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ABSTRACT 

The small error approximation is used to derive a linear 
relationship between the source parameters (i.e. power 
levels and directions of arrival or DOAs) and a 
measurement of the covariance error matrix, defined as 
the difference between a nonparametric consistent 
estimate of the spectral density matrix and a covariance 
model from the scenario parameters (source strength and 
DOA). The resulting framework allows the design of a 
Kalman like algorithm which provides a simultaneous and 
adaptive estimation of the source parameter no matter 
what is the source waveform or modulation. Due to its 
similarities with the Kalman filter structure [ l ]  good 
performance is expected, mainly in presence of sensors 
misfunctioning, low signal-to-noise ratio (SNR).etc ... 

1. INTRODUCTION. 

The problem of obtaining information about the features 
of the waves impinging an aperture of sensors has 
received considerable attention. It is well-known that the 
Extended Kalman Filter (digital version of classical PLLs) 
is used to overcome the problems related to the 
estimhtion of the temporal features of a signal in noise. It 
is widely used for time reference regeneration because of 
its istability in simultaneously estimate the frequency, 
phase and magnitude of a signal even for non-stationary 
situations. If, on the contrary, we are interested in the 
spatial features of a signal. a simultaneous and adaptive 
estimation of DOA and source level still remains an 
important problem to solve and this will be the main 
concbrn of this work. 

The study of DOA estimation in array processing has 
been faced from the spectral estimation point of view. 
Due to the random nature of the snapshot, the spectral 
covariance matrix has been always the starting point and 
the modeling objective. It will contain the required 
information of the power and location of the sources in 
the scene. The Maximum Likelihood Estimation technique 
(MLE) was one of the first ones to be investigated. It 
provides optimum results but it involves a complicated 
non-linear optimization problem, that IS the reason why 
suboptimal techniques with a reduced computational load 
have dominated the field. These procedures usually 

consist of two steps: some procedures perform an nitial 
estimate using high-resolution methods. then enhance 
this estimate by means of an optimum adaptive 
beamformer or by means of an iterative process [2,3]. 
Another possibility is to obtain the source location by 
gradient search techniques ,then the maximum likelihood 
of the source strength proceeds [4,5,6]. The main 
drawback of all these techniques is their computational 
cost and their incapability of tracking many sources. 

We have mentioned before that digital PLLs show a high 
perfomance in the time scenario, for this reason a way 
out of our problem may be obtained if it we find the spatial 
counterpart of these temporal parameter estimation 
techniques. This implies the application of a state space 
filter that acts on the spectral covariance matrix in order 
to solve a spatial reference regeneration problem. This 
time-space analogy is possible because the point source 
model we use for signals received in an aperture scenario 
promotes, in a narrow band approach, a pure frequency in 
the spatial domain, known as the steering vector, which 
is associated to the corresponding DOA. 

The new approach discussed in this paper is to adress 
the problem of DOA and power estimation from a spectral 
point of view (whose starting point is the spectral 
covariance matrix) through the use of a linear adaptive 
filter to solve it. The objective of this EKF-style algorithm 
will be the minimization of some kind of measurement 
error: this will be taken from the covariance error matrix. 
On the other hand, this error should be linear dependent 
on the source parameter to be estimated, thus the small 
error approximation will be used. 

The presentation starts by showing to what extent the 
criteria of minimizing the covariance error is related to the 
MLE. Then, the measurement error is reported, proving 
that it supports the implementation of the resulting linear 
adaptive filter. This one will be finally presented in section 
4 together with some of the results obtained. 

2. THE ML ESTIMATE AND THE ARRAY 
COVARIANCE ERROR. 

In the frequency domain, the array snapshot can be 
modeled as follows: 
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where _A(w) is the matrix formed'by the steering vectors 
asn. w k h  contains the DOA of each source s at time n, 
S(w) is the Fourier-Transformed signals impinging the 
aperture's origin and U(w) is the white gaussian sensors' 
noise, which we assume incorrelated with the signals. 
The spectral matrix of the array output can be expressed 
as: 

where Cs(w) is the spectral matrix of the signals and o2 
is the noise power. 

If we apply to the asymptotic properties of the Fourier- 
Transformed array output in (1 ), the maximum likelihood 
estimates can be formulated as indicated in (3): 

L a  P -log det CxE) - tr (gX . Sx(Q-') (3) - 
A 

where Cx(Q is the estimated covariance matrix and Cx is 
the consistent estimate of the actual covariance matrix: 

the vector E contains the parameter to estimate: the 
spectral matrix of the signal@, the DOA's, k,  and the - 
noise power, o2: ET=($*€, 02) .  

In (3), the notation of "w" has been omitted because we 
are dealing with the narrowband case. 

In order to obtain the MLE the function L(Cs,k, 02) will be 

first maximize over _Cs and 02, keeping the parameter 

vector t fixed. If explicite solutions are found, we put 
them into the likelihood function (3) and the resulting 
criterion is maximize over 5. The resulting ML estimates 
are the one presented in [3]; for the spectral covariance 
matrix, Cx it can be formulated as follows: 

- 
- 

- 

where E is the projection matrix onto de DOA subspace: - 

(5.b); 

For the noise power the final estimate is the one 
presented in (6): 

(6) 
being NQ the number of active sensors of the aperture. 

