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ABSTRACT 

The inductance of single- and multi-conductors intended for electronic devices, power transmission and distribution or 

grounding, lightning and bonding systems greatly depends on the specific geometry and the supply frequency. It is also 

influenced by skin and proximity effects. The inductance is an important design parameter, since it significantly influences the 

voltage drop in the conductor, thus raising reactive power consumption and limiting the conductors’ current-carrying capacity. 

Although there exist some internationally accepted approximated and exact formulas to calculate the AC inductance of 

conductors in free air, its accuracy and applicability has been seldom analyzed in detail in the technical literature, which is done 

in this paper. Since such formulas can be used for a wide diversity of conductors’ configurations and under different operating 

conditions, it is highly desirable to evaluate their applicability. This evaluation is carried out by comparing the results provided 

by the formulas with data provided by finite element method (FEM) simulation. The results provided in this paper prove that 

FEM results can be easily applied to a wide diversity of conductors’ configurations and frequencies, thus being more general and 

often more accurate than the results provided by the formulas.  
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1. INTRODUCTION 

Conductors supplied from an alternating current (AC) power source often present nonuniform current densities because of the 

induced eddy currents which cause the skin and proximity effects [1]–[4]. Under high-frequency supply, the electric current 

within a conductor is forced to flow within a small fraction of its cross section since eddy currents and their associated magnetic 

fields induced within the conductor alter the current distribution across the conductor. It is well known that the current 

distribution within a conductor has a great influence on its resistance and inductance [5]. As the power supply frequency is 

increased, the current within a conductor tends to crowd towards the outer surface [6], therefore increasing its effective resistance 

and decreasing the inner inductance. Both components of the conductor’s impedance, that is, the reactance and the resistance 

generate voltage drops, which are especially important at high frequency operation, thus limiting the current-carrying capacity 

and increasing the operating temperature due to the active and reactive components of the electric power consumed by the 

conductor itself. 

Inductance plays a key role in power cables and lines, as well as in lightning, grounding and bonding protection systems, 

especially at high-frequency operation. In the technical literature the change of the AC inductance in conductors has been less 

studied than the change of the AC resistance, probably because the inductance is highly influenced by the specific geometry of 

the analyzed problem. In lightning, grounding and bounding systems, the effects of the inductance are especially significant 

under the presence of high frequency impulse currents, since they generate a fast voltage drop along the conductor, thus 

hampering the impulse current to flow towards the grounding electrodes. In this case, due to the inductive effect, the grounding 

system is no longer equipotential [7]. This effect limits the effectiveness of the abovementioned protection systems used to avoid 

dangerous potential differences between different conductor objects in an electrical installation [8]. To ensure optimum 

performance, surge protection systems require a low inductance path to the ground. It is therefore very important to have a tool 

to accurately determine the inductance of the arrangement analyzed.  It is also well-known that the overall impedance of a 

grounding electrode is greatly influenced by its geometry and earth resistivity, the analysis of the impact of these parameters not 

being covered by this paper. 

The inductance highly relies on the area enclosed by the current path. In the case of an isolated conductor operated at high 

frequency, the current is forced to flow through the outer circumference of the conductor due to the skin effect [9]. Since the 

current is confined in a small fraction of the conductor’s total cross section, its effective or AC resistance tends to increase 

whereas the effective internal inductance tends to decrease [10].  

In the technical literature one can find both exact and simplified formulas to calculate the inductance in conductors, some of 

which are evaluated in this paper. Available analytical formulas cannot deal with effects such as non-circular cross-sectional 
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geometries, multi-conductor systems or unbalanced multi-phase conductors among others. Unfortunately, due to the 

mathematical complexity involved, analytical formulas are only available for the simplest geometries [11], a limited range of 

conductors’ dimensions and a restricted interval of frequencies since they often assume a constant current density across the 

conductor’s cross section [12]. Most of the analyzed formulas assume that the conductors are placed in a homogenous medium 

and therefore they do not take into account other effects such as the influence of a conducting ground plane [13] or the proximity 

