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Abstract

Let T" be a distance-regular graph with diameter d and Kneser graph K = I'y, the
distance-d graph of I'. We say that I' is partially antipodal when K has fewer distinct
eigenvalues than I'. In particular, this is the case of antipodal distance-regular graphs
(K with only two distinct eigenvalues), and the so-called half-antipodal distance-
regular graphs (K with only one negative eigenvalue). We provide a characterization
of partially antipodal distance-regular graphs (among regular graphs with d+1 distinct
eigenvalues) in terms of the spectrum and the mean number of vertices at maximal
distance d from every vertex. This can be seen as a more general version of the so-
called spectral excess theorem, which allows us to characterize those distance-regular
graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being
strongly regular.
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1 Preliminaries

Let I" be a distance-regular graph with adjacency matrix A and d+ 1 distinct eigenvalues.
In the recent work of Brouwer and the author [2], we studied the situation where the
distance-d graph I'g of T', or the Kneser graph K of I, with adjacency matrix Ay = pqa(A)
where pg is the distance-d polynomial, has fewer distinct eigenvalues than I'. In this case
we say that I' is partially antipodal. Examples are the so-called half antipodal (K with
only one negative eigenvalue, up to multiplicity), and antipodal distance-regular graphs
(K being disjoint copies of a complete graph). Here we generalize such a study to the case
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when I' is a regular graph with d 4 1 distinct eigenvalues. The main result of this paper
is a characterization of partially antipodal distance-regular graphs, among regular graphs
with d + 1 distinct eigenvalues, in terms of the spectrum and the mean number of vertices
at maximal distance d from every vertex. This can be seen as a more general version of
the so-called spectral excess theorem, and allows us to characterize those distance-regular
graphs which are half antipodal, antipodal, bipartite, or with Kneser graph being strongly
regular. Other related characterizations of some of these cases were given by the author
in [8, 9 10]. For background on distance-regular graphs and strongly regular graphs, we
refer the reader to Brouwer, Cohen, and Neumaier [I], Brouwer and Haemers [3], and Van
Dam, Koolen and Tanaka [6].

Let T be a regular (connected) graph with degree k, n vertices, and spectrum spI" =
{AGO AT, L AT Y, where Ag(= k) > A > -+ > Ag, and mo = 1. In this work, we use
the following scalar product on the (d + 1)-dimensional vector space of real polynomials
modulo m(z) = [J,(z — \;), that is, the minimal polynomial of A.

d
palr = (p(A)a(A) = =S mp()a(), g € Ralel/(m(a)). (1)
=0

This is a special case of the inner product of symmetric n X n real matrices M, N, defined
by (M,N) = %tr(MN). The predistance polynomials po,p1,...,pq, introduced by the
author and Garriga [13], are a sequence of orthogonal polynomials with respect to the
inner product (L)), normalized in such a way that ||p;||% = p;(k) (this makes sense since it
is known that p;(k) > 0 for any i =0, ...,d).

As every sequence of orthogonal polynomials, the predistance polynomials satisfy a
three-term recurrence of the form

xp; = Bi—1Pi—1 + ipi + Yit1Pit1 (t=0,1,...,d),

where the constants 3;_1, a;, and ;41 are the Fourier coefficients of xp; in terms of p;_1,
pi, and p;41, respectively (and f_1 = y441 = 0), initiated with pg = 1 and p; = z.

Then, it is known that I' is distance-regular if and only if such polynomials satisfy
pi(A) = A; (the adjacency matrix of the distance-i graph I';) for ¢ = 0,...,d, in which
case they turn out to be the distance polynomials of I". Moreover, as expected, the
constants «;, B; and ~y; become the intersection numbers a;, b; and ¢; of I'.

In fact, we have the following strongest proposition, which is a combination of results
in [14} 7).

