CGI 2008 Conference Proceedings

José Diaz - Héctor Yela - Pere-Pau Vazquez

Vicinity Occlusion Maps

Enhanced depth perception of volumetric models

Abstract Volume models often show high depth com-
plexity. This poses difficulties to the observer in judging
the spatial relationships accurately. Illustrators usually
use certain techniques such as halos or edge darkening in
order to enhance depth perception of certain structures.
Halos may be dark or light, and even colored. Halo con-
struction on a volumetric basis impacts rendering perfor-
mance due to the complexity of the construction process.
In this paper we present Vicinity Occlusion Maps: a sim-
ple and fast method to compute the light occlusion due
to neighboring voxels. Vicinity Occlusion Maps may be
used to generate flexible halos around objects or selected
structures in order to enhance depth perception or ac-
centuate the presence of some structures in volumetric
models at a low cost. The user may freely select the struc-
ture that requires the halos to be generated, its color and
size, and our proposed application generates those in real
time. They may also be used to perform vicinity shading
in realtime, or even to combine both effects.

Keywords GPU-based volume ray casting - Depth
perception enhancement - Vicinity shading - Halo
rendering

1 Introduction

One of the most important goals of visualization is to
provide the adequate insights into the data being ana-
lyzed. Volumetric data is typically illuminated by one or
several point light sources and the shading of each point
in the volume is calculated by using a Phong model. This
illumination model provides good perceptual cues but
mainly on the orientation of isosurfaces. However, this

Contact Author: Pere-Pau Vazquez

Departament de Llenguatges i Sistemes Informtics (LSI)
Universitat Politecnica de Catalunya

Tel.: 434 93 413 78 89

Fax: +34 93 413 78 33

E-mail: ppau@Isi.upc.edu

(c) Vicinity
and halo

(a) Ray casting (b) Vicinity

Fig. 1 Perceptually enhanced rendering of a volumetric
model. Left image shows the original ray cast volume. Cen-
ter image has been enhanced by adding vicinity shading (see
how the back ribs are darkened), and the right one shows how
a halo can emphasize the shape of a model. All images are
computed at real time frame rates.

usually results in images with poor depth cues. Shadows
can be used to solve this problem, but shadow genera-
tion is costly and may introduce illumination disconti-
nuities on the surface. In this paper we propose a simple
and fast approach that improves the visual impression of
volumetric models by adding two kinds of effects: vicin-
ity shading and halos, both at very low cost. We present
Vicinity Occlusion Maps (VOM), a data structure that
allows us to compute an approximation to the light oc-
clusion due to the voxels in the neighborhood of a point.
Vicinity Occlusion Maps allow to improve depth percep-
tion in volume rendering through different ways: they
may be used to perform a very fast approximation to
vicinity shading ([15]), a technique that adds depth cues
to volumetric rendering (see Figure 1a), and they can be
used to improve depth perception by adding interactively
vicinity shading and view dependent halos (Figures 1b
and 1l¢, respectively). Because all computations are done
per frame, our method does not require any preprocess.
As a consequence, it is highly flexible, allowing both ef-
fects to be applied per object or selected structure. The
size and color of halos may be interactively changed and

José Diaz et al.

the darkening due to vicinity shading can also be modi-
fied by the user.

The rest of the paper is organized as follows: First,
Section 2 overviews Previous Work, then, in Section 3
we outline the goals and architecture of our system. Sec-
tion 4 presents our new algorithm. In Section 5 we ex-
plain how to apply VOMs to selected structures. The
results are presented in Section 6, and we conclude our
paper with a discussion and pointing some lines for fu-
ture research in Section 7.

2 Previous Work

With the increase in computational power and the im-
provements of capturing processes, volume visualization
algorithms are being fed with more and more complex
datasets. Understanding space arrangement of such com-
plex volumetric models is a difficult task, especially with
renderings of volume data acquired from CT or MRI.
Rendered images of such models are difficult to interpret
because they present many fine, overlapping structures.
In specialized media, such as medicine books, illustrators
often use a set of special techniques in order to obtain
the depictions that reduce perception ambiguity, such as
halos, contours, cut-away views, and so on. Computer
Graphics researchers have borrowed some of those tech-
niques and applied them successfully in visualization.
Improving perception of volumetric models has usually
been faced under two different kinds of methods: a more
realistic shading model or using non-photorealistic tech-
niques.

