
UNIVERSITAT POLITÈCNICA DE CATALUNYA

MASTER THESIS

Deep learning applied to Speech
Synthesis

Author:
Santiago PASCUAL DE LA
PUENTE

Supervisor:
Dr. Antonio BONAFONTE

CAVEZ

A thesis submitted in fulfillment of the requirements
for the degree of Master in Telecommunications Engineering

in the

TALP Research Center
Signal Theory and Communications Department

Escola Tècnica Superior d’Enginyeria de Telecomunicació de
Barcelona

June 30, 2016

https://github.com/santi-pdp/
https://github.com/santi-pdp/
http://www.talp.upc.edu/index.php/home/staff-members/8-members/15-bonafonte-cavez
http://www.talp.upc.edu/index.php/home/staff-members/8-members/15-bonafonte-cavez
http://www.talp.upc.edu/
http://www.tsc.upc.edu/
http://www.etsetb.upc.edu/
http://www.etsetb.upc.edu/

iii

“We are drowning in information but starved for knowledge.”

John Naisbitt

v

Abstract

Deep Learning has been applied successfully to speech processing prob-
lems. In this work we explore its capabilities, focusing concretely in recur-
rent neural architectures to build a state of the art Text-To-Speech system
from scratch. The different steps to make the full TTS system are shown.
Also, a post-filtering method to improve the generated speech naturalness
is applied and evaluated. The objective results show which architecture fits
better our problem, achieving low error rates in term of cepstral distortion,
pitch estimation error and voiced/unvoiced classification error. Also, sub-
jective results suggest that the model achieves a state of the art quality in
the synthesis, where the post-filtering factor seems to be a key component
to get a good level of naturalness.

A novel architecture called Multi-Output TTS is also proposed to hold mul-
tiple speakers inside the same structure. Some hidden layers are shared by
all the speakers, while there is a specific output layer for each speaker. Ob-
jective and perceptual experiments prove that this scheme produces much
better results in comparison with single speaker models. Moreover, we also
tackle the problem of speaker adaptation by adding a new output branch
to the model and successfully training it without the need of modifying the
base optimized model. This fine tuning method achieves better results than
training the new speaker from scratch with its own model.

Finally, we also tackle the problem of speaker interpolation by adding a
new output layer (α-layer) on top of the Multi-Output branches. An identi-
fying code is injected into the layer together with acoustic features of many
speakers. Experiments show that the α-layer can effectively learn to inter-
polate the acoustic features between speakers.

vii

Resum

El Deep Learning s’ha aplicat amb èxit a problemes de processament de
la parla. En aquest treball explorem les capacitats d’aquesta disciplina,
fent especial èmfasi en les arquitectures recurrents per a construir un sis-
tema de síntesi de veu des de zero. Es mostren les diferents etapes per
fer el sistema de síntesi complet. A més, s’aplica i s’avalua un mètode de
post-processament per tal de millorar la naturalitat de la veu generada. Els
resultats objectius mostren quina arquitectura encaixa més amb el nostre
problema, aconseguint errors baixos en termes de distorsió cepstral, error
d’estimació de pitch i error de classificació sonor/sord. També els resultats
subjectius indiquen que el model arriba a tenir una qualitat de síntesi com-
parable amb la de les últimes tecnologíes, on el fet de fer post-processament
sembla ser una peça clau per obtenir un bon nivell de naturalitat.

També es proposa una arquitectura novedosa anomenada Multi-Output
TTS, la qual conté diferents parlants dins la mateixa estructura. Algunes
capes ocultes es comparteixen entre tots els parlants, mentres que hi ha una
capa de sortida específica per a cada un d’ells. Els experiments perceptu-
als i objectius mostren que aquest esquema produeix força millors resultats
en comparació amb els models de parlants sols. També abordem el prob-
lema d’adaptació de parlants afegint una nova capa de sortida al model
i entrenant-la sense necessitat de modificar el sistema base ja optimitzat.
Aquest mètode d’afinament del model a l’última capa permet obtenir mil-
lors resultats que entrenant el model del nou parlant des de zero amb el seu
propi model sol.

Finalment també abordem el problema d’interpolació de parlants afegint
una nova capa sobre les sortides del Multi-Output, la qual es diu capa-α. A
la nova capa se li insereix un codi d’identificació juntament amb les carac-
terístiques acústiques dels diferents parlants. Els experiments mostren que
la capa-α pot aprendre, en efecte, a interpolar valors intermitjos respecte els
parlants modelats.

ix

Resumen

El Deep Learning se ha aplicado con éxito a problemas de procesado del
habla. En éste trabajo exploramos las capacidades de ésta disciplina, ha-
ciendo especial énfasis en las arquitecturas recurrentes para construir un
sistema de síntesis de voz desde cero. Se muestran las distintas etapas
para hacer el sistema de síntesis completo. Además se aplica y se evalúa
un método de post-procesado con tal de mejorar la naturalidad de la voz
generada. Los resultados objetivos muestran qué arquitectura encaja más
con nuestro problema, consiguiendo errores bajos en términos de distorsión
cepstral, error de estimación de pitch y error de clasificación sonoro/sordo.
También los resultados subjetivos indican que el modelo llega a tener una
calidad de voz comparable con la de las últimas tecnologías, donde el he-
cho de aplicar el post-procesado parece ser una pieza clave para obtener un
buen nivel de naturalidad.

También se propone una arquitectura innovadora llamada Multi-Output
TTS, la cual contiene diferentes hablantes dentro de la misma estructura.
Algunas capas ocultas se comparten entre todos los hablantes, mientras que
hay una capa de salida específica para cada uno de ellos. Los experimen-
tos perceptuales y objetivos muestran que éste esquema produce resultados
bastante mejores en comparación con los modelos de hablantes solos. Tam-
bién abordamos el problema de adaptación de hablantes añadiendo una
nueva capa de salida al modelo y entrenándola sin necesidad de modificar
el sistema base ya optimizado. Éste método de afinado del modelo en la
última capa permite obtener mejores resultados que entrenando el modelo
del nuevo hablante desde cero con su propio modelo.

Finalmente también abordamos el problema de interpolación de hablantes
añadiendo una nueva capa sobre las salidas del Multi-Output, la cual se
llama capa-α. A la nueva capa se le introduce un código de identificación
del hablante junto con las características acústicas de los distintos hablantes.
Los experimentos muestran que la capa-α puede aprender, en efecto, a in-
terpolar valores en un rango intermedio entre los dos hablantes modelados.

xi

Acknowledgements
First, I would like to thank my advisor and mentor, Antonio Bonafonte,
who taught me what I know about speech synthesis and never hesitates to
help, always supporting the ideas I come up with.

I would also like to thank Enric Monte for the great background he gave me
in the machine learning field, José Adrián Rodríguez Fonollosa for solving
any question I had regarding neural network architectures and software
issues, and Daniel Erro for his advice with post-processing techniques and
the Ahocoder.

Finally, thanks to all the people who helped in the development of the ex-
periments by taking our subjective evaluations so kindly.

xiii

Contents

Abstract v

Resum vii

Resumen ix

Acknowledgements xi

1 Introduction 1

2 State of the Art 3

2.1 Unit Selection Speech Synthesis 3

2.2 Statistical Parametric Speech Synthesis 4

2.3 Deep Learning in Speech Synthesis 9

2.4 Summary . 12

3 Introduction to Deep Learning 13

3.1 Artificial Neural Network . 13

3.2 Training the network: Back-Propagation algorithm 18

3.2.1 Dropout Method . 23

3.3 Deep Neural Network . 26

3.4 Recurrent Neural Network . 26

3.5 Back-Propagation Through Time 28

3.6 Long Short Term Memory . 30

3.7 Summary . 32

4 Two stage Text-to-Speech with RNN-LSTM 33

4.1 Introduction . 33

4.2 Data Preparation . 35

4.2.1 Text to Label process 35

4.2.2 Acoustic parameters 38

4.2.3 Encoding and normalizing the features 40

4.2.4 Parallelizing the pipeline: Speeding up the data gen-
eration . 43

4.3 Two-stage RNN-LSTM model 46

xiv

4.4 A post-processing technique for better naturalness 52

4.5 Experimental Design and Results 56

4.5.1 Database . 57

4.5.2 Objective Evaluation 58

4.5.3 Subjective Evaluation 60

4.5.4 Gate activations analysis 63

4.6 Discussion . 68

5 Multiple Output Acoustic Mapping 69

5.1 Introduction . 69

5.2 Data Preparation . 69

5.3 Multi-Output architecture for acoustic mapping 70

5.4 Multi-Output architecture for speaker adaptation 71

5.5 Multi-Output architecture for speaker interpolation: α-model 72

5.6 Results . 74

5.6.1 Results: Multi-output 76

5.6.2 Results: Adaptation 78

5.6.3 Results: α-interpolation 79

5.7 Discussion . 80

6 Conclusions 83

6.1 Thesis Review . 83

6.2 Future work . 85

6.3 Research Contributions . 86

Bibliography 87

xv

List of Figures

2.1 Voice stream where blue dashed lines show hypothetic phoneme
divisions and green lines show hypothetic diphoneme divi-
sions. 3

2.2 Unit selection scheme. 4

2.3 Unit selection synthesis process. Dashed lines represent the
concatenation cost. Solid lines represent the target cost. Grey
lines depict the computation performed against all units. Blue
lines are the computation of the actual used units. Based
on Zen, Tokuda, and Black (2009), Figure 1. 5

2.4 Hidden Markov Model example with 3 states. Based on Ling
et al. (2015), FIG1. 6

2.5 Block diagram of typical Statistical Parametric Speech Syn-
thesis HMM-based systems. Based on Ling et al. (2015), FIG2. 8

2.6 Hidden Markov Model clustering process. Based on Ling et
al. (2015), FIG3. 8

3.1 Artificial Neuron . 14

3.2 Sigmoid function with different scalar weightings and bias:
red w = 5, b = 0; blue w = 10, b = 0; green w = 15, b = 9. . . 14

3.3 Logistic Regression of N outputs. 16

3.4 XOR resulting approximate surface. 17

3.5 XOR Neural Network with Sigmoid perceptrons. 17

3.6 Calculation of δj for the hidden neuron j back-propagating
the δ’s from the connected n units (which can be output units
or next-hidden units). Based on (Bishop, 1995) Figure 4.16. . 21

3.7 Qualitative examples of training loss evolution for various
learning rate magnitudes. 23

3.8 Examples of a good fit and an overfitting for a binary classi-
fication task with a 2−D space (i.e. 2 input features). 24

3.9 (a) Standard network with 2 hidden layers. (b) Example of
thinned network by applying dropout to the network on (a).
Based on (Srivastava et al., 2014) Figure 1. 25

3.10 Example RNN neuron unfolded in time. 27

3.11 Gradient flow at the fourth time-step 3. Violet arrows: infer-
ence flow of the input data. Red arrows: back-propagated
gradients/errors. 29

xvi

3.12 Architecture of an LSTM cell. i(t): input gate at time-step t.
o(t): output gate at time-step t. f(t): forget gate at time-step t.
c(t): cell state at time-step t. 30

3.13 LSTM cell unfolded in time. The red arrows depict the infer-
ence flow of data between time-steps. 32

4.1 Schematic of the developed two stage Text-To-Speech system. 34

4.2 Label file example resulting from processing the Spanish text
"buenos días". 37

4.3 Schematic representation of the Vocoder for encoding the in-
put voice with windowed frames into acoustic parameters. . 39

4.4 Histogram of WAV files’ durations for speaker M1. It is shown
in a scale of seconds. 43

4.5 Data generation architecture with parallelized pipeline. Ev-
ery pipeline processes a tuple (lab,wav) and accumulates the
result to be given to the data generator. 44

4.6 WAV files’ durations histograms for M1 and F1 subsets of 100
files each. 45

4.7 Results of data generation acceleration for speakers M1 and
F1. M1-1x: 63 min. M1-32x: 3 min. F1-1x: 22 min. F1-32x: 1
min. 45

4.8 Vocoder sliding window example for an arbitrary phoneme.
The stride is the increment in time taken by the next window
∆t = ti+1 − ti. The red zone shows a hypothetical empty
zone out of the phoneme, so the frame duration is including
information from the next phoneme or a silence. The grey
arrow is the direction of the windowing analysis. 47

4.9 Duration histograms for speaker M1 phonemes. Top plot
shows the real durations in milliseconds, bottom plot shows
the log-compressed durations. 48

4.10 Plot of |ŷ− y|2 against |ŷ− y| and the derivative with respect
to the error:2|ŷ − y|. 49

4.11 Example of a regression estimation where we see how the
outlier produces a high deviation over the correct estimation.
(a) Gaussian distributed data with µ = 0 and σ = 4 over the
line y = 1.2x. (b) Outlier artificially inserted to the data in (a). 49

4.12 Top: F0 contour example for male speaker M1. Bottom: F0
contour (blue line) example for male speaker M1 with inter-
polation contour (green line). 51

4.13 Histogram of voiced frequency values in the training data. . 51

4.14 Final setup of the architecture, where duration prediction
and acoustic prediction work together in a pipeline fashion. 53

4.15 Ratio σi
g

σi
p

per phoneme and coefficient, where σig stands for

ground-truth standard deviation at i-th coefficient, and σip
stands for prediction standard deviation at i-th coefficient.
There are 32 phonemes analyzed. 54

xvii

4.16 Geometric mean of σg
σp

compared to the post-filtering curves
for values pf = 1.04, pf = 1.05, pf = 1.06. 55

4.17 Geometric mean of σgσp before and after post-filtering with p =

1.04. Green: post-filtered. Blue: raw prediction. 55

4.18 Evolution in time of the 5th cepstral coefficient for two test
files. Blue: natural speech. Green: post-filtered prediction.
Red: raw prediction. 56

4.19 Evolution in time of the 10th cepstral coefficient for two test
files. Blue: natural speech. Green: post-filtered prediction.
Red: raw prediction. 56

4.20 Evolution in time of the 15th cepstral coefficient for two test
files. Blue: natural speech. Green: post-filtered prediction.
Red: raw prediction. 57

4.21 Box-plot of the subjective naturalness test results relative to
real human voice. SPSS: Statistical Parametric Speech Syn-
thesis. US: Unit Selection. LSTM-raw: Two-stage TTS with-
out post-filtering. LSTM-pf: Two-stage TTS post-filtered with
pf = 1.04. Ahocoded: Natural speech parameterized with
the Ahocoder and reconstructed. Natural: real human voice.
Red line: median. Red dot: mean. 62

4.22 Activations map for the forget gates of the first 20 hidden
cells in the first LSTM hidden layer. Red regions are high
activations (thus preserve the past) and yellow means forget
the past. 63

4.23 Activations map for the input gates of the first 20 hidden cells
in the first LSTM hidden layer. Red regions mean updating
the cell state a lot with the new candidate. On the other hand,
yellow means not letting the information in. 64

4.24 Activations map for the output gates of the first 20 hidden
cells in the first LSTM hidden layer. Red regions mean letting
the cell state flow out of the cell. 64

4.25 Average activations for the first LSTM hidden layer with 512
cells. Input gate, forget gate and output gate are shown.
Green dashed lines are the phoneme boundaries. 65

4.26 Averaged activations of the input gates for the first hidden
LSTM layer in blue line and 1− ft average activation in red. 65

4.27 Activations map for the forget gates of the 43 output LSTM
cells. Red regions mean letting the cell state flow out of the
cell. 66

4.28 Activations map for the input gates of the 43 output LSTM
cells. Red regions mean letting the cell state flow out of the
cell. 66

4.29 Activations map for the output gates of the 43 output LSTM
cells. Red regions mean letting the cell state flow out of the
cell. 67

xviii

4.30 Average activations for the output LSTM layer with 43 cells.
Input gate, forget gate and output gate are shown. Green
dashed lines are the phoneme boundaries. 67

5.1 Proposed architecture using regular feed forward (dense) lay-
ers and recurrent LSTM layers. There are N outputs belong-
ing to N different speakers. 71

5.2 Exemplified training round for the N mini-batches. Dashed
lines represent the corresponding output error back-propagation.
The numbers in brackets express the order of that mini-batch
inside the round. 72

5.3 Speaker adaptation system by fine-tuning a pre-trained Multi-
Output model. The new layer can be trained in two ways:
solid-line: 1) fine-tune only new branch with frozen model
in the lower layers. 2) Fine-tune the whole model, thus prop-
agating the error until the first hidden layer. 73

5.4 Speaker interpolation system by training a new mixing layer,
the α-layer. The new layer uses the input α codes to learn to
interpolate between the extreme examples given. 73

5.5 α-interpolation training method for an example with M = 3
for 3 batches of examples. The one-hot code expresses the
identity of the currently shown speaker. Each sm is the out-
put prediction of the corresponding multi-output branch for
the m-th speaker. 75

5.6 Training loss evolution comparison. Speakers F1 and M1 de-
crease the learning cost when trained with other speakers al-
together. 76

5.7 Box plot of preference test scores. Scores range from−2 (mul-
tiple output model is preferred) to 2 (single output trained
model is preferred). Both is the summary of all the answers,
joining both speaker results. Red lines: medians. Blue dots:
means. 77

5.8 Validation loss evolution comparison of different batch sizes,
with frozen shared layers and fine-tuned shared layers. . . . 78

5.9 MCD when varyingα values. The variation is made for speaker
F1 and it is (1−α) for M1. All others speakers remain 0. M = 6. 79

5.10 F0 RMSE when varying α values. The variation is made for
speaker F1 and it is (1−α) for M1. All others speakers remain
0. M = 6. 80

5.11 F0 Histograms: original M1 and F1 speakers in blue. αF1 =
(0.25, 0.5, 0.75) and αM1 = (0.75, 0.5, 0.25) interpolations in
green. M = 2. 81

5.12 F0 Histograms: original M1 and F1 speakers in blue. αF1 =
(0.25, 0.5, 0.75) and αM1 = (0.75, 0.5, 0.25) interpolations in
green. M = 6. 81

xix

List of Tables

4.1 Context-dependent label format. 35

4.2 Number of questions per Entity. LL:Left-Left, L:Left, C:Central,
R:Right, RR:Right-Right . 38

4.3 Label symbol types and amount of classes per symbol. See
Table 4.1 for a description of each symbol. 41

4.4 Comparison of different architectures for the duration model
with their objective result. FC: Fully-Connected layer. The
best performing model is in bold text. 58

4.5 Comparison of different architectures for the acoustic model
with their objective results. LSTM: Hidden LSTM layer and
units. Params: Number of parameters of the network. Em-
beddings: Number of input Fully Connected layers for first
projections of the data. F0 RMSE: Root Mean Square Error
of the F0. MCD: Mel Cepstral Distortion. UV Acc: Accu-
racy of Voiced/Unvoiced flag prediction. The best perform-
ing model is in bold text. 60

4.6 Statistics of the subjective results for the 6 systems. 62

5.1 Objective evaluation for M1 and F1 trained alone with a sin-
gle output model and together with other speakers (mixed)
in the multiple output architecture. 77

5.2 Objective evaluation for F3 as an adaptation subject. Full:
all layers are fine-tuned. Frozen: only new output branch is
fine-tuned. 78

xxi

List of Abbreviations

ANN Artificial Neural Network
BP Back Propagation
BPTT Back Propagation Through Time
DBN Deep Belief Network
DNN Deep Neural Network
FC Fully Connected
FIFO First In First Out
GMM Gaussian Mixture Model
GPOS Guess Part Of Speech
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HMM Hidden Markov Model
LSTM Long Short Term Memory
MCD Mel Cepstral Distortion
MDN Mixture Density Network
MLP Multi Layered Perceptron
MO Multi-Output
MTL Multi Task Learning
MSE Mean Squared Error
NMT Neural Machine Translation
NN Neural Network
RBM Restricted Boltzman Machine
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SPSS Statistical Parametric Speech Synthesis
US Unit Selection
UV Unvoiced Voiced

1

Chapter 1

Introduction

Speech synthesis or Text-To-Speech is the process of converting text into a
voice signal. Previous to Deep Learning, existing text to speech technolo-
gies included the unit selection speech synthesis (Hunt and Black, 1996)
and the statistical parametric speech synthesis (SPSS) (Zen, Tokuda, and
Black, 2009). Unit selection analyzed the set of phonemes contained in a
sentence and their context, and those features were mapped into pieces of
recorded natural speech, all being concatenated to produce a continuous
stream of voice signal. SPSS introduced the concept of learning a speaker
model from data with parametric representations and then throw away the
data once speaker characteristics were learned. Some remarkable differ-
ences between both was that, although SPSS could not reproduce the same
level of naturalness (Zen, Tokuda, and Black, 2009) as unit selection did, it
had much less footprint in memory, and it also let the user transform any
speaker model to adapt the voice to different requirements in speed, into-
nation, etc. Two important techniques developed within the framework of
SPSS were the speaker adaptation and the speaker interpolation. In the for-
mer case we could add the voice of someone that was not previously in the
system for whom we have a low amount of data, and extracting characteris-
tics from the other speaker models it could reach a good level of similarity
to that of the original speaker. In the case of interpolation, a new voice
model could be build from scratch without any data for a new speaker by
combining the existing speaker models available in the system.

