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Abstract

Multiscale modelling is the need of the hour, and this can be confirmed from the fact that

several initiatives have been taken to bring together researchers from different domains by

formation of projects like Integrated Computational Materials Engineering (ICME), Materials

Genome Initiative etc. This increasing interest can be pertained to the fact that there is a need

for creating new materials with desired effective properties for new applications like Additive

Manufacturing (AM). Until recently the discovery of new materials was based on empirical

methods of trial and error, which takes roughly twenty years to bring in a new material into

manufacturing.

Therefore, it is important to address these two difficult problems. First is Multiscale

modelling, which enables communication between constitutive models at different length scales,

thus improving accuracy of failure predictions and second, is Accelerated Material Discovery,

which can reduce the development time of new materials with desired properties.

As it turns out, both these problems are closely related and can be addressed simultaneously.

The key to success in both these areas is making problem solving data driven, i.e., converting

these non-trivial problems Big Data friendly so that the techniques from Data Science can be

used for building scalable, robust and computationally efficient solutions. Another good reason

to use data science for these problems is that it makes data reusable i.e., data that was produced

during solution of one problem can be used in solving another problem by establishing syntactic

material databases, where not only effective properties but also the internal structure of the

materials is readily available.

In this thesis, one such mathematical framework called Material Knowledge Systems (MKS)

is used to solve both the above mentioned problems. MKS is derived from the Statistical

Continuum theories, and has been successfully implemented in real world problems. MKS is

based on the rigorous mathematical framework called Material Sensitive Design (MSD), which is

further derived from generalized homogenization theories. MSD provides a rigorous methodology

for quantification of the internal structure of the material, which spans multiple length and time

scales with a microstructure function. But the biggest achievement of MSD is that it allows us

to incorporate the n-point spatial correlations in the homogenization theories. Also it addresses

the problem of localization, which has been under addressed as compared to the homogenization

problems.

The use of n-point spatial correlations to represent the internal structure of the material is
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very rigorous, thus, the amount of structural information is substantially large. To deal with this

increased amount of information, dimensional reduction techniques like Principal Component

Analysis, Naive Bayes etc., from the field of Data Science. Using these techniques, the material

designer can not only visualize the structure-property linkages, but can also begin to solve the

inverse problem of creating microstructures using hybrid processes which exhibit the desired

effective properties. These linkages are also called Property-Structure-Process (PSP) relations.

Establishment of such PSP linkages will change the way how materials are created in the future.
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Chapter 1

Introduction

The word ”Multiscale” naturally occurs together with materials in nature. The complete

description of a material thus needs description of unique attributes at each length scale. The

set of these unique attributes at a perceivable small scale are called microstructures. The

microstructure of a material can be interpreted as the fingerprint of a material, only difference

being that different microstructures can be obtained for the same material by following different

heat treatment process or by using a different order of processes. These variations in the

microstructures ultimately result in the variation in effective properties of materials. Therefore,

it is important for the designer to be aware of the what heat treatment has been used in the

production of the material.

This process of material selection can be improved if the designer has access to microstructure

information of the material and not just effective properties. However, the amount of information

associated with microstructures is very large and to extract ”knowledge” out of these huge

datasets, some sort of dimension reduction is necessary. With dimension reduction, the vast

unwieldy data becomes usable information. However, this information in itself has limited

usefulness. In order to make it more useful, the microstructure information has to be related

to the effective properties for that microstructure. Such relations are better known Property-

Structure relations.

With this kind of low dimensional representation of property-structure linkages, it can become

easier for designers to choose a set of properties, as it will be clear what kind of microstructure
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CHAPTER 1. INTRODUCTION

will produce these properties. At this point, there is a natural desire to understand what

processes have to be done to get this desired microstructure? This can be done by establishing

the second linkage between Structure-Process, i.e., by identifying an ordered set of processes

that will produce the desired microstructure. This complete chain is referred to as Property-

Structure-Process [4] linkages.

In order to establish such linkages it is first essential to find an efficient way of quantifying

the morphology or the internal structure of the microstructure. Niezgoda [8] formulated a

methodology to rigorously quantify the morphology by treating the microstructure as a set of

stochastic rules, controlling the spatial placement of structural attributes, meaning that, each

microstructure can be treated as one of the realization of the microstructure process. This

allows for comparison between different different microstructures in a statistical way.

n-Point spatial correlations have been used successfully for spatial correlations in many

cases[references]. For this thesis, we will use 1-point and 2-point correlations as a means of

capturing structure information. Kroner[6, 5] said that effective properties of material can be

expressed in terms of a series sum, and the structural information obtained through spatial

correlations can be explicitly entered in these terms. A good property of n-point relations in

that they can also rigorously account for local neighborhoods. Further, it is known that local

neighborhoods affect the local response field variable. This amalgamation of spatial correlations

of the structure and statistical continuum theory naturally leads to establishment of PSP

linkages.

Multiscale problems can be classified in two broad categories, first being hierarchical and

second concurrent. In hierarchical approach of multiscale modelling, constitutive models are

solved at different length scales are solved one after another, transferring information from

one model to another whereas, in concurrent method the models at disparate lengths are

solved simultaneously while continuously exchanging information between the constitutive

models. As one might feel intuitively, true multiscale concurrent simulations are computationally

very expensive, and before coming into commercial practice, issues like exascale computing,

reduction of data transfer, development of physicality based models need to be addressed. On

the other hand, hierarchical methods are computationally more efficient but on the expense
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CHAPTER 1. INTRODUCTION

of accuracy, due to simplifying assumptions about the materials. Hierarchical modelling is

essentially transferring information from one model to another, and currently this can be thought

of as transferring information from one tool to another. The issue of effective communication

between different simulation tools is another paradigm of ICME[1, 9] and is formally called

Interoperability. Broadly speaking, interoperability can be defined as a standard of ontology,

which can be used to describe problem metadata. A complete coverage of interoperability is

beyond the scope of this thesis, for a better overview the reader can refer to [9].

