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Numerical damage identification of structures by observability techniques based
on static loading tests

ABSTRACT: This paper proposes the application of the observability techniques to deal with damage
detection in bridges from their structural response under static loading tests. Unlike previous works based on
a symbolic approach to this technique, this paper presents its first numerical application. With this aim, a
novel algorithm is presented, which reduces the unavoidable numerical errors produced by the lack of
precision of computers. To achieve an adequate accuracy in estimations, this numerical algorithm is
complemented with another method to define the proper geometry of the corresponding finite element
model. The comparison of the observability technique with other existing methods presented in the literature
shows that the number of required measurements is significantly lower. Furthermore, contrary to other
analyzed methods, no information from the undamaged structure is required. The accuracy in estimations

provided by the proposed method is very high as the differences with actual values are lower than 1%.

KEYWORDS: Non-destructive testing, Damage detection, Bridge deck, Static test, Structural response,

Numerical analysis, Precision error.

1. INTRODUCTION

Structural-System Identification (SSI) can be used to identify damage in actual structures based on their
structural response on site (see ASCE (2001)). An adequate damage detection method must be able to locate and
quantify damage in actual structures. Once identified, damage can be modeled in the structural Finite Element
Model (FEM), increasing its accuracy and helping the decision making during maintenance [see (Castillo et al.

2014)].

Damage might be detected by visual inspections. These inspections can be complemented with other non-
destructive techniques. Nevertheless, these two methods might be insufficient in complex structures where
damage is invisible to human eyesight or the members are not accessible. In these cases damage can be detected

by non-destructive tests that measure the structural response to a certain excitation. According to the type of
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excitation, these tests can be classified as dynamic [Zhang et al. (2014), Chao and Loh (2014) or Chang et al.
(2014)] or static. Static methods are usually simpler than dynamic ones. For this reason, the static-excitation
based SSI methods have attracted much attention from the 90s [Banan and Hjelmstad (2003)]. Sanayei and
Scamboli (1991) estimated structural stiffnesses by minimizing the static-stiftness based error function. In this
work, an iterative identification procedure was used to automatically adjust the elemental stiffness parameters
for damage detection. Sanayei and Onipede (1991) presented an iterative optimization-based algorithm of the
displacement equation error function for the parameter identification based on static test measurements. To deal
with incomplete measurements, a condensation procedure was proposed. This method was used by Sanayei et
al. (1992) to determine the effects of measurement errors. Hjelmstad et al. (1992) described an approach for
parameter estimation of complex linear structures based on the principle of virtual work for static and modal
tests. Banan et al. (1994a, b) proposed an optimization method to estimate member constitutive properties of the
finite element model from measured displacements under static loading. This analysis was based on the
minimization of two discrepancy indices between model and measurements using the constrained least-square
minimization. Sanayei and Saletnik (1996a) developed an iterative method for parameter estimation by
minimizing an error function in truss and framed structures. A sensitivity analysis of the measurements errors of
this method was presented in Sanayei and Saletnik (1996b). Hjemstad and Shin (1997), proposed an adaptive
parameter algorithm to detect and to assess damage in a structural system. Liu and Chian (1997) developed a
method to identify truss properties using axial strains by minimizing the error norm of the equilibrium equation.
Recently, static damage detection methods are receiving attention again from researchers. Bakhtiari-Nejad et al.
(2005) introduced a damage detection method using static noisy measurements in which the difference between
the load vector based on damaged and undamaged structure was minimized. Sanayei et al. (2012) used
measured strains in a real bridge under static truck loads for FEM updating. Liao et al. (2012) presented a FEM
updating method that included an iterative process based on the influence line of the damaged structure. Abdo
(2012) used the changes in the displacement curvature derived from measured static response to locate damage

in beams. Viola and Bocchini (2013) proposed the use of genetic algorithms for parametric damage detection in
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truss structures. Recently, Rezaiee-Pajand et al. (2014) proposed the minimization of differences between
measured and analytical static displacements of frames for damage detection. In this approach a nonlinear
constrained structural optimization based on the eigen-decomposition of the local elemental stiffness matrix was
suggested. Lozano-Galant et al. (2013, 2014, 2015) proposed the application of observability techniques to
structural system identification from a symbolic point of view. The advantage of using this approach is that the
mathematical foundation of the method can be completely understood and checked. Nevertheless, for the
method to be implemented practically, a numerical analysis is required. To fill this gap, this paper presents the
first numerical application of the observability technique. This application includes the development of an
algorithm that reduces the unavoidable numerical errors produced by the lack of precision of computers. This
algorithm is complemented with another that addresses the efficient definition of the finite element model. To
validate the proposed technique, the obtained results are compared with those alternative methods recently

presented in the literature.