Deep Learning has been applied successfully to different kinds of tasks
such as computer vision, natural language processing or speech process-
ing (Deng and Yu, 2014), outperforming the existing systems in many cases.
In the case of speech synthesis, many works included Deep Neural Net-
works and Deep Belief Networks to perform acoustic mappings in the SPSS
framework and prosody prediction. Also, Recurrent Neural Networks and
their variants, like the Long Short Term Memory architecture, have lever-
aged completely the sequences processing and prediction problem, which
makes them lead to interesting results in the speech synthesis field, where
an acoustic signal of variable length has to be generated out of a set of tex-
tual entities.

Despite Deep Learning TTS has improved the speech quality generated by
HMM-based SPSS, it lost some of the flexibility offered by these models.
First, the research in speaker adaptation for the DNN/RNN approach is
very recent and not many techniques are proposed in comparison to the
SPSS. Moreover and to the best of our knowledge, there are no works ex-
ploring the speaker interpolation capabilities of these systems, whilst this

2 Chapter 1. Introduction

was a remarkable feature in the SPSS.

The first goal of this work is to build a state of the art TTS in UPC with
Deep Learning techniques and analyze the insights of the developed ar-
chitecture. After this, we want to achieve new flexible models capable of
doing speaker adaptation and interpolation without sacrificing the gener-
ated speech quality, in addition to represent many speaker models inside
the same structure.

The structure of this work is the following: Chapter 2 begins exploring the
state of the art techniques for speech synthesis, from Unit Selection sys-
tems to the latest Deep Learning TTS architectures and methods. Then in
Chapter 3 there is an introduction to the Deep Learning topic, its elements,
techniques and terminology. It is a guide to follow what comes in Chap-
ter 4, which is the research and development of the TTS system made from
scratch with RNN-LSTM. Afterwards, in Chapter 5 a proposed multiple
speaker TTS is shown and analyzed in detail, as well as the proposed adap-
tation and interpolation methods built on top of it. Finally, the conclusions,
future work and research contributions can be found in Chapter 6.

3

Chapter 2

State of the Art

Speech synthesis, also known as Text To Speech, is the technique with which
computers can speak. These systems have gone through a great evolution
during the past two decades, and in this chapter some currently existing
systems are introduced with their most used techniques. First, we review
the most used in comercial environments which are the so called Unit Selec-
tion systems. Secondly, the Statistical Parametric Speech Synthesis is seen,
which has leveraged the speech synthesis research during the last decade.
The chapter then concludes presenting the state of the art techniques of
Deep Learning applied to speech synthesis.

2.1 Unit Selection Speech Synthesis

This type of synthesis has been operative during many years because it
offers the best naturalness level, as it is based on real recorded speech (Hunt
and Black, 1996). The way in which this system works is by concatenating
segments of speech, which are usually the so called diphone. A diphone
is a voice unit of the same size as a phoneme, defined in between of two
phonemes (i.e. from the middle of a phoneme to the middle of the next one).
Figure 2.1 exemplifies some hypothetic diphone boundaries compared to
those of phonemes. The reason to do the division at the middle point of the
phoneme is because it is the more stable point and the one least influenced
by the co-articulation, which is the influence of neighboring phonemes to
the current one.

FIGURE 2.1: Voice stream where blue dashed lines show hypothetic phoneme
divisions and green lines show hypothetic diphoneme divisions.

During concatenation to make the speech reconstruction the following is-
sues need to be considered: discontinuities between the speech segments in

4 Chapter 2. State of the Art

phase, pitch, etc. and differences in prosody, which means that the recorded
segments may vary in duration or pitch (thus expressiveness) with respect
to the targeted prosody that should be achieved. To cope with these there
are two approximations:

• Process the signal to smooth the discontinuities and force the prosody
to match.

• Use a large database with many repetitions of the contained diphonemes,
such that there is more variability to adapt to more possible con-
texts and in reconstruction the chosen one is that matching better the
prosodic requirements.

FIGURE 2.2: Unit selection scheme.

The general unit selection concatenative system is shown in Figure 2.2.
Depending on the system and the dataset available there might be post-
processing in the concatenation block shown or not, as mentioned pre-
viously. The way in which the units are selected is by maximizing the
prosodic match (or minimizing the mismatch) and, at the same time, mini-
mizing the discontinuities that can appear during the concatenation of the
speech units. To do so, a cost function is defined to achieve these objec-
tives, so that the units with the best scores are the ones selected, as shown
in equation 2.1.

ûn1 = argmin
un
1

(ρ
n∑
i=1

ctarget(ui, ti) + (1− ρ)
n−1∑
i=1

cconcat(ui, ui+1)) (2.1)

Where cconcat stands for the concatenation cost between consecutive units
and ctarget is the target cost, which considers the worthiness of getting a
certain unit to achieve the desired prosodic target. Also, we can set some
weight ρ which lets us give more importance to one criterion or the other,
depending on our requirements (e.g. we may worry only about the prosody,
not considering the concatenation cost).

2.2 Statistical Parametric Speech Synthesis

The aim of this section is to make a brief review to what is the Statistical
Parametric Speech Synthesis (SPSS). There are good works reviewing and

2.2. Statistical Parametric Speech Synthesis 5

FIGURE 2.3: Unit selection synthesis process. Dashed lines represent the concate-
nation cost. Solid lines represent the target cost. Grey lines depict the computation
performed against all units. Blue lines are the computation of the actual used units.
Based on Zen, Tokuda, and Black (2009), Figure 1.

gathering information about the SPSS systems in Zen, Tokuda, and Black
(2009) and Ling et al. (2015). The following description is based on Ling
et al. (2015) work, as it also goes over the Deep Learning state of the art in
speech synthesis, something that follows in the next section.
In this TTS approach, a set of stochastic generative acoustic models relate
text derived features to acoustic frames. In order to do so the speech sig-
nal is represented in a parameterized way, meaning that it gets encoded
in a vocoder stage that creates an acoustic feature vector in a windowed
fashion shifted every 5ms. The acoustic parameters of each phoneme in a
given phonetic and prosodic context are represented by a stochastic genera-
tive model. Concretely context-dependent phoneme Hidden Markov Mod-
els (HMM) with single Gaussian state-output Probability Density Func-
tions (PDF) are used. The phoneme contexts are defined using a decision-
tree that clusters similar HMM output PDFs attending to the phonetic and
prosodic features.

An HMM is a statistical Markov model with unobserved (hidden) states,
which means that the state of every Markov state is not directly seen by
the observer, but the outputs generated by this state (generated by means
of the state-output PDF aforementioned). The state transitions work the
same way as in a Markov chain, with state-transition probabilities, which
makes them suitable to model sequences. Figure 2.4 depicts and example
of a 3-state HMM.

Figure 2.5 is a schematic of the SPSS framework, where we can separate
two stages: training and synthesis. During training, acoustic features of
speech are extracted from the speech waveforms contained in a training

6 Chapter 2. State of the Art

FIGURE 2.4: Hidden Markov Model example with 3 states.
Based on Ling et al. (2015), FIG1.

data set (i.e. vocal tract and vocal source parameters). Context features
are also extracted from the text transcriptions to build what are called the
labels. Once we have the features, the context-dependent HMMs (λ∗) are
estimated based on the Maximum Likelihood criterion:

λ∗ = argmax
λ

p(y|x, λ) (2.2)

where p(.) is a continuous PDF, y = {y1, y2, · · · , yT } is a sequence of acous-
tic features with T frames, being yt the acoustic frame at time t. Finally,
x = {x1, · · · , xN} is a sequence of linguistic context features, with N the
number of phonemes. The acoustic feature vector is normally composed of
static components and their first and second derivatives, such that:

y = {yst,∆yst,∆
2yst} (2.3)

Where ∆ and ∆2 stand for first and second derivatives. The complete
acoustic feature set at time t can then be considered as a linear transform
over the static feature sequence ys = {ys1,ys2, · · · ,ysT }:

y = Myys (2.4)

My is determined by the expression to compute first and second derivatives
used in equation 2.3.
Usually there are too many context-dependent HMMs to take into account
given the large set of possible fine-grained linguistic contexts to consider
in comparison to Automatic Speech Recognition (ASR) systems. This large
amount of models can lead to over.fitting the context-dependent models
that have few examples to be trained on, and also some valid combina-
tions of linguistic contexts will be missed in the training set. To deal with
this, there is a decision-tree based clustering method applied after the initial

2.2. Statistical Parametric Speech Synthesis 7

training in order to cluster state-output PDFs of the HMMs. The process in
shown in Figure 2.6, where the PDFs of similar context descriptions are all
represented by a shared distribution. This clustering is achieved by means
of the a set of questions specifically designed considering the characteristics
of the processed language. After this, the state alignment results using the
HMMs are used to train context-dependent state-duration Gaussian distri-
butions, one per model. Also, a clustering process is used for these duration
models (54). The acoustic model p(y|x, λ) can then be rewritten like so:

p(y|x, λ) =
∑
∀q
p(y,q|x, λ)

=
∑
∀q
P (q|x, λ)p(y|q, λ)

=
∑
∀q
P (q|x, λ)

T∏
t=1

p(yt|qt, λ)

(2.5)

Where P (.) denotes a probability mass function and p(yt|qt, λ) is a state-
output PDF associated to the qt state (typically a single Gaussian distribu-
tion with diagonal covariance matrix). Finally, q = {q1 · · · qT } is an HMM
state sequence. As we have mentioned previously the state duration prob-
ability P (q|x, λ) is modeled using a context-dependent Gaussian distribu-
tion for each state. Note that equations 2.5 are based on the assumption
that the frame observations are independent from each other in the state
sequence.

During synthesis we first get the same context features out of the linguistic
front-end analysis, then we get x̂. The features are injected into the acous-
tic parameter generation process, where we want to maximize the output
probabilities of a certain acoustic feature given the sentence HMM.

y∗s = argmax
ys

p(y|x̂, λ∗)
∣∣∣∣
y=Myys

(2.6)

To conclude this brief introduction to SPSS it important to mention these
systems have a great advantage in flexibility in comparison to unit selec-
tion systems. This means that with mathematical transformations we can
change the speaker characteristics (duration of phonemes, expressiveness,
identity, etc.). A key method taking advantage of SPSS flexibility is speaker
adaptation, where a new speaker can be introduced into the system even
if he/she has a low amount of data to train: we can take information from
surrounding speaker models to fill the "missing spots" of the new speaker.
Furthermore, new speakers can be created out of the existing models with-
out any new data, by means of the so called speaker interpolation tech-
nique. Also, the footprint in memory is lower for SPSS compared to unit
selection due to the fact that once the models are trained, all the voice data
can be left behind and only the models (reduced representations of the real
speakers’ data) are kept. Even though, the main drawback of these systems
is the quality degradation, which comes mainly from three components:

• the vocoder: parameterizing the speech provokes some loss of quality.

8 Chapter 2. State of the Art

FIGURE 2.5: Block diagram of typical Statistical Parametric Speech Synthesis
HMM-based systems. Based on Ling et al. (2015), FIG2.

FIGURE 2.6: Hidden Markov Model clustering process. Based on Ling et al. (2015),
FIG3.

2.3. Deep Learning in Speech Synthesis 9

• the acoustic model: the errors inherent to the prediction.

• the over-smoothing effect: coming from a lack of representational
power of the model.

2.3 Deep Learning in Speech Synthesis

Now that the most recently developed systems have been briefly reviewed
we can get a better look at the state of the art in deep learning methodolo-
gies for speech synthesis. First it is worth mentioning that Deep Learning
can be interpreted as another type of Statistical Parametric Speech Synthe-
sis, because the Neural Networks can be interpreted as statistical models.
However, from now on we may refer to HMM-based synthesis by SPSS,
and to the applied Deep Learning synthesis as DNN synthesis or LSTM
synthesis (this is meaningful for when we reach the system developed in
this work, where LSTM keyword will be understood). In Chapter 3 there is
a review of deep learning techniques and the type of architectures existing
at the moment, which includes explanations of what is a Deep Neural Net-
work (DNN) and a Recurrent Neural Network (RNN), and it also contains
references to DBNs (which turn out to be a pre-initialized version of the
DNNs). Unfamiliar readers may prefer reading this section after Chapter 3
to have a clearer picture of the following references.

The use of Deep Learning in TTS is very recent, and in the early works the
feed forward Neural Networks were used as acoustic models for SPSS, like
in Ze, Senior, and Schuster (2013) where a DNN is used in the acoustic map-
ping process. In the case of SPSS the acoustic mapping is the generation of
acoustic parameters out of the Gaussian mean from the proper cluster (see
section 2.2). Here, the decision tree with the Gaussian distribution is sub-
stituted by a DNN emitting the predictions. It is with the DNNs that they
obtained a better modeling of the complex context dependencies, outper-
forming the more classic approach of decision trees.

Similarly, in Lu, King, and Watts (2013) the authors combined a vector-
space representation of linguistic context with a DNN that directly adapted
such continuous representations to make the acoustic mapping. In Qian
et al. (2014) the authors also worked with a DNN to perform the acoustic
mapping from linguistic inputs, making a study of the different parameters
affecting better convergence schemes for the TTS task and using a moderate
sized corpus. They proved how their scheme outperformed the conven-
tional HMM, and they found out that the main improvement came from
the prosody prediction (concretely with F0 contour). Hu et al. (2015) used a
dynamic sinusoidal model (DSM) (Hu et al., 2014) in a DNN-based acous-
tic mapping model with multi-task learning. They first model cepstra for
spectral parametrization of the DSM and then the log-amplitudes as a direct
parametrization of the DSM. During synthesis they did not discard the sec-
ond task but fused it with the first one, getting an improved performance
with respect to simply using the prediction from the cepstral parameters.
Furthermore, Valentini-Botinhao, Wu, and King (2015) made an acous-
tic mapping with DNNs, training the models with a perceptually-oriented
cost function. This cost function was defined in a domain different than

10 Chapter 2. State of the Art

the one for the predictions of the DNN. Given this approach, their objec-
tive results indicated that the perceptual domain system achieved the best
quality. Kang, Qian, and Meng (2013) followed a similar approach with a
Deep Belief Network (DBN) generative model to represent the dependen-
cies between linguistic and acoustic features. They also showed how with
these RBM-DBN systems outperformed the classical HMM approach used
in SPSS with objective and subjective results.

In Zen and Senior (2014) the authors claim that the previous approaches
where a DNN was used to model the acoustic mapping had some limita-
tions, and they addressed the following ones with a Deep Mixture Density
Network (MDN): First, the regular DNNs do not have the power to model
distributions of outputs that are more complex that a unimodal Gaussian
distribution. Secondly, The outputs of an ANN only provide the mean
values, whilst variance has been proven to be an important property to
achieve good naturalness in speech synthesis. Their MDN then provides a
set of outputs that model Gaussian Mixture Models of every output acous-
tic parameter, with means and variances. Their results, both objective and
subjective, reflect that their model can relax the limitations in the DNN-
based acoustic modeling. Similarly, the work in Uria et al. (2015) use a Real-
valued Neural Autoregressive Density Estimator (RNADE) (Uria, Murray,
and Larochelle, 2013), which is a similar approach to that of MDN. RNADE
also uses a neural network to predict a distribution of acoustic features con-
ditioned on a set of phonetic labels by outputting the parameters of a real-
valued distribution. The main difference with MDN however is the fact
that RNADE predicts each dimension within an acoustic frame sequen-
tially, thus the values of features already predicted are also input to the
network, which allows RNADE to capture dependencies between the dif-
ferent acoustic features in a frame. In Wu et al. (2015b) the authors address
two problems for the way in which DNNs are applied to speech synthe-
sis: Perceptual sub-optimality and frame-by-frame independence. They
claim that the first problem comes from the training criterion, which typi-
cally aims to maximize the likelihood of acoustic features which are a rather
poor representation of human speech perception. Besides, the error in the
speech feature space is not an accurate reflection of the expected percep-
tual error, and they propose a Multi-Task Learning (MTL) procedure to get
around it, where the DNN learns to predict a perceptual representation of
the target speech as a secondary task besides predicting the typical invert-
ible vocoder parameters as the main task. These secondary task predictions
are discarded during synthesis, such that they only serve as "hints" during
the main task training. Regarding the second problem they refer to Recur-
rent Neural Networks as effective models to treat with sequential data, but
they are difficult to optimize as well as computationally expensive. Their
solution is simpler than any recurrent topology by means of a technique
called bottleneck feature stacking, where they train a first DNN with a bot-
tleneck hidden layer (a hidden layer with a smaller set of units than the ones
preceding it). Afterwards they take the activations of the bottleneck (which
yield a compact representation of both acoustic and linguistic information
for each frame) of many contiguous frames (e.g. ht−1, ht, ht+1). These ac-
tivations are then stacked together and joint with the linguistic features to

2.3. Deep Learning in Speech Synthesis 11

get into another DNN stage that makes the acoustic mapping, thus consid-
ering the dependencies between frames in this case. In Wu and King (2015)
they take advantage of the stacked bottleneck activations to have a wide
linguistic context with a training criterion that minimizes the speech pa-
rameter trajectory errors taking dynamic constraints from a wide acoustic
context. This way they minimize the utterance-level trajectory error instead
of the frame-by-frame error, and they achieve better naturalness than pre-
vious approaches with the proposed training criterion. In Fan et al. (2015)
they propose a model to hold many speakers out of the same shared DNN
structure with a specific training mechanism where they back-propagate
all the speakers information in the same mini-batch. They achieve better
results with the multitask approach than learning a single speaker parame-
ters isolated. They further transfer the learning of the base shared structure
for a new speaker to achieve speaker adaptation with limited training data,
achieving good results in naturalness and similarity to the original speaker.
In Wu et al. (2015a) they perform DNN speaker adaptation with three types
of techniques: adding identity information to the input features, Learning
Hidden Unit Contribution (LHUC) (Swietojanski and Renals, 2014), and
making output feature space transformations.

On the other hand, RNNs and their variants, like the LSTM architecture in-
troduced in Hochreiter and Schmidhuber (1997) (see Chapter 3, sections 3.4
and 3.6), have leveraged completely the sequences processing and predic-
tion problem, which makes them lead to interesting results in the speech
synthesis field, where an acoustic signal of variable length has to be gener-
ated out of a set of textual entities. Regarding RNNs in Chen, Hwang, and
Wang (1998) they explored the usage of standard RNN architectures with
many hidden layers synchronized by different timings (at syllable level and
at word level) for prosodic parameter prediction, such as syllable pitch con-
tours, syllable energy levels, syllable initial and final durations, as well
as intersyllable pause durations. In Achanta, Godambe, and Gangashetty
(2015) they investigate two variants of RNNs applied to acoustic parameter
generation: Elman-RNN and Clockwork-RNN. They show that Clockwork
is equivalent to an Elman-RNN with a particular form of Leaky Integration
(LI) (Bengio, Boulanger-Lewandowski, and Pascanu, 2013).
Even though, the most widely used RNN in speech processing applications
is the LSTM aforementioned. In Fernandez et al. (2014) they use a bidi-
rectional LSTM architecture to predict F0 contours. In Zen and Sak (2015)
they employed a unidirectional LSTM architecture to make a low-latency
speech generation model. An interesting result is that using a recurrent
output layer they obtained better results than making dynamic parameters
prediction and deriving the trajectory using Tokuda’s algorithm (Tokuda
et al., 2000).
In Wu and King (2016) the authors explore the effectiveness of LSTM ar-
chitectures for speech generation purposes. Concretely, they explore the
necessity of the different gating mechanisms (see section 3.6) and come up
with a more efficient solution that only requires the forget gate and the in-
put gate, which in turn is the inverse of the forget gate value and does
not need parameters to be learned. Finally, in Coto-Jiménez and Goddard-
Close (2016) they proposed a post-filtering methodology to be carried out
in SPSS where an LSTM learns its parameters to perform enhancement of

12 Chapter 2. State of the Art

the predicted speech in order to be closer to a natural voice than what is
obtained with HMM synthesis.

2.4 Summary

In this chapter the different currently-in-use speech synthesis systems have
been reviewed, where Statistical Parametric Speech Synthesis and Deep
Learning Speech Synthesis are the ones under more research nowadays,
whilst Unit Selection systems are the ones raising the highest-quality voice,
achieving more naturalness owing to the fact that they treat with natural
voice directly rather than generating acoustic trajectories with statistical
models. Regarding SPSS there are explanations about the training proce-
dure as well as the synthesis one, briefly explaining the concepts of states
clustering with decision trees and linguistic contexts, which will be useful
to understand the contents in Chapter 4. Finally, the set of state of the art
Deep Learning techniques applied to the speech generation problem have
been shown, which contain many acoustic mapping mechanisms by means
of DNN and DBN architectures. Also, speaker adaptation and multitask
methods are shown which raise better results than those with direct acous-
tic mappings. RNN architectures are also reviewed, and more concretely
advanced variants like LSTM extensions, which achieve state of the art re-
sults thanks to their implicit temporal-dependency modeling of sequences.

13

Chapter 3

Introduction to Deep Learning

Deep Learning is an area of Machine Learning that has been recently very
explored, composed of a set of tools and techniques that let powerful mod-
els learn complex patterns automatically from data. This learning process
includes the multiple transformations of the data within the model itself to
get from low level processing functions to more abstract ones. This means
that, when we inject information for a specific task, the model makes the
data flow through many stages, extracting different sub-types of informa-
tion that interact and produce the final prediction. We will see some exam-
ples of these levels decomposition, picturing some internal structures of the
learned models.