In recent years, Finite Element methods have proven to be highly versatile in working

with complex geometries, physics and boundary conditions, thus making a strong candidate

for localization analysis in multiscale problems. However, in a multiscale scenario in order to

include the simulations capturing governing physics of the lower scale, it would require very

large meshes, with large amount of data movement leaving the process computationally unviable

in real world engineering simulations. Thus MSD emerged as a promising alternative to solve

the localization problem.

Figure 1.1: Multiscale modelling depends upon effective communication between constitutive
relations at different length scales. When the information flown from the micro scale to macro
scale, the process is called homogenization and when the flow of information is from macroscale
to the microscale it’s called localization. Figure courtesy [2]

The generalized homogenization theories to date account for material internal structure

by using perturabation theory and Green’s function. In this approach a series expansion for

localization and homogenization is obtained, with individual terms of the series are convoluted

integrals based on Green’s function. Microstructure Sensitive Design (MSD) developed by

Adams and co-workers [3] is a mathematical framework which was introduced to specifically
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CHAPTER 1. INTRODUCTION

enable Structure-Property linkages in material systems and addressing the hierarchical multi-

scale problems using a microstructure function. MSD enables decomposition of second-order

homogenization theories into a physics-dependent function and a microstructure dependent

function. This allows for inclusion of n-Point spatial correlations in the terms of the effective

property series expansions.

In the context of this thesis, we will use the microstructure function [3] to build 1-point and

2-point correlations instead of n-Points in deriving the spectral representation of homogenization

theories. The 1-point probability distributions, gives the probability of finding a local state

h at spatial point x in the microstructure. Whereas 2-point spatial correlations denote the

probability density of finding local states h and h
′

at spatial position x+ r, where r is a random

vector in the microstructure.

Materials Knowledge System (MKS) is a computational framework used for extracting

’knowledge’ from material systems and establishing PSP linkages. The extraction of linkages are

established using classification techniques from the field of Data Science. To make this process of

knowledge extraction scalable and computationally efficient MKS discretizes the homogenization

theories and statistical descriptions of microstructures using DFT. This results in highly efficient

homogenization and Localization models, which can scale to very big microstructure datasets.

1.1 Aim of the thesis

This thesis aims to implement Material Knowledge System (MKS), a computational framework

based on the rigorous mathematical framework MSD.

First the theoretical background of MKS and MSD is explained, whose literature was

developed by Prof. B.L.Adams [ref], Prof. Surya R. Kalidindi[], and their PhD students Stephen

Niezgoda[?], Anthony Fast [?], Giacomo Landi[7], Massimiliano Binci[?].

After the theoretical background, the MKS framework is implemented for a two phase

composite material using Python, while the FE simulation for calibration of influence coefficients

is done in Abaqus Standard/Explicit.
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CHAPTER 1. INTRODUCTION

1.2 Layout of the thesis

• Chapter 2 covers the background of probability theory, stochatic processes, Discrete

Fourier Transforms (DFT) and Conditional Probability. These concepts will be used in

the Chap.(3) to develop a quantitative description of the microstructure.

• Chapter 3 provides the detailed description of concepts like local states, local spaces,

Discrete Fourier representation of probability density functions, the microstructure function,

statistics of microstructure function, n-Point correlation functions, 2-point correlation

functions which are the building blocks of MKS.

• Chapter 4 describes the generalized homogenization first- and second- order theories.

• Chapter 5 covers in detail the core of MSD framework i.e., derivations are done for

spectral representations of second-order homogenization theory, followed by explanation

of concept of microstructure hull and property closures.

• Chapter 6 introduces the localization relationships in the MKS framework and then

provides an implementation example of the framework

• Chapter 7 provides the conclusions drawn from the work presented and suggestions for

future work.
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Chapter 2

Background

2.1 Microstructure

Microstructure refers to the internal features in heterogeneous materials across many disparate

length scales. Inherently, the internal structure of materials are hierarchical in nature. At

the macro scale, the material can be seen as partitioned into regions of nearly continuous

composition, phase or properties such as grains, fibers or precipitates. A look into the micro

scales reveal information about the atomic structure of these partitions, such as lattice constants

or lattice orientations of the crystalline components.Further magnification reveals the defects

in the atomic structure of the constituent phases including the state of vacancy or interstitial

concentrations, the presence of fine scale precipitates, voids, grain boundaries, and the state

of dislocation in the material [2, 3]. Further magnification reveals the electronic and quantum

states of the atoms and their aggregates.

It is essential to understand how local properties of a material depend upon the statistical

distributions of a small set of local state parameters. Of particular importance, is to understand

how the spatial distributions of microstructural features impact the properties and performance

of a material.

Historically, the description of microstructure focused only on the first-order descriptors, often

referred to as 1-point statistics. However, in recent years, higher-order statistical descriptors of

microstructure continue to be developed, which aim to capture the main topological features
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CHAPTER 2. BACKGROUND

such as clustering, periodicity, connectivity, the fractal nature of structure etc.

The next section reviews some concepts of probability theory and stochastic processes,

which are used in describing n-point correlations which naturally lead to effective property

homogenization schemes by representing the microstructure as a random process.

