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Abstract—Obtaining Worst-Case Execution Time (WCET)
estimates is a required step in real-time embedded systems
during software verification. Measurement-Based Probabilistic
Timing Analysis (MBPTA) aims at obtaining WCET estimates
for industrial-size software running upon hardware platforms
comprising high-performance features.

MBPTA relies on the randomization of timing behavior (func-
tional behavior is left unchanged) of hard-to-predict events like
the location of objects in memory – and hence their associated
cache behavior – that significantly impact software’s WCET
estimates. Software time-randomized caches (sTRc) have been
recently proposed to enable MBPTA on top of Commercial
off-the-shelf (COTS) caches (e.g. modulo placement). However,
some random events may challenge MBPTA reliability on top
of sTRc. In this paper, for sTRc and programs with homoge-
neously accessed addresses, we determine whether the number
of observations taken at analysis, as part of the normal MBPTA
application process, captures the cache events significantly im-
pacting execution time and WCET. If this is not the case, our
techniques provide the user with the number of extra runs
to perform to guarantee that cache events are captured for a
reliable application of MBPTA. Our techniques are evaluated
with synthetic benchmarks and an avionics application.

I. INTRODUCTION

Critical real-time embedded systems increasingly use high-
performance hardware features (e.g., cache memories) to
timely run complex critical software. However, those hard-
ware features challenge deriving Worst-Case Execution Time
(WCET) [3] estimates, needed for timing validation and ver-
ification purposes. Measurement-Based Probabilistic Timing
Analysis (MBPTA) [9] has been recently proposed as an
industrial-friendly timing analysis method that allows obtain-
ing reliable and tight WCET estimates on top of complex
hardware. MBPTA, which has been positively assessed in
avionics case studies [22], [23], derives a probabilistic WCET
(pWCET) distribution function tightly upper-bounding the
execution time of the program under analysis during operation.
This pWCET value has to fulfill the software assurance
standards specified for each different application domain.

MBPTA uses as input a collection of execution time ob-
servations – whose number is kept in the order of some
hundreds – captured during the analysis phase [9]. Then,
MBPTA applies Extreme Value Theory [11], [18] (EVT) to
derive the pWCET distribution that holds during operation.
The challenge lies in guaranteeing that the observations ob-
tained at analysis time capture those events that can impact
execution time during operation, and so pWCET estimates [8].

We refer to those events as events of interest (eoi). In this
respect, EVT has to be understood as a technique to predict
pathological combinations of those observed events in the
analysis-time measurements. In general, EVT cannot predict
the appearance of unobserved events since their impact on
execution time can be arbitrarily large [1]. To cover this gap,
MBPTA builds an argument on representativeness by means
of i) either injecting randomization in the timing behavior of
certain hardware resources (e.g. caches and buses) so that it is
possible to determine the probability of their worst behavior
to be captured in the analysis-time measurement runs; or ii)
making resources to work on their worst latency so the analysis
time measurements capture the worst timing behavior that
those resources may have during operation.

For caches, one of the resources with highest impact
on pWCET, several customized hardware time-randomized
caches (hTRc) have been shown to comply with MBPTA
requirements [13], [22]. Since those solutions have not been
implemented in commercial processors yet, in this paper
we focus on the so called software time-randomized caches
(sTRc) [14]. sTRc build on top of (common) deterministic set
associative caches – with W ways and S sets – for instance
deploying modulo placement and LRU replacement. A user-
level library makes program data and code to be randomly
allocated in memory across runs. This results in data and code
being mapped in random cache sets across runs. Ultimately,
this causes data and instruction conflicts to have a random
nature, making deterministic caches to have the probabilistic
properties required by MBPTA [14].