The models we use in this framework are the Artificial Neural Networks
(ANN), and the number of transformation stages, called layers, are what
conform the depth of these networks. To be more specific, lets review what
an Artificial Neural Network is and what types of layer do compose it, and
later some other types of ANN that get us closer to the specific tasks of this
thesis will be seen. From now on we may refer to an ANN as a Neural
Network (NN).

3.1 Artificial Neural Network

An Artificial Neural Network is a composition of elementary units called
neurons. First, we can see what a neuron is and what computation does
it perform and later go to the stacking process to obtain the full network.
A neuron, then, is a basic computation unit and also an analogy of what a
biological neuron is. A schematic of it is depicted in Figure 3.1. There we
can see some operations performed to get an output scalar y out of an input
vector x = {x1, x2, x3}.
Equation 3.1 is the operation made in this unit. There we can see that, when
the input vector x is injected into the neuron inputs, they are multiplied by
a set of weights (arranged as a vector w), such that each input link has a
weight, and then we sum up these products together with a bias term.

Finally, the result of this addition of products is passed through a function
f shown in Equation 3.2, which can be of many types. To emulate the bi-
ological neurons, which fire an electrical impulse or not depending on a

14 Chapter 3. Introduction to Deep Learning

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

FIGURE 3.1: Artificial Neuron

threshold on the input sum, it is usually exemplified with the Sigmoid func-
tion σ(x), shown in Figure 3.2 in the scalar case. This unit is also called the
perceptron.

a = (wT · x + b) (3.1)

y = f(a) (3.2)

−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y
σ1(x) = 1

1+e−5x

σ2(x) = 1
1+e−10x

σ3(x) = 1
1+e−15x+9

FIGURE 3.2: Sigmoid function with different scalar weightings and bias: redw = 5,
b = 0; blue w = 10, b = 0; green w = 15, b = 9.

Equation 3.3 shows the σ(x) function’s form. This is a thresholding func-
tion, such that when the sum in 3.1 goes beyond the saturation point, the
output is constantly 1, and the same happens in the negative region where
the output goes to 0. We could obtain the same behavior with a step func-
tion, but an important feature of σ(x) is that it is differentiable, something
required for the learning process as we will see later in this chapter.

σ(x) =
1

1 + e−wT ·x+b (3.3)

3.1. Artificial Neural Network 15

Now that the artificial neuron has been introduced along with the operation
it performs, an explanation of what this means geometrically will further
help to interpret what happens in the stacking process of these elements
to form a Neural Network. The equation 3.1 is the expression of a hyper-
plane, where the set of weights w = {w1, w2, · · · , wN} control the rotation
and skew of it, and the bias term b controls its translation from the origin.
This is then a linear operation dividing the hyper-space S into two-splits,
and the application of the Sigmoid function lets us interpret the regions in
those splits as probabilities of pertaining to a class conditioned on the input.

The neuron’s operation after the σ(x) is called the Logistic Regression, a
technique to perform binary classification tasks modeling the posterior prob-
abilities with the hyper-plane equation we have seen earlier (Hastie et al.,
2005). So if we interpret the σ(x) as being the probability, as mentioned
earlier:

P (Y = 1|X) =
1

1 + e−wT ·x+b =
ewT ·x+b

1 + ewT ·x+b (3.4)

This brings the idea of the logit, which is the inverse of the logistic function
and expresses that this probability is derived from a linear regression of the
boundary between the classes, which is in turn the neuron operation.

logit(P (Y = 1|X)) = log(
P (Y = 1|X)

1− P (Y = 1|X)
) = wT · x + b (3.5)

Equation 3.5 is a Linear Regression (Hastie et al., 2005), and it lets us ap-
proximate functions depending on the w = {w1, w2, · · · , wN} predictors
(e.g. Price of a house based on its location, year of construction and area).
So this shows how the neuron first estimates an approximating linear func-
tion to build a hyper-plane, and then the element-wise Sigmoid turns the
estimation into a posterior probability.

The following explanation will be focused on classification tasks, but it is
a natural extension to an N -dimensional regression as well. The neuron is
the beginning of what a neural network will be, and now we will see the
limitations of the single perceptron in order to get to a more complex model.

First, the perceptron only lets us classify in a binary fashion, because there
is only one neuron to fire an output. Second, it can only work with a single
hyper-plane to discriminate highly complex patterns.

The natural extension to overcome the binary limitation will be to put many
neurons in parallel, each processing its binary output yn from a set of in-
puts: x = {x1, x2, · · · , xM}. When dealing with classification all the bi-
nary contributions are normalized to sum up to one, such that we obtain a
probability distribution out of theN output neurons. The output activation
becomes the one in equation 3.6, and its name is the Softmax function.

P (y = k|x) =
exp xTwk∑N
n=1 exp xTwn

(3.6)

Where k stands for the k-class and N is the total output neurons as previ-
ously stated. This topology is depicted in Figure 3.5. For convention, the
Input Layer is drawn like a set of M neurons, but they are not real neurons
in the sense of computation units, just each input xm.

16 Chapter 3. Introduction to Deep Learning

...
...

x1

x2

x3

xM

y1

y2

yN

Input
layer

Ouput
layer

FIGURE 3.3: Logistic Regression of N outputs.

This is letting us make a many-to-many mapping operation:

RN → RM

Now the other limitation was the computational power of this system. This
can be seen with the XOR example, which is frequently used to illustrate
the shortcomings of the Logistic Regression with respect to the Neural Net-
work. This is again a binary classification problem (i.e. single perceptron).
The neuron has to learn the XOR operation for two inputs, such that we
have:

X = {(0, 0), (0, 1), (1, 0), (1, 1)}

Note the X notation meaning we can arrange the values as a matrix of val-
ues, where we have 4 rows and 2 columns.

X =

0 0
0 1
1 0
1 1

Each row is called an input sample to our model, and we want the following
predictions:

Y =

0
1
1
0

Where we have 1 prediction per input sample. So in this example M = 2
and N = 1, following our previously established notation. If we try to plot
this in a 3D space, we would get what is depicted in Figure 3.4.

3.1. Artificial Neural Network 17

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

0.5

1

x1
x2

y

FIGURE 3.4: XOR resulting approximate surface.

From Figure 3.4 we can intuitively get to the conclusion that a single neu-
ron could separate one of the two four existing regions (two regions with 0
and two regions with 1). Thus we need to add at least the capacity to de-
fine two discriminating units, which brings the idea of the Hidden Layer, an
intermediate set of neurons that will first map the input space to a linearly
separable representation where the final decision will be taken (either clas-
sification or regression). In this case, the following Neural Network has the
weights trained to make the XOR function:

1 1

1/0

1/0

x1

x2

h1

h2

y1

−5

−5

10

−10

−10

10

−5

10

10

Input
layer

Hidden
layer

Ouput
layer

FIGURE 3.5: XOR Neural Network with Sigmoid percep-
trons.

This is the so called Artificial Neural Network, a set of artificial neurons
linked together in order to perform an arbitrary function, as in this exam-
ple where the XOR is implemented with the depicted trained weights. An
important and hard task for these systems is the learning process, that will
be reviewed later in this chapter. The learning process is what makes the

18 Chapter 3. Introduction to Deep Learning

network set its weights to perform the desired function. Another important
thing to point out is that connections between layers are depicted with ar-
rows, which indicates that this model is directed, and this is why this is also
called a feed-forward Neural Network, thus making the inputs flow up to
the output layer in what we call the inference operation. To inspect a little
bit the final components and equations of this system, we see that in this
XOR toy example the inputs are x1 and x2, which can have binary values
0 or 1, and there is one output y1, binary as well. The unlabeled neurons
are the biases, drawn here as inputs in every layer such that the bias values
can be appreciated together with the weights. This is incorporated in the
equation 3.1 by appending the scalar value 1 as an input in x, and letting
the value wi0 = bi in the set of weights on every neuron.

So now, as we have many neurons in every layer, the set of all links from
layer i to layer j can be written as a matrix Wji, where each wji is the link
weight between neuron/input in layer i and neuron in layer j, which turns
to be the layer i+ 1. Also, I is the number of neurons/inputs in layer i, and
J is the number of neurons in layer j, leading to a matrix WJ×I . Now, the
computation of a layer are called activations (e.g. for the hidden layer in
Figure 3.4) and the operation can be written as:

z = σ(Wji · x) where x = {1, x1, · · · , xN} (3.7)

Later, when going in depth with many architectures, we may refer to a
feed-forward layer as a hidden or output layer composed of this directed
connections and activation functions (such as the Sigmoid). Yet another
plausible name will be Fully Connected (FC) layer. Depending on the type
of input/output values the sigmoidal units may implement the tanh as a
non-linearity instead of the Sigmoid, due to its extended range between
{−1, 1}. Nonetheless, in regression tasks the output might be directly the
operation in equation 3.1 for all neurons in the output layer, such that the
layer operation is purely linear and returns a real value. Regression also
works whilst predictions are made within the linear region of the function
with normalized outputs. Also, in terms of notation there is a variant name
for the whole feed-forward architecture which might be used in this work
as well, the Multiple Layer Perceptron (MLP).

3.2 Training the network: Back-Propagation algorithm

In this section it is discussed the way in which the network is trained, thus
the way in which it learns the weight value of every link and the bias value
of every neuron. The book of Bishop (1995) is a very good reference for
understanding this methodology, and many parts of this section will be
based on it. Also the work from LeCun et al. (2012) is a thorough analysis of
good practices to make this algorithm work well, but it is out of the scope of
this work to discuss every aspect with the tricks and tweaks of the learning
procedure.

The learning process is based on a cost function (also called error function)
that we define depending on the problem we are facing, whether it is clas-
sification or regression. Given this cost the network’s task is to minimize it

3.2. Training the network: Back-Propagation algorithm 19

with respect to its weights and biases, so the cost function must be differen-
tiable. The algorithm to evaluate the derivatives for the cost function of our
choice is called the Back-Propagation (BP) algorithm, and it is based on the
propagation of errors backwards through the network structure, from the
output layer to the input layer, in order to correct the weights that provoke
these mistakes with small modifications proportional to the committed er-
rors. It is important to recall that there can be many non-linearities hap-
pening layer by layer at this point (see equation 3.7), and this provokes the
lack of a closed solution for estimating the parameters. This algorithm then
behaves in an iterative manner, such that it learns step-by-step for certain
inputs shown many times to the model. As posed in Bishop (1995), each
step can be divided in two stages:

1. First compute the derivatives from the error and back-propagate them.

2. Secondly update the weights of each layer.

It is worth mentioning that the second stage can be implemented in a vari-
ety of ways, and some reference to modern techniques will be given later in
this section.

Now it is good to have a more in-depth analysis of the BP algorithm for a
general network, with an arbitrary amount of feed forward layers, with an
arbitrary non-linearity and with an arbitrary error function. In a general
feed-forward neural network, each unit computes its activation like shown
in equation 3.7 previous to applying σ, which can be rewritten as:

aj =
∑
i

wjizi (3.8)

where zi is the activation of a unit or an input (equation 3.7 is written with
xi, which has been changed by zi to better conceive it as an arbitrary input,
either from the input neurons or from an intermediate layer). zi is then in-
jected through the connection wji, meaning it goes from all neurons i to the
receiving neuron j. After applying the f(.) non-linearity to the activation
we have the final activation of the j neuron as:

zj = f(aj) (3.9)

In equation 3.2 the output unit was denoted with a y, but again zj gener-
alizes to show it could be the activation of an intermediate hidden layer.
However, when referring to the network outputs the notation will still be
yn. It has been mentioned that what we want are a set of weights optimized
by means of an error function. We can take into account an error defined for
each (input,output) training tuple of examples with the following expres-
sion:

E =
∑
t

Et (3.10)

Where t enumerates the input/output pair. The error Et is a differentiable
function of the outputs, so that:

Et = Et(y1 · · · yN) (3.11)

20 Chapter 3. Introduction to Deep Learning

The goal of this algorithm is to evaluate the derivatives of the error function
with respect to the weights and biases of the network, as aforementioned.
Because of the fact that in equation 3.10 the derivatives can be expressed as
sums over the set of training examples, each output pattern can be treated
separately, so the analysis from now on is focused on a single example, the
t-th.

To back-propagate the error for the t-th output example the input features
are injected into the network and forward-propagated by means of equa-
tion 3.7 layer by layer, thus making inferences.

The error Et depends on the weight wji through the summed input aj to
unit j. Hence we can apply the chain rule for partial derivatives:

∂Et

∂wji
=
∂Et

∂aj

∂aj
∂wji

(3.12)

Now, the following notation can be introduced for the sake of simplicity:

δj =
∂Et

∂aj
(3.13)

The term δ is defined as an error term. We can use equations 3.8 and 3.2 to
write the derivative as:

∂aj
∂wji

= zi (3.14)

And subsituting both equations 3.13 and 3.14 into 3.12 we get:

∂Et

∂wji
= δjzi (3.15)

This result in 3.15 is expressing that the derivative is obtained by multiply-
ing the value δ for the unit at the output end of the link (or the weight) by
the value of z of the unit at the input end of the link (z = 1 for the biases). To
evaluate the derivatives, then, the value of δj has to be computed for each
neuron in the network to apply 3.15 afterwards. There are two different
cases to compute δ:

• In the case of output units the evaluation of δn is simple, taking the
definition in equation 3.13:

δn =
∂Et

∂an
= g′(an)

∂Et

∂yn
(3.16)

To evaluate the equation 3.16 it is only required to substitute the ex-
pressions of g′(a) and ∂Et

∂yn
appropriately.

3.2. Training the network: Back-Propagation algorithm 21

• In the case of hidden units we need to make use of the chain rule for
partial derivatives again, such that:

δj =
∂Et

∂aj
=
∑
n

∂Et

∂an

∂an
∂aj

(3.17)

Where the sum is running over all n units to which the unit j sends
connections. Note that the units labeled n could include other hidden
units or output units. Figure 3.6 illustrates the mentioned procedure
with the arrangement of units and weights. Now substituting the
definition of δ at equation 3.13 into 3.17, following 3.8 and 3.9:

δj = g′(aj)
∑
n

wnjδn (3.18)

This is the back-propagation formula, and it tells us that the δ value
for a particular hidden neuron can be obtained with the δ from neu-
rons in later hidden layers (or output layer).

FIGURE 3.6: Calculation of δj for the hidden neuron j back-
propagating the δ’s from the connected n units (which can
be output units or next-hidden units). Based on (Bishop,
1995) Figure 4.16.

Since the values of the output δ’s are known from equation 3.16, the algo-
rithm is based on applying 3.17 recursively, evaluating all the δ’s for every
hidden neuron in a feed-forward neural network. This is then the first part
of the BP algorithm, which is the evaluation of the derivatives of the error
Et with respect to the weighs and biases. It can be summarized in four
main steps:

1. Make the inference injecting the inputs x and propagating the activa-
tions forward.

2. Evaluate the δn for all output units.

3. Back-propagate the δ’s to the δj for every hidden neuron.

4. Evaluate the derivatives with respect to the weights as in equation 3.15.

22 Chapter 3. Introduction to Deep Learning

This methodology has been developed for the case of a training pattern (a
t-th pattern), but the above can be repeated for every pattern in the training
set so that:

∂E

∂wji
=
∑
t

∂Et

∂wji
(3.19)

Now to have the complete learning algorithm (or the first sight of what
the learning algorithm is) the weight update method has to be introduced.
There are many types of strategies nowadays, but a very simple method
can be a fixed-step gradient descent learning. This is based on subtracting
a fixed amount of the error to the weights to correct little by little like so:

w
(k+1)
ji = w

(k)
ji −∆w

(k)
ji = w

(k)
ji − η0

∑
t

δtjz
t
i (3.20)

Where (k) remarks the current iteration, η0 is the so called learning rate, and
the sum operations involves a batch learning procedure (thus updating the
weights after seeing a batch of data from the training set instead of a single
sample). The parameters t and η0 are chosen before the training, as well
as the topology of the network and the number of iterations to update the
weights. All these parameters are called hyperparameters, and they are part
of the tuning behind the intuition of these systems. Regarding the batches,
they can contain the full dataset (so a single batch would be all training sam-
ples) or slices of it, which would then be called mini-batches. Nowadays the
most used methods work with mini-batches because these take advantage
of the GPUs parallelization capabilities, in addition to the fact that training
sets are usually quite large and they exceed the memory capacities easily.
An important term to be introduced at this point is the Epoch, which is the
amount of mini-bathes that have to be processed to see all the training set.
This terminology will appear in the experimental setup of the models de-
veloped in this work. The basic mini-batch learning is called Stochastic
Gradient Descent (SGD), and it comes with many flavors, because we can
also set some additional parameters to it, like momentum (Sutskever et al.,
2013) or some learning decay factor, with which the learning rate decays
over time to converge more easily.

Regarding the learning rate we have to set it to a proper value that lets the
model learn in a paced manner to converge as well as possible, but without
doing it too slowly. Typical values for this are between {0.1, 0.001}. A value
that is too large will lead to divergence of the learning, thus increasing the
training loss rather than minimizing it. On the other hand, a learning rate
that is too low will probably make the model get stuck in some minima
rather than going further to a better point during the optimization. Fig-
ure 3.7 shows some feasible training cases depending on the learning rate
applied.

In this work the SGD has been used and also the Adam optimizer (Kingma
and Ba, 2014), which is a computationally efficient algorithm, has little
memory requirements and is invariant to diagonal rescaling of the gradi-
ents. It is well suited for problems that are large in terms of data and/or

3.2. Training the network: Back-Propagation algorithm 23

FIGURE 3.7: Qualitative examples of training loss evolu-
tion for various learning rate magnitudes.

parameters as claimed by the authors, and it performed well during the de-
velopment of this work. However, it is out of the scope of this thesis to ex-
plain it in more details, as we have already seen what is needed to learn and
the algorithm is an improvement over the basic details explained. One last
important thing to mention is the way in which the weights and biases are
initialized. It is fine if biases are initialized to be zero at the beginning of the
training stage, but the weights need to have some random values, and they
must be very small for propagating the data well through the non-linear
activations. The reason to initialize the weights randomly is breaking the
symmetry between hidden units of the same hidden layer (Bengio, 2012).

Orr and Müller (2003) and Glorot and Bengio (2010) propose some method-
ologies for a proper initialization of the weights depending on the number
of units in the topology and the activation functions used.

3.2.1 Dropout Method

One of the known possible issues of Deep Neural Networks is the over-
fitting produced by the large amount of parameters that these models can
easily have. We can make a quick calculation of how many parameters are
held inside a neural network with L layers, H hidden neurons per layer (we
consider all layers have the same amount of hidden units), N inputs andM
outputs:

params = (H ×M +M) + (H ×N +H) +

L−2∑
l=1

H ×H +H (3.21)

To exemplify the magnitude of a network, we could set 4 hidden layers
with 500 neurons each, an output layer of 20 units and 300 input features,
giving as a result:

params = (500×20+20)+(500×300+500)+
3∑
l=1

500×500+500 = 912020 ≈ 912K

24 Chapter 3. Introduction to Deep Learning

This is a huge amount of parameters, yet by far not one of the biggest con-
sidering the state of the art architectures. It is known from every machine
learning system that when the number of parameters increases to a huge
amount the chances of over-fitting the training data get quite higher. Over-
fitting is the effect of learning too much about the training set used to up-
date the weights of our model. We can see this effect for an hypothetic
binary classification task in Figure 3.8. This is bad because it means that
our model does not generalize well, so that when test data (new samples
not seen during training) is evaluated it is likely that the model does not
perform really well, because it learned noisy characteristics of the training
set and not the truth underlying pattern that generates the real data. To
combat this effect there are two main ways:

• Add more training data to fill in the blanks.

• Reduce the complexity of the model by means of reducing the amount
of parameters to learn.

FIGURE 3.8: Examples of a good fit and an overfitting for
a binary classification task with a 2 − D space (i.e. 2 input
features).

In the case of a Neural Network there are some techniques to implement the
first idea by means of generating artificial examples out of the distortion of

3.2. Training the network: Back-Propagation algorithm 25

the original data. The possibility to do this depends on the type of data we
are facing (e.g. images, speech, etc.), and it is called data augmentation. The
second approach is more feasible to adapt to every type of data we have, but
reducing the number of parameters could result in diminishing too much
the power of our model. A softer solution to this is using regularization,
which means imposing restrictions to the learning process such that the
weights are learned in a controlled manner.

An interesting and effective regularization method is the Dropout method
presented here and proposed in Srivastava et al. (2014), which is based on
making a poll to a set of thinned neural networks (networks with randomly
dropped out neurons in some layers) so that the final decision of our multi-
layered model will be voted by many thinned networks. The key idea of
this algorithm is to randomly drop units during training, which prevents
those neurons to co-adapt too much to the training data.

FIGURE 3.9: (a) Standard network with 2 hidden layers. (b) Example of thinned
network by applying dropout to the network on (a). Based on (Srivastava et al.,
2014) Figure 1.

Dropping a unit means temporarily removing it from the network along
with its connections (inputs and outputs). The choice of which units are
dropped is performed randomly with a probability p, which is independent
for every unit. The authors claimed that setting it to p = 0.5 seems to be
close to optimal for a wide range of networks and tasks. However if some
dropout is going to be applied to the input units, it is better to give it a value
closer to 1. For each presentation of a training case a new thinned network
is built and trained. During test time, all neurons are present but they have
smaller weights because of the dropped links during training.