Figure 2.1: Hierarchy of metallurgical length scales that influence the property balance. Image
courtesy [1]

2.2 Review of Probability Theory and Stochastic Pro-

cesses

The probability space is described by the ordered triplet (Ω,F ,P). The first element Ω is a

non-empty set with elements ω. Each element, ω, is an experimental outcome and the set Ω is

called the sample space. F is the set of all possible events and is formally defined as a Borel

σ-algebra for which the following axioms must hold:

Ω ∈ F

If A ∈ F then Ac ∈ F

If A,B ∈ F then A ∪ B ∈ F

(2.1)

where Ac denotes the compliment to set A. P denotes the probability measure of F .
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2.2.1 Random variables

Given a probability space defined by the ordered triplet (Ω,F ,P), to every experimental outcome

ω we can assign a number x(ω).In doing so, we define a function x with a domain Ω and a

range. This function is termed a random variable if it satisfies the following conditions:

The set x ≤ x is an event for every x . (2.2)

P{x =∞} = 0 P{x = −∞} = 0 (2.3)

where {x ≤ x} is the subset of Ω consisting of all experimental outcomes such that {x(ω) ≤ x}.

This means, a random variable x assigns a number x(ω) to every outcome ω.

The probability P{x ≤ x is the cumulative distribution function (CDF), represented by

Fx(x) of the the random variable x and is defined over the domain −∞<x<∞. Fx(x) is a

non-decreasing function of x which takes the values F (−∞) = 0 and F (∞) = 1. The better

known probability density function (PDF) is defined as the derivative of the CDF:

fx(x) =
dFx(x)

dx
(2.4)

The expected value or mean of a random variable is given by:

E{x} =

∫ ∞
−∞

xf(x)dx (2.5)

For a random variable with mean µ the quantity x− µ represents the deviation of the random

variable from its mean. The variance of a random variable is the average square deviation of x

about µ

σ2(x) = E{(x− µ)2} =

∫ ∞
−∞

(x− µ)2f(x)dx > 0. (2.6)

Higher order moments can be defined as

Mn = E{xn} =

∫ ∞
−∞

xnf(x)dx (2.7)
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where n is an integer referred to as the order.

A random vector (or a random field) is a vector X = [x1, ...xn] whose components are

random variables with joint CDF F (X) = F (x1, ...xn) = P{x1 ≤ x1, ...xn ≤ xn}. The joint

PDF is defined as

f(X) = f(x1, ...xn) =
∂nF (x1, ..., xn)

∂x1, ..., ∂xn
(2.8)

The correlation matrix of the random vector X is defined as

Rij = E{xixj} = E{XXT} (2.9)

and by extension the covariance matrix as

Cij = Rij − µiµj (2.10)

Two random variables x1 and x2 are independent if F (x1, x2) = Fx1(x1)Fx2(x2) and f(x1, x2) =

fx1(x1)fx2(x2). Two random variables are considered orthogonal if E{x1x2} = 0. A random

vector of orthogonal components must have a diagonal correlation matrix.

2.2.2 Stochastic Processes

Building upon the previous section, a stochastic process x(t) is, by extension, a set of rules

that assign a function x(t, ω) to every experimental outcome ω of the experiment Ω. Stochastic

processes are largely concerned with time-series, thus the variable t is defined over the domain

of real numbers,R, for a continuous time process or the integers, Z, for a discrete time process.

In context of microstructures, we consider an ensemble of functions (micrographs or 3D

datasets), a realization or an instantiation of the random process. Information about the

Microstructure is obtained by an ensemble average over the individual instantiations.

When x(t) is interpreted as a rule for assigning a function to an experimental outcome, these

rules take form of a set of associated probability distributions. This lets us partially quantify

the microstructure (random process) using first or second order statistical descriptors. The
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mean µ(t) of the process x(t) is the expected value of the random variable x(t)

µ(t) = E{x(t)} =

∫ ∞
−∞

xf(x, t)dx (2.11)

and the autocorrelation is defined as

R(t1, t2) = E{x(t1)x(t2)}
∫ ∞
−∞

∫ ∞
−∞

x1x2f(x1, x2; t1, t2)dx1dx2 (2.12)

As in Eq.(2.10) the autocovariance of a stochastic process is defined

C(t1, t2) = R(t1, t2)− µ(t1)µ(t2) (2.13)

A process is considered to be wide-sense stationary if it has a constant mean

E{x(t)} = µ (2.14)

and its autocorrelation depends only on τ = t1 − t2

E{x(t+ τ)x(t)} = R(τ) (2.15)

Most statistical parameters of interest can be expressed in terms of expected values of some

functional of the random process x(t). The point estimate of a parameter is a function, θ̂ = g(X ),

of an observation vector X = [x1, ..., xn].θ̂ is considered an unbiased estimator of the parameter

θ if E{θ̂} = θ. θ̂ is termed a consistent estimator of θ if the function g(X) can be chosen such

that the estimation error |θ̂ − θ| → 0 as n→∞.
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2.2.3 Conditional Probability and Bayes Theorem

Conditional probabilities describe the likelihood of some event A occurring given that event B

has already occurred. The conditional probability is defined as

P(A|B) =
P(A ∩B)

P(B)
(2.16)

Two random events are considered statistically independent iff

P(A ∩B) = P(A)P(B) (2.17)

For two independent events, this can also be written as

P(A|B) = P(A) (2.18)

The relationship between P(A|B) and P(B|A) is given by Bayes’ theorem as

P(B|A) =
P(A|B)P(B)

P(A)
(2.19)

Using Bayes’ theorem we can update our expectations of experimental outcomes based on

additional observed data. P(B) is referred to as the prior probability of B, because it does not

take event A into account. P(A|B) is referred to as the likelihood. Additionally P(A) is often

called the marginal probability and acts as a normalizing constant.

For two continuous random variables a and b the likelihood function can be written as

L(a|b) = f(a|b = b) (2.20)

and the posterior probability density of b, i.e. the conditional probability distribution of b given

the observed data a can be written as

f(b = b|a) = constant.L(a|b)f(a) (2.21)
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2.3 Discrete Fourier Transforms

Spectral (Fourier) representations not only provide compact representation of functions, but

also facilitates efficient computations of the microstructure-property relations.