Realistic shading models These methods simulate classi-
cal rendering effects, such as shadows, by applying dif-
ferent generation processes. There are several proposals
for applying shadows in volume rendering ([19,1,7]) al-
though the generation process may differ importantly.
For instance, Yagel et al. use recursive ray tracing while
Behrens and Ratering add shadows to texture-based vol-
ume renderings. Kniss et al. [7] also add other effects such
as phase functions and forward scattering. Following the
same idea of increasing the realism of the shading model,
Stewart developed a technique named vicinity shading
that enhances depth perception through the use of ob-
scurances [22]. Concretely, he proposed a model that per-
forms shading according to the presence of occlusors on
the neighborhood of a voxel. Obscurances (also coined as
ambient occlusion by Landis [10] and others) is a model
of ambient illumination that produces realistic shading
at relative low cost. Ambient Occlusion-based techniques
measure or approximate, with respect to a pixel, the to-
tal solid angle that is occluded by nearby elements. Once
this measurement is done, the pixel is darkened in pro-
portion to it. Our technique allows for a fast compu-
tation of an approximation to vicinity shading without

the need of tracing extra rays into the volume. A simi-
lar lighting technique has also been applied by Tarini et
al. [17] to enhance molecular visualization, by exploit-
ing the fact that the rendered geometry is built upon
atoms, which have a particular spherical shape. Ambi-
ent occlusion techniques have become popular thanks to
their simplicity and efficiency, but most of the papers
compute ambient occlusion information in a preprocess

([17,8,11,21)).

Non-photorealistic techniques Expressive visualization is
a set of techniques that provide visual cues on certain
features of the model in order to achieve a wide range
of effects such as artistic renderings, or focus of atten-
tion. There are different strategies that put a different
accent on different parts of the model, that may be used
to enhance depth perception. Contours are generated
based on the magnitude of local gradients and the an-
gle between the viewing direction and the gradient by
Csébfalvi et al. [3]. Hauser et al. [5] propose two-level
volume rendering that is able to use different render-
ing paradigms (direct volume rendering, Maximum In-
tensity Projection, and so on) for the different struc-
tures within a dataset, and show how to use it as a
focus+context technique. Nagy et al. [12] combine line
drawings and direct volume rendering techniques. Yuan
and Chen [20] enhance survey sees in volume rendering
images with silhouettes, ridge, and valley lines. Bruck-
ner and Groeller [14] use volumetric halos for enhanc-
ing and highlighting structures of interest using a GPU-
based direct volume rendering. Halos have also been used
by Wenger et al. [18], Ebert and Rheingans [4], Svakhine
and Ebert [16], or Ritter et al. [13], and Tarini et al. [17].
These methods usually calculate halos on a preprocess
and therefore they may not easily be modified on the fly.
Bruckner and Groeller compute halos in realtime and
permit flexible modification of size and color. In con-
trast to those, our halos are built as a postprocess using
the Vicinity Occlusion Map, with a smaller impact on
performance.

3 Vicinity Occlusion Maps

In this paper we present the Vicinity Occlusion Maps
(VOM), a new data structure that codifies a depth map
in two tables, one containing the accumulated depth of
the neighborhood of a pixel, and another one that con-
tains the number of values that contributed to the sum.
We will show that Vicinity Occlusion Maps are suitable
to simulate wicinity shading ([15]) and halos in real time.

3.1 System Overview

We work on volumetric models rendered using ray cast-
ing on GPUs [9], which yield real time response. Our

Vicinity Occlusion Maps

1 Ray casting
Upload 3D Texture

«

5
" Processing

e
Vicinity Occlusion Map

y \

A !
A
>

3D dataset

Fig. 2 Application architecture: The CPU reads a volumet-
ric model from a Dicom file, builds a 3D texture from it,
and uploads it to the GPU. The GPU first performs a ray
casting on the model and generates a color map and a depth
map. The depth map is passed to the CPU which generates
the Vicinity Occlusion Map (VOM). With the VOM and the
color map, the GPU composites a new image as a result.