Also, another technique that can be used as a regularization mechanism
and can also be used in conjunction with Dropout is taking a separate data
split to that from training to validate our model after each epoch. This
means that after updating the network for an epoch we make an inference
with the so called validation examples (from the validation set), and by
means of observing the evolution of the error committed by the network
predicting the validation examples we decide whether to stop or not the
training before all the epochs have been completed. This is called early-
stopping, and it is used during model search in this work together with the

26 Chapter 3. Introduction to Deep Learning

Dropout.

3.3 Deep Neural Network

The concept of Deep Neural Network (DNN) is based on stacking many
hidden layers to make the model deeper. Neural Networks appeared decades
ago, but building deep models was not a simple task by then, because the
BP algorithm did not work well when dealing with deep architectures as
the gradients vanished easily, and it was also usual falling at a local min-
ima, because increasing the model complexity makes it highly non-linear
so that local minima might be more frequent. Training deep architectures
was also quite slow because of the lack of computational resources. And
another very important drawback was the lack of data. Nowadays it is dif-
ferent though, because the Internet provoked a huge increase in the amount
of data available (images, videos, speech, audio, text, etc.), and the Graph-
ical Processing Units (GPUs) make the matrix operations really fast and ef-
ficiently (for instance, the equation 3.7). Also, new learning algorithms like
Adam (Kingma and Ba, 2014), make the learning faster with a better prop-
agation of the gradients through the model. Furthermore, many initializa-
tion schemes for the weights have been proposed so that it gets harder to
fall into a local minima, and this has been a trendy area of research over
the last years in Deep Learning. These methods are mostly based on pre-
training the models (i.e. give some meaningful values to the weights in
order to make them not random and close to what we want to achieve). It
is out of the scope to explain how these mechanisms work, however the Re-
stricted Boltzman Machines (Tutorial on Restricted Boltzman Machines (RBM)
2010), the Denoising Autoencoders (Tutorial on Denoising Autoencoders (DA)
2010) and the Deep Belief Networks (Tutorial on Deep Belief Networks 2010)
are referenced if the readers want to get further details. Special attention is
given to recurrent architectures as they are the main type of model consid-
ered in this work.

3.4 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a special type of Neural Network
topology well suited for processing sequences. The recurrent keyword stands
for the fact that these networks perform the same task for every element of
a sequence (Recurrent Neural Networks Tutorial 2015), having an output that
depends on previous computations. This characteristic can be seen as a
memory feature that these models have, as they "remember" the past flows
of information. When we talk about a unidirectional recurrent layer we
can say that it has memory about the past, so at time t they have an input
vector xt ∈ Rn and the memory state at time t − 1 ht−1 ∈ Rm, producing
the new memory state ht, also called hidden state, with the following set of
operations:

ht = g(W · xt + U · ht−1 + bh) (3.22)

3.4. Recurrent Neural Network 27

where W is the input-to-hidden weights matrix (feed forward behavior), U
is the hidden-to-hidden weights matrix where the feedback is made, bh is
the bias vector and g is a specified element-wise non-linear transformation,
such as the hyperbolic tangent or the sigmoid seen previously. As we can
see, for every input sequence X = {x1, x2, . . . , xT } we obtain an output se-
quence H = {h1,h2, . . . ,hT }, where each output from the layer keeps track
of dynamic changes in time, and this is what makes the recurrent model a
really powerful option for sequences.

These models then keep track of the context for the input features, and a
very interesting property they have is that they share the same parameters
for every time-step of the process, thus reducing the amount of weights
needed to take into account a large context. It is usual to visualize an RNN
unfolded in time, like in Figure 3.10. There the output is also shown as the
result of another matrix computation, though it is not part of the recurrent
layer:

yt = f(V · ht + bv) (3.23)

FIGURE 3.10: Example RNN neuron unfolded in time.

The training for RNNs is similar to that of feed forward ones by means of
using a BP algorithm, but here the time dimension also needs to be taken
into account. This is important because as mentioned previously, the pa-
rameters of the recurrent matrix are shared between time-steps, thus the
gradient depends not only on the current time step, but also on the pre-
vious ones. For instance as it is exemplified in (Recurrent Neural Networks
Tutorial 2015) if we wanted to compute the gradient at t = 4 we would
need to back-propagate 3 steps and sum up the gradients. This technique is
called Back-Propagation Through Time (BPTT), and a quick review to take
a glance at the different with the standard one is given in the next section.

28 Chapter 3. Introduction to Deep Learning

3.5 Back-Propagation Through Time

First and as previously settled for standard BP (see section 3.2), a cost func-
tion is defined to train our RNN, and in this case the total error at the output
of the network is the sum of the errors at each time-step:

E(y, ŷ) =
T∑
t=1

Et(yt, ŷt) (3.24)

Where yt is the ground-truth example we show to the network at time-step
t and ŷt is its prediction. For the case of the network shown in Figure 3.10
the goal of BPTT is to compute the gradients with respect to our parameters
W,U and V to learn the appropriate weight values, so it is the same idea as
in the feed forward BP. Just as it is done in equation 3.24 to sum up the
errors, the gradients also get summed through time as:

∂E

∂W
=

T−1∑
t=0

∂Et
∂W

(3.25)

The following procedure can be found in more detail in (Recurrent Neural
Networks Tutorial 2015). The chain rule is applied again here, and the first
gradients we refer to are the ones for V which are quite straightforward:

∂E3

∂V
=
∂E3

∂ŷ3

∂ŷ3

∂V
=
∂E3

∂ŷ3

∂ŷ3

∂z3
∂z3
∂V

(3.26)

Where z3 = V · h3. Beware that the time-step 3 has been considered to
continue with the first example that was mentioned with the RNN gradient
computations. An important thing to note here is how ∂E3

∂V does not de-
pend on other values than the current time-step, as the dependency is built
upon (ŷ3,y3,h3). It is not like so with the matrices within the recurrent layer
however, because for U matrix for example:

∂E3

∂U
=
∂E3

∂ŷ3

ŷ3

∂h3

∂h3

∂U
(3.27)

Now from equation 3.22 we see that h3 depends on h2, which in turn de-
pends on h1 and so forth. This means that taking the derivative is applying
the chain rule for as many time-steps as we have:

∂E3

∂U
=

3∑
t=0

∂E3

∂ŷ3

ŷ3

∂h3

∂h3

∂ht
∂ht
∂U

(3.28)

This is expressing that the gradient is accumulated through time and not
only in the feed-forward way. Figure 3.11 illustrates the gradient flowing
backwards from the current time-step. As previously seen with the feed-
forward BP-algorithm, a delta can also be defined here, being it:

δ
(t)
2 =

∂Et
∂zt−1

=
∂Et
∂ht

∂ht
∂ht−1

∂ht−1
∂zt−1

(3.29)

3.5. Back-Propagation Through Time 29

Where zt−1 is defined to be the activation (previous to applying any non-
linearity) of the recurrent layer:

zt−1 = W · xt−1 + U · h1 (3.30)

FIGURE 3.11: Gradient flow at the fourth time-step 3. Violet arrows: inference
flow of the input data. Red arrows: back-propagated gradients/errors.

In practice the distance-in-time can get too large and that makes the gra-
dient propagation difficult, because the back-propagation in time can be
seen as back-propagating through many layers (as many as time-steps), so
the number of time-steps is truncated to have a maximum length of the
training sequences, and then the algorithm is sometimes called Truncated
Back-Propagation Through Time.

This type of RNN are usually called the vanilla ones, which stands for the
basic model with tanh/sigmoidal units. In theory they should work well
to model any time dependencies so that they recall any context within a
range of T time-steps, but in practice they suffer from two problems: The
vanishing gradients and The exploding gradients. Both of these problems are
based on the inherent behavior of the equation 3.22 applied time-step by
time-step:

ht = g(W · xt + U · g(· · · g(W · xt−T + U · ht−T + bh) · · ·) + bh) (3.31)

The process of multiplying the matrix U at every time-step is what makes
the gradients so unstable, rapidly diminishing to zero or exploding depend-
ing on the value of the highest eigenvalue of the matrix. This makes it really
complicated to train these models in an effective manner and also provokes
the lost of long-term dependencies in memory when doing inference, be-
cause the multiplicative behavior of these neurons do not preserve well the
information through long sequences. To overcome these effects there are
extensions of the vanilla RNN, leading to what are called memory cells.
Currently there are two main types of these cells: Long Short Term Mem-
ory (LSTM) cells and Gated Recurrent Units (GRU) (Cho et al., 2014b). The

30 Chapter 3. Introduction to Deep Learning

former ones have been extensively used in this work and this is why the
next section concludes the background by presenting them. Nevertheless,
there are some really interesting works exploring the capabilities of some
of these architectures empirically, showing that they perform quite similar
most of the time (Chung et al., 2014; Wu and King, 2016).

3.6 Long Short Term Memory

In this work we used LSTM layers, as they cope better with the vanishing
gradient problems (Hochreiter, 1998) that appeared when training regular
RNNs as mentioned previously. They also model the long term dependen-
cies in a better way than the simple RNNs do because of their gating mech-
anisms (Hochreiter and Schmidhuber, 1997). The structure of an LSTM cell
is shown in Figure 3.12. There are three gates in this structure:

• Input gate: control the flow of information coming in.

• Forget gate: control which components of the cell state are forgotten
(i.e. multiplying by zero to delete from memory).

• Output gate: control the flow of information going out.

FIGURE 3.12: Architecture of an LSTM cell. i(t): input gate at time-step t. o(t):
output gate at time-step t. f(t): forget gate at time-step t. c(t): cell state at time-
step t.

Figure 3.13 shows the unfolded version of the LSTM cell, where we can see
two main flows of information through time: ht and ct. The equations that
describe this architecture are the following ones:

it = σ(Wixt + Uiht−1 + bi) (3.32)

Ĉt = tanh(Wcxt + Ucht−1 + bc) (3.33)

3.6. Long Short Term Memory 31

ft = σ(Wfxt + Ufht−1 + bf) (3.34)

Ct = it � Ĉt + ft � Ct−1 (3.35)

ot = σ(Woxt + Uoht−1 + bo) (3.36)

ht = ot � tanh(Ct) (3.37)

The symbol �means element-wise product here. We can see how there are
many matrices now, as well as bias vectors: Wi, Ui, Wf , Uf , Wo, Uo, Wc, Uc,
bi, bf , bo and bc. All these weights are now parameters to be learned for
the LSTM layer, so the architecture has become way more complex that the
vanilla one, but the interesting thing is that the gating mechanisms control
what to keep and what to forget about the inputs and the past. There is a
good analysis in Understanding LSTM Networks (2015) about it, summarized
here.

The gates are seen as soft-switches (because of the sigmoid that is bounded
σ ∈ {0, 1}, but with a transition of real values between the boundaries):

• The forget gate then decides whether to forget contents or not for each
cell in the LSTM layer (i.e. we have a vector of forget activations per
time-step) by multiplying the past cell states by its activation value:
0 means forget completely about what was seen, 1 means keep it all.
The forget activation is obtained by looking at the past ht−1 and at the
current input xt.

• The input is on behalf of deciding whether the new information avail-
able at the input gets into the memory state or not. This process is
divided in two steps:

– Get the activation of the soft-switch by looking at the past ht−1
and the input xt.

– A candidate vector Ĉt is computed (equation 3.33) that could be
added to the memory cell state.

Then the results of these two steps are combined to update the state
with the right amount and type of information.

• Next, the new cell states Ct are computed. It is important to note that
the computation (equation 3.35) includes applying the forget element-
wise product to every past cell state. Also, the combination of "What
information should get into the memory" and the candidate memory
are multiplied, and this way of updating the information stored in the
cell is the main difference with the vanilla RNN. Here the updates are
computed through a summation instead of a multiplication, and also
the regulation of input and forgot flows makes these systems able to
store long-term dependencies.

32 Chapter 3. Introduction to Deep Learning

• To finish, the output gate activation is computed (from ht−1 and xt
again) and applied to the new cell state to finally get the right com-
ponents to generate (i.e. "what is actually required from the different
cells in the layer to generate the right information?").

FIGURE 3.13: LSTM cell unfolded in time. The red arrows depict the inference
flow of data between time-steps.

3.7 Summary

In section 3.1 we have went through the basics of what an Artificial Neural
Network (ANN, NN, MLP) is, from its elemental unit (the neuron), to the
full architecture of the feed-forward construction. The idea of the different
layers (Input, Hidden and Output) has been explained, detailing why any
hidden units are required to make a more powerful model with a toy ex-
ample, which was the XOR. Also, the layer activation equation was shown
and explained, looking at the components that compose it.

Following to the basics, the Back-Propagation algorithm has been discussed
in section 3.2 in order to see the learning details of the neural networks.
There some terminology has been introduced to be understood in later
chapters when dealing with the models developed for this work. The feed
forward architectures explanations conclude with a brief description of the
Deep Neural Network architectures, where some past issues are exposed
regarding the difficulties of training these models and some current solu-
tions the problems are mentioned.

The last part of the chapter is focused on Recurrent Neural Networks and
the way in which they are trained, and more concretely Long Short Term
Memory networks and their sequence modeling capabilities are explored.
Also, a detailed explanation of the LSTM gating mechanisms is given, some-
thing that is useful for the gating analysis performed in Chapter 4.

33

Chapter 4

Two stage Text-to-Speech with
RNN-LSTM

4.1 Introduction

The main purpose of this work has been building a state of the art Text
To Speech (TTS) system with Deep Learning techniques. As seen in Chap-
ter 2, some previous works performed quite well with Deep Neural Net-
work variants and also with recurrent architectures, either as standalone
systems for mapping linguistic contents to acoustic frames, or to replace
some parts of the SPSS pipeline. In this section, the process to build the
full TTS system for this thesis is explained, which is fully built with RNN
architectures as later will be seen. Figure 4.1 represents the general scheme
of the developed work.

The system is subdivided in two main steps: training and synthesis, simi-
lar to the SPSS system seen in Chapter 2. During training there is a Speech
Database available that contains contextual features and speech recordings.
The contextual features are generated from analyzing the textual transcrip-
tions of those recordings, and they will be presented in section 4.2.1. It
is basically a representation of the linguistic complexities that must be de-
rived into speech signal. Out of the recordings of that database many acous-
tic features are also extracted by means of a Vocoder, as explained in sec-
tion 4.2.2, which are used to train two models: duration RNN and acoustic
RNN. This two stage architecture was influenced by the work in Zen and
Sak (2015). Both training processes are depicted in Figure 4.1 in the Dura-
tion RNN training and Acoustic RNN training blocks. Once the models are
trained the weights are saved for later usage.

The second part of the system is the synthesis stage, where both trained
models are used in a pipeline fashion. First, raw text is inserted by the user
and the text analysis front-end converts it to contextual features. Then these
features are injected into the duration model that will predict the duration
of each phoneme one by one, sending its predictions to the acoustic model,
which will generate the acoustic parameter trajectories for a Vocoder. In the
end, the Vocoder will convert the parameterization of the speech into the
waveform again.

This chapter is structured in the following manner: Section 4.2 describes in
detail what data is required to train this model and how it is prepared, with
a parallelized pipeline architecture to speed things up. The Two-stage-TTS
modules are described in Section 4.3, and a post-processing improvement to

34 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

FIGURE 4.1: Schematic of the developed two stage Text-To-Speech system.

4.2. Data Preparation 35

achieve better naturalness in the synthesis is applied in section 4.4. Finally,
results are shown and discussed in section 4.5.

4.2 Data Preparation

In this section it is explained the way in which data is generated. This is
basically the process to go from raw data to features that will be processed
either as predictors or as predictions. To clarify things and avoid confusion,
input features are called predictors and outputs are called predictions. First,
the textual features, which will be mainly predictors, are explained. Their
types and the process they go through is depicted, such that it is understood
why are these features chosen for the synthesis purpose. Then, acoustic
features will be described, as well as the process they go through to produce
the speech stream with the Vocoder.

A parallelization mechanism to speed up the generation of features is also
briefly shown. It is considered to be an important part of the system and the
project, owing to the fact that it lets us make more experiments and quicker
if we want to generate different sets of speakers’ features. We will see in the
next chapter that we require data from many speakers to be generated, so
this tool is useful for that.

4.2.1 Text to Label process

As mentioned earlier, raw text is processed into a more convenient rep-
resentation that we call label. This representation is composed of a set of
contextualized prosodic and phonetic features. The features are a pho-
netic transcription of a few windowed phonemes, so that the synthesis of
the current phoneme takes into account the surrounding phonemes for co-
articulation purposes. Also, information about stressed syllables, position
of the phoneme inside the current syllable, the position of the syllable in the
word, etc. is embedded in these features. Table 4.1 shows the label format
features/ symbols and their descriptions.

TABLE 4.1: Context-dependent label format.

label format
Symbol Description

p1 phoneme identity before the previous phoneme
p2 previous phoneme identity
p3 current phoneme identity
p4 next phoneme identity
p5 the phoneme after the next phoneme identity
p6 position of the current phoneme identity in the current syllable (for-

ward)
p7 position of the current phoneme identity in the current syllable

(backward)

a1 whether the previous syllable is stressed or not (0; not, 1: yes)
a2 whether the previous syllable is accented or not (0; not, 1: yes)

36 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

Table 4.1 (continued)

a3 number of phonemes in the previous syllable
b1 whether the current syllable stressed or not (0: not, 1: yes)
b2 whether the current syllable accented or not (0: not, 1: yes)
b3 the number of phonemes in the current syllable
b4 position of the current syllable in the current word (forward)
b5 position of the current syllable in the current word (backward)
b6 position of the current syllable in the current phrase(forward)
b7 position of the current syllable in the current phrase(backward)
b8 number of stressed syllables before the current syllable in the cur-

rent phrase
b9 number of stressed syllables after the current syllable in the current

phrase
b10 number of accented syllables before the current syllable in the cur-

rent phrase
b11 number of accented syllables after the current syllable in the current

phrase
b12 number of syllables from the previous stressed syllable to the cur-

rent syllable
b13 number of syllables from the current syllable to the next stressed

syllable
b14 number of syllables from the previous accented syllable to the cur-

rent syllable
b15 number of syllables from the current syllable to the next accented

syllable
b16 name of the vowel of the current syllable

c1 whether the next syllable stressed or not (0: not, 1:yes)
c2 whether the next syllable accented or not (0: not, 1:yes)
c3 the number of phonemes in the next syllable

d1 gpos (guess part-of-speech) of the previous word
d2 number of syllables in the previous word

e1 gpos (guess part-of-speech) of the current word
e2 number of syllables in the current word
e3 position of current word in the current phrase (forward)
e4 position of current word in the current phrase (backward)
e5 number of content words before the current word in the current

phrase
e6 number of content words after the current word in the current

phrase
e7 number of words from the previous content word to the current

word
e8 number of words from the current word to the next content word

f1 gpos (guess part-of-speech) of the next word
f2 number of syllables in the previous word

g1 number of syllables in the previous phrase
g2 number of words in the previous phrase

h1 number of syllables in the current phrase

4.2. Data Preparation 37

Table 4.1 (continued)

h2 number of words in the current phrase
h3 position of the current phrase in utterance (forward)
h4 position of the current phrase in utterance (backward)
h5 Phrase modality (question, exclamation, etc.)

i1 number of syllables in the next phrase
i2 number of words in the previous phrase

j1 number of syllables in this utterance
j2 number of words in this utterance
j3 number of phrases in this utterance

We call a text transcription file a utterance. When we convert the text into a
label, the features are structured in the following format:

p1^p2$-$p3$+$p4$=$p5~p6_p7/A:a1_a2_a3/B:b1-b2-b3~b4-b5...
&b6-b7#b8-b9$b10-b11!b12-b13;b14-b15|b16/C:c1+c2+c3/D:d1_d2...
/E:e1+e2~e3+e4&e5+e6#e7+e8/F:f1_f2/G:g1_g2/H:h1=h2~h3=h4|h4...
/I:i1_i2/J:j1+j2-j3

So for instance, if we had a utterance with the Spanish sentence "buenos
días"(good morning) in it, the label processing system would output the
label file depicted in Figure 4.2, which follows the format aforementioned.

FIGURE 4.2: Label file example resulting from processing
the Spanish text "buenos días".

This format has been widely used in SPSS, and it is an accepted well for-
matted description of many important characteristics to take into account
for generating the speech stream. In the case of our TTS, the label generator
is the front-end of Ogmios (Bonafonte et al., 2006a), which is a TTS system
developed by UPC including modules for text processing, prosody model-
ing and speech generation. The way in which this data is injected to the
neural network model will be seen in section 4.2.3.

Now that labels have been introduced, we can derive more information
from them. It is so that another type of features were also used in SPSS,
which were extracted from the labels contextual information. Previously
in Chapter 2 the clustering method when building the HMM models was
introduced. The way in which those clustering trees are built is by means
of a set of questions related to the identities appearing in the labels (see Fig-
ure 2.6). These questions are designed considering the characteristics of the

38 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

language we are processing. For instance we have the following questions
for the current phoneme (p3) appearing in the label:

• Is the current phoneme a Vowel?

• Is the current phoneme Affricate?

• Is the current phoneme Consonant?

• Is the current phoneme Palatal?

• Is the current phoneme Approximant?

• Is the current phoneme Alveolar?