Using the Fourier series any arbitrary function can be decomposed as

g(x) =
∞∑
n=0

anθn(x) (2.22)

and the corresponding Fourier coefficients an can be found as

an =
1

cn

∫
R

g(x)θn(x)w(x)dx (2.23)

Where θn(x) = e
2πinx
N and R = [a, a+N ] represent the traditional complex Fourier series for a

function with period N.

DFTs prove useful in the context of microstructure quantification because usually microstruc-

ture data in not available as a continuous analytic function but, rather, as a discrete set of

sample points. In such cases, representation of data in terms of DFT proves beneficial in terms

of computational advantage. Here DFT is just the discrete analog of the complex Fourier series.

Any arbitrary distribution function f(x) defined on some interval [0, X], sampled at N

equally spaced points labeled [0, 1, ..., N − 1] can be approximated from the samples as

f(x) ≈ fnXn(x) (2.24)

Xn(x) =


1 ifx ∈ [0, 1, . . . , N − 1]

0 otherwise

The DFT of f(x) can be written as

fn =
1

N

N−1∑
k=0

Fke
2πink

N (2.25)
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where Fourier coefficients can be given by

Fk =
N−1∑
n=0

Fke
−2πink

N (2.26)

The use of the DFT, rather than generalized Fourier series for aperiodic functions such as

Chebychev or Legendre series, is because of the availability of efficient fast Fourier transform

(FFT) algorithms. As written Eq. (2.28) requires N2 operations, which reduces to O(NlogN)

using FFT algorithms which results in computational efficiency.

Some DFT properties that will prove useful in decomposition of signals in the later chapter

are described very briefly next, for details any text on Digital Signal Processing can be referred.

1. The first DFT property is Plancherel’s theorem, which relates an inner product in real

space to an inner product in Fourier space. It states

N−1∑
n=0

fn.g
∗
n =

1

N

∑
k=0

Fk.G
∗
k (2.27)

where (.) operator indicates inner product and ()∗ indicates complex conjugate.

2. A special case of Plancheral’s theorem is Parseval’s theorem, which states that the total

energy of a function in real space is equal to the total energy of the Fourier transform:

N−1∑
n=0

|fn|2 =
1

N

N−1∑
k=0

|Fk|2 (2.28)

3. Next is the convolution theorem, which states that convolution in the real space is

equivalent to multiplication in the Fourier space or

(f ∗ g)m =
N−1∑
n=0

fngn−m = =−1(Fk.Gk)m (2.29)

where =−1 indicated the inverse DFT
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2.4 Principal Component Analysis

Principal component analysis (PCA)[] or proper orthogonal decomposition is used for lower

dimensional, or reduced order, representations of complex microstructure datasets and their

associated higher-order probability distributions.

PCA basically projects a high-dimensional data set into a new orthogonal coordinate frame

where the axes are defined by the directions of highest variance. The first axis of data, or the

first principal component is the direction of highest variance in the data, the second principal

coordinate is the direction of highest variance orthogonal to the first axis. A more detailed

technical background of PCA can be found in any machine learning textbo.

For the purpose of thesis the basic algorithm will be explained. Taking an ensemble of L

vectors of distributions, the PCA decomposition of the lth member, f l, of the ensemble can be

written as

f l =
L−1∑
j=1

αljφj + f̄ (2.30)

where f̄ represents the mean vector. In Eq.(2.32),φj represents the orthogonal basis set (i.e. the

principal directions) and αlj represents the corresponding weights of the lth member.

The steps of PCA decomposition can be written as

1. Mean center the data. Φl = f l − (f̄)

2. Calculate the co-variance matrix of the data. C = 1
L

∑
L Φl(Φl)T

3. Perform the eigenvalue decomposition. Cφj = bjφj

4. Project mean centered data into the eigenspace to fiend the weights. αlj = (φj)
TΦl
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Chapter 3

Microstructure Representation

3.1 Introduction

Microstructure contain very large amount of information in a very tightly packed space. However,

in order to understand the effects of localization, it is essetial to be quantify this information in a

meaningful way. In this regard, Niezgoda [9] presented a mathematical framework for quantifying

the material structure stochastically using the spatial correlation of the microstructure. It is

worth noting that spatial correlations can be found using either lineal path functions, or radial

distribution functions or n-point correlations. However, n-point spatial correlations have proved

to cover structural information most exhaustively [3].

Spatial correlations can be, the 1-point statistics, which give the probability of finding a

local state of interest at a random point in the structure or they can be 2-point statistics, which

capture the joint probability of finding specified local states h and h
′

at the head and tail of

randomly placed vector in the microstructure. This concept can further extended to n-Point

correlations.

An added advantage of using a stochastic process like n-points is that, it also allows the

quantification of variance associated with the structure. However, due to the increased amount

of structural information in the 2-point statistics, there are many redundancies [8]. This problem

is however resolved by using dimensionality reduction techniques such as PCA [10]. The details

of the microstructure quantification process using n-point statistics based on microstructure
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function and local sates are discussed next. The DFT-based digital representation of local

distribution function, microstructure function and spatial correlations are presented.

3.2 Local State and Local State Space

The local state of interest, denoted by h, in a particular material system are those attributes

that depend on spatial position and affect the local properties of that position. Local states can

be a combination of the phase, composition, lattice orientation or other local descriptors. If

for example, the microstructure of interest comprises of two distinct thermodynamic phases

and considering only volume fraction as an attribute is considered as an attribute. Let’s call

the two local states ”white” and ”black” for simplicity, then the first order local state space

could be described by the set, H = {black, white}. Further, the second order local state space

can be described as H = {(white, white), (white, black), (black, white), (black, black)} as seen

in the Fig. (3.1). A more realistic example of local states can be seen in Fig.(3.2), taken from a

micrograph of a Ti-Mn alloy. An important note here is that, local state space has all the local

states possible in a material, whether or not they are present in the microstructure sample.

