chosen; that is, the particular fundamental solution used to define the monodromy
matrix: if U(¢) is a fundamental matrix solution with monodromy matrix C' (so ¥ (t+7') =
U(t) C) and W(t) is another fundamental matrix; then there exists a nonsingular matrix,
D, such that W(t) = U(¢)D. Hence W(t 4+ T) = U(t)D'CD so the monodromy matrix
for U(t) is D~'CD; and similar matrices have the same eigenvalues.

Applying the Floquet theorem, any fundamental matrix W(¢) of (B.2.3) can be written
as the product of two m X m matrices

U(t) = P(t) exp(tB), (B.2.4)

with P(t) T-periodic and B a constant matrix given by M = exp(T'B), where M is the
monodromy matrix of ¢ (so U(t + 1) = W(t) M). As M is not singular, the matrix B
exists though it will be complex in general. For a more complete account on Floquet’s
theorem see Smale (1974), or practically any text book on differential equations.
If X\ is a characteristic multiplier (i. e. an eigenvalue of the monodromy matrix M),
each complex number p such that
A =el*

is called characteristic or Floquet exponents. Note that the imaginary part of p is not
determined uniquely, since p + i2k7 /T also verifies the above condition for k € Z. As the
characteristic multipliers are determined uniquely, it is usual to choose the characteristic
exponents such that they coincide with the eigenvalues of B in (B.2.4).
With this choice, p; is a characteristic exponent if and only if \; = e
teristic multiplier, so the solution is asymptotically stable if and only if:

Tri is a charac-

Rep; <0.foralli=1,...,m (& |N| <1, foralli=1,...,m)

It turns out that, if v is a periodic orbit, its associated Poincaré map P : XoNUy — X
does not depend upon the selected point pg, pg € v “up to C"-conjugations”; more precisely,
in the sense of the following.

Proposition B.15. Let v be a T-periodic orbit of X € X"(M) and Xy a transversal
section of X at a point py € . We define the Poincaré map Py : ¥y N Uy — Xy N Uy
by x — ¢ (1(x);x), 7(po) = T. Then, if P, is another Poincaré map associated to 7 at
another point p1 € v, there exists a C"-map h : Wy — Wy, with W; a neighborhood of
p; such that W; C U;NU!, i = 0,1; satisfying Py o h = h o Py on Wy. Furthermore h
is a CT-diffeomorphism; i. e., there exists a C"-map g : Wi — Wy such that g = h™! on
W1 N 21.
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So, if A(t) = DX (§(t; o)) with 6(t + T po) = 6(t; o), the set
{A € C, characteristic multiplier of & = A(t) x} = {1} U Spec (DP(py)),
because 1 is always an eigenvalue of D¢(T'; py) with eigenvector X (py), since

D(T; po) X (po) = X (po)-

Therefore the characteristic multipliers which determine the behavior of the periodic orbit
v are those ones of DP(py); and the study of the linear stability of the periodic orbit -y
is reduced to the stability of the fixed point py of the Poincaré map P. For example, pg
(and thus 7) is hyperbolic when Spec (DP(po)) N'S* = 0, i. e., if all the characteristic
multipliers, but one lie outside the unit circle in the complex plane.

As through the present work we shall deal with Hamiltonian systems, and they always
have at least the integral corresponding to the energy (see theorem B.8), the following
proposition becomes of interest.

Proposition B.16. Let X be a smooth vector field on R™, X € X"(R™) with r > 1 and
F: M — R of class Ct, a first integral of X. Consider the flow ¢ : D C Rx M — M
of the vector field X, a T-periodic orbit v = {¢(t,py),t € [0,T]} and the Poincaré map
associated to py € . Then 1 is an eigenvalue of DP(py), and an eigenvalue of D@(T'; po)
with multiplicity at least two.

To prove this proposition we need a previous result
Lemma B.17. The map

W3, xR" — R
(t,v) — DF (¢(t;po))v,

is a time-dependent first integral of the variational equation © = A(t) x associated to the
periodic orbit of the vector field X at py.