due to the presence of nearby conductors, otherwise inductance calculations would be more complex. Depending on the distance 

between the conducting ground and the analyzed conductors, system inductance [14] can be substantially reduced since 

according to the image theory, the ground effect may be modeled by equivalent conductors placed underneath the ground, 

through which flow a current in opposition to that of the source. As a consequence, it is required to apply numerical methods 

specifically intended for solving this type of problems, such as the finite element method (FEM) which can help in minimizing 

the abovementioned limitations. FEM simulations are well suited to deal with the application considered in this paper since they 

are very flexible and powerful and allow dealing with a wide range of geometries and frequencies even taking into account of 

eddy current effects [15]. It is internationally recognized that FEM simulations provide accurate solutions in problems involving 

power conductors, transformer windings or inductors [16], [17] where most of the formulas analyzed in this paper can provide 

inaccurate results due to the proximity effect, especially in transformers and rotating machines windings. This paper evaluates 

some of the formulas to determine the AC inductance of different conductors’ shapes found in the technical literature and their 

accuracy is compared against results provided by FEM simulations. This paper is a continuation of the work presented in [3] in 

which the real part of the impedance of different conductors’ configurations, that is the AC resistance, is analyzed in the 0 Hz – 1 

MHz interval. This frequency range satisfies the quasi-stationary condition, so the displacement current can be neglected [9]. At 

the author’s knowledge there are very few published scientific-technical works analyzing the applicability and accuracy of such 

formulas to calculate the AC inductance of different conductors’ configurations, despite of the importance and the practical 

consequences of the inductance in conductors intended for power systems, thus this paper makes a contribution in this topic. It 

also proves that FEM simulations allow calculating the inductance in many conductors’ configurations taking into account both 

skin and proximity effects, thus offering flexibility and accuracy, which in most configurations is not possible by means of 

analytical formulas.  

2. PARTIAL SELF-INDUCTANCE OF AN ISOLATED RECTILINEAR CONDUCTOR IN FREE AIR 

Inductance can be defined as the relationship between the magnetic flux through a surface bounded by a closed path and the 

current that generates this flux. Inductance is usually associated with loops or coils although a straight segment of a conductor or 

a portion of a loop also has its own inductance, which is known as partial inductance. In this case it is assumed that the straight 

segment forms a loop where the return segment is at infinity. The partial inductance of the conductor segment can be defined as 

the ratio between the magnetic flux generated by the conductor’s current between this segment and infinity and the conductor’s 

current [18]. The concept of partial inductance allows calculating, for example, the inductance of an infinitely long and isolated 

conductor [19] where there is no loop current. In this case, it is possible to calculate the expected voltage drop due to the partial 

inductance of the conductor.  

Under AC supply, and especially at high frequency operation or for large cross sections [20], the current density in any 

isolated conductor placed in free air tends to be concentrated near the conductor’s surface due to the eddy currents induced by the 

alternating magnetic field accompanying the current in the conductor [21]. This effect lessens the effective cross section, thus 

increasing the AC resistance and reducing its partial self-inductance. The reduction of the effective cross section of the conductor 

has important practical effects [22], including a higher voltage drop, a temperature increase and a decrease of the conductor’s 

ampacity.  

Since the current flowing within a conductor generates a magnetic flux in its surroundings, inside and outside of the 

conductor, the partial self-inductance of an isolated single conductor has two main components, that is, the internal and external 

inductances. The total inductance or partial self-inductance of the conductor is obtained by adding the internal and external 

inductances [11]. Whereas the internal inductance, which represents the smallest component [23] is due to the magnetic field 

distribution inside the conductor, the external inductance is due to the total current within the conductor, since it involves the 

magnetic field distribution outside the conductor. 

The skin effect reduces the magnetic field inside the conductor, since it is confined in a smaller volume as the frequency 

increases, therefore decreasing the internal inductance of the conductor [22]. At very high frequency operation the total 

conductor’s inductance is therefore almost equal to the external inductance [24]. 

The conductors dealt with in this section are supposed to be rectilinear with isotropic nonmagnetic material properties and 

uniform cross sections. 