Figure 3.1: A simplified one dimensional microstructure with two phases (black and
white):(Right): and the complete local state space, showing all possible second order local states
(Left). The redundancies in information captured by higher order statistics can be seen for the
description of local state in spatial cell 4, where the local state assigned for spatial cell 3 and
spatial cell 4 essentially are giving the same information about spatial cell 4.Figure courtesy[4]

Now to generalize this concept, let x denote a material point such that x ∈ Ω. x can be

associated with one or more local states h ∈ H (in the immediate neighborhood of x). Here, H

represents the complete set of distinct local states that could theoretically be found across the
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length scales of interest.

For example, amongst the elastic properties of a single-phase polycrystal, the important

microstructure parameters are thermodynamic phase, ρ, and crystallographic orientation, g, as

depicted in Fig. 2.2. H is represented as the ordered pair h = (ρ, g) and local state space, H, is

formally defined as

H =

{
(ρ, g)|(ρ, g) ∈

⋃
ρ

Hρ, Hρ = {(ρ, g)|g ∈ FZ(ρ)}

}
(3.1)

where FZ(ρ) denotes the fundamental zone of ρ or the set of physically-distinct lattice orienta-

tions for the crystal symmetry of ρ.

Figure 3.2: Micrographs demonstrating the concept of local state showing a two phase Ti-Mn
alloy: phases(left) and crystallographic orientations (right).Image courtesy (Ankem et. al,
2006)[1]

Now, if the local state h, found at position x, in a material sample is considered as a random

variable h(x), we can define a local state distribution f(h) over the local state space as:

f(h)dh =
Vh± dh

2

V
(3.2)

where
V
h± dh2
V

denotes volume fraction of the microstructure that are associated with local states

lying within an invariant measure dh of local state h. Also, by definition, if the local state
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distribution function f(h) is integrated over the entire local state space H,

∫
H

f(h)dh = 1 (3.3)

When considering only the orientations characteristics of single-phase polycrystals, the local

state distribution function is called Orientation Distribution Function (ODF).

3.3 Microstructure Function

For effective statistical representation of microstructure, Adams and co-authors [6] introduced

the microstructure function, m(h, x). A slightly different definition of the microstructure was

proposed by Niezgoda, in terms of a stochastic process [10].

In order to arrive at a formal definition of microstructure function. The complete set of

material points is represented by Ω. Now, the microstructure function can be defined as the

rules that assigns a function (local state field), m(x, h), to every microstructure realization. A

visual representation of the the microstructure function can be seen in Fig.(3.3)

Figure 3.3: Schematic representations of microstructure function courtesy Binci M.[2].

Now the microstructure function m(x, h), which represents the probability density of finding

a local state h at a spatial point x is formally defined as

m(x, h)dh =
dV

V
|x,h (3.4)
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where dV
V

indicates the volume fraction of material with associated local state within a neigh-

borhood element dh about h, in a neighborhood of volume V surrounding point x.

Normalizing Eq.(3.1) by volume of the realization ω

1

vol(ω)

∫
x∈ω

∫
h∈H

m(x, h, ω)dhdx = 1 (3.5)

For practical purposes, microstructure is discretized as shown in Fig.(3.4) on a grid. This

discrete description of the microstructure function is a more natural reflection of the available

information, as most experiments typical produce discretized information in form of datasets.

For instance, microstructure functions m1
(1,2) = 1,m2

(1,2) = 0 can be interpreted as, the volume

fraction of white phase in spatial cell (1,2) is 1, where as the volume fraction of grey phase in

spatial cell (1,2) is 0. Now to generalize, let the local state space H be binned into N discrete

local states labeled n = 1, 2, . . . , N and let the spatial domain x ∈ Ω be binned into a uniform

grid of S cells, whose nodes are enumerated by the index s with s = 0 corresponding to the

zero vector. Then, m(x, h) can be discretized as mn
s . The following properties follow from Eqs.

(3.6) and (3.7)
N∑
n−1

mn
s = 1, 0 ≤ mn

s ,
S−1∑
s=0

mn
s = V nS (3.6)

where V n denotes the volume fraction of local state n in the microstructure.

Figure 3.4: Micrograph of a two phase hetero-
geneous material.

Figure 3.5: Simplified view of the microstruc-
ture as a discretized domain. Picture courtesy
Landi G. [7]
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3.3.1 Spectral representation of microstructure function

The discretized representation of the microstructure function mn
S can be transformed in a Fourier

series using primitive basis functions [5].

m(x, h) ≈
S1∑
s=0

N∑
n=1

Nmn
sXs(x)X n(h) =

S1∑
s=0

N∑
n=1

Dn
sXs(x)X n(h) (3.7)

where Dn
s is related to the probability distribution sf (h) in cell s.

Dn
s =

N

VsVn

∫
x∈ωs

∫
h∈ωn

m(x, h)dhdx (3.8)

where ωs and ωn are cells in real and orientation space of volume Vs and Vn. The Fourier

coefficients are called microstructure coefficients and are constrained as

N∑
n=1

Dn
s = N (3.9)

3.4 Statistics of Microstructure Function

To completely describe the statistics of microstructure function lets consider a material system

where the local state space defined by the combination of k microstructure features of interest,

such that h = (α1, . . . , αk). Now, for any material point x, the local state is described by the

random vector h = [α1, . . . , αk]. The evaluation of the microstructure function m(x, h), for a

specific material point x, is a random vector with CDF

F (h, x) = P{h(x) ≤ h} (3.10)

where the notation mathcalP{h(x) is interpreted as mathcalP{α1(x) ≤ α1, . . . , αk(x) ≤ αk}.