Proof Of the lemma. v(t) is a solution of the variational equation if and only if v(t) =
D¢(t; po)v(0). Therefore,

W (t,v(t)) = DF (é(t; po)) Do(t; po)v(0) = DF(po)v(0) = W (0,v(0)),

as follows by deriving both sides of F (¢(t;x)) = F(x) with respect to x and then substi-
tute x = pyp. U

Proof of proposition B.16. By the lemma we have that
DF (¢(t;po)) Do (t; po) = DF (¢(0;po)) D (0; po) = DF (po).

Taking ¢t = T, (and therefore ¢(T;pg) = po), in the expression above, it reduces to
DF (po) Dé(T';po) = DF (po), or equivalently,

(D&(T;po))" gradF (po) = gradF (po).
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So gradF'(py) is an eigenvector of (D¢(T;py))" associated to an eigenvalue equal to 1.
By the other hand, we already know that Do (T;py)X (po) = X(po). Also, the relation:
(gradF(po), X (po)) = DF(po)X (py) = 0 must be satisfied since F is a first integral. From
here, it follows that the generalized eigenspace E; = {v € R™ : (D¢(T; po) — I,)™ = 0},
has, at least, dimension 2, i. e., 1 is an eigenvalue of the monodromy matrix with mul-
tiplicity at least two. If this is not so, and dim E; = 1, then the rest of the eigenvalues
should be different from one and therefore, in a suitable basis the monodromy could be

expressed as
1 0 ‘
0 Am— 1 ’

thus, in this basis DF(py) = e} and X (py) = €1 so DF(py) - X (py) # 0; which cannot be
possible because F'is a first integral of the vector field X. O

Without loss of generality, we can suppose gradF'(py) € T},,Xo; e. g., we can take a
surface of section X such that, 7,3 = X (po)* (see proposition B.15). In this case, taking
vy = X(po), vo = gradF(py) and vs, ..., v, such that Span {vs,vs,..., v} = T, .
Then in the basis {v;},,.,,, the matrix of monodromy reads

% %
0 0 - 0
D$(T;po) = | & |+
: DPFo(pO)
0| =x*

The box (m — 2) x (m — 2) noted as DPp (py) in the matrix above, corresponds to
the Jacobian matrix at the point py of the reduced Poincaré map Pg, : ¥, N Uy — Xp,,
xz+— ¢ (7(r);x), where

Spo={z €S F(z) = Flpy) = Ry}, (B.2.5)

and it is a (m — 2)-dimensional manifold of R™.

If we have r > 1 first integrals Fi,. .., F, with gradFi(py), - . . gradF,.(po) linear inde-
pendent, it is often possible to reduce the dynamical system in 7+ 1 dimensions and work
on

Spo. 0 = {z €S Fj(z) = Fi(po) = F},j=1,...,r}.

When this is possible, 1 is an eigenvalue of multiplicity at least r + 1 of D¢ (T'; po)
(multiplicity r of DP(py)) and in such cases, periodic orbits are not isolate, but usually
we have families of periodic orbits.

B.2.2 Stability for three degrees of freedom Hamiltonian systems

In this section we introduce some notations and conventions for the study of the (linear)
stability of Hamiltonian systems with three degrees of freedom. The approach we present
here is classical and it can be found mainly in Broucke (1969).
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In particular we are interested in the study of (linear) stability of periodic orbits. Since
autonomous (i. e., not time dependent) Hamiltonian systems have always a first integral
corresponding to the energy, we can fix the energy level H = hg, and work with the reduced
Poincaré map Py, : Xy, — Xp,, at some convenient point py on the periodic orbit. Here,
the isoenergetic surface of section X, is given by (B.2.5) with Fy = hy = H(p). By
definition P, (py) = po, and the study of the stability of the periodic orbit reduces to
the study of the stability of the fixed point py of the map P,,. Thus, the linear normal
behavior of the periodic orbit is determined by the eigenvalues of the differential of the
Poincaré map at pg, D Py, (po)-

But P, is a symplectic map, so DP,, (po) is a linear symplectic map. The following
is a well known result (see Arnol’d, 1974).

Proposition B.18. The characteristic polynomial of a real symplectic transformation
A:R™ —» R™
p(A\) = det(A — Ayy,)

is cyclic, i. e., p(A) = \*"p (%)

Then, if A is a eigenvalue of A, 1/X must also be an eigenvalue of A. On the other
hand, the characteristic polynomial is real, so if A is a complex eigenvalue, its complex
conjugate A\ must also be an eigenvalue. Thus, in a real symplectic map, the eigenvalues
appear;

(i) in 4-tuples: A, A, 1/X, 1/X, (JA] # 1, Im A #£ 0),
(ii) pairs on the real axis: A = \, 1/A = 1/,
(iii) pairs on the unit circle: A = 1/A, A = 1/\.