In the processor architectures studied so far which resemble
that of the LEON3 [21], cache placement has been regarded as
the only hardware block threatening MBPTA’s reliability [1].
An eoi can occur when more than W program objects (i.e. data
or code) are placed in the same set [1]. In that case, those
objects do not fit into the cache set, which may lead to an
abrupt increase of the number of misses w.r.t. the case where
the number of objects is up to W [1], [19]. In this scenario it
is mandatory to observe the cache eoi at least once in the mea-
surements collected during the analysis phase with sufficient
confidence (defined for each domain in its safety standards)
to preserve MBPTA’s reliability. Failing to do so would go
against principles for a correct MBPTA application, namely
capturing with analysis-time measurements those events with
high potential impact on execution time.
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Fig. 1. Synthetic program’s CCDF (log scale) [1].

This paper proposes an approach to compute the probability
of the cache eoi for set-associative sTRc, called Peoi. This is
a fundamental step to gain confidence on pWCET estimates
obtained with MBPTA. Given the set of objects to be allocated
in memory and their size – which are known at design time
– our techniques determine whether with the number of runs
(R) carried out at analysis the cache eoi will be captured with
a sufficiently high probability. Otherwise, we determine the
number of runs required at analysis time to ensure that the
relevant eoi is captured. Our approach focuses on programs
that have homogeneously accessed objects so the impact on
timing of any W+1 objects mapped to the same set is similar.
For instance, this is the case for the instruction access of
several loop-based control applications.

We provide an evaluation based on synthetic benchmarks
for sensitivity analysis and a real avionics application [22],
which confirm that our approach tightly estimates Peoi.

As an example let us assume 3 functions, each occupying
1 cache line. Further let us assume that from run to run those
functions are randomly mapped to memory which translates
into them being assigned to a random set in cache. In an
8-set 2-way set-associative cache, the probability of those 3
functions to overlap in the same set (Peoi), hence causing an
increase in execution time, is Peoi ' (1/8)3. The probability
of capturing this on R = 1, 000 is too low (Pobs = 85.84%).
This can affect the confidence of MBPTA, since there is no
guarantee that the events of interest will happen in the analysis
runs. The proposed solution, explained in Section III is to
increase the number of runs to R′ = R + 9, 600 so that the
probability of not observing this event of interest is low enough
(e.g., < 10−9).

The rest of this paper is structured as follows. Section II
explains the addressed problem and introduces the basic con-
cepts. Section III describes the techniques used to compute
Peoi and how to obtain R′. Section IV presents the experi-
mental results based on synthetic sequences and a real avionics
case study. Section V describes some related work. Section VI
exposes our main conclusions.

Fig. 2. MBPTA probabilities of interest.

II. PROBLEM STATEMENT

Next we introduce the notion of MBPTA representativeness
and how it is affected by the use of time randomized caches.

A. MBPTA representativeness requirements

MBPTA delivers a distribution function upper-bounding the
execution time (pWCET) of the program analyzed during
operation. Such distribution function can be described in the
form of a complementary cumulative distribution function
(CCDF or 1-CDF), also known as tail distribution. An example
is shown (Figure 1) for a program when collecting R = 1, 000
execution time observations and applying EVT. With R obser-
vations one could estimate the pWCET for probabilities in the
range 1/R at most. However, the pWCET curve delivered by
EVT upper-bounds the probability of exceeding any execution
time for arbitrarily low probabilities (e.g., 10−15 per run).

Execution time conditions when executing the program
(e.g., initial instruction cache state) during operation are,
generally, unknown or hard to produce at analysis time.
Therefore, pWCET estimates provided by MBPTA are ob-
tained under specific execution conditions intended to lead
to equal or higher execution times than those that can occur
during operation (e.g., empty instruction cache). Further, the
correct application of EVT [8], [9] requires that execution
time measurements collected at analysis time are independent
and identically distributed, which can be obtained using a
MBPTA-compliant platform [8]. Further, MBPTA requires that
the execution time measurements used as input for EVT are
representative, meaning that they include information about all
relevant events affecting execution time. In particular, EVT
is a powerful statistical tool able to predict how observed
events can combine and predict the probabilities of those
combinations. However, EVT cannot account for events that
have not been observed in the execution times used for the
prediction [1]. Relevant events of interest are those that can
occur with a sufficiently low probability not to be captured in
the analysis-time measurements, but with a sufficiently high
probability not to be negligible. In the context of software
randomization, the event of interest (eoi) is the random place-
ment produced by software means [14]. MBPTA considers two
probability thresholds as shown in Figure 2.