Isolated rectilinear conductor of circular cross section in free air 

 Since infinitely long isolated solid conductors exhibit the simplest geometry, there are exact formulas to determine their partial 

self-inductance considering the skin effect. It is well-known that the skin effect must be considered for large cross sections or at 

high frequency operation [16], that is, when the skin depth δ is small. The skin depth can be calculated as, 
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                     (1) 

σ being the electrical conductivity of the conductor’s material, μr its relative permeability, μ0 the permeability of free space and 

f the supply frequency. 

The calculation of the partial self-inductance of an isolated infinitely long round conductor in free air is reasonably simple 

when assuming a uniform current distribution over the cross section of the conductor [25]. The partial self-inductance of the wire 

is calculated by means of the surface integral of the magnetic flux density of the conductor’s segment considered between the 

center of the conductor and infinity. The symmetry of this geometry makes this calculation simple, since the magnetic field is 

symmetric along a circumference concentric with the conductor’s symmetry axis. When neglecting the skin effect, that is, at very 

low frequency operation, the current density can be assumed uniform across the cross section of the conductor and the internal 

partial self-inductance per unit length (L/lu) of an infinitely long conductor becomes a constant, 
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where lu is the unity length. It is worth noting that (2) is a constant, and thus independent of the conductor’s radius. However, at 

high frequency operation, that is, when considering the skin effect, the calculation is more complex, and the following exact 

formula must be applied [26]–[28], 
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where dc is the diameter of the conductor, 
)2/( 

c
dq 

, and bei, ber are, respectively, the imaginary and real parts of the first 

kind zero-order Kelvin functions [29], whereas bei’ and ber’ are their derivatives. The series expansion in the Kelvin functions 

can produce an arithmetic overflow of the computer capacity when q is large, that is, for large conductor’s cross sections or at 

very high frequency operation, when the skin depth is very small. 

The external partial self-inductance of an infinitely long round conductor of radius r can be calculated as [30],  
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2
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r being the radius of the conductor and R the radius of the fictitious cylinder considered to calculate the external partial self-

inductance, which is shown in Fig. 1. 
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Fig. 1.  Regions to calculate the internal and external inductances in an infinitely long round rectilinear conductor of radius r. 

 

As shown in (4), the partial self-inductance depends on the arbitrary radius R of the selected surface, which has no physical 

meaning since (4) neglects the effect of the return current, so in order to obtain the inductance of the conductor in a realistic way 

the complete circuit must be taken into account, including the return path [31]. 

As shown in Fig. 1, the internal partial self-inductance can be obtained from the magnetic energy calculated in region 1, 

whereas the external partial self-inductance in the region r ≤ radius ≤ R can be calculated from the stored magnetic energy in 

region 2. Finally, the total partial self-inductance of the conductor can be calculated by adding the internal and external 

inductances. It will be shown that the internal inductance is usually much smaller than the external inductance [32], this effect 

being more manifest at high frequency operation.  

At low-frequency operation, Grigsby [30] approximates the total partial self-inductance per unit length of an infinitely long 

round conductor as, 
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GMR being the self-geometric mean radius [19], which is calculated as, 

GMR = e
-1/4

·r = 0.7788·r                       (6) 

A formula valid when the conductor length is much larger than its radius, that is l >> r, is provided in [33]–[35], 
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where Y = 3/4 for low frequency and Y = 1 for high frequency applications. It shows that the increase of the conductor’s radius 

has a limited effect on the high-frequency inductance.  