A linear map A is stable if, for any given ¢ > 0, there exists 6 > 0 such that |z| <
§ = |A%| < e, for all ¢ € N. With this definition, it is straightforward to deduce that
if all the 2n eigenvalues of a linear symplectic map A, are distinct and lie on the unit
circle of the complex plane, then the map is stable. Even more, then, A is proved to be
strongly stable, which means that any other symplectic map, A;, “close enough” to A is
also stable.

In our particular case, A = DP, (py) and n = 2. Proposition B.18 implies thus that
all the possible distributions of the four eigenvalues A, 1/A;, Ay, 1/As on the complex
plane are the ones plotted in figure B.4. Another consequence of the proposition is that
the characteristic polynomial may be written in the following form

p(A) =M+ aX® + A +ad+ 1 (B.2.6)

An important fact is that the stability only depends on the coefficients o and [ of this
polynomial.

In astronomy and in celestial mechanics, it is usual to define the stability indices of
the map (and so, of the corresponding orbit) by

1
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(¢ = 1,2), and it can be immediately seen that these indices are related with the coefficients
of the characteristic polynomial (B.2.6), o, § through

a = —(bl + bg), B =2+ b1b2. (B28)

From these two relations it follows that the stability indices are given by the solutions
of

2 +ar+(8—-2) =0, (B.2.9)

which are,

bio = 5
where we have introduced the quantity
A=ao*—4B3+38. (B.2.10)

By the definition of the stability indices (B.2.7), it is seen immediately that the eigen-
values A1, 1/\; are the solutions of the two degree equation

2> — b +1=0, (B.2.11)

given by

by £+ /07 — 4

)‘17)‘1_1 = 9 )

and in the same manner, the other reciprocal pair Ay, 1/Ay are the solutions of
2% —byr +1 =0, (B.2.12)

and given by

L bt/ —4
Ao, Ayt = F

Then, the problem of finding the roots of the characteristic polynomial (and hence,
the eigenvalues) is reduced to solving the three two order equations (B.2.9), (B.2.11)
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and (B.2.12). The discriminant A of (B.2.9) is p 30
zero for B = a?/4 + 2. In the plane (a, 3), this
is the equation of a parabola with its apex at
(a, B) = (0,2), and the § axis the symmetry
axis.

The equations for b; and by have zero dis-
criminant along the straight lines f = 2a—2 and
B = —2a — 2 respectively. These are tangents 15
to the parabola A = 0 at the points (4,6) and
(—4,6). The parabola, together with these two 4,
straight lines bound seven regions in the plane
(a, B). They correspond to the seven possible
distributions of the eigenvalues with respect the
unit circle in the complex plane plotted in the
figures B.4(a) to B.4(g). 0

Thus, periodic orbits (or equivalently, the
fixed points of their associated Poincaré maps) 5L P
can be classified by the position in the Broucke ol

|
0

25

20

diagram (figure B.3 above) of their characteris- 10 | /
tic polynomial coefficients (o, §) —see (B.2.6)—. 15 -10 -5
Depending upon the region in the diagram the a
point (a, #) belongs to, the periodic orbit may Figure B.3: Broucke Diagram.
be stable or present six different types of instability.

Next, we shall briefly describe the relation between the distribution of the (nontrivial)
eigenvalues of the periodic orbit with respect the unit circle, and their representation in

the Broucke diagram. For a more complete account, see Broucke (1969).

B.2.3 Regions in the Broucke diagram

The connection between the seven regions on the diagram of figure B.3 and the seven
types of stability depicted in the figure B.4, can be described briefly as follows:

Region 1. A > 0 and b;,by € R with b7 < 4, b2 < 4. Then A, 1/A; are complex
conjugates, and so are Ay, 1/\y. The four eigenvalues lie on the unit circle. We have thus
stability.

Region 2. A < 0 and by, by are complex conjugates. The four multipliers are complex
and lie outside the unit circle. Moreover A\; = X,. This type of instability is called complex
instability.