• The exceedance probability (Pexc). Events with lower
probability to occur than Pexc during operation can be
regarded as irrelevant. Pexc relates to the corresponding
safety standard and the assurance/integrity level of the
program under analysis, see Section II B.

• The observable probability (Pobs). For events with occur-
rence probability higher than Pobs, the probability of not
observing them in the R runs collected at analysis time
is negligible (e.g., Pcoff = 10−9). Pobs is obtained as
1− (1− Peoi)

R, where Peoi is the probability of the eoi
and R the observations collected at analysis time. Pcoff ,
as Pexc, relates to the corresponding safety standard and
the assurance level of the program. For R = 1, 000 and
Pcoff = 10−9, the inequation Pcoff ≥ (1−Peoi)

R holds
when Peoi ≥ 0.021. Thus, Pobs = 0.021.

Pexc and Pobs define three probability ranges for Peoi:
• r1: Peoi is sufficiently high so that the eoi will be captured

with R runs at analysis time. In other words, Peoi ≥ Pobs.
• r2: Peoi is lower than Pobs so the eoi cannot be cap-

tured with R runs at analysis time, but can occur with
sufficiently high probability during operation.

• r3: Peoi is low enough so that the eoi may occur during
operation only with negligible probability in relation to
safety standards and the assurance level of the program.

In this paper, for sTRc we provide means to determine Peoi.
If it falls in r1 and r3 the application of MBPTA with R runs
can be deemed as reliable. If it falls in r2, we derive how many
runs are needed so that Peoi moves to r1 and the application
of MBPTA is, hence, reliable. Thus, our approach is key to
keep reliability of MBPTA on top of sTRc.

B. Exceedance probability and safety standards

Safety standards define a probability of failure for different
integrity levels, for instance in DO178B/C [20] (avionics) or
ISO26262 [12] (automotive). This probability of failure is only
applicable for hardware random faults, not for software. The
software verification process consists in a qualitative process in
which “enough” evidence must be collected about the software
not failing during operation. In MBPTA, the pWCET estimates
are defined with an exceedance threshold, which upper bounds
the possibility of failure of a certain task. This exceedance
threshold upper-bounds the residual risk in the verification
process for software applications.

When using conventional measurement based techniques on
regular caches (with modulo placement), the mapping of the
objects in cache relies on the user for testing the different
possible cache layouts, which will lead to different (possibly
high) execution times. This risk is qualitatively assessed by the
tests the user makes, which can be complex depending on the
software being analyzed. With MBPTA and sTRc, the different
cache layouts are randomly explored. This occurs because
in every run program objects (data and code) are randomly
mapped to memory and hence, assigned to random cache sets.
Therefore, the analysis of the different possible mappings does
not rely on the ability of the user to create different memory

mappings, but on the confidence that pWCET gives with a
certain number of analysis runs. In this paper we explain how
to gain this confidence by increasing the number of analysis
runs when needed. When using MBPTA the probability that
the pWCET estimates are proven not to be exceeded can be
set to an arbitrarily low number (e.g. 10−15 per program run).

The only difference MBPTA introduces in the certification
process is the replacement of the user’s ability to qualitatively
assess the residual risk by the systematic and quantitative
method to upper-bound the residual risk.

C. sTRc-related representativeness challenges

To the best of our knowledge representativeness issues for
MBPTA have only been discussed in [10], [19], where authors
show that MBPTA may produce unreliable pWCET estimates
sporadically for hardware time-randomized caches (hTRc).
The HoG approach [1] is presented to address this issue for
hTRc. It is shown [1] that the eoi corresponds to the case
where the number of addresses competing for the space in
one cache set is higher than W , i.e. the cache associativity.
This results in a cache event of interest with frequent evictions
when addresses are accessed often and in an interleaved way.
Note that, if the number of addresses does not exceed W , they
will end up fitting in a cache set1.