According to Dengler [36], when taking into account complete skin effect, the partial self-inductance of a straight circular 

conductor of length l can be calculated as, 
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Wu et al. [37], approximate the partial self-inductance of straight segments of round cross section with radius r and length l 

by, 
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Isolated rectilinear tubular round conductor in free air 

Due of its geometry, a tubular round conductor allows minimizing weight and material costs compared to solid conductors, 

especially for large cross sections or at high frequency operation. By using tubular round conductors, the voltage drop due to the 

impedance of the conductors, power loss and reactive power can be significantly reduced. Fig. 2 shows the cross section of a 

round tubular conductor. 
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Fig. 2. Cross-section of a round tubular conductor 

There exists an exact solution for calculating the per unit length internal partial self-inductance of an isolated infinitely long 

tubular conductor, which is based on the (ber, bei) and (ker, kei) functions, that is, the zero-order Kelvin functions of first kind 

and second kind, respectively and their derivatives (ber’,bei’) and (ker’, kei’). When assuming that the current returns outside the 

conductor remotely it results in [26], [32], 
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The DC internal partial self-inductance of the infinitely long tubular conductor with external return can be expressed as [2], 

[26], 
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Similarly as in (4), the external inductance of an infinitely long tubular round conductor per unit length with outer radius r2 

can be calculated as [30],  
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For infinitely long tubular conductors, Sapongin and Prokopenko [38] proposed the following formula to calculate the total 

partial self-inductance per unit length,   
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 In the case of infinitely long thin-wall tubular conductors (13) becomes [38], 
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where t = (r2 – r1)/r2 << 1. 
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3. INDUCTANCE OF A RETURN CIRCUIT OF RECTILINEAR CONDUCTORS IN FREE AIR 

As explained, when dealing with straight conductors, the effect of the return path must be considered, and then the dependence 

of R (radius of the external cylinder taken into account) in formulas such as (4), (5) and (12) disappears. In addition, the 

proximity effect arises, thus making more complex the derivation of analytical formulas. 

3.1 Return circuit of rectilinear round conductors 

Fig. 3 shows the geometry of a return circuit composed of two straight conductors of circular cross section, that is, with the 

currents flowing in opposite directions and with axial distance D.  

DI

I
2r

l
 

Fig. 3. Return circuit formed by two identical conductors of radius r with the currents flowing in opposite directions. 

The external inductance is associated to the magnetic flux surrounding the conductor, which stores magnetic energy, whereas 

the internal inductance neglects the external flux. The external partial inductance per unit length of a single infinitely long 

conductor under the supposition D >> r is given by [39], 
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D being the distance between conductors’ axes and r the conductor’s radius. Since in a return circuit there are two infinitely 

long conductors with currents flowing in opposite directions, the total partial external inductance per unit length is twice (15), 

that is, 
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The total partial inductance of two infinitely long parallel conductors with opposite currents takes into account both the 

internal inductance Li,1c/lu given by (3) and the external inductance Le,2c/lu given by (16), thus resulting in, 
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Since (17) is based on the exact solution of an infinitely long isolated conductor, it doesn’t take into account the proximity 

effect, and therefore it is not an exact formula. It is worth noting that (17) is not found in the technical literature although it is 

straightforwardly obtained from (3) and (16). 

According to Sakis [31], when neglecting the skin effect, the total partial inductance of the infinitely long single-phase 

conductor results in, 
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where GMR = e
-1/4

·r = 0.7788·r.  

Grigsby and other authors [30] express the total inductance of a return circuit of infinitely long round conductors as,  
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When dealing with two or more conductors, there is an interaction among the magnetic fields of each conductor, thus 

appearing the concept of partial mutual inductance between two conductors, which is defined as the ratio between the flux 

linkage from one conductor to infinity to the current flowing in the other conductor. When considering a return circuit in which 

the currents in the two straight conductors flow in opposite directions, the partial self-inductance of the return circuit can be 

obtained from the partial self-inductances of the individual conductors and the partial mutual inductance as [34], [40], 

According to Rosa [40], the total inductance of the return circuit of round conductors and finite length l is given by,  
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                (20) 

M being the partial mutual inductance. If the conductors are identical, that is, with same lengths and radii, (20) results in, 
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where L1c is the partial self-inductance of each single conductor, which is calculated as in (7). The partial mutual inductance M 

can be expressed as,   
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The approximation applied in (22) is valid when l >> D. By substituting (7) and (22) in (21) it results in, 
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3.2 Isolated tubular round conductor with internal return in free air 

In this section a tubular conductor with internal return is analyzed. Fig. 4 shows this geometry, with inner radius of the inner 

and outer conductors, r1 and r2, respectively. 
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Fig. 4. Cross-section of a tubular conductor with inner return 

According to Russell [41], when assuming that the current returns concentrically inside the conductor, the internal self-

inductance per unit length is calculated as, 
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Although (24) considers the skin effect, it ignores the proximity effect between the conductors. 