Region 3. A > 0 and b? > 4, b2 > 4. All the eigenvalues are real, but A;,1/); have
signs which are opposite to the signs of Ay, 1/Xs. This is known as even-odd instability.

Region 4. A > 0 by, by are reals, positive and b2 > 4, b2 > 4. There are four positive
eigenvalues. This is the even-even instability.

Region 5. A > 0. by, by reals and negative with 2 > 4 and b3 > 4. There are four
negative eigenvalues. This is the odd-odd instability.

Region 6. A > 0. by and by are real with b? > 4 and b3 < 4. b; is real and positive and
by > 2 and Ay, 1/); are real and positive. The other pair Ay, 1/)s are complex conjugates
and lie on the unit circle. This kind of instability is called even semi-instability.
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Figure B.4: Configuration of the roots with respect to the unit circle on the complex plane for each stability region in the

Broucke Diagram.
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Region 7. A > 0. by, by are real with b2 < 4 and b3 > 4. by is real negative and < —2.
The eigenvalues Ay, 1/A, are real and negative. Aj,1/A; are complex conjugates on the
unit circle. This type of instability is called the odd semi-instability.

Remark B.19. For complex instability, A < 0, and the stability indices b; and b, are
complex. Therefore it is advisable (see Pfenniger, 1985a) to use instead

1 1 o
= —(by+b) =Rel A — B.2.13
b =Re (4 1) =5, (B.2.13
which measures the even or odd character of the complex instability, and
1 Al
|b1—b2| i (s 1) 2 B (B.2.14)
Al 2
which measures the degree of complex instability. 'y

B.3 The transformation algorithm

In chapter 1, we shall simplify the Hamiltonian function using changes of coordinates.
The key point is that such transformations must preserve the structure of the Hamilto-
nian equations, so they must be canonical or symplectic transformations as defined in
section B.1.

A practical way —from a computational point of view—, for generating canonical trans-
formations is based on the fact that the flow of a Hamiltonian system at a fixed time is
a symplectic map (see theorem B.8).

Consider a real (or complex) analytic function G, defined on a domain Q of R** (or
C?") and the one-parameter family of transformations ¢¢ : Q — Q, t € R, verifying:

(i) @5 = Id (the identity map),
(i) L¢¢ = J,grad G o ¢f, for all ¢ € R.

Then, {¢%}icr, is the one-parameter group of symplectic transformations generated by
the function G. The element corresponding to t = 1, ¢$' | is the symplectic transformation
generated time-one flow (of the Hamiltonian G). Therefore, for any analytic f : Q — R
(or €), one may Taylor-expand at ¢ = 0 to obtain a formal development of the transformed
function f o ¢¢ ,i e.,

1 1

fodf =7+ S(ro 00| +a Lo o) +g Lo o) s (B3

Now, on the space of all real (or complex) functlons defined on €2, we define the linear
operator: Lg = {-, G} and, recursively,

Lef = f,
Lif =L (LE'S), for k =1,2,---,
then, induction shows that,
L (Fo6f) = (Lhf) o oF. (B.3.2)

Thus, the above expansion of f o ¢$' can be expressed as next lemma shows.



B.3. The transformation algorithm 177

Lemma B.20. Under the conditions specified above on the functions f and G, the trans-
formed of the function f through the time-one flow ¢S f o ¢$, can be cast into

foof = Zk,L f ~(Lif) o 8 db,

foranyr=1,2,...

Proof. 1f follows from the Taylor expansion (B.3.1), up to order r—1, adding the remainder
in its integral form and with the time derivatives substituted by (B.3.2). O

Remark B.21. Note that, in particular applying the above lemma to the coordinate func-
tions (i. e., taking f = x;, for i = 1,...,2n) one determines the components of ¢¢ itself.a

The method just described is the most elementary version of the so called Lie series
methods to generate canonical transformations. These are particularly well-suited for
mechanized treatment, since they only require computation of Poisson brackets. The
interested reader can find, in Jorba (1999), a practical implementation of a specialized
software package able to deal with these questions.