Ao2 = (l/NQ) . tr ( (!-e) - -  . gx } 

As reported in [7,8] the MLE is the same as the one 
obtained by the minimization of the quadratic covariance 
error: 

A 2  
Q W t r  ugxw - 5x1 1 (7) 

This criterion is widely used in the literature in order to 
solve many of the problems that arise in sensor array 
signal processing. The author d'Assumpcao (91 is one 
example; by means of the least squares fits criterion in 
(7) d'Assumpcao designs different estimators for the 
signals' strengths. Clearly. the key point is the 
measurement of the covariance error matrix. The way 
this measurement is made depends on the problem to 
deal with [lo]. If instead of an error matrix an scalar is 
needed, the correct choice is to consider the norm of the 
matrix, generally the trace. In our approach, the basic 
derivations to design our linear estimator in section 4 
come from a Kalman-like formulation; and the state 
space model we use needs that the error measurement 
fullfils two requirements. On the one hand, it must not be 
a scalar but an error vector; on the other hand, it must 
depend linearly on the source paramenters, E. The next 
section reports the way to obtain a covariance error 
measurement which fulfills the two features mentioned 
above. 

3. LINEAR STATE SPACE MODEL FOR THE 
COVARIANCE ERROR MEASUREMENT: THE 

SMALL ERROR APPROXIMATION. 

Let us assume N incoherent sources in the scene, the 
estimation of the parameter vector, at iteration n, will be: 

The error matrix, in terms of these magnituds is: 

As concerns to the bold-letter part of expression above, 
this can be expressed as a summatory of the following 
terms: 

where Cgn is the source level error: 

At his moment, the small error approximation will be used 
in order to linearize the measured covariance error in 
terms of the error in the parameters. Thus, assuming 
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that, at a given iteration is close to the actual 
steering vector, the term in (10) can be approximated by: 

- A  

csn a n &  + ĉ ,n .(Gn. d i n )  (12) 

-.+OEM2 

- . S U M 2  

naming &n the steering vector error: 

with 500 uup J, 
.. 
.. In order to achieve the linear relationship between the 

error measure and the elevation error, the approximation 
is used again in each components "q" of the steering 
vector error, & 

where kq=(2.1r.f/c).dq.Cos(Oq) , being "1" the central 
frequency and dq and Oq are the distance to the phase 
center and the azimuth of sensor q (we assume a filled 
linear array). 

In summary. the covariance matrix can be set in a linear 
relationship with the parmeters errors, 

The covariance error measure to be used hereafter will be 
just the first column of the resulting error matrix. This is 
equivalent to select a reference sensor and minimize the 
difference between the measured and the model cross- 
spectrum between the reference sensor and the rest of 
sensors forming the aperture. The formulation of this 
measure will be: 

O . S U M 2  
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Figure 7 

l=(l ,O,O,...O)T (18.b) 

This result is of capital importance 
corresponding linear filter, since it 
fundamental relationship between the 
and the parameter error - 

@=_Hn.En (19.a) - 

in deriving the 
stablishes the 
measured error 

4.LINEAR ADAPTIVE FILTER. 

Because of lack 'of space, here will be reported only a 
summary of the procedure. The presented simmulations 
form part of a complete set of results coverning the 
adaptive behaviour of the algorithm and the resulting 
performance. 

The basic updates of the parameter estimates are done 
with the so-called gain matrix 5: - 

G+1 = R +!$ . En (20) 

Assuming that the actual paremeter vector f remains 
stationary with the iterations plus an innovation noise 
with covariance matrix 0 assumed diagonal, the 

orthogonality between the parameters error &+I and the 
measurement error En provides the optimum gain matrix: 

- 

- Kn=&. inH. (En . & . EnH)-'=&. - -  i n H .  i n - '  - 

Matrix gn is defined as the parameters covariance at 
iteration n. The update of this matrix is based also in the 
stationary evolution of the actual parameters vector and 
the covariance of the innovation noise. The resulting 
update is: 

- - -  - - -  
(21 I 
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the input of the other one. 
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figure 2. 

As an example of the ML behaviour of this fast- 
convergence algorithm, figure 1 shows the case when 
the actual number of sources that are present in the 
scenario (e.g.:2 sources) does not match the number of 
sources set in the model (e.g:l source). The resulting 
DOA estimate is quite close the arithmetic mean of the 
actual ones. The other presented simulation in figure 2 
shows how the mall error approximation can cope with the 
problem of simultaneous tracking of magnitude and DOA; 
the algorithm provides a good tracking of the moving 
source (from loQ to -loQ) in spite of the low SNR (-3 dS's) 
and the small aperture considered. In both figures, the 
aperture conzidered was formed by 7 sensors and the 

covariance matrix Cx was calculated from only 500 
snapshots. 

A 

- 

5.CONCLUDING REMARKS. 

Using the small error approximation, it has been reported 
that a measurement of the covariance error matrix can be 
formulated in a linear dependence of the parameter error 
vector. This has been useful in order to design a Kalman 
like algorithm. This one provides a fast estimation of the 
source parameter, that behaves in a ML manner, even if 
the actual date covariance matrix is computed from short 
records of aperture snapshots. The range of possibilities 
this method offers is wide. More simulations have been 
made and, as expected, they have proved that this filter 
enjoys of the main Kalman filter's features. That is, on 
the one hand, its computational ease and the tracking 
capability makes it a good choice for narrowband spatial 
reference beamforming applications, on the other, it 
offers an accurate and robust estimates for closely 
located sources and small apertures, whatsoever initial 
parameter guess. All these are features. the existing 
signal estimation methods do not offer. 

Finally, we point out that as a topic for further research 
we are investigating the way of simultaneously tracking 
the DOA and magnitude of two signals in noise by means 
of a system composed by two linear adaptive filters in 
parallel, with feedback from the output of each filter to 

- 93 - 