The DC per unit length internal inductance of the tubular conductor with internal return can be expressed as [26], 


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


 [H/m]               (25) 

The per unit length external inductance of an infinitely long round coaxial conductor can be calculated as [34],  
















1

2·ln
2

0/2,
r

r
ulceL




   [H/m]                     (26)  

Finally, when considering the skin effect, the total self-inductance can be calculated by adding (24) and (26). 

When ignoring the skin effect, the total self-inductance per unit length can be calculated by adding the inner self-inductance of 

the round conductor which is given by (2), and the external self-inductance given by (26), thus resulting, 
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4. RESULTS 

This section compares the results provided by the formulas developed in Sections II and III with those provided by two-

dimensional FEM simulations. Despite the important practical consequences of the inductance in conductor systems, there are 

virtually no published experimental data, therefore for comparison purposes FEM is taken as the reference method due to the 

accurate results provided [3]. To this end, the two-dimensional FEMM package [42] has been used since it is easy-to-use and 

provides fast and accurate solutions. Further details about the mathematical background of the FEMM formulation can be found 

in [3]. 

All configurations studied in this section studied are analyzed by means of 2D-FEM models imposing a circular air perimeter 

with a Dirichlet boundary condition that forces the vector potential A to be zero at the outer boundary. FEM-based simulations 

require discretizing the analyzed geometric domains, so they are divided into small elements. The size of such elements depends 

on the dimensions of the studied conductors and the analyzed frequency. Solutions provided by the FEM simulations proposed in 

this work have low computational requirements, thus providing fast results. 

The inductance can be obtained from FEM simulations since in the case of linear magnetic regions, FEM calculates the stored 

magnetic energy as the volume integral [25], 



v

HdvBmagW ·
2

1
                  (28) 

When dealing with an isolated rectilinear conductor, its partial inductance can be calculated from the stored magnetic energy 

as, 

2··
2

1
·

0

· iLdi

i

iLmagW                   (29) 

Therefore from (28) and (29) the conductor’s partial self-inductance can be calculated as, 
2/·2 iWL

mag
  [H]                    (30) 

The analyzed 2D-FEM domains involving straight conductors have a depth of one meter, so by applying (30) the inductance 

per unit length is directly calculated. Therefore it is straightforward to generalize the results to other conductors’ lengths. 

4.1 AC inductance of an isolated solid round conductor in free air 

Many applications such as grounding systems, electronics, communication devices and power systems among others  use 

round solid conductors [21], so it is of great interest to determine the change of the inductance as a function of the frequency.  

Table I shows the evolution of the partial self-inductance predicted by FEM simulations and analytical formulas in the range 0 

Hz –1 MHz for a copper round conductor with diameter 39.28 mm. Results from Table I show that the accuracy of (7), (8) and 

(9) greatly depends on the conductor length considered, so that the accuracy increases with the length of the conductor since for 

large conductor lengths the inductance per unit length provided by such formulas is very close to the exact one, with errors in the 

range 1.1-3.3%. Another source of error is the skin effect. Table I clearly shows that (5), (7), (8) and (9) do not consider the skin 

effect because the results they provide are independent of the frequency although this effect is much less than that of the finite 

length of the conductor. 
TABLE I 

TOTAL PARTIAL SELF-INDUCTANCES PER UNIT LENGTH OBTAINED FROM EXACT AND APPROXIMATED ANALYTICAL FORMULAS AND FEM SIMULATIONS OF A 

COPPER ROUND SOLID CONDUCTOR WITH DIAMETER 39.28 MM (1212 MM
2). 