Proposition 1. A regular graph I' as above is distance-reqular if and only if there exists
a polynomial p of degree d such that p(A) = Ag, in which case p = pq. O

Many properties of the distance polynomials of distance-regular graphs hold also for
the predistance polynomials. For instance, the sum of all predistance polynomials gives



the Hoffman polynomial H:

d
H=Y pi=—7—J[=— ),
i:op Hg:1(/\0_)\z')- ( )

satisfying H(\g) = n and H(\;) = 0 for ¢ = 1,...,d. This polynomial characterizes
regular graphs by the condition H(A) = J, the all-1 matrix [16], and it can be used to
show that a; + 8; + v =X =k foralli=0,...,d.

Also, as in the case of distance-regular graphs, the multiplicities of I' can be obtained
from the values of py since,

(—1)ipd()\i)ﬂ'imi = pd()\o)ﬂ'o, 1= 1, N 7d. (2)

where m; = [];; [Ai — Aj|. Indeed, let Li(x) = [];.0:(x — Aj)/I1j204(A — Aj). Then,
since the degree of each L; is d — 1, the equalities in follow from (L;,pg)r = 0 for
i =1,...,d. Some interesting consequences of the above, together with other properties
of the predistance polynomials are the following (for more details, see [4]):

e The values of pg at A\g, A1,..., Aq alternate in sign.

e Using the values of pg(\;), i = 0,...,d, given by (2)), in the equality ||p4||3 = pa(Xo),
and solving for pg(Ag) we get the so-called spectral excess

d -1
pd()‘O) =n (Z m(;_2> . (3)

=0

e For every i = 0,...,d, (any multiple of) the sum polynomial ¢; = po + --- + p;
maximizes the quotient 7(Ao)/||7|[r among the polynomials r € R;[z] (notice that
4i(20)?*/llallZ = 4i(Xo)), and

(1 =)g0(Mo) < q1(Xo) < -+ < qa(Mo)(= H(Xo) =n).

Let I" have n vertices, d+1 distinct eigenvalues, and diameter D(< d). Fori =0,..., D,
let k;(u) be the number of vertices at distance ¢ from vertex u. Let s;(u) = ko(u) + -+ +
ki(u). Of course, so(u) =1 and sp(u) = n. The following result can be seen as a version
of the spectral excess theorem, due to Garriga and the author [I3] (for short proofs, see
Van Dam [5], and Fiol, Gago and Garriga [12]):

Theorem 2. Let I' be a regular graph with spectrum spT’ = {Xo, A\[", ..., /\:lnd}, where
A > AL > > N Lets; = %ZUEV si(u) be the average number of vertices at distance
at most i from every vertex in I'. Then, for any nonzero polynomial r € Ry_1[x] we have

r(Xo)?
eIk

with equality if and only if ' is distance-regular and r is a multiple of qq4_1.

S Sd—1, (4)



Proof. Let Sg-1 =1+ A+ -+ Ag_1. Asdegr < d—1, (r(4),J) = (r(4),Sq—1). But
(r(A),J) = (r,H)r = r(\g). Thus, Cauchy-Schwarz inequality gives

r?(Mo) < r(A)IPISa-1 11 = |l E5a=1,

whence follows. Besides, in case of equality we have that r(A) = aS4_1 for some
nonzero constant . Hence, the polynomial p = H —(1/a)r satisfies p(A) = J—S4_1 = Aq
and, from Proposition [l ' is distance-regular, p = pg, and r = aqq_1. The converse is
clear from Sd—1 =N — kd = H()\o) — pd()\o) = qd_l()\o). L]

In fact, as it was shown in [I1], the above result still holds if we change the arithmetic
mean of the numbers sy_1(u), u € V, by its harmonic mean.

2 The results

As commented above, in [2] we studied the situation where the distance-d graph T'y, of a
distance-regular graph I' with diameter d, has fewer than d + 1 distinct eigenvalues. Now,
we are interested in the case when I' is regular and with d + 1 distinct eigenvalues. In this
context, pg is the highest degree predistance polynomial and, as p(A) is not necessarily the
distance-d matrix A4 (usually not even a 0-1 matrix), we consider the distinct eigenvalues
of pg(A) vs. those of A. More precisely, given a set Z C {0, ..., d}, we give conditions for
all pg(\;) with i € Z taking the same value. Notice that, because the values of p; at the
mesh Ag, A1, ..., \g alternate in sign, the feasible sets Z must consist of either even or odd
numbers.