Corollary B.22. With the same assumptions of lemma B.20, but accept f = fo + f1,
then

Foodl = f+{f = f.G + [ (A, G+ (=D {{f - /,GLGD ool dt  (B33)

Proof. Directly from the lemma for r = 2, setting {f,G} = {f — f1,G} + {f1,G} and
taking into account that,

1 1
(hGY = [ S (=1 (Lafi) o df) di = [ (Lafi+ (1= DIGR) 0 6 di,
0 0

one arrives to the result of the lemma. O

Formula (B.3.3) will be used in chapter 3 to derive bounds for norm of the the “bad
terms” —i. e., those avoiding certain kind of solutions—, in the Lie-transformed Hamilto-
nians appearing along the iterative steps of the KAM method. The function G is the
generating function or the generator of the transformation. In our context, the function
to transform will be an initially given Hamiltonian, H© ). Therefore, one may ask for
G such that the transformed new Hamiltonian H() = o ¢¥, will be —tied to some
predefined criteria—, simpler than the initial one. This is, essentlally, the idea on which
the normal form and normalizing transformation computations are based upon. The aim
of the example below is just to illustrate these concepts.

Example B.23. Let H(€,7n) be an n degree of freedom real analytic Hamiltonian, so
£ =(&,...,&) and n* = (ny,...,n,). Furthermore, we suppose that H can be expanded
as H=Hy,+ H3; + ...+ Hi + ..., where Hj, is an homogeneous polynomial of degree
k > 2 in the variables (£,m) € C*". So

Hy(&,m) = Z him €™, (B.3.4)

21 +|m|i1=k
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I :
i ui, w € C" while | - [, denotes

and the following standard notation is used: u! = []
the norm |r|y = |r1| + -+ + |y

From the development (B.3.4), it follows that (§,1) = (0, 0) is an equilibrium point of
the Hamiltonian system (since grad H(0,0) = 0). In order to simplify, we shall suppose
that this equilibrium point is non-degenerate elliptic; i. e., that Spec (J D*H(0,0)) =
{iwi,...,iw,}, with w; € R, w; # wy, for j # k and i = /—1. In such cases (see Arnol’d,
1974), by means of a real linear canonical transformation, (Z) = S(f,) with S*JS = J,
the initial Hamiltonian may be transformed to its real linear normal form,

1 n
H'(z,y) = 5 Y wi (o +45) + Hy(w,y) + Hy(@,y) + .. (B.3.5)
=1

Moreover, to get simpler homological equations (see below), it is useful to introduce the
following (complex) linear symplectic change,

_ 4t g+ p;

xj \/5 ) y] - \/§ ) (B36)
j=1,...,n. With this complex change, the Hamiltonian (B.3.5) transforms to,
H(q,p) = Z wjq;p; + Z H"(q,p), (B.3.7)

Jj=1 k>2

where H,EO)(q,p), as in (B.3.4) are homogeneous polynomials of degree £ in g, p; so, as
before, we write:
2B (q.p)= > h.dp™ (B.3.8)
tli+|m|i=k

and HQ(O) will stand for the quadratic part of H® i. e.,
HY(q,p) = > iw; q;p;.
j=1

The Hamiltonian (B.3.7) is known as the complexified Hamiltonian. An explicit descrip-
tion of the linear normalization process which leads to H® can be found in Siegel and
Moser (1971), chap. 2, § 15.

The inverse of the change (B.3.6) is

_l‘j—iyj _yj—il'j
so, when z;, y; are real, the complex conjugates of the complex positions g and momenta

p satisfy, g; = —ip;, p; = —ig; for j = 1,...,n. This induces the following symmetries
on the coefficients in (B.3.8),

(B.3.9)

iy, = iMltmlp 0 (B.3.10)

Remark B.24. Before continuing with the nonlinear normalization of the Hamiltonian, it
is worth mentioning two essential properties of the Poisson brackets.



B.3. The transformation algorithm 179

P1. If f and g are homogeneous polynomials of degrees r and s respectively, the degree
of their Poisson bracket is deg{f, g} =+ s — 2, and

P2. if the expansions of f and g satisfy the symmetry (B.3.10), so does {f, g}.

By this last property, it is assured that, after the nonlinear reduction process, the change
in (B.3.9) will transform the final Hamiltonian into a real analytic one. 2

In principle, it is possible to “remove” (in the sense we specify below) the monomials
on Héo) by taking a generating function G3(g,p) = Y gi.mgq'p™, with the coefficients
gm (U1 + |m|; = 3), suitably chosen. First, by (B.20) the transformed Hamiltonian
H® = HO 6 ¢ will be given by

HY = H? + {HY G} + HY + ... (B.3.11)

Note that, by the first of the properties on the remark B.24, the dots hold terms of degree
greater than 3, i. e., there are no more terms of degree 3 than the sum: {Héo), Gs}+ H?EO).