Total partial self-inductance per unit length 

Ltot/l (x10-6 H/m) 

Frequency 

(Hz) 

Exact 

(3) + (4) 1 
FEM1  (5)1,2 

 (7) ≈ (8)2 

l = 1-5000 m 

 (9)2  

l = 1-5000 m 

0 2.540 2.532 2.540 0.725-2.428 0.779-2.478 

50 2.532 2.525 2.540 0.725-2.428 0.779-2.478 

100 2.522 2.515 2.540 0.725-2.428 0.779-2.478 

200 2.513 2.506 2.540 0.725-2.428 0.779-2.478 

500 2.504 2.497 2.540 0.725-2.428 0.779-2.478 

1000 2.500 2.493 2.540 0.725-2.428 0.779-2.478 

10000 2.493 2.486 2.540 0.725-2.428 0.779-2.478 

100000 2.490 2.483 2.540 0.725-2.428 0.779-2.478 

1000000 Overflow 2.483 2.540 0.725-2.428 0.779-2.478 

MAPE - 0.3% 1.1% 71.1-3.3% 69.0-1.3% 
1 Assume infinitely long conductors 
2 Neglect the skin effect 

The percentage error among the different calculation systems has been calculated by means of the mean absolute percentage 
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error or MAPE. Note that in this case, the MAPE has been calculated with respect to the results provided by the exact formula as, 







n

i i

ii

y

yy

n
M

1

ˆ
·

1                           (31) 

n being the number of samples or frequencies calculated, and yi and 
iŷ  being respectively, the reference value of i-th 

frequency component and the forecast value. 

4.2 AC inductance of an isolated tubular round conductor in free air 

Tubular round conductors are very applied in induction furnaces, outdoor substation busbars, particle accelerators or MRI 

devices among others.  Table II shows the evolution of the partial self-inductance predicted by FEM simulations and analytical 

formulas in the range 0 Hz – 1 MHz for a copper tubular round conductor with inner and outer radius 5 mm and 19.64 mm, 

respectively. 
TABLE II  

TOTAL PARTIAL SELF-INDUCTANCE PER UNIT LENGTH FROM EXACT AND APPROXIMATED ANALYTICAL FORMULAS AND FEM SIMULATIONS OF A COPPER ROUND 

TUBULAR CONDUCTOR WHEN THE CURRENT RETURNS OUTSIDE THE CONDUCTOR REMOTELY WITH R1 = 5 MM AND R2 = 19.64 MM. 

Total partial self-inductance per unit length 

Ltot/l (x10-6 H/m) 
Frequency (Hz) (10) + (12)1 FEM1 (13) 1,2 (14) 1,2 

0 2.534 2.527 2.571 2.572 

50 2.530 2.523 2.571 2.572 

100 2.522 2.515 2.571 2.572 

200 2.513 2.506 2.571 2.572 

500 2.504 2.497 2.571 2.572 

1000 2.500 2.493 2.571 2.572 

10000 2.489 2.486 2.571 2.572 

100000 2.490 2.483 2.571 2.572 

1000000 2.490 2.483 2.571 2.572 

MAPE - 0.3% 2.5% 2.6% 
1 Assume infinitely long conductors 
2 Neglect the skin effect 

As shown in Table II, FEM results are more accurate than those obtained with analytical formulas since they also have into 

account the change in inductance due to the skin effect. It should be highlighted that results provided by (13) and (14) are 

independent of the conductor length. 

4.3 AC inductance of a return circuit of circular cross section in free air 

Return circuits composed of two conductors of circular cross section are of great interest since they have a wide range of 

applications. Tables III and IV show the change of the total partial inductance predicted by FEM simulations and analytical 

formulas in the range 0 Hz – 1 MHz for a return circuit of circular cross section of 100 mm
2
 spaced axially 100 mm and 500 mm, 

respectively. 

 
TABLE III 

TOTAL PARTIAL INDUCTANCE PER UNIT LENGTH FROM APPROXIMATED ANALYTICAL FORMULAS AND FEM SIMULATIONS OF A RETURN CIRCUIT COMPOSED OF 

TWO ROUND CONDUCTORS (D = 100 MM, R = 5.642 MM, A = 100 MM
2). 