We assume that the execution time impact of mapping
any K > W + 1 addresses to the same set is similar. This
happens often for the instruction addresses, since programs
are usually accessed homogeneously inside a main control
loop. Our approach could also be applied to those objects (or
elements of them) that are identified to cause higher impact
on execution time if mapped to the same set. As part of our
future work we plan to devise a method to identify those
objects/elements with higher execution time impact.

In summary, a reliable application of MBPTA requires
proving that either such cache event of interest (more than
W addresses competing for the same set) occurs with neg-
ligible probability during operation, or with sufficiently high
probability at analysis time to account for it. For sTRc no
previous study has been done on this matter and this paper
covers this gap. Note that, unlike for hTRc [1], [7], for sTRc
the probability of a given object to be mapped to a set depends
on the sets to which previous objects where mapped, which
in turn affects the computation of Peoi. We analyze in detail
this dependence and propose two methods, one theoretical and
one empirical, to derive Peoi for sTRc.

III. MODELS TO DERIVE Peoi

sTRc [14] are implemented by deploying software random-
ization on top of conventional caches, e.g. modulo placement
and LRU replacement. Software randomization is a software
mapping layer that allocates objects in memory in random
locations across runs.

1For the sake of this explanation, we assume an addressable unit size
matching cache line size. In reality usually the addressable unit is smaller. In
that case, cache eoi occurs when the number of lines accessed mapped to a
set exceeds its capacity.



TABLE I
BASIC NOTATION

O Sequence of objects to allocate
R Number of runs carried out by MBPTA at analysis

S, W Number of sets and ways (respectively) in cache
clb Size in bytes of a cache line

ml, mb Memory size in cache lines and bytes respectively
setl Number of memory lines mapped to a set

In order to explain the models to derive Peoi, we use the
notation defined in Table I. With sTRc, in an ‘infinite-size’
memory, when a memory object is randomly allocated in
memory, the address assigned to it, @x, is also random. Hence,
the set where @x is placed is also random since the function
@x mod S leads to a random number between 0 and S − 1
when @x is random. As a result, in an infinite-size memory
the probability of an object to be assigned to a given set, i.e.
Pset is given by Equation 1, which matches that for hTRc [1]:

Pset =
setl
ml

=
1

S
(1)

In reality, with finite-size memory (with mb bytes) Pset
computation varies. In terms of cache lines the memory can
allocate up to ml = mb/clb lines. The number of lines mapped
to each set is setl = ml/S. Note that lines mapped to a
given cache set are not consecutive in memory with modulo
placement, instead consecutive cache lines in memory are
mapped into different (consecutive) sets in cache.

Interestingly, the memory objects of a program are allocated
sequentially and, obviously, the space allocated to an object
cannot be allocated to others. This creates a dependence
among the Pset of each object. Assuming single-line objects,
the first allocated object has the same probability to be mapped
to any set si as given by Equation 1. After the allocation of
the first object, the number of lines that can be allocated to
si, i.e. li, is reduced by one: li = setl− 1. This decreases the
probability of a second object to go to the same set as follows
Pset1,1i = (setl − 1)/(ml − 1).

Psetx,yi is the probability of allocating an object in si
given that y objects have already been allocated, from which
x have been allocated to si. The probability of allocating
the second object to any other set Psetj : j 6= i is
Pset0,1i = setl/(ml − 1). In general, after k objects have
been allocated, the probability of a new object to be allocated
to a set in which l objects have been allocated, with l ≤ k, is
given by Equation 2. Note that if l ≥ nls then Pset = 0.

Psetk,l =
setl − l

ml − k
(2)

Hence, there is a dependence between the specific sets
where previous objects have been allocated and the probability
that the current object is assigned to a given set. Notably, this
dependence only occurs for sTRc, while for hTRc each object
has a probability 1/S to be mapped in a given set [7].