Rendered view

system performs two rendering passes, the first one is a
ray casting of the model that generates a color map and
a depth map. This last is passed to the CPU in order
to build the Vicinity Occlusion Map (VOM). A second
rendering pass (shading) uses the VOM to produce the
final result. This second step only requires rendering the
front faces of the bounding box of the volume to generate
halos and to shade the model with an approximation of
vicinity shading ([15]).

The overall architecture of the application is shown
in Figure 2. The depth map contains, for each fragment,
the distance to the observer at the moment the opacity
of the ray gets to one. Our data structure is built by pro-
cessing the depth map and generating its Summed Area
Table [2] together with information concerning the num-
ber of fragments that effectively contributed to the sum.
Therefore, VOMs consist of two tables, dubbed S ATgeptn
(Summed Area Table of the depth map) and SAT Ngepir
(Summed Area Table of a bitmap containing 1 for pixels
not belonging to background and 0 otherwise), respec-
tively. This information is generated on the fly for each
frame by passing the depth map (encoded in a texture)
to the CPU. Then, the CPU computes the Summed Area
Table and uploads the resulting Vicinity Occlusion Map
to GPU. In a second rendering step, the GPU uses this
information to generate the halos and vicinity shading.

Halos and vicinity shading are computed on the fly
with the GPU. This allows us to provide a wide range of
flexibility to the user. Several parameters can be modi-
fied on the fly:

Vicinity shading color: Modifying the shading function
serves to two different objectives: Improving the per-
ception of depth in a rendered model, and empha-

sizing a certain structure. In the first case, we use
the VOM to darken the regions of the object where
the occlusion due to the neighboring voxels is high,
thus achieving a better perception of the real depth
complexity of the model. We may also use shading
to enlighten a certain structure, in this case, the user
may modify the shading color and the structure will
be emphasized.

Vicinity shading weight: Depth complexity among mod-
els or regions of a model may vary, and therefore, ap-
plying a fixed function may enlighten a certain part
and hide another. In our application, the user may
manipulate a slider to weight the importance given
to the vicinity shading effect in order to effectively
enhance the regions of interest.

Structure selection: Our application allows for interac-
tively selection of structures from a set of previously
segmented structures, and the shading effects are re-
stricted to them. This allows us to create halos or
colored shading for restricted parts of the model, in
order to provide better visual insights on the struc-
tures of interest.

Halo size: Our fast halo computation allows us to inter-
actively modify the halo size with the slider. This
is mainly due to the use of Summed Area Tables to
accelerate computations.

Halo color: Independently of the shading color, we may
emphasize an object, region, or structure by changing
the halo color (usually black to simulate shadows)
interactively. The user may change it by selecting the
amount of red, green, and blue that appear in the
halo.

3.2 Vicinity shading

Vicinity shading [15] is a technique tailored to increase
depth perception in volumetric models. It is based upon
the idea of obscurances by Zhukov et al. [22], also dubbed
ambient occlusion in [10]. For a surface point, the algo-
rithm attenuates the illumination arriving from all direc-
tions in space by measuring the occlusions in the local
vicinity of the point. In order to do this, the occlusion is
computed by sampling the environment of the voxel to be
shaded with more than 1000 sample directions. Although
the developed algorithm traces rays in an efficient way,
sampling such a high number of directions results in an
important impact in rendering time. Recent papers deal
with the generation of ambient occlusion based shadows
in real-time. Unfortunately, most of them require either a
set of precomputed structures, or need knowledge of the
3D geometry. Our approach needs no precomputation
and does not require knowledge of the geometry, which
is often not available in volume rendering, because the
shading will depend on the transfer function, that can
be changed interactively.

José Diaz et al.