Total partial inductance per unit length 

Ltot/l (x10-6 H/m) 
Frequency 

(Hz) 
FEM1 (17)1,3 (18)1,2 (19)1,2 

(23)2 
l = 1-5000 m 

0 1.250 1.250 1.250 1.227 1.153-1.156 

50 1.250 1.250 1.250 1.227 1.153-1.156 

100 1.249 1.249 1.250 1.227 1.153-1.156 
200 1.248 1.248 1.250 1.227 1.153-1.156 

500 1.238 1.239 1.250 1.227 1.153-1.156 

1000 1.220 1.221 1.250 1.227 1.153-1.156 
10000 1.172 1.173 1.250 1.227 1.153-1.156 

100000 1.154 1.157 1.250 1.227 1.153-1.156 

1000000 1.148 1.150 1.250 1.227 1.153-1.156 

MAPE - 0.1% 3.1% 2.9% 5.0-4.9% 
1 Assume infinitely long conductors 
2 Neglect the skin effect 
3 Neglect the proximity effect 

 
TABLE IV 

TOTAL PARTIAL INDUCTANCE PER UNIT LENGTH FROM APPROXIMATED ANALYTICAL FORMULAS AND FEM SIMULATIONS OF A RETURN CIRCUIT COMPOSED OF 

TWO ROUND CONDUCTORS (D = 500 MM, R = 5.642 MM, A = 100 MM2). 

Total partial inductance per unit length 
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Ltot/l (x10-6 H/m) 
Frequency 

(Hz) 
FEM1 (17)1,3 (18)1,2 (19)1,2 

(23)2 

l = 1-5000 m 

0 1.894 1.894 1.894 1.889 1.793-1.795 

50 1.894 1.894 1.894 1.889 1.793-1.795 
100 1.893 1.893 1.894 1.889 1.793-1.795 

200 1.891 1.892 1.894 1.889 1.793-1.795 

500 1.882 1.883 1.894 1.889 1.793-1.795 
1000 1.864 1.865 1.894 1.889 1.793-1.795 

10000 1.817 1.817 1.894 1.889 1.793-1.795 

100000 1.799 1.801 1.894 1.889 1.793-1.795 
1000000 1.793 1.794 1.894 1.889 1.793-1.795 

MAPE - < 0.1% 2.0% 1.9% 3.5-3.4% 
1 Assume infinitely long conductors 
2 Neglect the skin and proximity effects 
3 Neglect the proximity effect 

As shown in Tables III and IV, when the axial distance between conductors increases, the MAPE also decreases because the 

proximity effect is less pronounced. It is worth noting that whereas the results from (23) are almost independent of the conductor 

length, results from (17), (18) and (19) are completely independent of such variable. Another source of error is due to the eddy 

currents effect. As summarized in Tables III and IV, the results provided by (18), (19) and (23) are independent of the frequency 

since they do not consider the eddy currents effect. 

4.4 Inductance of a return circuit of a tubular conductor with internal return in free air 

Coaxial conductors are widely used in many applications including communication systems, television or radar among others. 

Tables V and VI show the change of the total partial inductance predicted by FEM simulations and analytical formulas in the 

range 0 Hz – 1 MHz for a return circuit of a tubular conductor with internal return for two configurations. The configuration 

analyzed in Table V consists of a copper coaxial conductor with inner return and r1= 5 mm, r2 = 10 mm and r3 = 12 mm (see Fig. 

4), whereas the configuration analyzed in Table VI corresponds to a copper coaxial conductor with inner return and r1 = 10 mm, 

r2 = 15 mm and r3 = 17 mm. These two specific configurations are analyzed to determine the influence of the external inductance 

term, which depends on the r2/r1 ratio. 

TABLE V 

TOTAL PARTIAL INDUCTANCE PER UNIT LENGTH OBTAINED FROM APPROXIMATED ANALYTICAL FORMULAS AND FEM SIMULATIONS OF A COPPER COAXIAL 

CONDUCTOR WITH INNER RETURN AND R1 = 5 MM, R2 = 10 MM AND R3 = 12 MM (R2/R1 = 2). 