A. Definitions and notation used to derive Peoi

In order to derive Peoi we focus first on single-line objects,
i.e objects occupying one cache line, and later we focus
on multi-line objects which comprise consecutive elements
occupying one cache line each element.

Fig. 3. Probability tree with sTRc when allocating 3 single-line objects into
a 3-set cache. Leaves nodes are the allocation scenarios with cardinality 3.

Interestingly, the use of dynamic memory allocation is in
general not allowed in critical real-time systems. Hence, at
analysis time the size of all program objects (e.g. functions,
stack frames) are known. We refer to the list of objects to
allocate as O. Note that allocation order is also known at
analysis time. For instance, functions are usually allocated in
the order they are found in the binary.

Definition (Allocation Scenario). An allocation scenario
stands for a specific mapping of single-line objects (or their
elements if multi-line) to cache sets.

Definition (Cache event of interest). Cache events of interest
correspond to those allocation scenarios where at least one
cache set contains a number of single-line objects (or elements
for multi-line objects) higher than W .

For a program with 3 single-line objects (|O| = 3) and a
2-way 3-set cache (W=2, S=3), the possible allocation sce-
narios are A = {(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2),
(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)}, from which the
cache events of interest are (3, 0, 0), (0, 3, 0) and (0, 0, 3).

Definition (Probability of the event of interest). The proba-
bility of the event of interest (Peoi) is obtained by adding the
probabilities of all cache events of interest.

B. Theoretical (intractable) model of Peoi

The different scenarios that can occur and their associated
probabilities can be derived analytically by expanding the
allocation tree in Figure 3 for each new object allocation.
Peoi can be obtained as the addition of the probabilities of
those allocation scenarios where there is at least one cache set
with a number of elements e so that e > W . However, this
process grows exponentially and leads to a number of leaves
in the order of SO, which is computationally intractable. For
instance, for a 64-set cache and a 50-object sequence, the
number of allocation scenarios (with repetitions) that could
be reached would be around 1090 (note that the estimated
number of atoms in the Universe is around 1082). This makes
this model infeasible to be implemented in reality and calls
for an alternative model.

With sTRc multi-line memory objects are randomized
atomically, that is, the first element of the object is assigned
a random location in memory while the rest of the elements
occupy consecutive memory positions. When modulo is used,
multi-line objects are allocated into consecutive sets in cache.
Hence, the probability of going from an allocation scenario to
another is given by the probability that the first element of the



TABLE II
CONFIDENCE INTERVAL WIDTH.

Confidence 10,000 runs 1M runs 100M runs
0.99 0.013 0.0013 0.00013
1− 10−9 0.030 0.0030 0.00030

object goes to a particular line, since the placement of all the
other elements of the object is determined by the placement
of the first element.

C. Empirical model of Peoi

The main approach we follow to derive Peoi is based on
Monte-Carlo simulations using an algorithm that processes
the object sequence several times allocating each object in a
random location in each simulation. Each run in which objects
are randomly allocated to memory addresses (and hence sets)
represents a Monte-Carlo simulation. This allows deriving the
probability of each allocation scenario and hence Peoi, for both
single and multi-line objects.

While the Monte-Carlo method does not provide an exact
result, we can statistically derive the confidence and accuracy
of the result depending on the number of simulations per-
formed. In particular, for each estimate obtained we compute
the confidence interval (value±variation) assuming a certain
degree of confidence. Determining this narrow confidence
interval allows us making worst case assumptions, with little
impact. That is, if any value in the range determined by the
confidence interval is in r2 we assume that the value is not
safe, and we compute the number of extra runs needed to
guarantee that all values in the confidence interval fall in r1
with a sufficiently high probability.

As an example, for an arbitrary cache event whose actual
probability is Peoi = 0.5172, Table II shows the width of
the confidence interval for different confidence values (0.99
and 1 − 10−9) as we increase the number of Monte-Carlo
simulations. We observe that for 1 − 10−9 with 10, 000 runs
is 0.030, which is ±0.058%.