2.1 Thecase0¢ T

We first study the more common case when 0 ¢ Z. Fori = 1,....d, let ¢;(z) = [];,0,(z—
Aj), and consider again the Lagrange interpolating polynomial Li(x) = ¢i(x)/pi(Ni), sat-
isfying Li(A;) = d;; for j # 0, and Li(Ag) = (=1)"F1 22 where m; = |i(\i)]-

Theorem 3. Let I' be a regular graph with degree k, n vertices, and spectrum spl' =
{0, X" A, where Xo(= k) > A > -0 > Ng. Let T C {1,...,d}. For every
1=0,...,d, let m;; = H#i INi — Aj|. Let kq = %ZUEV kq(u) be the average number of
vertices at distance d from every verter in I'. Then,

Fy Ny ierMi
2 2
<Zi€2 %) + gt mor? D ier M

and equality holds if and only if I" is a distance-regular graph with kq(u) = kq for each
u €V, and constant

IN

: ()

Yier(-1)TR

Pig = pa(Xi) = kq S
ieT Mi

for every i € T. (6)



Proof. The clue is to apply Theorem [2f with a polynomial r € R;_;[x] having the desired
properties of gg_1. To this end, let us assume that py(A\;) = ¢ for any ¢ € Z, where ¢ is a
constant number. Moreover, as gg—1 = H — pg, we have gg_1(\;) = —pq(\;) for any i # 0.
Thus, we take the polynomial r with values r(\;) = —t for i € Z, and r(\;) = —pq()\;) for

i ¢ I, i+# 0. Then, using (2),

==t Li(x)— >  pa(\i)Li(x),

i€l i¢T,i#£0
z 7T0 i+170
ro) ==t (=== Y 0 pa() (=)
= g i¢T,i#0 !
2
T
=t DT ) 30
ieT i@ ,i#0 i
nllrlp =r(Xo)® + 2> mi+ > mipa(\)®.
i€l i¢T i 40
Thus, yields
r(Xo)? n(at 4 B)? -
d(t) = = <S4 7
0= = G pr ey 0 Y
where
2
=7 (-1) +1;7 B=—ps(ro) > ﬁ, (8)
icZ ! igTit0 0t
pd 770 .
y=>_ mpaA o= paAo)B, o= > m. (9)
i@ 7,i40 127 ,i40 i T ieT

Now, to have the best result in (7)) (and since we are mostly interested in the case
of equality), we have to find the maximum of the function ®(t), which is attained at
to = ay/Bo. Then,

2 2 o
n{a’y + f%0) <Sg_1=n—kg.

P = P(tg) =
max (to) a?y+ f20 +~y0

Thus, using f@ and simplifying we get . In case of equality, we know, by Theorem
that T' is distance-regular with r(z) = agq—1(x) for some constant a. If i ¢ Z,i # 0,
r(Ai) = —pa(Ai) = aga—1(Ni) = —apq(Ai), so that o = 1 since pg(A;) # 0. Then, for every
1 €1, we get
Pig = pa(Xi) = H(N) — ga—1(N) = —r (i) = to.

Conversely, if I is distance-regular, we have that k; = kg, and, if P,; is a constant, say, 7
for every i € Z, we obtain, from , that o = % Zig(—l)z% = —]%da, whence 7 = —kq%
which corresponds to @ Moreover,

2
(S 2)
nkq = |pall? =D mipa(Xi)> + > mir? = kdz +kj = ;

i¢T i€l i¢T mim; 2ier M



and equality in holds. O

As mentioned above, when I is already a distance-regular graph, Brouwer and the au-
thor [2] gave parameter conditions for partial antipodality, and surveyed known examples.
The examples listed here are taken from [2].