The local state joint PDF at each position x is given as

f(h, x) = f(α1, . . . , αk, x) =
∂F (h, x)

∂h
(3.11)
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From the extension of univariate distributions, the probability that h is in a region H of the

local state space H is given by

P{h ∈ H} =

∫
H
f(α1, . . . , αk)dhα1dhα2 . . . dhαk (3.12)

Figure 3.6: Schematic representations of one-point statistics measurement in a two-phase
composite microstructure. Image courtesy [11]

Here the PDF f(h, x) is referred to as the first order density or 1-point statistics of the

Microstructure, and can be interpreted as the spatially resolved volume fraction of local state

h = (α1, α2, . . . , αk).

Figure 3.7: Schematic representations of two-point stastistics measurment in a two-phase
composite microstructure. Image courtesy [11]
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The second-order CDF of m(x, h) is defined as

F (h1, h2;x1, x2) = Ph(x1) ≤ h1,h(x2) ≤ h2 (3.13)

which is the joint CDF of random vectors h(x1) and h(x2). The second order PDF or 2-point

statistics is then given as

f(h1, h2;x1, x2) =
∂2F (h1, h2;x1, x2)

∂h1∂h2

(3.14)

The 2-point correlations for a particular set of microstructure can be put in form of a NxN

array as seen in Fig.(3.8). However, out of the N2 terms of the correlations matrix, only (N − 1)

are independent (Niezgoda, et al, 2008).

Figure 3.8: 2-point correlations matrix.

The terms of the diagonal are called autocorrelations and the off diagonal terms are called

cross-correlations. Further Frisch and Stillinger (Refer) showed that for a 2-phase material, only

one of the four correlations is independent, i.e., if one of the four correlations is known, the

others can be calculated.
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3.4.1 Spectral representation of 2-Point spatial correlations

Similar to the spectral representation of microstructure functions, the two point correlations

can be represented digitally as

f(h, h
′|r) ≈

∑
p

∑
n

∑
t

fnpt Xt(r)X n(h)X p(h
′
) (3.15)

where index t bins the vector space associated to r. 2-point correlations are the statistical

measures that contain spatial information. As compared to 1-point statistics the amount of

information contained in 2-point statistics is very large. Fortunately there are many redundancies

in the 2-point correlations, which can be identified and a low dimensional representation using

PCA is possible.

Figure 3.9: 2-point statistics are the conditional probability of finding a local state n at spatial
bin s, while simultaneously finding local state p at spatial bin s+ r.

Now from the previous equation, an expression relating digital representation of microstruc-

ture and 2-point statistics can be written as

fnpt =
1

S

S−1∑
s=0

mn
sm

p
s+t (3.16)

S can be considered the complete space of trials, one bin can be equated to one event. Eq.(3.30)
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can also be written as

fj[h, h
′
; r] =

1

Ωj[r]

∑
s

mj[h; s]mj[h
′
; s+ r] (3.17)

Using the DFT convolution theorem, the Fourier transform of fnpt can be written as

=(fnpt ) = F np
k =

1

S
=(mn

s )∗=(mp
s) (3.18)

where (.)∗indicates complex conjugation and =(.) indicates the DFT. Eq.(3.14) is the most

efficient way of calculating 2-point correlation functions (Niezgoda et al). As a result of Eq.(3.31),

2-point statistics computation is reduced to computing discrete Fourier transforms of mn
S.

3.4.2 Reduced order representation using PCA

Although, 2-point statistics capture extensive and exhaustive representation of microstructure,

but as a result of this there is a lot of redundancies in the data. Dimensional reduction techniques

create low dimensional microstructure descriptors from the sets of spatial correlations (based on

different selections of h and h
′
) with PCA. The PCA dimensionality reduction can be formally

described as

fj[l] ≈
∑
k∈K

µj[k]φ[k, l] + ¯f [l] (3.19)

where fj [l] represents low rank approximation of 2-point statistics, where fj [h, h
′
; r], indices from

Eq.(3.31) are represented as a vector with single index given by fj [l] where l is a unique integer

for every combination of h, h
′

and r. The µ[k] are lower dimensional microstructure descriptors

(transformed 2-point statistics) or principal component scores. φ[k, l] are the calibrated principle

components (PCs) and the ¯f [l] are mean values from the calibration ensemble of fj [l] for each l.

The k ∈ K indices refer to the µj[k] in decreasing order of significance and are independent of

l, l
′

and r. Another advantage is that fj [l] can be reconstructed to sufficient fidelity with only a

small subset of µj[k] [8].
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Chapter 4

Decomposition of Homogenization

Theories for inclusion of n-Point

Statistics

Expressions for effective properties of heterogeneous materials can be derived using statistical

continuum theories [6] in terms of bounds or estimates of the elastic properties. The effective

properties are represented by a series expansion, whose terms represent the higher order spatial

correlations of local states (see Chapter 2). The bounds of the effective properties account for

1-point and 2-point statistics of the microstructure and are derived from variational principles.

On the other hand, estimates of the effective properties are derived from equilibrium equations

of an infinite continuous medium subjected to far-field uniform boundary conditions. In the

following sections first-order and second-order homogenization theories are reviewed from [2]

and the Material Sensitive Design (MSD) framework [3] is discussed.

4.1 First-Order Theory

First-order theories provide effective properties of composite materials in conservative bounds.