Based on this analysis, we perform 100 million simulations
that require less than 15 minutes in a regular laptop and
provide narrow confidence intervals.

In Figure 4 we can see the Peoi range given by the Monte-
Carlo simulations. For this example the confidence level is
set to 1 − 10−9 and we have made 100 million simulations.
Since the Peoi range is really small (less than 2% variation at
any point), in Figure 4 we can see the three lines defining the
interval overlapping graphically.

D. Using Peoi

Building on top of Peoi and given i) a set of objects to
allocate with their respective size, O = (o1, o2, ..., on), and
ii) the number of execution time measurements collected at
analysis time R; we can assess whether Peoi falls in probability
range r2 (see Figure 2). In that case, we can easily determine
the increased number of runs R’ required to ensure the eoi is
observed with sufficiently high probability.

The number of runs (R′) required to ensure with a given
degree of confidence (in line with Pcoff ) that the eoi, whose

Fig. 4. Peoi confidence interval for the Monte-Carlo simulations.

probability is Peoi, will be observed is obtained with the
following equation: (1−Peoi)

R′ ≤ Pcoff . From this equation
we can derive R′ as follows:

R′ ≥ log(Pcoff )

log(1− Peoi)
(3)

Therefore R′ is the minimum number or runs needed to
ensure that the cache eoi are probabilistically captured in the
analysis measurements. This is a fundamental step to ensure
that MBPTA-derived pWCET estimates are reliable.

IV. EXPERIMENTAL RESULTS

We evaluate our empirical model to obtain Peoi and we
compare it against the theoretical model. For that purpose
we use i) synthetic object sequences and ii) object sequences
coming from a real avionics case study [22].

In our experiments we use two cache sizes, a small one
(scache) and a big one (bcache). scache has been chosen
to be particularly small to deploy the theoretical model for
comparison purposes. As the cache size and/or the number of
objects increases, the theoretical model becomes intractable as
explained before. The scache is a 2KB 4-way 64B/line cache
(so with 8 sets), whereas the bcache size is 128KB 8-way
64B/line cache (so with 256 sets). These values are repre-
sentative of first and second-level caches (when partitioned).
For instance, caches of the Cobham Gaisler NGMP [4] or the
ARM Cortex A7 [6] are within this range. We have used a
20MB memory size for our experiments. Our results evidence
negligible Peoi variance for different memory sizes, so we do
not report results for different memory sizes.

We consider two different types of sequences of objects to
allocate: synthetically generated and based on a real avionics
case study. For the former we consider two types of objects
regarding their size: small objects (between 32B and 512B)
and big objects (between 1KB and 32KB). By mixing objects
of these two types we generate three types of object sequences.
The smallSeq comprises 75% of small objects and 25% of big
objects. The bigSeq comprises 25% of small objects and 75%



Fig. 5. Comparison of the 2 methods

big objects. And the balSeq balances small and big objects. All
sequences have a size varying from |O| = 10 to |O| = 600.

A. Synthetic Sequences

In this experiment we focus on a scache setup and single-
line objects. Figure 5 shows how the probability of the cache
eoi varies as more objects are allocated. As a reference tech-
nique we implement the probability tree (as shown in Figure
3). In Figure 5 we represent with horizontal lines Pobs for
two different numbers of runs: R = 300 and R = 1, 000. The
former is the lowest number of runs required by the method [9]
and the latter is a typical value used for many programs [9].
Despite the probability tree provides exact results, its memory
and execution time requirements prevent using it in the general
case. We rather use it in this small example to show the
accuracy of the Monte-Carlo method.

We observe no noticeable difference between both methods,
thus providing evidence of the accuracy of our analytical and
empirical methods. As expected, the higher the number of
allocated objects the higher the probability of the eoi. Inter-
estingly for sequences smaller than 5 objects the probability
of the cache eoi is below 10−9 that we use as the reference
exceedance probability, Pexc. Meanwhile, when 12 objects are
allocated the probability of the eoi is above Pexc.