• Is the current phoneme Glottal?

• Is the current phoneme Bilabial?

• Is the current phoneme Plosive?

• (...)

These questions are a very brief example extracted from the real ones, refer-
ring to the current phoneme only (p3). However, there are questions related
to all the other phonemes (p1,p2,p4,p5) and Part-Of-Speech tags (d1,e1,f1).
We concatenate the information given by answering these questions to the
label features for our own TTS, because we also want to consider the type of
content included in the label. The total amount of questions taken from the
ones used in SPSS are shown in Table 4.2. There, the entities where ques-
tions are applied are depicted jointly with the amount of questions asked.

TABLE 4.2: Number of questions per Entity. LL:Left-Left, L:Left, C:Central,
R:Right, RR:Right-Right

Entity # Questions

LL− phoneme 33
L− phoneme 33
C − phoneme 33
R− phoneme 33
RR− phoneme 33

L−Word−GPOS 8
C −Word−GPOS 8
R−Word−GPOS 8

4.2.2 Acoustic parameters

The text-to-speech system built in this work does not generate the voice
waveform out of the neural network itself, but it rather uses an interme-
diate speech generation module called Vocoder, shown in Figure 4.1. The
Vocoder takes the raw speech and, by windowing it, it extracts many acous-
tic frames composed of features that describe the signal in a more conve-
nient way, having good mathematical properties. This process is called

4.2. Data Preparation 39

encoding. On the other hand and also continuing with our TTS output,
the Vocoder does the same the other way around for decoding: it takes the
parametric representation of the speech, thus the acoustic frames, and con-
verts them back to the speech signal. In this work we used Ahocoder (Erro
et al., 2011), and the encoding process schematic is shown in Figure 4.3,
where it can be seen how it takes the speech and generates three types of
features: Mel Frequency Cepstral Coefficients, Voiced Frequency (FV for its
name given by the authors in Spanish) and log-F0 contour.

FIGURE 4.3: Schematic representation of the Vocoder for encoding the input voice
with windowed frames into acoustic parameters.

Ahocoder is a Harmonics plus Noise Model (HNM), meaning it decom-
poses the speech frames into a harmonic part and a stochastic part (Stylianou,
1990). During the analysis stage and given an input signal the system cal-
culates:

• F0 estimation, being 0 if the frame is unvoiced. Once it is estimated
the natural logarithm is taken, such that for all the frames we finally
obtain what is called the log-F0 contour.

• The Mel Frequency Cepstral Coefficients that model the spectral en-
velope of the speaker at every frame. In the case of this work MFCCs
of order p = 40, including c0.

During the decoding stage the generation of the speech is modeled by equa-
tion 4.1.

s(t) =
∑
i

Ai(t) · cos(2πif0(t)t+ Φi(t)) + e(t) (4.1)

where we can see the stochastic component e(t) and the harmonic one com-
posed of the sum of cosines. The harmonic component captures the locally
periodic part of the signal whilst the stochastic one contains all the sig-
nal events that cannot be captured by the harmonic one (aspiration noise,
bursts, etc.).

The noise component is usually modeled as Gaussian noise passing through
a shaping filter, and it is present always in every frame either if it is voiced
or unvoiced. In the case of voiced frames however the harmonic compo-
nent is also present, and its amplitudes Ai(t) are obtained by sampling the
MFCC envelope. The separation between the harmonic parameterization
and the noise component in voiced frames during reconstruction is per-
formed by means of a division in the spectrum at the Voiced Frequency
(fv(t)).

40 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

The resulting number of acoustic parameters generated by the Vocoder are
then 42 per frame, where 40 are MFCC coefficients, the 41-st is the log-F0
value and the 42-nd is the Voiced Frequency. This has been a very brief in-
troduction to the Ahocoder system, based on the work by Erro et al. (2011).

The mentioned parameterization coefficients (plus an addition term intro-
duced when presenting the acoustic model) are then the predictions of the
neural network built in this work. During synthesis we then have a set of
acoustic parameters to be passed through the Ahocoder in order to recover
the voice waveform. The way in which these parameters and the linguistic
ones are prepared for the network is explained in the following section.

4.2.3 Encoding and normalizing the features

Now that textual and acoustic features have been presented, the way in
which they are encoded is described here. First, as mentioned earlier in
Chapter 3, output predictors have to be normalized for a well-behaved
back-propagation of the gradients. Because of this, it is clear that the nor-
malization of the acoustic features will be in a min-max range of their real
values, which is performed in the following way:

ŷ =
y − ymin

ymax − ymin
(4.2)

Nevertheless, it is common to make a little change in this equation in the
literature, which is making the output be bounded by {0.01, 0.99} for better
convergence properties:

ŷ = (0.99− 0.01)
y − ymin

ymax − ymin
+ 0.01 (4.3)

All acoustic features are then normalized like so, but it is different with the
textual features. They are inputs so they also have to be normalized for a
proper learning process because of the non linearities of the network (Le-
Cun et al., 2012), but they can be normalized in two different ways:

• the input is bounded between {0, 1}

• the input is z-normalized, such that it has µ = 0 and σ = 1

In our case the distance features in the label, which are real values, are z-
normalized:

x̂ =
x− µ
σ

(4.4)

Also, the categorical values have to take some numeric type, but the code
must not include any ordering information. This means that if we had the
categories (A,B,C), a way to encode them would be with some ordering, for
instance (1,2,3). Nevertheless, this imposes that A and C are two extreme
values in an ordered scale, meaning that, for instance, C has more value
than A. The solution to this is using an orthonormal code:

4.2. Data Preparation 41

• Every item is pointing to an orthogonal direction with respect to other
items.

• The energy of an item is 1.

This is why we use a one-hot code, so that (A,B,C) would be encoded like
(001,010,100). In this scheme, there is no ordering, the position of the bit 1
tells us which category do we have. Yet there is an exception for boolean
variables, as they have only two categories that can be signaled by the pres-
ence or absence of the bit 1. Note that in the case of one-hot codes we have
many bits for a symbol, therefore having B bits for a one-hot code means
having B inputs in the network.

Table 4.3 describes the type of symbols we have in the label, as well as the
amount of values for categorical symbols. This lets us compute the amount
of input features we end up with, which is 405. Later, with the models
description, it is shown how this amount is reduced to keep the current
time and future information only, thus getting rid of past information and
leaving us with 362 features finally.

TABLE 4.3: Label symbol types and amount of classes per symbol. See Table 4.1
for a description of each symbol.

Symbol Type Num. classes

p1 Categorical 35
p2 Categorical 35
p3 Categorical 34
p4 Categorical 35
p5 Categorical 35
p6 Real -
p7 Real -

a1 Boolean 2
a2 Boolean 2
a3 Real -

b1 Boolean 2
b2 Boolean 2
b3 Real -
b4 Real -
b5 Real -
b6 Real -
b7 Real -
b8 Real -
b9 Real -
b10 Real -
b11 Real -
b12 Real -
b13 Real -
b14 Real -
b15 Real -
b16 Categorical 6

c1 Boolean 2

42 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

Table 4.3 (continued)

c2 Boolean 2
c3 Real -

d1 Categorical 47
d2 Real -

e1 Categorical 47
e2 Real -
e3 Real -
e4 Real -
e5 Real -
e6 Real -
e7 Real -
e8 Real -

f1 Categorical 47
f2 Real -

g1 Real -
g2 Real -
h1 Real -
h2 Real -
h3 Real -
h4 Real -
h5 Categorical 6

i1 Real -
i2 Real -

j1 Real -
j2 Real -
j3 Real -

As we will see soon (section 4.3), in the acoustic prediction there are two ad-
ditional inputs derived from the duration model. Those inputs are the du-
ration of the current phoneme to synthesize, and the relative position of the
current frame within the phoneme. We will see in detail what do they mean
exactly, but a thing to point out here is that duration is log-normalized and
then the max-min (between {0, 1}) is applied. On the other hand, the rela-
tive duration is normalized by the absolute duration. Equations 4.5 and 4.6
express these operations. Note that the relative duration is computed with
the absolute duration in the truth time dimension, not the log-compressed
range.

d̂ =
ln d− ln dmin

ln dmax − ln dmin
(4.5)

r̂d =
rd
d

(4.6)

The reason to make the log-compression will be seen with the explanation
about the duration model.

4.2. Data Preparation 43

4.2.4 Parallelizing the pipeline: Speeding up the data generation

The label generation is made with Ogmios from Bonafonte et al. (2006a)
as mentioned before. Once all text is converted to label files, which is a
quick task, all recordings have to be processed to get the Ahocoder (Erro
et al., 2011) features. This process is time-consuming, especially given the
many files of long duration available, as shown in the durations histogram
in Figure 4.4.

FIGURE 4.4: Histogram of WAV files’ durations for speaker M1. It is shown in a
scale of seconds.

To accelerate the Ahocoding, a parallelization approach has been taken. The
data generation system is then composed of the following components:

• FIFO Queue: to keep the audio files to be processed ready to go into
the computation flow.

• Pipeline: A pipeline is composed of two modules:

– Audio trimmer: trim the first and last silence regions to a max-
imum length of 100 ms each. This is done to avoid having an
overhead of silence samples that can bias the network learning
procedure, as it could get to learn how to produce the silence
to much at the expense of doing worse with other phonemes.
Moreover, the length of the silences at the beginning and end
of recordings are more erratic than the ones inside the sentence,
which were tied to a prosodic pattern.

– Ahocoder: make the spectral estimation through Ahocoder.

• Datagen: the data generator, which converts all the resulting lab files
and acoustic parameters into the tables that the TTS will process.

The data generation task is fast enough to not require parallelization, as it
is only gathering all data into the table structure with some intermediate
transformation (i.e. the aforementioned log-compression of some features).

44 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

The architecture shown in Figure 4.5 is thus the one for accelerating the data
generation process. There we can see how, having the WAV and label files,
a process queue is built to hold up toN parallel ahocodings. Later, all those
results are used by the data generator to build the tables and files:

• Training split for duration prediction: 362 predictors and 1 prediction.

• Test split for duration prediction: 362 predictors and 1 prediction.

• Validation split for duration prediction: 362 predictors and 1 predic-
tion.

• Training split for acoustic prediction: 364 predictors and 43 predic-
tions.

• Test split for acoustic prediction: 364 predictors and 43 predictions.

• Validation split for acoustic prediction: 364 predictors and 43 predic-
tions.

• Acoustic statistics for normalization

• Duration statistics for normalization

FIGURE 4.5: Data generation architecture with parallelized pipeline. Every
pipeline processes a tuple (lab,wav) and accumulates the result to be given to the
data generator.

Some tests have been made in order to evaluate the acceleration provoked
by this system. For this, we picked the two speakers: M1 (male) and F1
(female). See section 4.5.1 for further details of the speakers. Then, we took
100 audio/label files for each speaker and ran the data generation pipelines
with 1 and 32 parallel processes. The histograms for the duration of the
100-files-subsets per speaker can be seen in Figure 4.6. There we see that
the mode of the histograms (both of them) is around 15 seconds, but there
are many files ranging from 15 to 45 seconds.

The speed improvement can be clearly appreciated in Figure 4.7. In the
most extreme case (i.e. the male voice), the elapsed time got reduced from
1 hour to 3 minutes.

4.2. Data Preparation 45

FIGURE 4.6: WAV files’ durations histograms for M1 and F1 subsets of 100 files
each.

FIGURE 4.7: Results of data generation acceleration for speakers
M1 and F1. M1-1x: 63 min. M1-32x: 3 min. F1-1x: 22 min. F1-32x:
1 min.

46 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

4.3 Two-stage RNN-LSTM model

The are two types of information required to produce a voice with good
quality:

• The prosodic information: It considers intonation, phoneme duration,
pauses between words, etc. characteristics that can make a huge effect
on the voice naturalness.

• The acoustic information: Spectral estimation processed by the Vocoder
system to generate the waveform. A good estimation is required for
naturalness and also intelligibility.

The prosodic prediction is the first problem we tackle in this TTS design,
and to be more specific we begin with special focus on the phoneme du-
ration prediction. We basically need to know the amount of frames to be
generated with the Vocoder, and then those frames will be generated out of
the acoustic prediction system. This is where the "Two-stage" name comes
from:

1. Predict the duration for the current phoneme out of the encoded input
linguistic features.

2. Predict the acoustic frame coefficients, for as many frames as dictated
by the duration prediction, also taking the linguistic features.

Beware of two things at this point: there is no specific pause prediction
system, because the pause annotations are given by the front-end that gen-
erates the labels. Secondly, the F0 contour which carries the intonation be-
havior is not predicted at this stage but with the acoustic model.

Each of the two stages is performing a mapping, where the chosen base
model for both tasks is a Recurrent Neural Network (RNN), and more con-
cretely a Long Short Term Memory (LSTM), yet the two tasks end up hav-
ing different architectures (we will see both later) as we have two different
problems, despite working in a pipeline fashion.

The Recurrent Neural Network is a well suited model for these tasks, be-
cause it grants the following properties:

• It keeps track of the sequential context, as it reads the input phonemes
by time-steps (phoneme by phoneme). Each time-step is thus an en-
coded label.

• In the case of the acoustic prediction, having a recurrent output layer
improves the continuous prediction between frames (Zen and Sak,
2015), getting even better results than predicting static and dynamic
features, as it was used to be done with SPSS (see Chapter 2).

In the acoustic prediction we want to work with frames (like the Vocoder
does). Figure 4.8 exemplifies the hypothetical analysis for a phoneme that
lasts less than 3 windows. It helps in the reasoning for the way in which

4.3. Two-stage RNN-LSTM model 47

duration is predicted. It could be done by predicting the amount of frames
that the current phoneme lasts, owing to the fact that the acoustic RNN will
work frame-wise. Although predicting the amount of frames as an integer
is a possibility, it imposes an error for the duration RNN, and it is that we
show it examples biased to a quantization error. In Figure 4.8 there is a red
region containing a not-current-phoneme region that fell inside the third
window, and in an frame-wise duration prediction fashion that would be
mistaken with a rounding error of 3 windows.

FIGURE 4.8: Vocoder sliding window example for an arbitrary phoneme. The
stride is the increment in time taken by the next window ∆t = ti+1 − ti. The red
zone shows a hypothetical empty zone out of the phoneme, so the frame duration
is including information from the next phoneme or a silence. The grey arrow is the
direction of the windowing analysis.

This brings the idea of making the duration RNN predict the real amount
of time that the current phoneme lasts (normalized), and with this we avoid
making bigger errors in the duration prediction stage produced by unnec-
essary round operations. Thus, the output of the duration model is a linear
feed forward layer, also called Fully Connected layer (FC), such that:

y = w · x + b

Some experiments were made to train the model with a recurrent output.
This idea comes from the acoustic model, as will be seen soon, and we
wanted to see if there was any improvement with this task, but there was
not any besides increasing the number of parameters of the network.

Moreover, it has been mentioned how the RNN models keep track of the
past context, going phoneme by phoneme, and this makes us discard some
unnecessary information embedded in the classic label format. Hence fea-
tures referring to past-context are removed, as commented previously in
section 4.2.3, going from 405 initial features to 362. These conform what is
called the linguistic inputs, which is a 362-dimensional vector that is fed
into the duration RNN.

An important issue here is the way in which the duration is normalized.
Previously we mentioned that there is a log-compression of the real dura-
tion per phoneme. This is to smooth the effect of the outliers that the model
may encounter during training.

48 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

FIGURE 4.9: Duration histograms for speaker M1 phonemes. Top plot shows the
real durations in milliseconds, bottom plot shows the log-compressed durations.

Figure 4.9 depicts the log-compression result in the histograms for the male
speaker (M1) phonemes. In the real durations there are many examples
provoking a long-tailed distribution of the data, something that distorts the
regression training with the Mean Squared Error (MSE) minimization. This
is why the logarithm is applied. To be more specific, the natural logarithm
has been applied in all the experiments for this work. This is then finally
normalized in a min-max range, as mentioned in section 4.2.3, making the
values fall in the range {0.01, 0.99}. To get the duration in milliseconds
during prediction we just take the exponential of the prediction, after de-
normalizing the min-max range.

Let’s analyze why are the outliers compressed with this method: the sum
of squares error that is used to train this model for the regression purpose
comes from the supposition that the target data (i.e. the duration examples
shown to the network for back-propagation of the errors) follows a Gaus-
sian distribution, and the distribution of the duration values then looks
closer to a Gaussian after compressing the long tail we have seen. This
means that when the logarithm is applied the outliers turn into inliers. To
justify this transformation we can see what would be the effect of outliers
during training if we analyze the behavior of MSE in equation 4.7 (Bishop,
1995).

E =
∑
t

N∑
n=1

|ŷn(xt; w)− ytn|2 (4.7)

In our case there is only one output to compute the cost so we can express
it like the sum over the training samples:

E =
∑
t

|ŷ(xt; w)− yt|2 (4.8)

4.3. Two-stage RNN-LSTM model 49

Figure 4.10 shows the cost for a single sample, related to equation 4.8. Ob-
serving |ŷ−y|2 against |ŷ−y|we can see the effect of a big outlier by means
of the derivative of the function, which is very significant, as it means a
very high error and a correction towards it during minimization.

FIGURE 4.10: Plot of |ŷ−y|2 against |ŷ−y| and the deriva-
tive with respect to the error:2|ŷ − y|.

Figure 4.11 illustrates an example of the effect that an outlier may produce
over our model, where the highly distant sample deviates the line a lot.
This is why our main interest is reducing this effect avoiding the long-tailed
behavior.

FIGURE 4.11: Example of a regression estimation where we see how the outlier
produces a high deviation over the correct estimation. (a) Gaussian distributed
data with µ = 0 and σ = 4 over the line y = 1.2x. (b) Outlier artificially inserted to
the data in (a).

50 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

Now that the duration model has been discussed the acoustic model is ex-
plained, which is the second stage of the full TTS system. This model is
also built with Recurrent Neural Network architectures, as mentioned pre-
viously, yet the output layer is also recurrent in this case as aforementioned.
The normalization of the features for this stage is a min-max for all the out-
puts, which are:

• Mel Cepstral Coefficients.

• Voiced Frequency.

• log-F0 contour.

• Voiced/Unvoiced flag.

We have seen that the F0 contour is one of the acoustic parameters to be
predicted, but this parameter has a special behavior depending on whether
the current frame contains voiced or unvoiced sounds. For voiced frames
it behaves as a continuous signal, but for unvoiced frames its value is zero
(thus indicating that there is no periodic behavior in the frame). There is an
example of pitch contour in Figure 4.12 to observe this mixture of discrete
and continuous values. However, the network predicts the log of the F0 at
each frame, because it is the type of data with which the Ahocoder deals.

It is then important to get rid of the discrete symbol somehow to be able
to normalize the pitch with the min-max range, because we will have a
very frequent outlier with a very large negative value (Ahocoder encodes
the unvoiced symbol with a value of −1000000 to indicate it goes to −∞).
Otherwise, if we had the unvoiced symbol in the training set, the min-max
operation would compress all the continuous values to a tiny range, which
wouldn’t let the network learn the real distribution of the pitch. The way to
solve this is by means of an interpolation of the original pitch (also shown
in Figure 4.12), where the following operation has been performed during
the unvoiced frames:

• If the unvoiced frame is at the beginning of the contour where no
previous voiced value appeared, put the first next voiced F0 value as
a constant value

• If the unvoiced frame is at the end of the contour where there are no
more voiced values put the last previous voiced F0 value as a constant
value (inverse of the first operation)

• In all intermediate unvoiced regions, interpolate linearly in the log-
domain between right previous and right next voiced values. Equa-
tion 4.9 shows the operation.

logF i0 = logF p0 + (logFn0 − logF p0) · i− p
n− p

(4.9)

Where n is the next voiced value’s frame index, Fn0 is the next voiced value,
p is the previous voiced value’s frame index, F p0 is the previous voiced value
and F i0 is the i-th pitch value we want to get at frame index i.

4.3. Two-stage RNN-LSTM model 51

FIGURE 4.12: Top: F0 contour example for male speaker M1. Bottom: F0 contour
(blue line) example for male speaker M1 with interpolation contour (green line).

On the other hand, the acoustic model must determine when is it that there
is an unvoiced frame in order to mask out the interpolated values, which
are false information given for the sake of good learning. There is then the
voiced/unvoiced flag for this task, and it is a learned output as well.

Finally, all other parameters are normalized in a min-max fashion with the
reduced range {0.01, 0.99}, but the Voiced Frequency parameter (discussed
in section 4.2.2) is also log-compressed to avoid a long tailed distribution.
The original distribution of values can be appreciated in the histogram in
Figure 4.13.

FIGURE 4.13: Histogram of voiced frequency values in the training data.

In order to predict all the acoustic parameters we use the same linguistic
inputs as before to take into account not only the phoneme, but also the
context that surrounds it. In addition, we must take care with the duration

52 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

that has already been predicted, so that it becomes an input of the acoustic
stage with a min-max normalization, as expressed in equation 4.5. There is
also an input (the relative duration) expressing what is the current position
in the predicted frame duration. This is a normalized index computed in
equation 4.6, so that the network has a clue about in which part of phoneme
is it generating contents at every time-step. It is at every time-step that this
value gets updated with the same stride with which the Ahocoder encoded
the data, normalized by the full phoneme duration. Both of these dura-
tion features are concatenated to the linguistic inputs and then fed into the
acoustic model.