They are based on variational principles and appear as inequalities in form of strain energy
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densities. In the first-order theory, the local strain energy density ω of a composite is given by

ω =
1

2
Cε.ε =

1

2
Sσ.σ (4.1)

where local strain ε and stress σ are second-rank stress. The local stiffness C and compliance

S are symmetric and positive-definite fourth rank tensors. The Voigt-Reuss bounds can be

obtained as from the principle of minimum potential and complimentry energy as

1

2vol(Ω)

∫
Ω

Cε.εdx =
1

2
C∗ 〈ε〉 . 〈ε〉 ≤ 1

2
〈C〉 〈ε〉 . 〈ε〉 , (4.2)

1

2vol(Ω)

∫
Ω

Sσ.σdx =
1

2
S∗ 〈σ〉 . 〈σ〉 ≤ 1

2
〈S〉 〈σ〉 . 〈σ〉 (4.3)

inverting Eq.(5.3) and substituting C∗ = (S∗)−1, the bounds of C∗ in a compact notation can

be written as

〈S〉−1 ≤ C∗ ≤ 〈C〉 (4.4)

The 1-point bounds can’t be violated as they are based on energy conservation, and are easy to

compute. But in practice, 1-point bounds are impractical as the bounds are usually very far

apart.

4.2 Second-Order Theory

Spatial correlations in the form of 2-point statistics can be included in the homogenization

theories for prediction of isotropic or anisotropic properties of materials. Second order theories

can be broadly classified on basis of the type of formulation used. The first category is based on

variational formulation referred to as Hashin-Shtrikman (GHS) bounds [4], whereas the second

category uses perturbations of the local stress and strain fields to obtain bounds and estimates

of the effective properties [7]. A summary of expressions of both categories is presented next.
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4.2.1 Hashin-Shtrikman Bounds

[1] formulated the second-order GHS bounds for the effective elastic stiffness tensor, C∗ as,

Cl + Al
1

[
Al

1 + Al
2

]−1
Al

1 ≤ C∗ ≤ Cu + Au
1 [Au

1 + Au
2 ]−1 Au

1 , (4.5)

where

(Ar
1)ijpq = 〈C (x)− C r〉ijpq =

〈
C
′r
〉
, (4.6)

(Ar2)ijpq =

〈
C
′r
ijkl(x)

∫
Γrklmn(x− dx′)C ′rmnpq(dx

′
)dx

′
〉

(4.7)

Γrijkl = Er
ijklδ(x) +

1

4

[
Gr
ijkl(x) +Gr

jk,il(x) +Gr
il,jk(x) +Gr

jl,ik(x)
]
, (4.8)

Er
ijkl =

1

15µr

(
9
kr + 2µr

3kr + 4µr
Iijkl −

3kr + µr

3kr + 4µr
δikδkl

)
, Iijkl =

1

2
(δikδjl + δilδjk). (4.9)

The parameters kr and µr refer, respectively, to the reference bulk and shear moduli of the

composite while δij is the unit tensor. The terms with superscripts u and l are calculated by

using different reference mediums for the two bounds. The superscript r refers to the reference

medium, which is set to u or l for evaluating upper and lower bounds respectively. x and x
′

are

spatial points in microstructure, C(x) is the elastic stiffness tensor of the local state associated

with spatial position x, and Γr is the fourth-rank symmetrized derivative of the Green function,

Gr. A1 and A2 depend upon 1-point and 2-point statistics respectively.

4.2.2 Perturbation Theory

Perturbation theory provides tools for obtaining both estimates and bounds, however, estimates

can be easily incorporated in the MSD framework, as will be explained in the next chapter.

Thus the estimate of effective elastic stiffness C∗ from the perturbation theory can be written

down as a series sum as [5].

C∗ = Cr +
〈
C
′
〉
−
〈
C
′
ΓC

′
〉

+ (C
′
ΓC

′
ΓC

′
)− . . . (4.10)
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Here the reference tensor is chosen as Cr = 〈C〉 and the series can be truncated at term

containing the two-point statistics as

C∗ = 〈C〉 −
〈
C
′r(x)ErC

′r(x)
〉
−
〈

C
′r(x)

∫
Ω

Kr(x− x
′
)C
′r(x

′
dx
′
)

〉
, (4.11)

Kr
ijkl ≈

1

2

[
Gr
ij,kl +Gr

kj,il

]
(4.12)

In this approach one of the limitations is that the evaluation of terms with superscript r depends

upon the choice of reference medium. Further, the evaluation of the terms involve solving

convoluted integrals.

Modified Perturbation Estimate

Popularly, estimates of the effective elastic properties were calculated using a volume averaged

stiffness tensor in the microstructure as the reference value, s.t. Cr = 〈C〉. An alternative value

of reference value of the stiffness tensor was proposed by Binci [2], which was a value between

the highest and lowest values of the local stiffness tensors among all elements of the local state

space C
′
= 1

2
(Cu + Cl). The advantages of using this new reference value are

1. The new reference value of the local stiffness tensor extends the application of the

perturbation model to large contrast material systems. Here larger contrast means the

ratio of Young’s modulus is greater then 1.5.

2. With the new reference value, the Er and Kr terms in Eq.(4.11) become independent of

microstructure statistics.

3. With C
′
= 1

2
(Cu + Cl) property closures cover complete one and two point statistic.
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[6] Ekkehart Kröner. Statistical continuum mechanics. Springer, 1972.

[7] John R Willis. Variational and related methods for the overall properties of composites.

Advances in applied mechanics, 21:1–78, 1981.

43



Chapter 5

Microstructure Sensitive Design

5.1 Introduction

Microstructure sensitive design (MSD)[3], is a mathematical framework, developed to assist in

the multi-scale, bottom-up material design ideas that are conceptualized by Materials-by-Design.

At the core, MSD is a framework that transforms the second-order homogenization relationships

into an efficient spectral (Fourier) space. The literature for this chapter is referred from [2]. A

broad overview of steps in MSD are as follows.