In a second experiment, shown in Figure 6, we analyze the
impact of cache size (scache and bcache) and the sequence
size (small, bal and big). For the scache setup the probability
of the eoi reaches Pobs for both values of R (300 and 1,000)
with less than 5 allocated objects in all 3 object sequence
types. This occurs because the scache is small compared to
the object sizes used, and with few objects the entire cache
is filled. It can also be observed that, as expected, the bigger
the objects are, the fewer objects are needed to reach Pobs.
In fact, the line for the bigSeq raises so fast that cannot
almost be observed in Figure 6. For the bcache setup, instead,
we observe that more objects are needed in order to reach
Pobs. Anyway, as soon as 30-35 objects are allocated MBPTA
provides reliable results with its default number of runs.

Fig. 6. Peoi for different cache and sequence sizes for benchmarks.

As an example of the application of the results in Sec-
tion III-D, let assume the bcache setup, R = 1, 000 as the
number of runs under MBPTA and an object sequence of
|O| = 25. For this scenario, we can see in Table III the
Peoi and number of new runs R′ needed for each cache
configuration.

TABLE III
NUMBER OF EXTRA RUNS R′ DEPENDING ON Peoi .

smallSeq balSeq bigSeq
Peoi 0.0085 0.0407 1.0000
R′ 2,428 499 1

B. Avionics case study

We applied our technique to an industrial-size avionics
application [22] consisting of around 5,000 functions varying
from few bytes to 300KB each. The total size of those
functions is 4.7MB if they are enforced to be aligned with
cache line boundaries. In this experiment the focus is on code
randomization, i.e. on the instruction cache. With instruction
sTRc a software layer allocates functions code in memory in
random positions across runs.

Characteristics. Many avionics systems build upon the
Integrated Modular Avionics (IMA) concept [5], which de-
fines how different subsystems can be integrated onto the
same hardware platform, so that size, weight and power
costs can be reduced. In the context of IMA, the system
architecture implements temporal and spatial partitioning to
avoid undesired functional and temporal interferences across
different applications – especially in the context of mixed-
criticalities. Temporal partitioning is generally implemented
by partitioning time into scheduling units and using a static
schedule generated offline. The MAjor Frame (MAF) is the
hyper-period of all partitions. Each MAF is divided into a
number of MInor Frames (MIF) whose duration and period
is identical. Time partitions are scheduled inside those MIF.
Those time partitions contain processes, and each process
contains a number of functions, that are the smallest unit of
analysis possible. This is illustrated in Figure 7.



Fig. 7. Scheduling of functions, processes, time partitions and MIF within
a MAF.

Fig. 8. Peoi for different cache sizes for the avionics application.

We analyze two different applicability approaches of our
model to the avionics application. When software randomiza-
tion (and so pWCET estimation) is applied (1) at MAF (full
application) granularity and (2) at finer granularity i.e. at MIF,
partition, process or function level.

Full application granularity. In this case the avionics case
study is analyzed with its 5,000 functions. Figure 8 shows that
for the scache setup with as low as 2 objects allocated, the
probability of the eoi is above Pobs. For the bcache we observe
that between 45 and 60 object allocations are needed to reach
Pobs. Hence, for this particular case example, the number of
runs carried out R = 1, 000 with MBPTA standard process
were enough to ensure representativeness of the instruction
cache events of interest. Notably this real case requires more
object allocations than the synthetic object mixes because
the average function size is smaller than our small objects.
However, even with objects this small, the number of objects
that must be allocated so that the event of interest is shown in
the analysis runs is largely below the total number of objects
in the application.

Fig. 9. Peoi for the avionics case study for different (random) object
allocations.

Analysis at fine granularity. Finer granularity than the
full MAF may be used by end users to analyze the timing
of their applications. However, there is not a strict rule on
what the right granularity is. The finer the granularity is, the
higher the control exercised on the execution paths traversed,
on the execution time cost of each function or process, etc.
On the other hand, finer granularity also implies adding
more instrumentation and exercising a stronger control on the
process to collect execution time measurements. Thus, there
is a tradeoff between the amount of information that can be
retrieved and the cost to obtain it.