Summed Area Table from table t

z,Y

SAT[z,y] = Z tij

i=0,j=0

~.
S

0 X

Fig. 3 Summed Area Table construction process.

Ambient Occlusion Given a point p on the surface of a
model with surface normal n,, the irradiance arriving at
p can be defined as:
BG) = [my-wL@)ds 1)
0

where L(w) is a scalar with magnitude equal to the
radiance arriving from direction w, and 2 is the set of
directions above the surface, i.e. the direction for which
np -w > 0. This can be approximately evaluated by dis-
cretizing the domain (2 into k sectors w; with a possible
uniform solid angle measure |w;|, and, for each sector,
evaluating the radiance L only for a sample direction w;:

k
E(p) = an -wi L(w;) [ws] (2)
i=1

If we consider only an environment where light comes
uniformly from each direction, we may even get a sim-
pler formulation, as the radiance arriving to a point may
be substituted by a binary function that determines the
reachability of that point (O(w)), that is, O(w) evaluates
to 1 if the point light is not occluded in a certain direc-
tion. This results in an approximation of the rendering
equation:

k
E) = 15 > 1y i0())

3.3 Summed Area Tables

A Summed Area Table (SAT) [2] is a structure that
stores, for each cell (z,y), the sum of the values from
the initial position (0,0) until (x,y) included, as shown
in Figure 3. Given a table ¢, a certain cell (x,y) from its
corresponding SAT can be computed as:

z,Y

SAT([z,y] = > tiy

i=0,j=0

(4)

SAT

Yt

SAT[XI, Yt]-
SAT[Xr,Yt]

SAT[Xr,Yt]-SAT[XI,Yt]-
SATXr,Yb]+SATIX],Yb]

Yb

SAT[Xr,Yb]-

SAT[XI,Yb] SATIXIYb]

Xl Xr

Fig. 4 Area calculation with a Summed Area Table.

and the computation can be carried out incrementally.
Therefore, the construction cost is linear with the num-
ber of cells. Once the SAT is built, they provide a way
to filter arbitrarily large rectangular regions of an image
in a constant amount of time, as shown in Figure 4. In
order to compute the sum of a rectangular region, only
4 accesses are required, independent of the size of the
area. This allows us to compute the approximation of
occlusion due to neighbor regions in a constant time (see
the following Section).

4 Depth-based vicinity shading and halo
rendering

As introduced in Section 3, our method consists on gen-
erating depictions that increase the insights on the mod-
els being visualized. These reduce ambiguity through the
addition of depth cues by simulating Stewart’s vicinity
shading. The main idea of this approach is to reduce the
light contribution by measuring the occlusions produced
in the vicinity of the point to be shaded. We approximate
this computation by using depth maps from which we
may infer the amount of occlusion produced by opaque
voxels around a point in an efficient way.

4.1 Vicinity shading algorithm

We want to measure, for a certain point, the amount
of ambient light occluded by its neighborhood geome-
try. Given a rendered view and its associated OpenGL
depth map, we may approximate this value by analyzing,
for each pixel, the depth values of its closer surrounding
pixels, and counting the number of pixels whose depth is
smaller than the one to shade. Of course, using only the
number of pixels whose depth is smaller than the one of
interest will result in a very low quality shading, but if
we add information on how much different depths are,
we may have a better approximation of the percentage
of hemisphere covered by its neighbors.