Ideally, we ask H() not to contain terms of degree 3 (in this sense we want to remove
these terms). Hence, G3 should satisfy the following homological equations:

(7", G5} + HY = 0.

Let 20, be the space of (complex) homogeneous polynomials of degree & in the variables

(g,p) € C*" and define the operator L, o = {-, H\"'}. More precisely,

o

LH(o) :Qlk — Qlk
foe Lyof=1{fH"},

(we abbreviate L) = L in the text).
2

Remark B.25. Note that, by (B.1) Lyof = £XH(0)f, where X0 is the Hamiltonian
vector field associated to the function H©. 2

With this operator, the homological equations above, may be written as,

LywGs = H"

but for this equations to be compatible, it is necessary that H?EU) € Range (L). This
does not happen, in general, due to the presence of resonant monomials in H:)EU). A
monomial f = a,,qg'p™, |l|1 + |m|; =k, is said to be resonant, if Lf = 0 (equivalently,
if f € Ker(L)). It is thus necessary to add a compatibility term, Z3 € Ker(L), satisfying
Héo) — Z3 € Range (L). Therefore, the homological equations (B.23) for the degree k = 3;
must be completed in the form,

Ly Gy + 23 = 7. (B.3.12)

We define the resonance modulus associated to w* = (wi,...,w,), the vector of the

frequencies, as ® = {r € Z" : (r,w) = 0} (the angular brackets (u,v) = 377, ujv;,
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will be used for the ordinary scalar product). Thus, it becomes clear how to express the
compatibility term Zs,

Zy(a,p)= >, himd'p™ (B.3.13)
L)1 +|m[1=3
m—leR

When the homological equations (B.3.12) are written down explicitly, using the develop-
ments of G, H?EO) and Z3, and computing the Poisson bracket, on can realize that

S iwm—Damdpm= Y. -k d'p™

t[1+|m[1=3 |ty +|m|1=3
m—lgn

This gives, for the unknowns g ,,, an algebraic linear diagonal system in the space C% ~
Az, d = (2”;2); so, easily, one obtains

~hi

o (B.3.14)

Jqiom =

with ||, + |m|, = 3 and indeed, I — m ¢ R, so the divisors do not vanish. With this
choice for the coefficients in (G5, the transformed Hamiltonian, does not hold three degree
terms, but the resonant ones, contained in Z3. Therefore,

HY = HO 6% = H, + 7, + HY + ..., (B.3.15)

where Hf) + ... denotes the transformed terms of degree greater than three.

The general step

In the previous paragraphs, we have given an account of the linear reduction and some
details of the first step in the nonlinear —or in the “normal form”-, reduction process of the
initial Hamiltonian. Suppose now that the same has been repeated up to degree k£ > 3.
So at the k-th step we have a Hamiltonian H*®) = H© o ¢f3 0---0 ¢?’“+2,

H® = HQ(O) + 23+ ...+ Lpio + Z HP), (B.3.16)
s>k+2

with H® homogeneous polynomials of degree s > k, in (q, p),

HM(q.p)= Y. hiv dp™

[t]1+]m|1=s

In the (k+ 1)-th step we want to remove the terms of degree k + 3 of H*). We apply the
change ¢*** to obtain a new Hamiltonian, H®+) = H®) o ¢+ By the Lie transform
formula (B.20), and writing only up to degree k + 3,

H(k+1) — H§0) 4 23 4+ ... +Zk+3 —+ {Héo),Gk-;-?,} +H;£i)3 +. R
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for, again —~with (B.20) in mind—, it is just a check on the degrees, to realize that the only
terms of degree k+ 3 present in this new Hamiltonian are those in the sum {Héo), Gris}+

H ,2?3 In consequence, the homological equations will be,

k
Ly Grys + Ziyz = HY,, (B.3.17)

with, in the same way as for k = 3, taking Z; an homogeneous polynomial holding the
resonant terms of H ,gli)g,,