These experiments evaluate the impact of the analysis
granularity on Peoi to allow the users find the most convenient
granularity from a software randomization point of view. For
that purpose we incrementally pick functions from the case
study (randomly) and compute Peoi and the number of runs
needed to apply MBPTA reliably (R′).

First, for the sake of illustration we have sorted the 5,000
functions randomly 100 times. Then, we have obtained Peoi as
objects are allocated. The value of Peoi for the first 5 sortings
is shown in Figure 9. In general, although some differences
exist depending on the objects that form the unit of analysis,
we observe that all sortings reach r1 (so Peoi ≥ Pobs) with
around 50 objects.

TABLE IV
IMPACT OF THE NUMBER OF OBJECTS ON Peoi .

Functions 10 20 30 40 50 60
Peoi 0.0000 0.0100 0.0105 0.0165 0.0549 0.1606
Range r3 r2 r2 r2 r2 r1
R′ - 2,061 1,959 1,243 367 -

In Table IV we summarize the average value of Peoi across
all 100 sortings, the range (i.e. r1, r2 or r3) where that
probability belongs to, and the number of runs R′ that would
be needed for different object counts if Peoi falls in r2. If we
assume that, for instance, Pexc = 10−9 and R = 300, Pobs

will be around 0.067. As shown in the table, Peoi is virtually
0 with 10 objects, meaning that the probability of the eoi is so
low that is not relevant (r3). Then, from R = 20 to R = 50,



Peoi falls in r2, thus meaning that the number of runs R′ needs
to be higher than 300. In this example R′ must be between
2, 061 (20 objects) and 367 (50 objects). Finally, Peoi falls in
r1 with 60 objects or more, so 300 runs suffice to guarantee
a reliable application of MBPTA.

We have shown how our technique, building on the set of
objects to be allocated in memory – usually known at design
time – is able to determine whether more runs that the default
R need to be performed to ensure than cache events of interest
are captured.

V. RELATED WORK

MBPTA has received significant attention in recent years.
Academic works have compared the average performance of
MBPTA using hTRc and static timing analysis (STA) using
time-deterministic caches, with only 12% worse average per-
formance for hTRc [13]. In terms of WCET other studies [2]
show that MBPTA provides competitive WCET estimates
when compared against STA techniques on top of time deter-
ministic caches [16]. Further, since MBPTA is a measurement-
based approach, it adapts faster to new processors [24]. Path
coverage in the context of MBPTA has been addressed from
a theoretical [17] and a practical [25] perspective for hTRc.
How to extend these methods to sTRc and how to size the
number of runs accordingly is part of our future work.

From a more industrial perspective, MBPTA’s use in indus-
try case studies (both avionics and automotive industries) has
been positively assessed [15], [22], [23].

The problem of representativeness of the event of inter-
est has been identified in some publications [1], [10], [19].
Although these representativeness matters are considered a
risk by some authors [19], recent publications show how
to mitigate the risk [1], [10]. Some techniques have dealt
with this representativeness issue for hTRc [1], but this paper
presents the first techniques to solve this problem in sTRc.

VI. CONCLUSIONS

The use of Extreme Value Theory in MBPTA is challenged
by the fact that the execution time observations used for
the prediction are those obtained at analysis time, while the
predicted pWCET estimate must provide a reliable upper
bound during operation. Evidence is required proving that
execution time observations obtained at analysis time capture
the impact of relevant events affecting execution time and that
can arise during operation. Given the objects to be allocated
for an application, we propose a method to compute the
probability of cache events of interest for software time-
randomized caches. Whenever that probability is high enough
to be relevant and low enough so that high confidence on
observing the event cannot be achieved, our method computes
the extra number of runs needed to regain confidence on
pWCET estimates provided by MBPTA. Given MBPTA’s
incremental assessment in industrial domains, our technique
is a fundamental step to maintain confidence in the pWCET
estimates obtained with MBPTA.
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