This paper is based on the numerical development of the observability techniques. For the sake of
convenience the main assumptions of the observability method presented in the literature are first described in
Section 2. In Section 3, the observability techniques are adapted to deal with the adequate numerical damage
detection of structures. With this aim, an algorithm that solves the numerical problems of the observability
technique is presented for the first time in the literature. This algorithm is named as Numerical Observability
Method (NOM). This section also includes the definition of another algorithm to address the efficient definition
of the finite element model for damage detection. In Section 4, the damage detection method by observability
techniques is numerically compared with two alternative methods recently presented in the literature. Finally,

some conclusions are drawn in Section 5.

2 STRUCTURAL SYSTEM IDENTIFICATION BY OBSERVABILITY TECHNIQUES

In the stiffness matrix method, the equilibrium equations together with strength of materials theory might be

written in terms of node displacements and node forces as presented in Eq. 1.
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[K] - {8} = {f}, (1)
in which [K] is the stiffness matrix of the structure, {3}, is a vector of node displacements and {f} is a vector of
node forces. For 2D analysis, Matrix [K] includes the geometrical and mechanical properties of the beam
elements of the structure, such as length, L;, shear modulus, G;, Young's modulus, E;, area, A;, inertia, Ij, and
torsional stiffness, J;, associated with the j-element. For the sake of simplicity, in this paper the structural

mechanisms involved are limited to the axial stiffness, E;jA;, and the flexural stiffness, E;l;.

When the SSI is introduced in the stiffness matrix method, the matrix [K] is partially unknown. Usually, L; is
assumed known while both the flexural, E;l;, and axial stiffness, E;A;, are traditionally assumed as unknown. As

there could also be uncertainties in actual areas of the members of the structure and/or in densities, the applied
forces in nodes due to permanent loads might also be unknown. This problem can be overcome by analyzing the

effects of the increment of deflections produced by given sets of nondestructive static tests.

The determination of the unknown parameters in matrix [K] leads to a nonlinear problem as these parameters
are multiplied by the displacements of the nodes (in 2D, horizontal and vertical deflection and rotation uy, vy,
wy associated with the k-node). This implies that non-linear products of variables, such as EjAjuy, EjA;vy,
Ejljuy, Ejljvy and Ejlwy, might appear, leading to a polynomial system of equations. To solve these equations
in a linear-form, system (1) can be rewritten as
[K*]-{8"} = {1}, 2
in which the products of variables are located in the modified vector of displacements {6*} and the modified
stiffness matrix [K*] is a matrix of coefficients with different dimensions than the initial stiffness matrix [K].
Depending on the known information, the unknown variables of vector {8} may be the non-linear products

presented above, as well as other factors of single variables, such as E; Ij, E;Aj, E;, Aj, [jor node deflections.

Once the boundary conditions and the applied forces at the nodes during the nondestructive test are

introduced, it can be assumed that a subset of increments of deflections §; of {5°} and a subset of forces in
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nodes f; of {f} are known and the remaining subset 8, of {5"} and f, of {f} are not. By the static condensation

procedure, the system in (2) can be partitioned as follows:

= K -0

where Kgg, Kp1, Kio and Kj, are partitioned matrices of [K*]and &;, 67, fy and f; are partitioned vectors of {§*}

and {f}.

In order to join the unknowns, system (3) can be written in the equivalent form, as:

Kio 0\ (6 fi, —Ki7 X 64 )
3 = (o~ )lio) = igxs )= 0
[Bliz) Koo —1/fy —Ko1 X 61 0}
where 0 and [ are the null and the identity matrices, respectively. In this system the vector of unknown

variables, {z}, appears on the left-hand side and the vector of observations, {D}, on the right-hand side. Both

vectors are related by a coefficient matrix[B].

Matrix {D} must satisfy some conditions for the system (4) to have a solution. In order to check if the system
has a solution it is sufficient to calculate the null space [V] of [B] and checking that [V][D] = {0}. The general

solution (the set of all solutions) of the system (4) has the structure:

oY lorY 5
(53} - (5], ©
fo foo
6*
where { foo} is a particular solution of system (5) and [V]{p} is the set of all solutions of the associated
00

homogeneous system of equations (a linear space of solutions, where the columns of [V] is a basis and the
elements of the column matrix {p} are arbitrary real values which represent the coefficients of all possible linear

combinations).

Examination of matrix [V] and identification of its null rows leads to identification of the observable
variables (subset of variables with a unique solution) of vector {z}. To obtain matrix [V] we need to calculate

the null space of matrix [B]. The value of the observed parameters (particular solution in (5)) can be obtained
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numerically by solving system (4).

The unknown parameters of vector {z} can be directly identified from the null space when enough
information is introduced into the observability analysis. Nevertheless, the number of required deflections can
be optimized by using a recursive process that takes advantage of the connectivity of the beams in the stiffness
matrix. This connectivity is included in partitioned matrices of [K*] and therefore, in system (4). In this way,
when in the initial observability analysis any deflection, force or structural parameter is observed, this
information might help to observe new parameters in the adjacent beams through a recursive process. In this

analysis, the observed information is successively introduced as input data in the observability analysis.