Example 4. The Odd graph I' = O3, with n = 126 vertices and diameter d = 4, has
intersection array {5,4,4,3;1,1,2,2}, so that kg = 60, and spectrum 5!, 327 142 248 48
Then, with Z = {2, 4}, the function ®(¢) is depicted in Fig. |1} Its maximum is attained
for tp = 6, and its value is ®(6) = 66 = sq_1. Then, Py = Py4. Indeed, its distance-4
polynomial is py(z) = I(2* — 1722 + 40) with values p4(5) = 60, p4(3) = —8, pa(1) = 6,
pa(—2) = =3, and ps(—4) = 6. Hence, the spectrum of I'y is 60',6°0, —348 827,

Figure 1: The function ®(t) for Os with Z = {2,4}.

Notice that if, in the above result, Z is a singleton, there is no restriction for the values
of pg, and then we get the so-called spectral excess theorem (originally proved by Garriga
and the author [13]).

Corollary 5 (The spectral excess theorem). Let ' be a reqular graph with spectrum sp T’
and average number kg as above. Then I' is distance-reqular if and only if

d 2 —1
— M
kq = pa(Ao) = v :
4 = pa(Ao) n(; mﬂr?)
Proof. Take Z = {i} for some ¢ # 0 in Theorem O

As mentioned before, in [2, Th. 9-10] a distance-regular graph I" was said to be half
antipodal if the distance-d graph has only one negative eigenvalue (i.e., P;; is a constant
for every ¢ = 1,3,...). Then, a direct consequence of Theorem [3| by taking Z = Z,qq =
{1,3,...} is the following characterization of half antipodality.



Corollary 6. A regular graph T' as above is a half antipodal distance-regular graph if and
only if the following equality holds:

(C2)+ 5 8,5

: i . i ;
i odd i even v ¢ odd

Example 7. The Coxeter graph I' = C, on n = 28 vertices, has diameter d = 4, inter-
section array {3,2,2,1;1,1,1,2}, ks = 6, and spectrum 3,28, (v/2 —1)6, —17, (-1 — /2)°.
Then, with Z = {1, 3}, the equality in holds and, then P;4 = Ps4. In fact, the distance-
4 polynomial is ps(z) = 3(z* — 23 — T2? + 5z + 6) with values ps(3) = 6, ps(2) = -2,
pa(vV2—1) =2++2, ps(—1) = =2, and py(—1 —v/2) = 2 — /2. Thus, I is half antipodal
since the spectrum of I'y is 61, (2 4+ 1/2)5, (2 — /2)5, —215.

Recall that a regular graph I is strongly regular if and only if it has, either three (when
I is connected), or two (when T is the disjoint union of several copies of a complete graph)
distinct eigenvalues (see e.g. Godsil [15]). Then, we have the following characterization of
those distance-regular graphs having strongly regular distance-d graph.

Corollary 8. A regular graph I' as above is distance-reqular with strongly regular distance-
d graph Uy if and only if the following equality holds:

— n(n —1)
i = m0)° ™)’ 5 g -y
(Z (ST i) St (X ) S m
i even 1 odd i even Y7 4 odd 1 odd 7§ even
i#0 i#0 i#0

Proof. Apply Theorem [3| with equality for Zeven = {2,4,...}, and Zyqq = {1,3,...}, to

obtain the values of Z m; and Z mi, add up both equalities and solve for k. O
i odd i even
i#£0

Example 9. The Wells graph I' = W, on n = 32 vertices, has intersection array
{5,4,1,1;1,1,4,5} and spectrum 51,\/58, 110,—\/58, —3%. This graph is 2-antipodal, so
that kg = 1. Then, Fig. [2] shows the functions ®o(t) with Zy = {2,4}, and ®;(¢) with
Z; = {1,3}. Their (common) maximum value is attained for tp = 1 and ¢; = —1, respec-
tively, and it is ®o(1) = ®1(—1) = 31 = s4—1. Then, Poy = Pyy and P14 = Ps4. Indeed,
the distance-4 polynomial is ps(z) = 55(z? — 323 — 1322 + 152 4 20) with values p4(5) = 1,
pa(V5) = —1, ps(1) = 1, ps(—v/5) = —1, and ps(—3) = 1. Hence, the spectrum of T4 is
116, —116 since it is constituted by 16 disjoint copies of Kj.
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Figure 2: The functions ®(t) (in red) with Zy = {2,4}, and ®;(¢) (in blue) with Z; = {1, 3}
of the Wells graph.