Vicinity Occlusion Maps

Unfortunately, this requires a high number of tex-
ture accesses (several hundreds) that will slow down the
framerate. In order to accelerate calculations, we build a
SAT of the depth map and compute the average depth
around a pixel. If the average depth around a pixel is
larger than the depth of the pixel we want to shade, the
neighboring geometry is further from the viewer than the
pixel itself, and, therefore, then the pixel should not be
darkened, otherwise, it should be darkened according to
the amount of difference of depths. Using the depth aver-
age is prone to errors, because a single outlier would bias
the measure, what we do is to use a second SAT. This
contains the sum of a bitmap that stores, for each posi-
tion, a value of one if the depth is not null, and a value
of zero if the depth is null. This gives us a better way to
approximate the total occlusion, as we may determine
how many pixels contributed to the occlusion calcula-
tion. The regions considered in our case, go from 10 x 10
to 25 x 25 pixels around the point to be shaded (which
means taking into account 100 to 625 pixels) to create
plausible shading and halos, as we will show with exam-
ples. From this simple idea we may build a darkening
function that, added to the Phong shading function, will
generate depth cues that provide a better understanding
of the rendered model. The function is implemented in
a shader and executes for all fragments whose depth is
different from 1.0, that is, for the fragments belonging to
the final color of the object. It is modified by subtract-
ing from the color generated by the ray tracing process
(RColor) & certain amount dark of the vicinity color, so
the fragment color will be:

Feotor = RCeoior — dark, - VICINitYcolor (5)

where dark, is the darkening factor due to vicinity shad-
ing that is computed taking into account the average
depth of the surrounding pixels. If we use as vicinitycoior
white, we may darken the fragment, while if we use a
color out of the grey range, we may color the selected
structure in order to emphasize it. The darkening factor
is computed taking into account the number of pixels
that contributed to the depth calculation, and the reso-
lution of the used region. So for a fragment (z,y) we will
use:

dark, = (avggeptr, — depth(z,y)) * vicinityFactor, (6)

where vicinityFactor is a term that modulates the influ-

ence of the vicinity shading onto the final image, and the

average depth is computed as:
Zm+sizem,y+sizey

I=T—Ssize,,j=Yy—Ssize,

depth(i, j)
Niragldepthyrag >0

aVGdepth = ’ (7)
where size, and size, is the resolution of the 2D region
of the depth map we use to compute ambient occlusion.
In Figure 5 we may see a comparison of renderings with-
out (left) and with (right) vicinity shading. Increasing
the wvicinityFactor reduces overall lighting and increases

Fig. 5 Depth enhancement of direct volume rendering gen-
erated images. Left column shows two models (the intestines
and the head without improvement and right column shows
two images enhanced for better depth understanding using
vicinity shading.

depth cues. If we want to increase the contrast in areas
of the image enhanced by vicinity factor, we replace this
factor with a power of the difference in depths. We may
see the influence of this factor in Figure 6.

4.2 Implementation details

Summed Area Tables may become very large in terms
of bit depth. The number of bits required to store each
component in a SAT of resolution w x h is:

N =logyw + log, h + P; (8)

where P; is the precision required by the input. This
makes the management of SAT quite difficult. As noted
by Heunsley [6], this may overflow the texture resolution if
not handled accurately. In our case, we perform the SAT
computation in long integer format and then transfer the
result into a pair of 32 bits textures to the GPU (one for
the depth sum and another for the accumulated number
of elements different from 0).

In order to compute the avggepen term we need to
compute the sum of depths and the number of fragments
that contributed to the sum. Each value can be calcu-
lated by accessing the SAT 4 times as shown in Figure 4.
Furthermore, we might even code both tables into a sin-
gle 64 bit texture and therefore save 4 texture accesses.

José Diaz et al.

Fig. 6 Effect of the factor in vicinity Shading. (a) shows the
original ray cast image and (b) and (c) show two different
values of vicinityFactor. A higher factor darkens the affected
region more strongly.

4.3 Halo rendering

In order to render halos on selected parts of the model,
we perform a similar algorithm to the one used to sim-
ulate vicinity shading. In this case, we have to take into
account that the halo has to be rendered close to the
object of interest and has to decay as we go further from
the object.

The user may decide the halo extension (in pixels)
by manipulating a slider. Moreover, he or she can also
change the halo color interactively. In order to render a
halo, for each pixel, we query the VOM to calculate the
average depth of the neighborhood, and, if the current
fragment is outside the object (this can be determined by
querying the depth map), we render a halo with a color
that decays with the distance to the object by using the
following formula:

Feotor = RCeoior + darky, - halocoror, (9)

where RC\,,r is the color generated by the Ray Casting

algorithm, and the amount of darkening (darky) due to

the halo is determined by:

(avgdeptn — depth(z,y)) - haloy - Numpiems
resolution

darky, =

where halo,, is a weight that can be changed by the user,
Numgiems 1s the number of elements that contributed

Fig. 7 Improvement of visual impression by using halos and
vicinity shading. Left object is a normal ray cast result and
right shows the improvement achieved by using halos and
vicinity shading.