A detailed step by step application of the observability techniques is presented in Lozano-Galant et al. (2013,
2014). We refer the reader to those papers for a more detailed explanation of the peculiarities of the proposed

methodology.

3 APPLICATION OF OBSERVABILITY TECHNIQUES TO NUMERICAL DAMAGE

DETECTION

The symbolical SSI algorithm presented in the preceding section fails to address the numerical estimation of
the observed parameters. To solve this problem, the numerical development of the observability techniques is
presented in this section by means of a new algorithm called Numerical Observability Method (NOM). As the
precision of the estimations depends, to a great extent, on the geometry of the finite element models, this section
also includes some guidelines to address the efficient definition of the finite element models assumed for

damage detection.

3.1 The Numerical Observability Method

It is noted that the numerical application of the observability technique is not a straightforward task because
of the errors in measurements and the lack of precision in computers and numerical procedures. In fact, the

direct numerical application of the procedure presented in the preceding section might lead to the following
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problems:

(1) Lack of observability during the recursive process. In each iteration, the observable variables of {z} are
obtained from the analysis of the null space [V]. This is to say, the variables in {z} are identified as
observable when their corresponding rows in [V] are only composed only of zeros. This identification can be
easily carried out symbolically. Nevertheless, because of the unavoidable numerical errors, this might not be
the case when the structure is analyzed numerically. In such a case, next to zero values might appear in [V]
instead of null values. This fact reduces the number of observed parameters in each step.

(2) Numerical problems associated with the resolution of the system of equations. The symbolic analysis
presented in the preceding section is limited to the identification of the list of parameters that are
mathematically observable when a set of measurements are known. Nevertheless, in the numerical analysis it
is necessary to go one step further as the values of the observable parameters must also be calculated. For
this purpose, the system presented in Equation 5 needs to be solved. If the system has a unique solution, this
can be easily solved by using the inverse of [B]. Nevertheless, this is rarely the case because the number of
unknown variables in {z} generally exceeds the number of equations. Therefore, alternative numerical
methods are required. Examples of these methods are the LU factorization [Remon et al. (2006)], the Moore-
Penrose pseudo inverse [Yang and Zhang (2014)], or the least-squares method. Nevertheless, these methods
can fail to provide the numerical solution because the actual numerical data generally contain inaccuracies
leading to singular or nearly singular matrices.

(3) The errors might increase throughout the recursive process. Due to the fact that numerical errors are
unavoidable, the estimated parameters will not be free of errors. Furthermore, these errors might increase
throughout the recursive process as the new parameters obtained in later steps are calculated from a higher
number of parameters with errors. It is important to highlight that if this procedure is not controlled,
accumulated errors at the end of the recursive process might lead to unacceptable estimations. This problem

discourages the use of a purely numerical analysis approach.
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7 To solve all these problems a new algorithm is proposed. This algorithm combines two approaches: a
;0 symbolical and a numerical one. On the one hand, the symbolic approach is used for the observability analysis.
g This approach reduces the effects of the unavoidable numerical errors. The symbolic analysis solves two of the
ﬁ problems presented above (the number of observed parameters is not reduced and the errors in estimations do
ig not increase during the recursive steps). On the other hand, the numerical approach enables the numerical
g estimation of the observed parameters. This mixed algorithm also includes a recursive process, in which the new
.'218 observed parameters are successively introduced symbolically. The different steps of the proposed algorithm are
g; presented in Fig. 1 and summarized as follows:

21

25 - INPUT: The topology of the structure and the subset M of measured (known) variables.

g? - OUTPUT: The numerical values of the resulting subset of observable variables O.

gg - Step 1: The initial input data are introduced. These data include the geometry of the FEM, the known
g; mechanical and geometrical properties of the elements, the boundary conditions and the value of the
gi deflection and force increments at the nodes during the static load test.

gg - Step 2: The partitioned matrices Ky, Kp1, K7 and K3, are symbolically determined from input data.

g; - Step 3: The coefficient matrix [B], vector of observations, {D}, and vector of unknown variables {z} are
z; symbolically determined as presented in Eq. 4.

jé - Step 4: The N; parameters of vector {z} whose value can be unequivocally defined (this is to say, that are
jg observable) are determined by analyzing the symbolic null space, [V], of matrix [B].

j? - Step 5: The numerical values of the observable parameters of {z} are obtained from the particular
jg solution of the system [B]-{z}={D}. This step is carried out by using an algorithm that provides the
22 numerical solution of the system of equations. Examples of this kind of algorithms are the Moore-
g% Penrose pseudo inverse or the Least-Squares method.

gg - Step 6: If some parameters are observed, (N;#0), the recursive process (with i counter) is carried out to
g; update the input data of the observability analysis. In this way, the symbolic representation of the
2(9) observed parameters is introduced as input data in a new observability analysis that corresponds with the
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following step of the recursive process (i=i+1). To avoid the effects of the numerical errors, this new
analysis is carried out symbolically.
- Step 7: The recursive process is repeated until no additional variables are observed between two

successive steps (Ni=Nj,).

i = Number of recursive steps
N;=Number of observed parameters in step i

Q)] | INITIAL INPUT DATA
i=0

(2) 1 Building Kgy, Kio, Ky and Kyy 1 71 INPUT DATA

1
1
1

| ittt I
' +
1
1

INITIAL INPUT DATA |
() i Building [B], {z} and {D} ! Ni OBSERVATIONS !