In fact, the above expression can be simplified because Y ; . o, Mi+>_; oqq M = 1 (With
2

2
mo = 1), even%} =3, odd% (see [9]), and, from , > even#‘;g +> odd#ﬁr? =
n/pa(No). Anyway, we have written as it is to emphasize the ‘symmetries’ between
even and odd terms.

As in the case of Theorem [3], the equalities in Corollaries [6] and [§] also hold as inequal-
ities, but, as one of the referees pointed out, the best inequality for general graphs is the
one that would come with Corollary [5| Namely kg < pg(Ao), where pg(\o) is the spectral
excess given by (3). This follows from the mentioned property that gq—1(z) = n — pa()
is the polynomial r € Ry_1[z] that maximizes the quotient r(\o)/||7||p-

2.2 Thecase0 e T

To deal with this case, we could proceed as above by defining conveniently a degree
d — 1 polynomial r. Then the proof is similar to the one for Theorem If 0 € Z then
p(Ai) = p(Ao) for any i € Z. Moreover, the odd indexes, cannot belong to Z. In particular
1 ¢ Z. For instance, a possible choice for r € Ry_1[x] is:

o 7(No) =n—pa(Ao), 7(Ai) = —pa(Xo) for i € Z, i # 0.

o 7(\) = —tpa(N\;) for i ¢ 7, i # 1,

However, we can follow a more direct approach by using . First, the following result
was proved in [2]:

Proposition 10 ([2, Prop. 8]). Let I be a distance-reqular graph with diameter d. If
Pog = Py then i is even. Let i > 0 be even. Then Pyg = Pyq if and only if T is antipodal,
ori=d and I is bipartite. O



Notice that, in this case, the Kneser graph is disconnected. Thus, the above proposition
can be seen as a spectral characterization of the so-called imprimitive distance-regular
graphs (see Smith [17]).

Theorem 11. Let I be a reqular graph with n vertices, spectrum sp ' as above, and mean
excess kq. Then, for everyi=1,...,d,

n(mﬁ— Z 7r8 >

2
;s
j#0i I

kg < 5

2 2
— 4+ +m; +
(B3 o) wme o,

m
#0i #0477

Moreover:

(a) Equality holds for some i # d if and only if it holds for any i =1,...,d and T is an
antipodal distance-regular graph.

(b) Equality holds only for i = d if and only if T' is a bipartite, but not antipodal,
distance-reqular graph.

Proof. The inequality follows from by taking Z = {i} for some even i # 0, and
choosing t = pg(Ag). Then, in case of equality, Theorem |3| tells us that I' is distance-
regular. Then, I'; is a regular graph with equal eigenvalues Pygy and P;g. So, the result
follows from Proposition O

Example 12. For the Wells graph the right hand expression of gives 1(= ky) for any
1 =1,...,4, in concordance with its antipodal character. In contrast, the folded 10-cube
FQ10, on n = 512 vertices, has intersection array {10,9,8,7,6;1,2,3,4,10} and spectrum
101,6%,2210 9210 _45 10l Then, the right hand expression of gives 234.16,
293.36, 293.36, 234.16 for i = 1,2, 3,4, respectively, and 126(= k5) for i = 5, showing that
FQq is a bipartite distance-regular graph, but not antipodal.

Another characterization of antipodal distance-regular graphs was given by the author
in [8] by assuming that the distance-d graph of a regular graph is already a disjoint union
of cliques.
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