The general scheme of the two-stage TTS system is shown in Figure 4.14.
As introduced previously, vanilla Recurrent Neural Networks do not tend
to work very well to find long-term dependencies, and this is why we use
LSTM in this model.

The acoustic model has some Embedding (EMB) layers at the input. These
are Fully Connected layers with tanh activation functions, which may help
with the first mapping of the mixed sets of features better than injecting all
directly to the LSTM layer.

The output layer is an LSTM layer with 43 output cells to preserve a smooth
transition between acoustic predictions (as mentioned previously).

Finally, a comment on how many time-steps happen for a utterance might
be clarifying for the reader, which basically shows approximately the amount
of time spent during generation (we don’t consider other de-normalizing
computations nor possible roundings to go from time to frames): In the
duration prediction stage there is one time-step per phoneme (up to N
phonemes). In the acoustic prediction stage each phoneme has a duration
tn in frames. The total number of time-steps can then be estimated as:

Tgen ≈ N +

N−1∑
n=0

tn (4.10)

4.4 A post-processing technique for better naturalness

This section is about an issue inherent to the network learning mechanism
which worsens the quality of the generated speech with respect to the nat-
ural one. When doing regression, the network is trained with the MSE cri-
terion, which is supposing a Gaussian distribution of the output data (as
seen earlier in this chapter) and which tends to predict the mean of the dis-
tribution. Hence, the network does not take into account the variance of the
distributions at the output, such that it cannot capture the variability effect
(or noisy effect) of the natural speech, which turns out to be an important
factor to achieve a good level of naturalness.

To see this effect produced by the network more clearly the following analy-
sis is carried out: The full training set is inferred through the acoustic model
to get the predicted acoustic parameters, and then for each phoneme in the
set we compute the ground-truth cepstral standard deviations of each co-
efficient, and we do the same for the predictions. Beware that the pause

4.4. A post-processing technique for better naturalness 53

FIGURE 4.14: Final setup of the architecture, where duration prediction and acous-
tic prediction work together in a pipeline fashion.

phoneme "pau" is discarded. Then for a certain phoneme equation 4.11 is
applied to obtain the curves shown in Figure 4.15. There it is clear how, as
the coefficient order increase, the quotient of standard deviations also gets
bigger values for all the phonemes, which means that the network makes
predictions with less variability for each i increment. The best we could
get would be a flat behavior with value 1, so that the network predictions
would have the same variability as the real data. It does not happen though,
and this is something to be corrected by means of a post-filtering technique.

σiground−truth
σiprediction

for i = {0, 1, · · · , 39} (4.11)

Post-filtering then increases the variance of the network predictions, thus
getting closer to the original speech characteristics. Erro (2016) proposed a
post-filtering technique that enables the application of different post-filtering
factors to low and high frequencies. In this work we apply another ap-
proach with which we achieve already better naturalness (compared to the
original speaker) when we post-filter the network prediction with some
multiplicative factor pi over each predicted cepstral coefficient ci. The fac-
tor then increases the variance for the i-th coefficient (with pi > 1). This is
achieved with a multiplicative correction curve applied with the following
methodology based on Sorin, Shechtman, and Pollet (2011):

ĉ0 = c0

ĉi = ci · pif i = {1, · · · , 39}
(4.12)

54 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

FIGURE 4.15: Ratio σi
g

σi
p

per phoneme and coefficient, where σig stands for ground-

truth standard deviation at i-th coefficient, and σip stands for prediction standard
deviation at i-th coefficient. There are 32 phonemes analyzed.

4.4. A post-processing technique for better naturalness 55

Where pf is the post-filtering factor, set finally to 1.04 empirically based
on our preliminary perceptual tests, and the first cepstral coefficient is not
modified, but the following 39. Figure 4.16 depicts the comparison between
some post-filtering curves and the geometric mean of the curves shown in
Figure 4.15. There it is clearly depicted how our perceptually chosen curve
with pf = 1.04 is the down-side envelop of the geometric mean, thus never
going over the quotient.

FIGURE 4.16: Geometric mean of σg

σp
compared to the post-filtering curves for

values pf = 1.04, pf = 1.05, pf = 1.06.

Figure 4.17 shows the result of applying the aforementioned post-filtering
to the curves in Figure 4.15, and then the geometric mean is computed
for comparison purposes with the one shown in Figure 4.16. The result-
ing curve is much flatter than the one without post-filtering, thus making
the network make predictions with a similar variance per output cepstral
coefficient.

FIGURE 4.17: Geometric mean of σg

σp
before and after post-filtering with p = 1.04.

Green: post-filtered. Blue: raw prediction.

The results can also be appreciated in time for some cepstral coefficients,

56 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

so for instance the 5-th, 10-th and 15-th are analyzed for a couple utter-
ances, taking approximately the first 600 frames and comparing them to the
ground-truth frames. Figures 4.18, 4.19 and 4.20 show how the post-filtered
signals achieve a better representation of the natural signals.

FIGURE 4.18: Evolution in time of the 5th cepstral coefficient for two test files.
Blue: natural speech. Green: post-filtered prediction. Red: raw prediction.

FIGURE 4.19: Evolution in time of the 10th cepstral coefficient for two test files.
Blue: natural speech. Green: post-filtered prediction. Red: raw prediction.

4.5 Experimental Design and Results

Now that all the properties of the model have been discussed results are
shown and explained, such that we can have an idea of the performance
of the model, also comparing the differences in changing the topology of
the network in both the duration and the acoustic stages. Changing the
topology means trying to find a good combination of number of layers,
neurons, learning rate, etc. which are called the hyper-parameters of the
model, as introduced in Chapter 3. Sometimes this process might require a
bit of intuition and patience, owing to the fact that nowadays the number

4.5. Experimental Design and Results 57

FIGURE 4.20: Evolution in time of the 15th cepstral coefficient for two test files.
Blue: natural speech. Green: post-filtered prediction. Red: raw prediction.

of hyper-parameters can be huge depending on the model we chose, but
a reduced set of choices can lead to a good result. Hence, a set of different
models will be tested in section 4.5.2 and some objective measurements will
be taken on the resulting predictions to compare the relative performance
between the different options. This process will finally lead us to obtain the
subjective results for the chosen final architecture.

All the models were developed with the Keras framework (Chollet, 2015),
which is an object oriented library for prototyping Deep Learning models
quickly.

4.5.1 Database

All the experiments were performed with the so called M1 speaker of the
TCSTAR database (Bonafonte et al., 2006b). This is a professional male
speaker reading different types of contents. From that speaker, a total of
1453 utterances were taken to be processed as labels. This means we have
approximately 8 hours of speech for this speaker’s experiments, which turns
to be an amount of 286K duration examples and ≈ 4M acoustic examples.
Also, the following data splits were defined:

• Training: 80% of total data

• Validation: 10% of total data

• Final Test: 10% of total data

Performing a k-fold Cross Validation is an attractive solution for obtaining
good data splits and more confidence in the results, but it seems unfeasible
to do this and also test different architectures with the current computation
time required by our models.

58 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

4.5.2 Objective Evaluation

To see the effect of different architectures we made an objective evaluation
by means of specific metrics for each kind of predicted feature. In the case
of duration, we chose the Root Mean Squared Error (RMSE) in millisecond
scale, as it is a well-accepted error measure in the literature for speech syn-
thesis tasks, defined as:

RMSE [ms] =

√√√√N−1∑
t=0

(durt − ˆdurt)2 (4.13)

where N is the number of test phonemes used for the evaluation. It is im-
portant to mention that silence phonemes were predicted but not included
in the evaluation computations because they have a large variance and they
would distort the prediction of the regular phonemes duration. Table 4.4
shows the result for different architectures. All those models had Dropout
between the Output Layer and the previous Hidden Layer with p = 0.5
(probability of being activated). Also, when the output layer is recurrent
(LSTM) the activation is sigmoid (the outputs are normalized to work in the
linear region) to gain stability whilst training. Moreover, the batch size was
64, the maximum sequence length to propagate the gradient through time
was 10 time-steps, the optimizer was Adam (see Chapter 3), with learning
rate lr = 0.001 and, during training, a validation set was used to do early-
stopping, having a maximum of 100 epochs per model. The early-stopping
mechanism had a patience of 10 epochs per model, which means that if the
validation loss does not improve at a certain point during training along
10 epochs, the training is aborted and the best validated model is the one
stored, and it is also the one with which results are computed.

TABLE 4.4: Comparison of different architectures for the duration model with their
objective result. FC: Fully-Connected layer. The best performing model is in bold
text.

Embeddings Hidden LSTM Output Type Num. params. RMSE [ms]

0 1× 256 FC 634K 18.51
0 1× 64 FC 110K 18.71
0 1× 256 LSTM 635K 18.73
1× 256 1× 256 FC 618K 18.77
2× 256 1× 512 FC 1.7M 18.95
2× 128 1× 256 FC 457K 19.01
0 1× 64 LSTM 110K 19.06
0 1× 1024 FC 5.7M 19.34
0 2× 256 FC 1.1M 20.04
0 2× 256 LSTM 1.2M 22.77

We can see how increasing the number of parameters tends to give worse
results when we go over 256 for our search, probably owing to over-fitting
effects as the amount of data is not very high. Also, going under this
amount of units does not provide better result either, thus losing some rep-
resentation capabilities for the provided data, though the difference is not

4.5. Experimental Design and Results 59

high. Even though, we picked the best performing model as we considered
it has a reduced set of parameters considering the state of the art models.
Some embedding layers were also tested with no success for this model.
The same happened when inserting a recurrent output. It is worth men-
tioning that this is not the most exhaustive search that could be done, but it
is considered to be good enough to get a first approach for the purpose of
this work.

Regarding the acoustic model other tests were performed for the same pur-
pose, and the results can be seen in Table 4.5. In this case we have the
following metrics for each kind of predicted feature:

• Mel Cepstral Distortion (MCD) for the MFCC predictions in Decibel
[dB] scale.

• RMSE of the F0 prediction in Hertz [Hz] scale.

• Accuracy metric for the Voiced/Unvoiced flag prediction in %.

Some authors claim that the MCD (Mashimo et al., 2001) is correlated to
subjective evaluations (Kubichek, 1993) and it is defined as:

MCD = (10
√

2)/(T ln 10)

T−1∑
t=0

√√√√ 39∑
n=0

(ct,n − ĉt,n)2 (4.14)

where T is the number of test frames, ct,n are the real cepstral coefficients
and ĉt,n are the predicted cepstral coefficients. The MCD is computed with-
out applying post-filtering. The RMSE of the F0 is computed as the duration
one:

RMSE [Hz] =

√√√√T−1∑
t=0

(f0t − f̂0t)2 (4.15)

Finally, we consider the Accuracy of the Voiced/Unvoiced flag prediction,
which is defined as:

Acc[%] =
TP + TN

TP + FP + TN + FN
× 100 (4.16)

Where TP stands for True Positives, TN are the True Negatives, FN are the
False Negatives and FP are the False Positives.

The silence frames were also dropped for the acoustic evaluation, and the
training conditions for all the acoustic models were the same as in the dura-
tion models except that the batch size was 256 and the maximum sequence
length to back propagate the gradients was 30. Here we can see how includ-
ing some embedding layers decreases the error for some metrics, possibly
due to the mix of data types that we have at the inputs (duration and con-
textual features). Also, we can see how increasing the number of cells and
layers gives the lowest results, as we have way more examples than the
ones for the duration model (see section 4.5.1). Nonetheless, it is clearly

60 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

seen that there is no much variation in the acoustic prediction results for
the tested parameters. We ended up picking the one with lowest error in
all measurements again, like in the duration model search, and this fits per-
fectly the purpose of this work as the subjective results will suggest.

TABLE 4.5: Comparison of different architectures for the acoustic model with their
objective results. LSTM: Hidden LSTM layer and units. Params: Number of pa-
rameters of the network. Embeddings: Number of input Fully Connected layers
for first projections of the data. F0 RMSE: Root Mean Square Error of the F0. MCD:
Mel Cepstral Distortion. UV Acc: Accuracy of Voiced/Unvoiced flag prediction.
The best performing model is in bold text.

Embeddings LSTM Params. F0 RMSE[Hz] MCD [dB] UV Acc[%]

2× 256 2× 512 3.9M 14.90 6.09 95.00
2× 256 1× 512 1.8M 14.90 6.17 94.86
2× 256 2× 256 1.2M 15.00 6.09 94.86
0 2× 256 1.2M 15.03 6.22 94.60
2× 256 1× 256 736K 15.22 6.18 94.96
3× 512 1× 256 1.55M 15.99 6.29 94.70

4.5.3 Subjective Evaluation

Objective tests performed well to compare different architectures and to get
some clue of how well does the TTS work. To get a more in-depth evalu-
ation of the model however, a subjective test is conducted to evaluate the
naturalness of the TTS developed in this work and also to make a compar-
ison with the other currently used TTS techniques. The platform and syn-
thesized examples can be found in UPC TTS Benchmark (2016). In the test
17 listeners were given 5 sentences to each one, randomly selected from a
set of 15 short sentences. For every sentence, the listeners evaluate 6 differ-
ent versions generated with the following 6 different systems, all built from
data of the same speaker:

• Natural voice: original speaker recording.

• Ahocoded version: the original recording was parameterized with the
Ahocoder and constructed back into the waveform to evaluate the
amount of naturalness that the developed TTS loses already in the
waveform generation part, which is extrinsic to the neural network.

• LSTM raw: Raw prediction from the two stage LSTM TTS without
applying any post-filtering.

• LSTM pf: Prediction from the two stage LSTM TTS with a post-filtering
factor of pf = 1.04.

• US: Unit Selection system of UPC (Bonafonte et al., 2006a).

• SPSS: Statistical Parametric Speech Synthesis generated with the HTS
framework (Zen et al., 2007).

4.5. Experimental Design and Results 61

The users are then asked to evaluate the hidden natural voice with a 100
and to set the other ones inside the 0 − 100 scale of naturalness (thus they
have to set values relative to that of the natural voice) (ITU-R, 2003). The
participants can listen the different recordings as many times as required to
make comparisons between the different systems.

All the TTS systems predict the duration, pitch and the acoustic parameters.
As opposed to the acoustic objective evaluations, here there is no forced
alignment to evaluate the full TTS capability. In order to proceed with the
comparisons a normalization technique was applied to all the recordings
based on ITU-T P.56 Recommendation (ITU-T, 2011). In this way all files
are equalized to have the same power level and we make sure that there is
no difference because of a masking effect over noise artifacts (for instance
caused by the multiplying factor of the post-filtering curve, that would in-
crease the energy of the signal otherwise).

Figure 4.21 and Table 4.6 show the results of the subjective test. Figure 4.21
is a box-plot, where each system’s data distribution is drawn in quartiles.
The boxes extension is the distance between the first and the third quartiles,
and the red line depicts the median of the data. The vertical dashed lines
extending up and down from the boxes are called the whiskers. In the edge
case that the first and third quartiles are equivalent, the whiskers extension
will be set to the min-max range of values in the distribution (for instance
in the Natural case). Otherwise, the whiskers show the range 1.5 times the
first or third quartile, as in the Ahocoded case. The points outside of the
whiskers range are outliers found in the distribution of the data resulting
from evaluation.

In the box-plot we can see that the results are good for the TTS developed
in this work, as it is the one right after the Ahocoded voice in terms of
naturalness. We can note there that the post-filtering technique indeed im-
proves the perception of naturalness, thus confirming the effectiveness of
this method. It is important to see that the Ahocoder already introduces
some artifacts that diminish the naturalness of speech, getting a mean eval-
uated value of 82.65. The Ahocoder score is the best that our model could
achieve, so we set it as a reference for main comparisons. The two stage TTS
system with post-filtering achieves a mean value of 60.80, so 21.85 points
is the mean loss in naturalness introduced by the neural network with re-
spect to the Ahocoder. In addition to this, we can also see that the mean
value of the TTS without post-filtering is 47.13, which means that the mean
improvement achieved by adding the post-filtering mechanism is 13.70.

The case of Natural speech is the one with highest naturalness, as expected.
Actually, the distribution is so condensed near 100 that the quartiles coin-
cide.

In the case of US system we can see how the variance is quite higher than
in other systems, and this is mainly because the US performs quite well for
very studied contexts in the dataset of speech samples, but when there is a
rare context appearing in the test text to be synthesized the system performs
a lot worse than normally (Hunt and Black, 1996), and thus the resulting
variance in the evaluation is higher because of those noticeable failures.

The SPSS used for this comparison performed clearly worse, but it is im-
portant to mention that no post-filtering methodologies were used in this

62 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

case to combat the over-smoothing effect that also appears in HMM-based
synthesis.

For both US and SPSS systems the already available systems were used,
but perhaps they could be optimized to get a closer result to that of our
optimized TTS.

FIGURE 4.21: Box-plot of the subjective naturalness test results relative to real
human voice. SPSS: Statistical Parametric Speech Synthesis. US: Unit Selection.
LSTM-raw: Two-stage TTS without post-filtering. LSTM-pf: Two-stage TTS post-
filtered with pf = 1.04. Ahocoded: Natural speech parameterized with the
Ahocoder and reconstructed. Natural: real human voice. Red line: median. Red
dot: mean.

TABLE 4.6: Statistics of the subjective results for the 6 systems.

System µ σ

Natural 97.69 6.61
Ahocoded 82.65 19.85
LSTM raw 47.13 24.63
LSTM pf 1.04 60.80 22.20
US 49.20 30.80
SPSS 32.54 21.21

4.5. Experimental Design and Results 63

4.5.4 Gate activations analysis

Once the acoustic model is trained we can look at its inner structure to
check what is activated through time depending on the input sequence of
phonemes. Here an analysis of the input, output and forget gate activations
is shown graphically for an arbitrary test file (see section 3.6 in Chapter 3
for a description of the gating mechanisms). The chosen sentence is "Llamó
desde la recepción con su voz lúgubre.", where the first LSTM hidden layer and
the output layer gates have been analyzed. Figures 4.22, 4.23 and 4.24 de-
pict the heatmap of activations of 20 LSTM cells in the hidden layer. These
plots can look confusing as we see a lot of activities happening through the
different cells (plus only 20 cells are shown from the total amount of 512, so
we don’t have the full picture for better visualization purposes). In order
to get a closer look at what’s going on, Figure 4.25 illustrates the averaged
activities for the three types of gates over all the hidden units.

FIGURE 4.22: Activations map for the forget gates of the first 20 hidden cells in
the first LSTM hidden layer. Red regions are high activations (thus preserve the
past) and yellow means forget the past.

Something quite interesting can be observed in Figure 4.25: the forget gate
removes more content as the input phoneme is still repeating, though it
is done in a patient manner (close to a linear behavior). However, when
a new phoneme gets into the network there is a peak in the gate, thus it
preserves as much as possible the information about its past. On the other
hand, the input gate follows what looks like the inverse behavior, meaning
that it lets in as much new information as possible (maybe to try to get
new clues when the changes in input features are not quite relevant). This
"inverse" behavior with respect to the forget gate was already mentioned in
the work by Wu and King (2016). There the authors proposed an interesting
efficient recurrent architecture based on this fact, where they only keep a
forget gate as a memory control mechanism and get rid of the output gate,

64 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

FIGURE 4.23: Activations map for the input gates of the first 20 hidden cells in the
first LSTM hidden layer. Red regions mean updating the cell state a lot with the
new candidate. On the other hand, yellow means not letting the information in.

FIGURE 4.24: Activations map for the output gates of the first 20 hidden cells in
the first LSTM hidden layer. Red regions mean letting the cell state flow out of the
cell.

4.5. Experimental Design and Results 65

but preserving a special type of input gate which is: it = 1 − ft, whilst the
forget gate ft is still parameterized with the set of learnable weights.

FIGURE 4.25: Average activations for the first LSTM hidden layer with 512 cells.
Input gate, forget gate and output gate are shown. Green dashed lines are the
phoneme boundaries.

In Figure 4.26 it is shown the comparison between the learned input gate
activations it and the type of input gate proposed in Wu and King (2016)
1− ft. There we can indeed see that the curves are correlated.

FIGURE 4.26: Averaged activations of the input gates for the first hidden LSTM
layer in blue line and 1− ft average activation in red.

The same analysis can be done in the output recurrent layer, where a dif-
ferent behavior is observed. The heatmaps for the 43 output LSTM cells
gate activations are shown in Figures 4.27 4.28 and 4.29. There it is depicted
the behavior of the cepstral predictions (the first 40 rows beginning at the
bottom of the figure), the voiced frequency, the pitch and the top row is
the voiced/unvoiced flag. In the three heatmaps it can be appreciated how
the voiced/unvoiced prediction get extreme values (either close to one or
to zero) as expected, and an important thing to note is that those values
match their value to the type of phoneme pretty accurately, so for instance

66 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

phonemes like "pau", "T", "k" or "s" 1 (Wells et al., 1997) that are unvoiced,
get a low level in the output gate which is blocking the cell output to not
make a prediction there. Also, a closely related behavior happens in the
voiced frequency value as expected, which has a wider range of intermedi-
ate values but is correlated to the type of phoneme injected.

FIGURE 4.27: Activations map for the forget gates of the 43 output LSTM cells.
Red regions mean letting the cell state flow out of the cell.