(O]

Identifying N; observations
from {z} by analyzing [V]

5) Identifying N; observations
i from {z} by analyzing [V]

!

(6) FALSE | ~~°°7° Symbolical step
N=Dor NN _——V 4y Numerical step

v TRUE Recursive process

7 | END

Fig. 1: Flow chart for the numerical solution of the SSI problem by observability techniques.

The accuracy of the estimations depends to a great extent on the assumptions of the finite element model. In
fact, the higher the number of unknowns of this model the higher the number of measurements required for

identification and the higher the accuracy. This issue is addressed in the following subsection.

3.2 Defining an adequate FEM

The number of beam elements and nodes of the Finite Element Model (FEM) influences both the number of
information required in the structural system identification and the accuracy of the estimations. Obviously, the

more complex the model, the higher the required information and the corresponding accuracy in estimations are.

As the damage location is not generally known, the following algorithm is proposed for the effective

definition of the FEM. Coupling this algorithm with the NOM, damage can be estimated with a given tolerance.
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With the aim of understanding the advantages of this algorithm, the following aspects have to be taken into

account: (1) Number of beam elements: The number of beam elements will depend on the number of different

mechanical and geometrical properties as well as the assumed length of the damage extent. A different beam

element (with unknown mechanical properties) will be defined in every cross section whose mechanical

properties are to be estimated. Obviously, the higher the number of beam elements with unknown mechanical

properties, the higher the amount of required information to be measured from the static test. (2) Number of

nodes. A node is introduced at both edges of the different beam elements. Additional intermediate nodes can be

introduced to avoid the need of measuring node rotations. (3) Balanced damage detection method. An adequate

FEM for damage detection must conveniently balance the number of beam elements and their location, the

number of nodes and their location and the pursued accuracy.

The proposed algorithm for an automatic definition of adequate FEM is as follows:

Input data: Initial FEM, deflections or rotations measured under a certain load case and assumed
tolerance in estimations.

Output data: Estimated parameters fulfilling the aimed tolerance.

Step 1: Definition of an initial FEM. Based on the knowledge of the structure and the designer’s
experience, an initial FEM is proposed.

Step 2: Evaluation of the damages in the FEM: The damages of the FEM (FEM;) are evaluated
numerically by the NOM.

Step 3: Checking the obtained damages in consecutive beam elements: The differences between the
parameters estimated by consecutive beam elements are analyzed. When these differences are higher
than the assumed tolerance, this is to say, (Estimated parameter in element j+1 - Estimated parameter in
element j) > Tolerance, go to Step 4. Otherwise go to Step 5.

Step 4: Updating the geometry of the FEM: Those beam elements that in the preceding step exceeded the

tolerance are divided into two, updating the geometry of the FEM;. This division increases the number of
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nodes and beams and therefore, the number of unknown variables. After saving the deflections measured
on site at the new node, go to Step 2 for a new SSI.

- Step 5: Merging beam elements with the same properties: If the geometry of two consecutive elements of
the FEM,; are equal, these two elements are merged into one.

- Step 6: The algorithm is finished and the estimated parameters are provided with an adequate tolerance

between elements.

4 COMPARISON WITH OTHER STATIC DAMAGE DETECTION METHODS

In this section the observability technique is compared with two alternative damage detection methods
presented in the literature. With this aim, the main assumptions of each of these methods are first presented.
Then, to validate the proposed observability method, two examples presented in the literature are studied by
observability techniques. Finally, the different damage detection methods are compared. The structural response

of the developed FEMs is analyzed with the software SAP2000 neglecting the shear deformation.

4.1 Method 1 (Liao et al. (2012))

Liao et al. (2012) proposed a method for Finite Element Model updating based on the response of the
structure under pseudo-static excitation test. In this method the magnitude of localized damage in beam
elements are estimated by comparison of the influence lines of undamaged and damaged structures. In this
method the influence lines of a moving load are determined by measuring the vertical deflections at a certain
point. Liao et al.’s method compares the measured and the calculated influence lines by means of an objective
function. In this way, the model updating problem is transformed into a classical constrained optimization
problem. This problem is solved iteratively by the unconstrained minimization technique and Powell's method.

One of the main disadvantages of this method is that it does not provide information about the damage location.