Fig. 8 Improving depth perception with vicinity shading (b)
and both halos and vicinity shading (c).

to the average depth calculation, and resolution is the
size of the region of interest. By dividing the number of
fragments whose depth is not zero by the resolution of
the search region we are creating a function that decays
with the distance to the object.

The result is a halo painted with the color selected
by the user and whose intensity and area of influence
may be changed interactively. All these changes are pos-
sible because the number of texture accesses required to
perform the effect is constant. We show two examples of
emphasizing halos in Figures 7 and 8, where we combine
halos with vicinity shading.

,(10) 5 Structure selection

Throughout the paper we have talked about adding vicin-
ity shading and halos to objects or selected structures.

Vicinity Occlusion Maps

Fig. 9 Enhancing a vascular tree of the body. In order to
better perceive it, we have added a reddish halo around the
object of interest.

Our algorithm simply provides a selection mechanism to
the user that can be used interactively. When rendering
the color image and depth map, the ray caster identi-
fies, for each rendered fragment whose opacity is 1.0, the
structure it belongs to with an extra fetch to an 3D tex-
ture of identifiers, built on a preprocess. This then pro-
duces as a result a modified depth map, that only stores
depth values for the structure of interest. The generated
information is downloaded to the CPU and the VOM is
computed from it. The result is uploaded to the graphics
card and the shading is then only applied to the region
of interest (see Figure 9).

6 Results

We have implemented the proposed method in a 2.6MHz
Quad Core PC equipped with 8GB of RAM memory and
a GeForce 8800 GTX graphics card with 768MB of mem-
ory. With this machine, we may obtain realtime framer-
ates for relatively complex models (of up to 512 x 512 x
600 slices). The penalty suffered by our shading approach
is relatively low compared to the cost of ray tracing the
scene. All the examples of the paper were rendered in
a Viewport of 512 x 512 resolution and the ray casting
samples three times per voxel, as lower density sampling
usually results in poor renderings. The quality of the im-
ages is really high and the influence of vicinity shading
and halo sizes may be changed quite easily by the user.
The ray casting process dominates the overall cost, and
this mainly depends on the transfer function used. That
is the reason why we obtain similar framerates for mod-
els of largely different number of slices. We have used
models that go from high opacity (Head ! and Head 2)
to a lot of transparency (Whole Body).

Concerning efficiency, the main advantage of our ap-
proach is that its cost is constant, because the number
of texture accesses is constant independent of the size

of the model. However, it is linear with the number of
pixels used to shade.

Table 1 shows the results obtained with our method.
We may see that the exploration can be done in real time.
If a better framerate is required, the size of VOM may be
reduced either by quantizing the results or by building a
mip map, although this last requires fine tuning in the
shader in order to achieve comparable results.

7 Conclusions and Future Work

In this paper we have presented a fast method for am-
biguity reducing in volume rendering. We achieve this
through the use of two different techniques: vicinity shad-
ing and halo rendering. Both of them take advantage of
a data structure dubbed Vicinity Occlusion Map, that
stores a Summed Area Table of the depth map and a
Summed Area Table of the number of elements that con-
tributed to the sum. Our approach is fast, and highly
configurable, and, therefore, the user gains flexibility in
the exploration process through an intuitive interface.
As a result, the final rendering gains structure and helps
the user to infer 3D information.

As in Stewart’s approach [15], our shading algorithm
reduces ambiguity by adding depth cues on the surface
of rendered models. However, instead of tracing rays
through the neighbor voxels, we analyze the depth in-
formation by querying the Vicinity Occlusion Map. The
efficiency of this approach makes changing lighting pa-
rameters interactive. Thus, the user may change how
vicinity shading affects the overall rendering and, even
the color of the shading. Changing shading color helps
accentuating structures in a stylish way.