FIGURE 4.28: Activations map for the input gates of the 43 output LSTM cells.
Red regions mean letting the cell state flow out of the cell.

1SAMPA phonetic notation is used.

4.5. Experimental Design and Results 67

FIGURE 4.29: Activations map for the output gates of the 43 output LSTM cells.
Red regions mean letting the cell state flow out of the cell.

Figure 4.30 depicts the averaged gate activations in a similar analysis to
that of Figure 4.25 for the hidden layer. Here it is appreciated how the
output activation is usually high due to the functionality that this layer is
performing, but there appear some valleys in the unvoiced regions which
are probably due to the loss of energy, so some output has to be blocked,
as well as the U/V and FV values commented previously. The behavior of
the input and forget gates seem to be more erratic than the linear decaying
found in the hidden layer, but both gates seem to be again closely related
as previously seen in Figure 4.26.

FIGURE 4.30: Average activations for the output LSTM layer with 43 cells. Input
gate, forget gate and output gate are shown. Green dashed lines are the phoneme
boundaries.

68 Chapter 4. Two stage Text-to-Speech with RNN-LSTM

4.6 Discussion

A TTS made from scratch with RNN-LSTM architectures has been shown
in this chapter. First, the types of data to be used as predictors and predic-
tions have been introduced in section 4.2, where a parallelization pipeline
developed for the project has also been explained. The way in which those
features are encoded and normalized for the sake of a good learning process
during the network training has been explained in detail.

Then in section 4.3 the TTS system is shown, which is composed of two
models forming a twofold stage methodology, which are the duration model
and the acoustic model. The first one predicts the amount of acoustic frames
to be generated by the second, thus having an interconnection between the
two stages to generate the acoustic stream of features. We have seen how
these predicted features have to be decoded by a Vocoder, as introduced.
In section 4.4 we introduce a post-filtering mechanism that is applied to
the acoustic prediction in order to enhance the naturalness of the generated
speech. The origin of the issue degrading naturalness is shown together
with the correction method.

This chapter concludes with the results shown in section 4.5, where we have
seen some brief architecture search to tune the different parameters of the
network in an objectively evaluated search. The experiments validate the
architecture we use for final evaluation and synthesis, although in the case
of the acoustic model the tested topologies are not suffering big changes
in the objective results. In addition, there is a subjective test performed
to evaluate the naturalness achieved by the developed TTS compared to
natural speech and other existing TTS systems. The results suggest two
main things: first, the TTS developed in this work is the one with the best
rated naturalness in comparison to the other existing technologies avail-
able: Unit Selection and Statistical Parametric Speech Synthesis. It should
be noted that in international evaluations (King, 2014) Unit Selection or hy-
brid systems US-SPSS are the most successful approaches raising the best
results. Therefore, the comparison performed is a first reference but has
to be taken carefully because the evaluations were not made with the best
US nor SPSS models. Secondly, the post-filtering technique is effective in
terms of human perception by a large margin compared with the system
without applying it. In the end of the results section there is an analysis of
the insights of the LSTM layers, where the activations of each gate (input,
forget and output) are pictured to get some clues about the correlation they
have with the inputs and predictions in the acoustic model. We have seen
the clear relationship between the input and forget gates for the acoustic
parameters generation task, as stated in the work by Wu and King (2016),
and also the behavior of the output layer that always tries to let predictions
get out, though it produces a slight closing effect on unvoiced frames.

69

Chapter 5

Multiple Output Acoustic
Mapping

5.1 Introduction

In this chapter it is introduced a new model derived from the previous
one, called the Multi-Output (MO). Here, the previous Text To Speech (TTS)
acoustic mapping is extended so that one model reproduces several speak-
ers’ speech. With this approach we can tackle three problems with a single
deep RNN-LSTM model:

• Making multiple speaker models out of the same structure.

• Make speaker adaptation with new data on top of this model.

• Make speaker interpolation out of the learned representations.

The system is then capable of holding many speaker models inside the same
shared structure, so that every user shares its characteristics with the others,
thus reducing the required number of parameters per speaker and letting
them interact in the lower layers, where the linguistic information process-
ing is performed, as seen in Chapter 4. With this aim in mind, we wanted
to figure out whether or not it was helpful for the different speakers to see
others’ data, although every speaker output is independent from each other
and they are only tied to the same inputs. There was a proposal of a similar
approach by Fan et al., 2015 with DNNs performing multi-task learning,
but in our case we work with RNN architectures, with a different training
procedure and also with a different speaker adaptation architecture.

5.2 Data Preparation

The data generation method presented in Chapter 4 is really helpful here,
because we need to generate the data for the different speakers in an ag-
ile way. We worked with six voices from the TCSTAR (Bonafonte et al.,
2006b) project, where four of them contain expressive speech, and two neu-
tral voices from interface (Hozjan et al., 2002). We balanced the data per
user, such that all of them have approximately the same amount of samples
to train, i.e. 20 minutes of speech per speaker. There are four male voices
(M1, M2, M3, M4) and four female voices (F1, F2, F3, F4). The F3 data is

70 Chapter 5. Multiple Output Acoustic Mapping

separated from the other ones because it is used for the speaker adaptation
experiment. We will focus the results on the M1, F1 and F3 speakers, all of
them having 4 minutes of samples for testing and 4 minutes for validating.

5.3 Multi-Output architecture for acoustic mapping

The proposed architecture is depicted in Figure 5.1, and this is the model we
proposed in our work (Pascual and Bonafonte, 2016a). There are two first
Fully Connected layers serving as a bottleneck for the sparse inputs. These
intend to get a deeper knowledge about the input data, which is formed by
the mixed set of multiple types of features shown in Chapter 4. There is a
first stage of LSTM hidden layers, processing every transformed input set of
features at each time step, and deriving the results to the output branches.
Dropout is performed between the hidden recurrent layer and the output
layers to mitigate any over-fitting. Each output branch belongs to a dif-
ferent speaker, so at prediction time we inject the linguistic parameters to
the model to obtain every speaker’s speech parameters at the output. It is
clear that this model is an extension of the one shown in Chapter 4, putting
(N − 1) additional output layers.

Every output branch is independent of each other, so it propagates its own
error through the whole shared structure at training time without the need
of padding any data for the other outputs. The intuition behind this ar-
chitecture is that, whilst every output branch is trained, it shares the first
linguistic mappings with other branches. This might lead to an improve-
ment in the final acoustic mapping of every speaker in comparison to the
speaker model trained in an isolated manner, because we add more infor-
mation during training time to get to correlated predictions at the different
outputs. For the experiments of this model, the first two Fully Connected
layers had 128 hidden units each one with tanh activation functions. More-
over, there is one shared hidden LSTM layer containing 256 memory cells,
also with tanh activation functions, and the dropout applied is 0.5. Finally,
the output layers were like the ones for the single speaker models, 43 units
to produce the acoustic predictions in a regression fashion after a sigmoid
activation function (see Chapter 4 for more information about the acoustic
features predicted). The LSTM units had the forget gate bias initialized
to one for better performance, as specified in Jozefowicz, Zaremba, and
Sutskever (2015).

The training procedure was a challenge for this model, owing to the fact
that we had two options:

• Have the same data aligned for all speakers, which is very hard to
achieve because of the fact that the speakers have different prosodic
pauses, durations, etc.. in addition to silences, which have varied
lengths as well. This made the simultaneous back-propagation of all
branches gradients very hard to achieve.

• Back-propagate each speaker individually and sequentially, dividing
the training process into rounds. This solution doesn’t require a direct
mapping of a linguistic input to all the output speakers, and thus the

5.4. Multi-Output architecture for speaker adaptation 71

data is not required to be aligned for the N outputs. This is the way
in which the training has been implemented in this work.

FIGURE 5.1: Proposed architecture using regular feed forward (dense) layers and
recurrent LSTM layers. There are N outputs belonging to N different speakers.

In the training stage, every speaker error is back-propagated independently
and sequentially, such that a speaker ID is randomly selected in every round
(assigning a turn to the speaker), completing an epoch when all rounds of
speakers have been seen. A round is a sequence of back-propagated mini-
batches, having N mini-batches per round as we have N speakers, each
speaker having its turn inside the round, and when a speaker mini-batch is
back-propagated inside the round we move on to the next randomly picked
one until all speakers are processed and we can shuffle the IDs again. Fig-
ure 5.2 depicts the training procedure for a round in the epoch, where the
turn of every mini-batch is in brackets. Note that with this method we do
not require to have the same transcriptions per speaker, as mentioned ear-
lier, and also every mini-batch is related to only one speaker.

As a comparison with the previous proposed single speaker model, in the
case that we had N = 6 speakers, we know that a single acoustic model
required 3.9M parameters, so a straightforward calculation can be done to
know the amount of parameters required for representing 6 speakers with
single models: 6·3.9M = 23.6M. On the other hand and thanks to the shared
structure, the multi-output model only requires 4.4M parameters, which is
the 18.69% of what the individual models needed.

5.4 Multi-Output architecture for speaker adaptation

In order to do speaker adaptation we insert a new output branch for speaker
N + 1, and we try two training mechanisms for adapting our multi-output

72 Chapter 5. Multiple Output Acoustic Mapping

FIGURE 5.2: Exemplified training round for the N mini-batches. Dashed lines rep-
resent the corresponding output error back-propagation. The numbers in brackets
express the order of that mini-batch inside the round.

model to the new speaker. For the purpose of checking how we can in-
sert a new speaker into the architecture with minimal changes and best re-
sults, we have the speaker F3 separated. When the multiple output model
is trained, we get what we call the pre-trained multiple speaker weights
(the ones in all layers just before the output LSTMs) and attach the new
output branch to the model, back-propagating only the new speaker. We
make the adaptation experiment varying the amount of data available for
the new speaker in batches of 25%, 50% and 100% of the total available data,
this way we check the possible change in the quality of the new voice de-
pending on the amount of data available. Moreover, we mentioned the re-
quirement of a simple adaptation model, where we change the least things
possible, so we try freezing the shared layers to not update them during the
back-propagation of the new speaker, training only the new output branch
as a possible approach. The scheme for this model is shown in Figure 5.3.

5.5 Multi-Output architecture for speaker interpolation:
α-model

This task is about creating a new speaker out of the mixture of an M -sized
subset of the N pre-trained speakers. This means that, once the multi-
output model is available with the pre-trainedN output branches, we find a
way to mix the different speaker representation in a complete synthetic way,
without any data of a new speaker. The way in which this was done is by
means of another layer, which we called the α-interpolation layer. The ar-
chitecture proposed is the one in Figure 5.4 (Pascual and Bonafonte, 2016b).
There the α-interpolation layer is attached to M branches once the multi-
output is trained, where: M ≤ N .

5.5. Multi-Output architecture for speaker interpolation: α-model 73

FIGURE 5.3: Speaker adaptation system by fine-tuning a pre-trained Multi-Output
model. The new layer can be trained in two ways: solid-line: 1) fine-tune only new
branch with frozen model in the lower layers. 2) Fine-tune the whole model, thus
propagating the error until the first hidden layer.

FIGURE 5.4: Speaker interpolation system by training a new mixing layer, the α-
layer. The new layer uses the input α codes to learn to interpolate between the
extreme examples given.

74 Chapter 5. Multiple Output Acoustic Mapping

The α-layer is trained by freezing the multi-output model weights. As men-
tioned previously, the layer has M speaker branches as input, thus raising
M × O + M input units, where O is the acoustic vector dimension. The M
added inputs come from another input vector which is inserted to control
the weight that every speaker has in the interpolation, called the α vector
(which gives its name to the layer), which is a one-hot code of dimensionM .
During training, linguistic inputs are injected into the multi-output model
and then the inference is made, which turns to be the inputs for the inter-
polation layer, which also get the one-hot α concatenated, expressing the
identity of the current shown speaker at the interpolation layer output as
mentioned before. The same training data used to train the multi-output
model is used for the M speakers. Figure 5.5 depicts the training procedure
for an example with 3 speakers and for 3 batches.

This methodology then expects the layer to learn not only each extreme
case (i.e. each one-hot case shown during training), but it is also expected
to infer intermediate values for the acoustic outputs, and as it is seen in
section 5.6.3, it actually learns to interpolate the features.

During synthesis, theα code is replaced by a probability distribution among
the speakers, thus expressing the percentage to synthesize for every speaker,
so for instance we could have the following α-vector in synthesis:

α = (0.5, 0.5, 0, 0)

This is a code for an interpolation layer made out of M = 4 speakers, and it
means that the mixture is made with 50% of speaker 1 and 50% of speaker
2, while the other two remain 0, so no information from them is required to
generate the acoustic predictions.

This type of code is the first approach for making an interpolation architec-
ture that will be improved in a future line of research with identity related
to acoustic characteristics of speakers, such as the i-vectors.

5.6 Results

The results for the different architectures proposed are explained here, so
that we see the effect of:

• How is the overall quality of the multi-output model compared to the
individual models? Are the speakers distorting each other or are they
helping each other?

• How does the speaker adaptation perform when we back-propagate
different amounts of the available data? How does affect the back-
propagation through the whole model in comparison to freezing the
base model and updating only the new output? How does it do com-
paring to the single speaker model of the new speaker?

• Regarding the interpolation, is the α-layer learning a suitable and
meaningful intermediate range of values for the different speakers?
How is the M ≥ µ affecting the resulting prediction of µ speakers?

5.6. Results 75

FIGURE 5.5: α-interpolation training method for an example with M = 3 for
3 batches of examples. The one-hot code expresses the identity of the currently
shown speaker. Each sm is the output prediction of the corresponding multi-
output branch for the m-th speaker.

76 Chapter 5. Multiple Output Acoustic Mapping

The following sections analyze these questions given the objective and sub-
jective results obtained during the course of this work.

5.6.1 Results: Multi-output

We make a first analysis by looking at the training loss evolution of the
different speaker outputs, and concretely focusing on two speakers: M1
and F1. To establish a reference, we trained M1 and F1 with a single out-
put architecture and multiple output one. The results can be seen in Fig-
ure 5.6, where the 7 speaker learning curves are shown, depicting that all
output converge with a noisy behavior, given by the training methodology
where every speaker distorts each other’s learning process for mini-batches
of data.

FIGURE 5.6: Training loss evolution comparison. Speakers F1 and M1 decrease
the learning cost when trained with other speakers altogether.

There we can see how speakers F1 and M1 get to a lower training loss when
they are trained with the multiple output mechanism. This is normally
related to a better training procedure where they reach a better point in the
optimization.

To really see this effect, we first make an objective evaluation by means of
specific metrics for each kind of predicted feature, as it was previously done
in Chapter 4. Concretely we used the Mel Cepstral Distortion (Mashimo
et al., 2001) (MCD), the RMSE of the predicted F0 (Hertz scale) and the
Accuracy in UV flag prediction. Table 5.1 shows the results for F1 and M2,
which show the alone models (i.e. the speaker trained with its own acoustic
model isolated from others) and the mixed models (i.e. the speaker trained
in a multi-output fashion with the other 6 speakers). The alone results for
M1 differ a little bit from the ones obtained in Chapter 4 because we have
different data splits, which at same time come from a much less amount of
samples.

The objective results suggest the improvement in the features estimation
when the speaker models are trained in the multi-output fashion, as they

5.6. Results 77

share knowledge in the lowest layers of the network to transfer learning
about the final mappings.

TABLE 5.1: Objective evaluation for M1 and F1 trained alone with a single output
model and together with other speakers (mixed) in the multiple output architec-
ture.

Model MCD[dB] F0[Hz] UV[%]

M1 alone 7.6 14.4 92.3

M1 mixed 7.2 13.8 94.2

F1 alone 7.0 17.3 95.2

F1 mixed 6.5 17.3 96.2

A subjective evaluation has been carried out as well with a preference test
made by 16 subjects. For both F1 and M1 speakers, 5 sentences are selected
and evaluated. The listeners can choose a declining score between two syn-
thesized utterances; one generated by the single output model and another
one by the multiple output one. Listeners then find five options available
from −2 (multiple output is much preferred) to 2 (single output is much
preferred). The type of system per utterance is hidden for the listeners and
randomly ordered.

The results are depicted in Figure 5.7. It can be seen that the testing subjects
have all rather preferred the multiple output model in most of the cases.
We also made a Wilcoxon test for the subjective evaluation to find out how
statistically meaningful are these results, obtaining the following p-values:
pF1 = 5.3 · 10−7 and pM1 = 2.2 · 10−5.

FIGURE 5.7: Box plot of preference test scores. Scores range from −2 (multiple
output model is preferred) to 2 (single output trained model is preferred). Both is
the summary of all the answers, joining both speaker results. Red lines: medians.
Blue dots: means.

78 Chapter 5. Multiple Output Acoustic Mapping

5.6.2 Results: Adaptation

In this section we analyze the effect of an adaptation layer constructed on
top of the MO architecture. In Figure 5.8 we can see how the validation cost
for the F3 speaker improves when we add more data, something we could
expect, as it learns better with the more data it gets to fine-tune the new
output branch. It is interesting to see how freezing the shared layers and
training only the new output branch we get to a very similar result, and
more smoothly.

Table 5.2 summarizes the objective evaluation for this fine-tuning, getting a
good result with respect to the single output model of F3 when only the last
layer is trained on top of the shared parts of the model. The error values
are quite high in comparison with the previous ones (F1, M1), because this
speaker was taken from an expressive subset of data, being it quite different
from that of F1 and M1.

An informal listening test suggested that the adaptation sounded close to
the original speaker, thus validating this approach.

TABLE 5.2: Objective evaluation for F3 as an adaptation subject. Full: all layers are
fine-tuned. Frozen: only new output branch is fine-tuned.

Model MCD[dB] RMSE F0[Hz] UV[%]

F3 alone 8.11 28.07 9.00
F3 fine-tuned full 100% data 7.96 26.96 7.74
F3 fine-tuned frozen 100%
data

7.90 26.44 6.73

FIGURE 5.8: Validation loss evolution comparison of different batch sizes, with
frozen shared layers and fine-tuned shared layers.

5.6. Results 79

5.6.3 Results: α-interpolation

Finally, we designed the experiments to evaluate the α-interpolation pro-
posal with 2 speakers out of the 6 mentioned previously from the TCSTAR
database. For the interpolation, two configurations were trained as will be
seen,M = (2, 6). This means that the interpolation was carried out between
speakers F1 and M1, but there is also a configuration where the α-layer is
trained will all the MO speakers, thus M = 6.

An informal subjective test clearly showed that increasing M improved the
naturalness of the output speech although only 2 speakers are interpolated
in the evaluation.

Objective tests have been performed to evaluate the performance of the α
interpolation. These consist in analyzing the evolution of the MCD between
the interpolation output and each of theM branches, and also the evolution
of the F0 RMSE. Figures 5.9 and 5.10 show these results, where the α varia-
tion is made for speaker F1, so it is αF1 , speaker M1 has αM1 = (1 − αF1)
and all others are αm = 0. We may refer to α = 0.5 for the point at
αF1 = αM1 = 0.5.

FIGURE 5.9: MCD when varying α values. The variation is made for speaker F1
and it is (1− α) for M1. All others speakers remain 0. M = 6.

From the curves we see how, although we only show to the network the
extreme values with an orthogonal code, it learns the intermediate repre-
sentations effectively. The MCD values vary smoothly between the inter-
polated speakers F1 and M1, whilst other speakers’ MCD remain with a
short variation. It is interesting the fact that the crossing point is very close
to α = 0.5.

80 Chapter 5. Multiple Output Acoustic Mapping

Note that the values may differ from those in Table 5.1 because the distances
are not computed to natural speech but to the multi-output predictions in
this case.

FIGURE 5.10: F0 RMSE when varying α values. The variation is made for speaker
F1 and it is (1− α) for M1. All others speakers remain 0. M = 6.

Regarding the F0 RMSE evolution, there is a biasing of the crossing point,
which shows us how the F0 prediction is biased towards the male speaker,
as it is the one getting less error for α = 0.5. These interpolation results are
coherent with perceptual impression. As previously mentioned, increasing
M helped in the naturalness of the 2-speaker interpolation, so an analysis
of the F0 distributions is also made for the cases M = 2 and M = 6. These
analysis are shown in Figures 5.11 and 5.12 respectively.

First, we can confirm the biasing towards the male speaker when α = 0.5
(M1 50% F1 50%) in both cases. Nevertheless an important difference is
the fact that training the layer with a higher M increases the distributions
variance, which turns out to be a less monotonous sound at the output, and
thus more natural.

5.7 Discussion

A novel architecture for modeling the acoustic mapping for many speakers
at once has been proposed and studied in section 5.3. The model lets us
represent N speakers with a very reduced set of parameters in comparison
to making N separated models, once per speaker. Moreover, we have seen
how the different speakers help each other in the learning process by trans-
ferring their knowledge in the linguistic mappings done in the earlier lay-
ers. Objective and subjective evaluations confirm the learning advantage

5.7. Discussion 81

FIGURE 5.11: F0 Histograms: original M1 and F1 speakers in blue. αF1 =
(0.25, 0.5, 0.75) and αM1 = (0.75, 0.5, 0.25) interpolations in green. M = 2.

FIGURE 5.12: F0 Histograms: original M1 and F1 speakers in blue. αF1 =
(0.25, 0.5, 0.75) and αM1 = (0.75, 0.5, 0.25) interpolations in green. M = 6.