4.1.1 Example 1 [Liao et al. (2012)]

This example is based on the results of the experimental test program of the three beams presented in Fig. 2
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analyzed by Liao et al. (2012). All these beams are clamped at both ends and differences between them refer to
their mechanical properties. The first beam (undamaged beam) presents a constant rectangular undamaged cross
section UN, 15mm width and 45mm depth, as presented in Fig. 2.A. The other two beams (damaged beam 1 in
Fig. 2.B and damaged beam 2 in Fig. 2.C) include damage at different locations. This damage is simulated by
reducing the UN cross section by 15% (cross section 15x38.25 mm?) and by 30% (cross section 15x31 mm?)
extended along 6cm. These cross sections (named 15%D and 30%D) are presented in Fig. 3.D together with
UN. The Young’s modulus are 2,67x10° MPa. It is assumed that damage only produces changes in the flexural

stiffness. This assumption is traditionally used in many SSI methods (see Abdo (2012)).

(A) Undamaged Beam

| 1.2m

—
-1
= M &
= UN I 2
-1
=l L
(B) Damaged Beam 1

i 42cm f_i‘cm! I2cn] 18¢cm 6em 36em

/ : . —f 7.
1
-] M =
—_UN — I — =
-~ 30% D 30% D ;
<] K 309
(C) Damaged Beam 2

42em (3;::11’ 12::111)(!0}1 Hbem 48em

f 2 F— —
s —
= M =
AN — | =
7 30%D  15%D c

(D) Geometry (cm)

/N 7 15%D ) 30%D
45,\' 15 % 39x15 é 32x15

Fig. 2: Example 1 analyzed by Liao et al. (2012): (A)
Undamaged beam. (B) Damaged Beam 1. (C) Damaged Beam
2. (D) Geometry. Undamaged section is named UN, sections
30%D and 15%D represents a damaged of 30% and 15%,
respectively.

Following the assumptions of the existing method, the damage location is known but not its magnitude. This
results in a number of 5 unknown flexural stiffnesses, EI, named from EI, to Els. To define these values, the
influence lines of the different damaged beams are compared with the one of the undamaged structure. In this

case, the comparison is based on the vertical deflection influence lines at mid span (point M in Fig. 2.A, 2.B and
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2.C). These deflections are obtained by measuring the deflection at M produced by a moving concentrated load
every 6cm. This results in a number of 19 measurements for each influence line. The maximum error in the

estimated stiffnesses in the Damaged Beam 1 was 1.10%. This value increases up to 1.94% in Beam 2.
4.1.2 Example 1 by observability techniques

Estimation of the damaged magnitude of the two damaged structures presented in Example 1 can be carried
out numerically by observability techniques. The first step consists of defining an adequate FEM to characterize
conveniently the unknown mechanical properties. Using the procedure presented in Section 3.2, two different
FEMs can be defined for each damaged structure. These FEMs have the same number of nodes and beams
(eight and seven, respectively) but different number of unknown stiffnesses. On the one hand, the first type of
these models (FEM-1.1 in Fig. 3.A and FEM-2.1 in Fig. 3.B) assumes that all the undamaged elements have
different stiffness properties. This assumption clusters the seven beams of the model in five unknown stiffnesses
(EIL; to Els). On the other hand, the second type of models (FEM-1.2 in Fig. 3.C and FEM-2.2 in Fig. 3.D)
assumes that the stiffnesses of the undamaged elements (EI;, El; and El;) are the same. This reduces the number
of unknown stiffnesses to three. In both types of FEMs the flexural stiffnesses of the beam elements (EI, to El;
in FEMs-1.1 and 2.1, EI, to EI; in FEMs-1.2 and FEMs-2.2) are unknown. For a certain load case, the forces in

all FEM nodes except at the boundary conditions are assumed as known.

-~ UN 30%D  UN 30%D UN - j UN 30%D UN 15%D UN —
= = oE = = =
=] Damaged Beam 1 -~ 7 o~
= amaged Beam L~ ot Damaged Beam 2
(A) FEM-1.1 (B) FEM-2.1
; Beam Nodes -~ > )
1 2 34 5 4 6 7  Nodes g ! 2 3 4 5 6 7 8 E
2 ® oo o =P 4 = o
e eI | G z
= El El2 El3 Els Els 4 = Ell El2 El3 El4 Els
(C) FEM-1.2 (D) FEM-2.2
g; 2 34 5 6 7 35 = 2 34 56 7 aE
— & & o .
® oo *—o E 2 ' _ '. - _' _ g
Ell El2 El Els El —~ El Elz Eh EIs El

Fig. 3: Finite element models used by observability techniques in Example 1. (A) FEM-1.1, (B) FEM-2.1, (C) FEM-1.2
and (D) FEM-2.2.
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The size of the required measurement set for SSI depends on the number of unknown stiffnesses in the
FEMs. Obviously, the higher this number, the higher the number of required measurements. In the case of FEM-
1.2 and 2.2, four rotations (w,, w3, Wg and w5) are required while in FEM-1.1 and 2.1 this number increases up
to six (W, W3, Ws, W, W7 and wg). The values of these parameters can be obtained from the increments of nodal
rotations in a static test. In this example this test is considered as the application of a concentrated load Q of

20000kN at mid span (node 5). The increments of rotations obtained in this test are summarized in Table 1.