Total partial inductance per unit length 

Ltot/l (x10-7 H/m) 

Frequency 

(Hz) 
FEM1 (24) + (26)1,3 (25) + (26)1,2  (27)1,2 

0 2.019 2.019 2.018 1.886 

50 2.019 2.019 2.018 1.886 

100 2.017 2.017 2.018 1.886 

200 2.012 2.012 2.018 1.886 

500 1.981 1.981 2.018 1.886 

1000 1.909 1.909 2.018 1.886 

10000 1.584 1.452 2.018 1.886 

100000 1.449 1.388 2.018 1.886 

1000000 1.405 Overflow 2.018 1.886 

MAPE - 1.57% 13.15% 12.82% 
1 Assume infinitely long conductors 
2 Neglect the skin and proximity effects 
3 Neglect the proximity effect 

 
TABLE VI 

TOTAL PARTIAL INDUCTANCE PER UNIT LENGTH OBTAINED FROM APPROXIMATED ANALYTICAL FORMULAS AND FEM SIMULATIONS OF A COPPER COAXIAL 

CONDUCTOR WITH INNER RETURN AND R1 = 10 MM AND R2 = 15 MM AND R3 = 17 MM (R2/R1 = 1.5). 

Total partial inductance per unit length 

Ltot/l (x10
-7

 H/m) 

Frequency 

(Hz) 
FEM1 (24) + (26)1,3 (25) + (26)1,2 (27)1,2 

0 1.400 1.400 1.138 1.311 
50 1.393 1.393 1.138 1.311 

100 1.375 1.375 1.138 1.311 

200 1.320 1.320 1.138 1.311 
500 1.189 1.189 1.138 1.311 

1000 1.105 1.105 1.138 1.311 

10000 0.921 0.874 1.138 1.311 
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100000 0.846 0.811 1.138 1.311 

1000000 0.821 Overflow 1.138 1.311 

MAPE - 1.1% 19.1% 22.6% 
1 Assume infinitely long conductors 
2 Neglect the skin and proximity effects 
3 Neglect the proximity effect 

 

Results from Tables V and VI clearly show that the accuracy of (24) + (26), (25) + (26) and (27) greatly depends on the 

specific configuration. The main contribution in the total inductance is due to the external inductance term given by (26), which 

is highly influenced by the ratio r2/r1. Therefore the configuration analyzed in Table V shows a higher inductance than that in 

Table VI because the first configuration has a higher ratio r2/r1. As deduced from Tables V and VI, for frequencies 10 kHz and 

above the proximity effect becomes more important and thus the difference between FEM results and those attained by applying 

(24) + (26) is not negligible. 

The 2D meshes of the conductors’ configurations analyzed in this section through FEM simulations consist of a variable 

number of 2D triangular element, which depends on the geometry and dimensions of the problem and the frequency analyzed. 

The meshes of the geometries analyzed in Tables V and VI consist of a variable number of triangular elements within 360000 (0 

Hz) and 840000 (1 MHz). The computational time required to perform such simulations was between 20 s and 90 s when using a 

computer with an Intel Xeon CPU, E5-2626 processors and 32 GB of RAM memory. 

5. CONCLUSION 

This paper has analyzed the accuracy of different exact and approximate formulas to calculate the inductance of different 

conductors’ configurations carrying AC currents in a broad frequency interval. The results provided by these formulas have been 

compared with those obtained through two-dimensional FEM simulations, which are used as the reference method due to its 

accuracy and flexibility. It has been shown that analytical exact formulas are only available for the simplest and symmetrical 

geometries, and that when this symmetry is lost or when proximity effects arise, the accuracy of such formulas is highly affected. 

Results attained have shown the limitations of the commonly-used analyzed formulas in the frequency range comprising 0 Hz 

and 1 MHz, and have shown which specific configurations are more suitable to minimize the total inductance.  
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