82 Chapter 5. Multiple Output Acoustic Mapping

that the different speakers obtain by being trained jointly with the multi-
output architecture.

On top of this, a speaker adaptation technique is presented in section 5.4,
where a new output branch is attached to the multi-output architecture and
two back-propagataion approaches have been studied. The objective eval-
uation showed the improvement of this technique over training the speaker
isolated as well.

Finally, an interpolation model has been built also taking advantage of
this novel architecture by means of the so called α-layer, which is trained
with an orthogonal code expressing speaker identities during training and
speaker portions during synthesis. The results suggest that the layer can ef-
fectively learn intermediate ranges of speaker representations by only being
trained with extreme cases (each speaker’s voice examples). Furthermore,
inserting as many speakers as possible to the α-layer increases the variabil-
ity of the predictions in the output, which turns out to be a more natural
result.

83

Chapter 6

Conclusions

This chapter is devoted to make a review of this work, discussing the im-
plemented architectures and achieved results. Lines of future work are also
explained such that the reader can get to see the possibilities opened by this
contribution. In the end of the chapter the research contribution of the work
is shown.

6.1 Thesis Review

A speech synthesis system made from scratch with RNN-LSTM architec-
tures has been built in this work. The system is based on a two stage archi-
tecture, where first the duration of the phonemes to generate are predicted,
and then the acoustic parameters to be passed to a Vocoder are generated
frame by frame up to the corresponding duration. The types of features
with which the network makes the predictions are explained in detail: the
context labels that contain phonetic and prosodic information about the
input text and the acoustic features predicted. To generate the data used
by the neural networks a parallelized framework is made, such that the
Vocoding and text-to-label processes are sped up to be able to deal with
many speakers’ data quickly and with large amounts of data. It has also
been shown how the acoustic model suffers an over-smoothing effect of
the generated parameters, because it tends to predict the means and not
the variances for the inherent behavior of the regression training function,
the MSE. A post-filtering mechanism is then applied in the generation of
acoustic parameters to overcome this issue and enhance the naturalness of
the synthesis.

After presenting all the methodologies behind the Text-To-Speech (TTS)
system there are different types of evaluations made for the duration and
acoustic models: some brief architecture search to tune the different pa-
rameters of the network in an objective way is performed, with which we
obtained a deeper architecture in the acoustic model than in the duration
one. The duration model architecture seeking process shows that it suffers
from variability in the results when we vary the network depth (amount
of hidden layers) and width (amount of hidden units/cells), so the varia-
tion of topology in this case is meaningful to achieve better results. On the
other hand the acoustic model is not perturbed very much and the results
are just slightly different when tuning the model for the chosen parameters.
Nonetheless. the best performing model in objective terms was picked as
the representative one in both cases.

84 Chapter 6. Conclusions

The TTS is also evaluated subjectively to see how good it performs in com-
parison to natural speech, and at the same time the model is compared to
different current TTS systems. The results suggest two main things: first,
the TTS developed in this work is the one with the best rated naturalness
in comparison to the others we had. Secondly, the post-filtering technique
is effective in terms of human perception by a large margin compared with
the system without applying it.

After the TTS results are shown there is also an analysis of the LSTM gate
activations in the acoustic model for two layers: the first hidden layer and
the output layer. The three gate activations (input, forget and output) are
visualized for an arbitrary test sentence. From this analysis we get some
clues about the correlation of the gates with the inputs and predictions for
the speech synthesis task, where we see that the network reacts sharply in
the hidden layer whenever a new input phoneme is given to it. We have
also found a clear relationship between the input and forget gates for the
acoustic parameters generation task, as stated in the work by Wu and King
(2016). Another interesting fact derived from this analysis is that the output
gate of the output layer seems to block part of the outputs when unvoiced
phonemes are going to be predicted, something we could expect because
the unvoiced phonemes do not have F0, and besides the voiced frequency
parameter and the voiced/unvoiced flag are set to the lowest value in these
cases. Given these facts, we corroborate how the network accepts less in-
put values in those regions and also tries to block any output information
flowing from it.

The last part of the work has been the proposition of a novel architec-
ture that can hold many speaker acoustic models inside the same shared
structure, thus sharing knowledge among speaker linguistic representa-
tions in the lowest layers. The architecture is called Multi-Output acoustic
model (Pascual and Bonafonte, 2016a), and it is based on having a set of
shared hidden layers that perform the first linguistic mappings and then
they diverge into many output branches, where each of these pertain to
a speaker acoustic parameterization. A proper training algorithm for this
system is developed such that there is no requirement to have the same
training input/output pairs for all the speakers in the database, which give
us way more freedom to use the data of completely different recordings. In
the objective and subjective results it is proved that this methodology helps
the individual speaker models to learn better representations that lead to
better generated speech.

We also worked in a first speaker adaptation approach on top of the Multi-
Output acoustic model, where we just need to insert another output branch
on top of the pre-trained system and fine-tune it without modifying the
whole structure, thus preserving the multiple output base model and low-
ering the footprint in memory to get a new speaker model. This approach
worked better than training the new speaker in an isolated way.

Finally, we developed a speaker interpolation model (Pascual and Bona-
fonte, 2016b), where we need to insert another output layer (the α-layer)
on top of M pre-trained speaker branches from the Multi-Output, and fine-
tune it without modifying the whole structure. We have seen how, when
we show the network extreme cases representing the different speakers by
means of an orthogonal identity code, it is able to infer intermediate values.

6.2. Future work 85

Furthermore, training the α-layer with all the available speakers helped the
interpolation to increase the variance, thus producing more natural speech.

6.2 Future work

The future lines of work envisaged from the research and development per-
formed here cover mainly three topics in the case of the TTS:

• Alternative representations of input linguistic features.

• Supression of the Vocoder stage to generate waveforms directly.

• End-to-end learning from text-to-speech to avoid the two-stage paradigm.

First, getting alternative representations of the input linguistic features can
lead to representations that fit better to problems like expressive speech
generation, or even multiple language speech synthesis. Therefore, a fu-
ture line of work will be looking for alternative linguistic representations
to those of the pre-defined labels that were used in the HMM-based SPSS.
These features derived from previous technologies are quite naive (pho-
netic context, stress and some features about sentence modality and length),
hence it will be interesting to explore if there is room for improvement mak-
ing the network able to extract semantic information out of the text. This
could produce more expressive speech, continuing with the line of research
proposed in Jauk, Bonafonte, and Pascual (2016).

Regarding the acoustic parameter generation, working with hybrid systems
has given good results (King, 2014), thus exploring models that mix the
Unit Selection technology, which produces high quality speech, with the
generalization mechanisms of the neural networks will be another interest-
ing line of research.

So far it has been discussed a type of architecture that uses a first stage to
predict the duration of the phonemes and another one to predict the acous-
tic parameterization. This is done because we go from a phonetic represen-
tation of the text to the acoustic representation of the phonemes. Another
possible approach that will be explored will be an encoder-decoder model
similar to that of Cho et al. (2014a) used in Neural Machine Translation
(NMT), with which the raw input text will be analyzed and compacted into
an intermediate representation called context vector in the encoder stage.
Once the context vector is captured it is expanded into the destination se-
quence of predictions in the decoder stage, where this sequence is com-
posed of the acoustic parameters. Furthermore, the use of an attention
mechanism (Bahdanau, Cho, and Bengio, 2014) for this type of architec-
ture will be used to impose a soft-alignment between the source sentence
of words and the destination acoustic parameters. This would be an end-
to-end TTS system, where the input examples formed by text and output
examples formed by speech recordings do not need any previous align-
ment. It is the network then that learns to map the right slices of the input
data to the right destination parameters automatically.

86 Chapter 6. Conclusions

Regarding the interpolation technique, a future research that can be con-
ducted is substituting the orthogonal codes for a representation closer to
the acoustic feature space, such as the i-vector.

6.3 Research Contributions

A full software framework that will be publicly released has been built in
this project to make the different TTS architectures aforementioned. Also,
the following publications were made out of techniques developed in this
thesis:

• Multi-Output RNN-LSTM for multiple speaker speech synthesis and
adaptation. Santiago Pascual and Antonio Bonafonte. EUSIPCO 2016.

• Acoustic Feature Prediction from Semantic Features for Expressive
Speech using Deep Neural Networks. Igor Jauk, Antonio Bonafonte
and Santiago Pascual. EUSIPCO 2016.

• Multi-output RNN-LSTM for multiple speaker speech synthesis with
α-interpolation model. Santiago Pascual and Antonio Bonafonte. Sub-
mitted to ISCA SSW9.

87

Bibliography

Achanta, Sivanand, Tejas Godambe, and Suryakanth V Gangashetty (2015).
“An investigation of recurrent neural network architectures for statisti-
cal parametric speech synthesis”. In: Proc. Interspeech.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural
machine translation by jointly learning to align and translate”. In: arXiv
preprint arXiv:1409.0473.

Bengio, Yoshua (2012). “Practical recommendations for gradient-based train-
ing of deep architectures”. In: Neural Networks: Tricks of the Trade. Springer,
pp. 437–478.

Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu (2013).
“Advances in optimizing recurrent networks”. In: 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing. IEEE, pp. 8624–
8628.

Bishop, Christopher M (1995). Neural networks for pattern recognition. Oxford
university press.

Bonafonte, Antonio et al. (2006a). “Ogmios: The UPC text-to-speech syn-
thesis system for spoken translation”. In: TC-STAR Workshop on Speech-
to-Speech Translation, pp. 199–204.

Bonafonte, Antonio et al. (2006b). “TC-STAR: Specifications of language re-
sources and evaluation for speech synthesis”. In: Proc. of LREC Conf,
pp. 311–314.

Chen, Sin-Horng, Shaw-Hwa Hwang, and Yih-Ru Wang (1998). “An RNN-
based prosodic information synthesizer for Mandarin text-to-speech”.
In: IEEE Transactions on Speech and Audio Processing 6.3, pp. 226–239.

Cho, Kyunghyun et al. (2014a). “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: arXiv preprint
arXiv:1406.1078.

Cho, Kyunghyun et al. (2014b). “On the properties of neural machine trans-
lation: Encoder-decoder approaches”. In: arXiv preprint arXiv:1409.1259.

Chollet, François (2015). Keras. https : / / github . com / fchollet /
keras.

Chung, Junyoung et al. (2014). “Empirical evaluation of gated recurrent
neural networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555.

Coto-Jiménez, Marvin and John Goddard-Close (2016). “LSTM Deep Neu-
ral Networks Postfiltering for Improving the Quality of Synthetic Voices”.
In: arXiv preprint arXiv:1602.02656.

Deng, Li and Dong Yu (2014). “Deep learning: Methods and applications”.
In: Foundations and Trends in Signal Processing 7.3–4, pp. 197–387.

Erro, Daniel (2016). “Two-Band Radial Postfiltering in Cepstral Domain
with Application to Speech Synthesis”. In: IEEE Signal Processing Letters
23.2, pp. 202–206.

Erro, Daniel et al. (2011). “Improved HNM-Based Vocoder for Statistical
Synthesizers.” In: Proc. of Interspeech, pp. 1809–1812.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

88 BIBLIOGRAPHY

Fan, Yuchen et al. (2015). “Multi-speaker modeling and speaker adaptation
for DNN-based TTS synthesis”. In: Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on. IEEE, pp. 4475–4479.

Fernandez, Raul et al. (2014). “Prosody contour prediction with long short-
term memory, bi-directional, deep recurrent neural networks.” In: Proc.
of Interspeech, pp. 2268–2272.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of
training deep feedforward neural networks”. In: International Conference
on Artificial Intelligence and Statistics, pp. 249–256.

Hastie, Trevor et al. (2005). “The elements of statistical learning: data min-
ing, inference and prediction”. In: The Mathematical Intelligencer 27.2,
pp. 83–85.

Hochreiter, Sepp (1998). “The vanishing gradient problem during learning
recurrent neural nets and problem solutions”. In: International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 6.02, pp. 107–116.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term mem-
ory”. In: Neural computation 9.8, pp. 1735–1780.

Hozjan, Vladimir et al. (2002). “Interface Databases: Design and Collection
of a Multilingual Emotional Speech Database.” In: LREC.

Hu, Qiong et al. (2014). “An investigation of the application of dynamic
sinusoidal models to statistical parametric speech synthesis.” In: Proc. of
Interspeech, pp. 780–784.

Hu, Qiong et al. (2015). “Fusion of multiple parameterisations for DNN-
based sinusoidal speech synthesis with multi-task learning”. In: Proc. of
Interspeech, pp. 854–858.

Hunt, Andrew J and Alan W Black (1996). “Unit selection in a concatenative
speech synthesis system using a large speech database”. In: Acoustics,
Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings.,
1996 IEEE International Conference on. Vol. 1. IEEE, pp. 373–376.

ITU-R (2003). ITU-R BS.1534-1,Methods for the objective assessment of interme-
diate quality level of coding systems.

ITU-T (2011). ITU-T P.56, Objective measurement of active speech level.
Jauk, Igor, Antonio Bonafonte, and Santiago Pascual (2016). “Acoustic fea-

ture prediction from semantic features for expressive speech using Deep
Neural Networks.” In: 2016 24th European Signal Processing Conference
(EUSIPCO).

Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever (2015). “An empir-
ical exploration of recurrent network architectures”. In: Proceedings of the
32nd International Conference on Machine Learning (ICML-15), pp. 2342–
2350.

Kang, Shiyin, Xiaojun Qian, and Hsiang-Yun Meng (2013). “Multi-distribution
deep belief network for speech synthesis”. In: Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, pp. 8012–
8016.

King, Simon (2014). “Measuring a decade of progress in text-to-speech”. In:
Loquens 1.1, e006.

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980.

Kubichek, Robert F (1993). “Mel-cepstral distance measure for objective
speech quality assessment”. In: Communications, Computers and Signal

BIBLIOGRAPHY 89

Processing, 1993., IEEE Pacific Rim Conference on. Vol. 1. IEEE, pp. 125–
128.

LeCun, Yann A et al. (2012). “Efficient backprop”. In: Neural networks: Tricks
of the trade. Springer, pp. 9–48.

Ling, Zhen-Hua et al. (2015). “Deep learning for acoustic modeling in para-
metric speech generation: A systematic review of existing techniques
and future trends”. In: IEEE Signal Processing Magazine 32.3, pp. 35–52.

Lu, Heng, Simon King, and Oliver Watts (2013). “Combining a vector space
representation of linguistic context with a deep neural network for text-
to-speech synthesis”. In: Proc. ISCA SSW8, pp. 281–285.

Mashimo, Mikiko et al. (2001). “Evaluation of cross-language voice conver-
sion based on GMM and STRAIGHT”. In:

Orr, Genevieve B and Klaus-Robert Müller (2003). Neural networks: tricks of
the trade. Springer.

Pascual, Santiago and Antonio Bonafonte (2016a). “Multi-output RNN-LSTM
for multiple speaker speech synthesis and adaptation”. In: 2016 24th Eu-
ropean Signal Processing Conference (EUSIPCO).

— (2016b). “Multi-output RNN-LSTM for multiple speaker speech synthe-
sis with α-interpolation model”. In: Submitted to 9th ISCA Workshop on
Speech Synthesis. Sunnyvale, CA, USA.

Qian, Yao et al. (2014). “On the training aspects of deep neural network
(DNN) for parametric TTS synthesis”. In: 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 3829–
3833.

Recurrent Neural Networks Tutorial (2015). http://www.wildml.com/
2015/09/recurrent-neural-networks-tutorial-part-1-
introduction-to-rnns/. [Online; accessed February-2016].

Sorin, Alexander, Slava Shechtman, and Vincent Pollet (2011). “Uniform
Speech Parameterization for Multi-Form Segment Synthesis.” In: Proc.
of Interspeech, pp. 337–340.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural
networks from overfitting.” In: Journal of Machine Learning Research 15.1,
pp. 1929–1958.

Stylianou, I (1990). “Harmonic plus Noise Models for Speech, combined
with Statistical Methods, for Speech and Speaker Modification (PhD,
Signal et Image, ENST Paris, Paris)”. In:

Sutskever, Ilya et al. (2013). “On the importance of initialization and mo-
mentum in deep learning.” In: ICML (3) 28, pp. 1139–1147.

Swietojanski, Pawel and Steve Renals (2014). “Learning hidden unit contri-
butions for unsupervised speaker adaptation of neural network acous-
tic models”. In: Spoken Language Technology Workshop (SLT), 2014 IEEE.
IEEE, pp. 171–176.

Tokuda, Keiichi et al. (2000). “Speech parameter generation algorithms for
HMM-based speech synthesis”. In: Acoustics, Speech, and Signal Process-
ing, 2000. ICASSP’00. Proceedings. 2000 IEEE International Conference on.
Vol. 3. IEEE, pp. 1315–1318.

Tutorial on Deep Belief Networks (2010). http://deeplearning.net/
tutorial/DBN.html. [Online; accessed May-2015].

Tutorial on Denoising Autoencoders (DA) (2010). http://deeplearning.
net/tutorial/dA.html. [Online; accessed May-2015].

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://deeplearning.net/tutorial/DBN.html
http://deeplearning.net/tutorial/DBN.html
http://deeplearning.net/tutorial/dA.html
http://deeplearning.net/tutorial/dA.html

90 BIBLIOGRAPHY

Tutorial on Restricted Boltzman Machines (RBM) (2010). http://deeplearning.
net/tutorial/rbm.html. [Online; accessed May-2015].

Understanding LSTM Networks (2015). http : / / colah . github . io /
posts/2015-08-Understanding-LSTMs/. [Online; accessed February-
2016].

UPC TTS Benchmark (2016). http://veu.talp.cat/neural_eval/.
[Online; accessed June-2016].

Uria, Benigno, Iain Murray, and Hugo Larochelle (2013). “RNADE: The
real-valued neural autoregressive density-estimator”. In: Advances in Neu-
ral Information Processing Systems, pp. 2175–2183.

Uria, Benigno et al. (2015). “Modelling acoustic feature dependencies with
artificial neural networks: Trajectory-RNADE”. In: 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
pp. 4465–4469.

Valentini-Botinhao, Cassia, Zhizheng Wu, and Simon King (2015). “Towards
minimum perceptual error training for DNN-based speech synthesis”.
In: Proc. Interspeech.

Wells, John C et al. (1997). “SAMPA computer readable phonetic alphabet”.
In: Handbook of standards and resources for spoken language systems 4.

Wu, Zhizheng and Simon King (2015). “Minimum trajectory error training
for deep neural networks, combined with stacked bottleneck features”.
In: Proc. Interspeech, pp. 309–313.

— (2016). “Investigating gated recurrent networks for speech synthesis”.
In: 2016 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, pp. 5140–5144.

Wu, Zhizheng et al. (2015a). “A study of speaker adaptation for DNN-based
speech synthesis”. In: Proceedings interspeech.

Wu, Zhizheng et al. (2015b). “Deep neural networks employing multi-task
learning and stacked bottleneck features for speech synthesis”. In: 2015
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, pp. 4460–4464.

Ze, Heiga, Andrew Senior, and Mike Schuster (2013). “Statistical paramet-
ric speech synthesis using deep neural networks”. In: 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing. IEEE, pp. 7962–
7966.

Zen, Heiga and Hasim Sak (2015). “Unidirectional long short-term memory
recurrent neural network with recurrent output layer for low-latency
speech synthesis”. In: Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on. IEEE, pp. 4470–4474.

Zen, Heiga and Andrew Senior (2014). “Deep mixture density networks for
acoustic modeling in statistical parametric speech synthesis”. In: 2014
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, pp. 3844–3848.

Zen, Heiga, Keiichi Tokuda, and Alan W Black (2009). “Statistical paramet-
ric speech synthesis”. In: Speech Communication 51.11, pp. 1039–1064.

Zen, Heiga et al. (2007). “The HMM-based speech synthesis system (HTS)
version 2.0.” In: 6th ISCA Workshop on Speech Synthesis. ISCA, pp. 294–
299.

http://deeplearning.net/tutorial/rbm.html
http://deeplearning.net/tutorial/rbm.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://veu.talp.cat/neural_eval/

	Abstract
	Resum
	Resumen
	Acknowledgements
	Introduction
	State of the Art
	Unit Selection Speech Synthesis
	Statistical Parametric Speech Synthesis
	Deep Learning in Speech Synthesis
	Summary

	Introduction to Deep Learning
	Artificial Neural Network
	Training the network: Back-Propagation algorithm
	Dropout Method

	Deep Neural Network
	Recurrent Neural Network
	Back-Propagation Through Time
	Long Short Term Memory
	Summary

	Two stage Text-to-Speech with RNN-LSTM
	Introduction
	Data Preparation
	Text to Label process
	Acoustic parameters
	Encoding and normalizing the features
	Parallelizing the pipeline: Speeding up the data generation

	Two-stage RNN-LSTM model
	A post-processing technique for better naturalness
	Experimental Design and Results
	Database
	Objective Evaluation
	Subjective Evaluation
	Gate activations analysis

	Discussion

	Multiple Output Acoustic Mapping
	Introduction
	Data Preparation
	Multi-Output architecture for acoustic mapping
	Multi-Output architecture for speaker adaptation
	Multi-Output architecture for speaker interpolation: -model
	Results
	Results: Multi-output
	Results: Adaptation
	Results: -interpolation

	Discussion

	Conclusions
	Thesis Review
	Future work
	Research Contributions

	Bibliography