Table 1: Increments of nodal rotations in Example 1
when a concentrated load Q=20000kN is introduced

at node 5.
Damaged beam 1 Damaged beam 2
(FEM 1.1 and 1.2) (FEM 2.1 and 2.2)
W) -0.016037 -0.016205
) -0.016524 -0.016729
Ws -0.008216 -0.013042
We 0.001023 -0.008376
W7 0.013023 0.000926
Wy 0.017555 0.006233
l@
g; : 14 & A : E

The results of the SSI are illustrated in Fig. 4. This figure includes the deviations between the original
stiffnesses and the ones estimated by the different FEMs in Damaged Beam 1 (Fig. 4.A) and Damaged Beam 2

(Fig. 4. B).
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(A) Damaged Beam 1
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=
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Fig 4: Example 1: Absolute value of the percentage deviations
between the actual and the observed stiffnesses in different FEMs
when a load Q=20000kN is applied at note 5. (A) Damaged Beam
1, (B) Damaged Beam 2.

Fig. 4.A and 4.B illustrate the accuracy of the five estimated stiffnesses. In fact, the maximum deviations

between the actual and the observed variables (0.03% in El; of FEM-1.1 and 0.03% in Els of FEM-2.1) are

practically negligible. In models with only three unknown stiffnesses (such as FEM.1.2 and 2.2), the maximum

deviations are reduced to 0.01% and 0.006%, respectively. It is important to highlight, that the accuracy in

estimations of these models is significantly higher than that presented by the method proposed by Liao et al.

(2012) (1.10% and 1.94% in damaged beams 1 and 2, respectively). Furthermore, this accuracy is obtained with

a lower number of measurements and without the need of any information from equivalent undamaged

structures. A quantitative comparison among methods is presented in Section 4.3.

4.2 Method 2 [Abdo (2012)]

According to the method proposed by Abdo, damage in beam structures can be located by analyzing the so
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called grey relation coefficient [Abdo (2012)] of their elements. This coefficient includes changes in
displacement curvature between undamaged and damaged structures. Unlike the procedure presented by Liao et

al. (2012), this method indicates the damage location but not its magnitude.
4.2.1 Example 2

This example is based on two—span continuous beam numerically analyzed by Abdo (2012) and presented in
Fig. 5.A. In this structure the damage location of the beam elements is unknown. The FEM of this structure
includes 61 nodes and 60 beam elements as showed in Fig. 5.B. The cross sectional area and the inertia of the
girder are 0.07 m* and 0.04 m”, respectively and the mechanical properties are, modulus of elasticity, £ = 210
GN/m” and the density, p = 7.850 kg/m’. Damage are assumed to affect only the flexural stiffnesses. This

hypothesis leads to 60 unknown parameters.

(A) Geometry (B) FEM
30m 30m
[ T !
Unknown EI every 1m (60 unknown EI) i 61 nodes, 60 bars with 60 unknown EI

Fig 5: Example 2: (A) Geometry, and (B) FEM.

To locate damage, vertical deflections at inner nodes were measured. This lead to the measurement of 58
vertical deflections at inner points of the undamaged and the damaged structure. From these deflections, a
Laplacian operator was used to estimate the changes in the analytical and measured displacement curvatures.
Analysis of the grey relation coefficient value showed the damage locations. Nevertheless, this analysis did not

provide information about their magnitudes.

4.2.2 Example 2 by observability techniques

To analyze the Example 2 by observability techniques, an adequate FEM is first defined by the guidelines
presented in Section 2. This FEM includes 61 nodes and 60 beam elements with unknown flexural stiffnesses as
presented in Fig. 5.B. The load test includes a concentrated load Q of 100 kN at node 16. The vertical

deflections, v, the rotations, w, and the increments of rotations, Aw, obtained in test are summarized in Fig. 6.A,
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6.B, and 6.C, respectively. The red circles in Figure 6.C illustrate the location with null increments of rotations.

(A) Vertical deflections, v
3,0E-03
2,0E-03 i
1,0E-03 . S
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(C) Increments of Rotations, Aw
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Fig 6: Example 2: Graphical representation of the values
introduced in the analysis. The load case corresponds with
a concentrated load Q of 100 kN at node 16: (A) Vertical
deflections, v, (B) Rotations, w, and (C) Increments of
rotations, Aw.