Zess(gp)= Y. b d'p™ (B.3.18)
\l\1+|m\1:k+3
m—leR

The solutions of (B.3.17) will have, of course, the same form of (B.3.14),
_ hg’%

e (B.3.19)

gim =

now, with |I|; + |m|; = k + 3, but identically: I — m ¢ . Therefore, if we make r steps
of the nonlinear reduction process, the resulting Hamiltonian splits into

H® = 70 4 RO, (B.3.20)
where the remainder R") contains terms of degree > r + 2, while

Z0) = Zy+ Zs+ ...+ Zyso,

(with Z, = HQ(O)), is the (complex) normal form up to order r + 2 of the Hamiltonian.
It holds the quadratic part plus the resonant terms Zs, ..., Z,.,o from degree 3 up to
r 4+ 2. Nevertheless, sometimes, the term normal form applies, by extension, to the whole
transformed Hamiltonian (B.3.20).

Remark B.26. From (B.3.14) it follows that the generating functions coefficients g m,
ll|; + |m|; = 3, satisfy the symmetries (B.3.10). By Induction and taking into account
the second property of remark (B.24), it is possible to see that, at any degree 3 < k < r+2,
Jim = i|l|1+‘m|1gmyl. Hence, the same is true for the coefficients of H("). This implies that
we can obtain a real normalized Hamiltonian, applying to (B.3.20) the change (B.3.9). »

Even in the simplest case, when R = (), there appear inevitable resonances when
I = m. Then, the terms in Z(") take the form,

25—3
Zo(a.p) = Yy hir Va'p,
2<s<|r/2]+1,
Zos—1 = 0,
where | x| denotes the greatest integer functionof x € R (i. e, [z] := max{z € Z : 2 < z}).

If —as pointed in last remark—, we apply first the linear symplectic change (B.3.9), and
then introduce polar canonical coordinates in the form,

xj = y/21;cos b, y; = —+/21;sin0; (B.3.21)
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(j =1,...,n), we obtain a real normalized Hamiltonian,

n /2] +1
H(I,0)=) wilj+ Y  Zy(I)+R"(I,0),
7j=1 7=1

with I = (Ih,...,1,), @ = (64,...,0,), and ZQJ-(I) are real homogeneous polynomials of
degree j in Iy,..., [,.
An interesting point is that the normal form, i. e., the first two sums in the expression

above,
r/2]+1

n [
Z0 =3 "wl; + Zsj, (B.3.22)
j=1 1
does not depend on the angular variables 6;, so if we skip the remainder off and consider
the Hamiltonian system given by (B.3.22),

j:

N YAG:
0; = :
T oI

I; =0, (B.3.23)

for j = 1....,n, this system is immediately integrable, with solutions:
I; = I = contant, 0; = Q;(I%)t + 07, (B.3.24)

= %I(;) =wj+...;7=1,...,n. Therefore, the trajectory of the

phase point (2°,4") winds an n dimensional invariant torus defined by the first integrals
=19 = La? + 42). o

with the frequencies, €;

Normal forms around equilibrium points were studied by Birkhoff (1927). In fact,
in the texts, the normal form (B.3.20) is known as the Birkhoff’s normal form. In the
description left here, it has been obtained applying successive canonical changes, each of
them constructed to remove the terms one degree higher than the preceding one. The
final transformation is a product of the r transformations: ¥ = ¢% 0 ¢%t o ... 0 pr+2,

There is, however, a vast literature for Lie transformation algorithms. See Deprit
(1969) and the extensions of Kamel (1970); Henrard (1970a,b,c) for non Hamiltonian
systems; or also the books of Chow and Hale (1982), chapter 12 and Meyer and Hall
(1992) chapter 7.

Without digging deeper into the details: given a generating function G, which can
be expanded as a sum G = ), ; Gy, there are algorithms which allows us to construct
a canonical transformation Ty, such that if f is a function of (gq,p), the transformed
function T f will be defined by

TGf = Z Fka

k>1
where the terms f; are obtained recursively, that is, beginning with F; = f;, for £ > 1
is Fy = F(G1,...,Gks1; fo,- -+, fr), S0 each term in the sum can be obtained from the
generating function and the previous computed terms.
In particular in chapters 1 and 2 we shall use an algorithm of this type: the Giorgilli—
Galgani algorithm, (see references there). With this short outline of the transformation
theory, we close this appendix.
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