Our halo rendering method also takes advantage of
VOMs in order to reduce the computation cost. As in
Bruckner and Groeller [14], our halos are flexible be-
cause they are generated on the fly, and we may change
their size and color interactively. In contrast to their ap-
proach, we generate the halos in a ray casting method
by analyzing depth maps in a single (extra) pass. Thus,
our approach has a low impact on the rendering time. It
is only bounded by the size of the viewport, but its cost
is linear with the number of pixels, as it performs the
computations on 2D views.

Although VOMs are suitable for increasing depth in-
formation of isosurfaces detected by volume ray casting,
they may also be used for semi-transparent objects in a
similar way. The only key point is the depth map cre-
ation, that must be generated accordingly to the infor-
mation of the structure we want to analyze.

Acknowledgements This work has been supported by project

TIN2007-67982-C02-01 of the Spanish Government. The au-
thors also want to thank the anonymous reviewers for their
valuable comments.

José Diaz et al.

Table 1 Performance comparison with different models. Note how the impact of adding vicinity shading and halos is low
compared to the complete rendering process.

Model Slices Viewport Ray-casting Ray-casting

+ Vicinity + Halos

Tumor 512 x 512 x 122 256 x 256 24.91 fps 22.24 fps

512 x 512 9.23 fps 9.23 fps

Intestines 512 x 512 x 171 256 x 256 41.19 fps 33.77 fps

512 x 512 18.36 fps 15.44 fps

Head 1 512 x 512 x 181 256 x 256 20.39 fps 20.14 fps

512 x 512 9.79 fps 8.42 fps

Head 2 512 x 512 x 256 256 x 256 24.88 fps 22.16 fps

512 x 512 11.45 fps 7.04 fps

Feet 512 x 512 x 282 256 x 256 19.43 fps 15.39 fps

512 x 512 8.74 fps 7.39 fps

Whole body 512 x 512 x 600 256 x 256 10.28 fps 10.76 fps

512 x 512 5.37 fps 4.95 fps
References 12. Nagy, Z., Schneider, J., Westermann, R.: Interactive Vol-
ume Illustration. In: B. Girod, H. Niemann, H.P. Seidel,
1. Behrens, U., Ratering, R.: Adding shadows to a texture- G. Greiner, T. Ertl (eds.) Proceedings of Vision, Mod-

10.

11.

based volume renderer. In: VVS ’98: Proceedings of the
1998 IEEE symposium on Volume visualization, pp. 39—
46. ACM, New York, NY, USA (1998)

Crow, F.C.: Summed-area tables for texture mapping. In:
SIGGRAPH ’84: Proceedings of the 11th annual confer-
ence on Computer graphics and interactive techniques,
pp. 207-212. ACM, New York, NY, USA (1984). DOI
http://doi.acm.org/10.1145/800031.808600

Csébfalvi, B., Mroz, L., Hauser, H., Konig, A., Groller,
E.: Fast Visualization of Object Contours by Non-
Photorealistic Volume Rendering. Computer Graphics
Forum 20(3), 452-460 (2001)

Ebert, D., Rheingans, P.: Volume illustration: Non-
photorealistic rendering of volume models. In: T. Ertl,
B. Hamann, A. Varshney (eds.) Proceedings Visualiza-
tion 2000, pp. 195-202 (2000)

Hauser, H., Mroz, L., Bischi, G.I., Gréller, M.E.: Two-
level volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics 7(3), 242-252 (2001). DOI
http://dx.doi.org/10.1109/2945.942692

Hensley, J., Scheuermann, T., Coombe, G., Singh, M.,
Lastra, A.: Fast summed-area table generation and its
applications. In: Eurographics '05. ACM, ACM Press
(2005)