For an adequate SSI by observability techniques it is necessary to measure 60 deflections or rotations (this

number corresponds with the number of unknown flexural stiffnesses). Two different measurement sets have
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been studied. These sets include 58 common vertical deflections (from v, to v,y and from v3; to vg) and 2
different rotations (W,9 and wjq in the first set and w;o and w3; in the second set). In both sets the flexural

stiffnesses are obtained after a recursive process of 60 steps.

In order to illustrate the effect of the errors in the accuracy of the estimations, two different precision in the
values obtained in SAP2000 are considered, namely (a) low, 1e-5 m, and (b) high, 1e-9 m. The deviations
between the observed and the actual flexural stiffnesses obtained by the two measurement sets for the two
precisions are presented in Fig. 7.A and 7.B. The lack of precision might be due to different facts such as the

measurement noise. This issue will be addressed in the near future by the authors.
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(B) High precision, 1e-9 m, in measurements
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Fig. 7: Deviations between the actual and the observed stiffnesses by two measurement sets in a static test with a
concentrated load Q (100kN) applied at node 16 for two precisions in measurements: (A) Low precision, and (B) High
precision.
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Figure 7 shows that the higher the accuracy of the measurements the lower the deviations between the actual
and the observed parameters. For example, in the first measurement set the percentage deviations in estimations
are reduced from 1.54% to 0.14% in El,s when the accuracy of the measurements is increased. The
measurement set also plays an important role in the accuracy of estimations. In fact, Fig. 7 shows that in most
locations the second measurement set provides lower deviations than the first measurement set. When the
precision of the measurements increases, the higher differences are located at the beam edge (Elg). In this
element the maximum differences are 0.94% and 0.89% for the first and the second measurement set,
respectively. This figure also shows that the highest errors are due to three coupled effects. These effects are as
follows: (1) Influence of the magnitude of the structural deformation. The effect of the error depends to a great
extent on the magnitude of the structural deformation. In fact, it is clear that the higher the static load applied on
the structure, the larger the deflections and therefore, the smaller the effect of the measurement errors for a
given absolute value. The same effect is produced when the load is located far from the supports as rotations
and deflections are higher. For both examples, for a maximum given absolute value of the error, the error
percentage for each measurement is lower. From Figure 7.B it can be seen that the estimation error in the first
span is lower than in the second one. (2) Influence of the structural deformed shape. In the proposed algorithm,
the flexural stiffness of a given element it is mainly estimated from the differences between nodal rotations at its
ends. Where the rotation is maximum, the difference between both rotations is minimum (see Figure 6.B and
6.C) and slight numerical errors affect greatly the estimations. This response is highlighted in Figure 7.A with
red circles, where maximum errors are found where rotations are maximum and gradient of rotations are
minimum. (3) Observability flow: The analysis is performed throughout a recursive process that uses
information from preceding steps. For this reason, variables calculated in the latter steps have likely more errors

(as they are accumulated). This is appreciated in Figure 7.B.

4.3 Comparison among methods

The method proposed by Liao et al. (2012) has several advantages. First of all, damage magnitude can be
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estimated by measuring vertical deflections which can be easily and economically measured. In fact, the
application of a moving load makes that instrumentation at only one point (point M in Fig. 2) is required.
Furthermore, this method is still applicable when deflections are measured at different locations. For example,
to obtain vertical deflections in bridge decks, Ozakgul et al. (2007) proposed the use of tiltmeters and Gentile
and Bernardini (2010) proposed the use of radar techniques. Unfortunately, the major disadvantage of this
method is the fact that information of the undamaged structure is required. Undamaged structures with similar
properties than the analyzed structure can be rarely found on site. Therefore, the applicability of this method is
limited to laboratory tests in which properties of the undamaged structure can be obtained. The second
disadvantage is the requirement of a large number of measurements to define the influence line. Finally, this
method can only update the value of a certain unknown parameter. This is equivalent to quantify a localized

damage.

The method proposed by Abdo (2012) can be used for damage location from static measurements. The major
disadvantage of this method is that damage is detected from comparison between damaged and undamaged
structures. Another disadvantage of this method is that the magnitude of the damage cannot be estimated as it

provides information only on the damage location.

The main characteristics of the different analyzed methods are compared in Table 2. These characteristics
refer to the requirement of an Iterative (I) or Recursive (R) process, the use of the method for damage Location
(L), Quantification (Q) or both (L+Q), the requirement of information only from the damaged structure (this is,
no information of the undamaged structure is required) and the set of measurements used (curvatures, y,
horizontal deflections, u, vertical deflections, v, and/or rotations, w). It is important to highlight that the
information introduced into the observability techniques can be obtained with a minimum number of monitored
degrees of freedom on site by taking advantage of the Maxwell’s reciprocal theorem. This hypothesis has been

used in a number of works (see e.g. Strauss et al. (2012) or Degrande and Lombaert (2001)).
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Table 2: Comparison of the main characteristics of the damage detection methods, I/R: Iterative /
Recursive Process, L/Q: Locating or Quantifying damage, UN: Undamaged structure.

Method I/R L/Q Data from UN Measurements
Liao et al. (2012) I Q v v
Abdo (2012) - L v v to estimate
Lozano-Galant et al. (2013, 2014) R L+Q X v and/or w

The analysis of this table shows that all methods but the one presented by Abdo (2012) use an iterative or
recursive process. Observability techniques can be used to both locate and quantify damages. These methods
have the additional advantage of not requiring information from the undamaged structure. Referring to the used
measurements, the method presented by Liao et al. (2012) is based on v and the method of Abdo (2012) is based

on y. In the case of the observability method v and/or w can be introduced.

A comparison between the number of measurements (NM) required by the Existing Methods (NMgy) and
the observability technique (NMoggs.) in the analyzed examples is presented in Table 3. This table also includes
the Number of Unknown flexural stiffnesses (NU) and the perceptual reduction of the number of measurements
required by the observability analysis in comparison with the existing methods. This table includes the

information of damaged beams in Examples 1 (FEMs 1.1, 1.2, 2.1 and 2.2) and 2.

Table 3: Comparison of the results of the different examples: NU: Number of Unknown variables, NMgy: Number
of Measurements in the Existing Method, NMops: Number of measurements Observability technique. Terms between
/ refer to FEM with different number of unknown variables.

Existing method i}
Example NU NMgpm NMogs I(NMew N'\()’/'OBS)/NMEW
(EM) (%)
Example 1 (FEMs 1.1 and 2.1) Liao et al. (2012) 5 (19+19)* 6 84%
Example 1 (FEMs 2.1 and 2.2) Liao et al. (2012) 3 (19+19)* 4 89%
Example 2 Abdo. (2012) 60 (58+58)* 60 48%

* The same NM are measured in the damaged and the undamaged structure. This set might not correspond with the minimum one as in the
case of the observability technique.

Table 3 shows that the number of required measurements by the observability techniques is significantly
lower than the one required by the existing methods. This is especially appreciable in Example 1, where the

reduction of required measurements reaches 84% when the FEMs used by the observability includes five
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unknown flexural stiffnesses (FEM 1.1 and 1.2). This reduction is increased to 89% when the number of
unknown flexural stiffnessses in the FEM is reduced to three (FEM 2.1 and 2.1). Finally, in Example 2, only
48% of the measurements used by Abdo (2012) are required. It is important to highlight that the values
introduced in the column NMgy might not correspond with the minimum set as in the case of the observability

technique.

A comparison of the Maximum Error in estimated flexural stiffnesses (ME) of the analyzed examples
between the Existing Method (MEgy) and the observability technique (MEogs) is presented in Table 4. This
comparison includes the information of the different damaged beams (Examples 1) and measurement sets
(Example 2). In the case of the first two examples only the results of the FEMs with five unknown stiffnesses
are presented. This table also includes a column indicating the percentage deviation between the accuracy of

both methods.

Table 4: Comparison of the Maximum Errors in estimations (ME): MEgy= Maximum Error Existing Method, MEqgs:
Maximum Error Observability techniques

MEgw (%) MEogs (%0) [((MEem-MEogs)/MEgy| (%)
Example FEM 1.1 FEM 2.1 FEM 1.1 FEM 2.1 FEM 1.1 FEM 2.1
1.10 1.94 0.01 0.01 99.09 99.69
Example 1 FEM 2.1 FEM 2.2 FEM 2.1 FEM 2.2 FEM 2.1 FEM 2.2
1.10 1.94 0.03 0.03 97.27 98.45
Example Setl Set 2 Set Set 2 Set1l Set 2
Example 2 - - 0.94 0.89 - -

Table 4 shows that the accuracy of the observability method cannot be compared with the one of the existing
method in Example 2 because the existing method does not provide the estimation of the damage extent.
Therefore, the comparison of the accuracy in estimations between methods can only be performed in Example 1.
In this case, the increase of accuracy when observability techniques are used is significant. For example, the
maximum errors when observability techniques are used are obtained in FEM 1.1. The value of this error,

0.01%, is practically negligible.
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5. CONCLUSIONS

This paper proposes the first numerical application of observability techniques to damage detection of structures
from static monitoring information. With this aim, a symbolical-numerical algorithm, named Numerical
Observability Method is developed to deal with the numerical complexities derived from the application of
observability techniques. This algorithm is complemented with an algorithm addressing the definition of

effective finite element models.

The observability technique has been validated by means of a comparison with two alternative static-excitation
based methods proposed in the literature. In all analyzed examples the number of deflections required by the
observability techniques is significantly lower than those required by alternative methods. The major advantage
of the observability techniques in comparison with the other analyzed methods is that no data of the undamaged
structure is required. All these characteristics show the convenience of applying the observability techniques for
damage detection in bridges. The numerical analysis carried out in this paper shows the important role of the

measurement errors. This issue will be studied in detail in the near future by the authors.
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