Kniss, J., Kindlmann, G., Hansen, C.: Multidimen-
sional transfer functions for interactive volume ren-
dering. IEEE Transactions on Visualization and
Computer Graphics 8(3), 270-285 (2002). DOI
http://dx.doi.org/10.1109/TVCG.2002.1021579
Kontkanen, J., Laine, S.: Ambient occlusion fields.
In: I3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games, pp. 41—
48. ACM, New York, NY, USA (2005). DOI
http://doi.acm.org/10.1145/1053427.1053434

Kruger, J., Westermann, R.: Acceleration techniques for
gpu-based volume rendering. In: VIS ’03: Proceedings of
the 14th IEEE Visualization 2003 (VIS’03), p. 38. IEEE
Computer Society, Washington, DC, USA (2003). DOI
http://dx.doi.org/10.1109/VIS.2003.10001

Landis, H.: Production-ready global illumination. In: Sig-
graph ’02 Course Notes. Washington, DC, USA (2002).
Available at http://www.renderman.org/RMR /Books/
Malmer, M., Malmer, F., Assarsson, U., Holzschuch, N.:
Fast precomputed ambient occlusion for proximity shad-
ows. Journal of Graphics Tools 12(2), 59-71 (2007). URL
http://artis.imag.fr/Publications/2007/MMAHO07

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

eling and Visualization 2002 (VMV 2002, November 20—
22,2002, Erlangen, Germany), pp. 497-504. Akademische
Verlagsgesellschaft Aka GmbH, Berlin (2002)

Ritter, F., Hansen, C., Dicken, V., Konrad, O., Preim, B.,
Peitgen, H.O.: Real-Time Illustration of Vascular Struc-
tures. IEEE Transactions on Visualization and Computer
Graphics 12(5), 877-884 (2006)

S. Bruckner, E.G.: Enhancing depth-perception with flex-
ible volumetric halos. IEEE Trans Vis Comput Graph
13(6), 1344-1351 (2007)

Stewart, A.J.: Vicinity shading for enhanced perception
of volumetric data. In: VIS ’03: Proceedings of the 14th
IEEE Visualization 2003 (VIS’03), p. 47. IEEE Com-
puter Society, Washington, DC, USA (2003). DOI
http://dx.doi.org/10.1109/VISUAL.2003.1250394
Svakhine, N.A., Ebert, D.S.: Interactive volume illustra-
tion and feature halos. In: PG ’03: Proceedings of the
11th Pacific Conference on Computer Graphics and Ap-
plications, p. 347. IEEE Computer Society, Washington,
DC, USA (2003)

Tarini, M., Cignoni, P., , Montani, C.: Ambient Occlu-
sion and Edge Cueing to Enhance Real Time Molecular
Visualization. IEEE Transactions on Visualization and
Computer Graphics 12(5), 1237-884 (2006)

Wenger, A., Keefe, D.F., Zhang, S.: Interactive vol-
ume rendering of thin thread structures within mul-
tivalued scientific data sets. IEEE Transactions on
Visualization and Computer Graphics 10(6), 664-672
(2004). DOI http://dx.doi.org/10.1109/TVCG.2004.46.
Member-David H. Laidlaw

Yagel, R., Kaufman, A., Zhang, Q.: Realistic volume
imaging. In: VIS ’91: Proceedings of the 2nd conference
on Visualization 91, pp. 226-231. IEEE Computer Soci-
ety Press, Los Alamitos, CA, USA (1991)

Yuan, X., Chen, B.: llustrating Surfaces in Volume. In:
O. Deussen, C.D. Hansen, D.A. Keim, D. Saupe (eds.)
Proceedings of VisSym’04, Joint IEEE/EG Symposium
on Visualization (Konstanz, Germany, May 19-21, 2004),
pp. 9-16, 337. Eurographics Association (2004)

Zhou, K., Hu, Y., Lin, S., Guo, B., Shum, H.Y.: Pre-
computed shadow fields for dynamic scenes. In: SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, pp. 1196—
1201. ACM, New York, NY, USA (2005). DOI
http://doi.acm.org/10.1145,/1186822.1073332

Zhukov, S., Tones, A., Kronin, G.: An ambient light il-
lumination model. In: Rendering Techniques, pp. 45-56
(1998)