1. The material designer first chooses principal properties of interest, along with candidate

materials.

2. A suitable microstructure with desired internal structure (including description of phases,

grains, fibers etc.) and the topological arrangement (n-point spatial correlations etc.) of

these internal structures is defined.

3. The complete space of possible microstructures possible with the internal structure and

topology defined in the previous step is created. This set of all possible microstructures

is called microstructure hull. Usually the dimension of this set will be governed by the

number of parameters used to define the microstructure.

4. Next predictions of the macroscale effective properties are obtained by ”plugging in” the

local state variables of the constituent material phases, and their local properties using
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homogenization relations defined in the literature.

5. After all the possible microstructures and related homogenization relations, the relations

are exercised over the complete microstructure hull, which leads to discovery of set of all

possible combinations of of the principal properties. This set is called property closures.

6. At this point, if a property combination is chosen, then using the property closure, these

properties can be mapped to the optimal material microstructure (usually this is not a

one-to-one mapping).

7. Once a suitable theoretical microstructure is discovered from the microstructure hull, an

appropriate processing route can be chosen to produce the desired microstructure with

desired effective properties. However, this process-structure link is obtained as a set of

path-lines, in the microstructure hull and property closure space as shown in Fig.(5.1)

Figure 5.1: Visualization of Property-Structure-Process linkages via path-lines in the microstruc-
ture hull and property closure space. Adopted from [5]

A unique offering of MSD framework is that is accounts for material anisotropy at the

local state and how it affects the macroscale properties. Spectral representation of second-

order linkages defines in the Fourier space a microstructure hull, which contains all feasible

microstructures of the selected material system additionally the Fourier decomposition also
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reduces the series of convolution integrals of the effective properties into simple algebraic

expressions which are computationally more efficient. Further, the decomposed expression

includes microstructure parameters that are decoupled from the material parameters, which in

turn provide invertibility to the second-order microstructure property linkages.

5.2 Spectral decomposition of Second-Order Homogeniza-

tion Theories

In this section, we derive the Fourier transform of the second second-order homogenization

theories that were discussed in the previous chapter. This decomposition, in the Fourier space

sets ground for the microstructure hull, which is the convex region in the Fourier space containing

all feasible microstructures and of the material system under consideration. More details about

the microstructure hulls is presented in Sec.(5.3).

To begin with decomposition procedure, first we recall the Fourier decomposition of mi-

crostructure function shown in Eq.(3.17). Then we can write the 1-point statistics

f(h) =
1

S

(
S∑
s=1

Dn
s

)
X n(h) (5.1)

and the 2-point spatial correlations can be written as

f2(h,h
′|r) ≈ F nn

′

t X n(h)X n
′

(h
′
)Xt(r), F nn

′

t = Hss′ tD
n
sD

n
′

s
′ , (5.2)

where t enumerates the sub-cells in the partitioning of the r space, and Hss′ t are a set of

geometric parameters dependent only on partitioning of the Ω and the r space. Ω|r is the subset

of Ω where the points x and x + r lie within Ω.

Now, the first- and second-order probability density functions are introduced in the modified

perturbation estimate model presented in Ch.(4).
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Recasted effective equation Eq.(4.11)

C∗ ≈
∫
H

C(h)f(h)dh− Er

∫
H

C
′r(h)C

′r(h)f(h)dh,

−
∫
H

∫
H

∫
R(rc)

C
′r(h)Kr(r)C

′r(h
′
)f2(h,h

′|r)dhdh
′
dr

where R(rc) denotes the set containing all the distinct vectors that lie in a sphere of radius

rc, known as the coherence length. A strategy to deal with the evaluation of the third term

is explained in [6], which is an integration over a sphere of with a radius equal to coherence

length, while the microstructure description Dn
s is defined for voxels. Basically, the third

term is decomposed into two parts, first one over spatially correlated part and another one

over uncorrelated part. After a few algebraic steps following expression for the second-order

perturbation estimate of the effective properties of the composite can be written as

C∗ ≈ JsnD
s
n − ℵnn

′

ss′
Dn
sD

n
′

s′
(5.3)

with

Jns =
Cn

SN
− E

C
′nC

′n

SN
, (5.4)

ℵnn
′

ss′
=
V ol(Ω)

SN2
Ξnn

′

t Ĥss′ t −
V ol(Ω)

S3N2

S∑
p=1

S∑
p′=1

Ξnn
′

t Ĥpp′ t (5.5)

where

Ξmn
′

t =
SN2

V ol(Ω)

∫
H

∫
H

∫
R(Ω)

f(h,h
′|r)X n(h)X n

′

(h
′
)Xt(r)dhdh

′
dr (5.6)

(5.7)

and,

f(h,h
′|r) = C

′r(h)Kr(r)C
′r(h

′
) ≈ ℵnn

′

t X n(h)X n
′

(h
′
)Xt(r) (5.8)
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The microstructure variables in Eq.(4.15) are subject to constraint mentioned in Eq.(3.19).

So applying the constraint in Eqs.(5.3)-(5.5) allows further compaction of the microstructure

space from SN dimensions to S(N − 1) dimensions. Thus, the modified microstructure-effective

property relationship can be written as

Ĉ∗ =
S∑
s=1

N−1∑
n=1

B̂n
sD

n
s −

S∑
s=1

S∑
s′=1

N−1∑
n=1

N−1∑
n′=1

Ânn
′

ss′
Ds
nD

n
′

s′
, (5.9)

with

Dn
s ≥ 0 ∀n = 1 . . . N (5.10)

and

Ânn
′

ss′
= ℵnn

′

ss′
− ℵnN

ss′
− ℵNn

′

ss′
+ ℵNN

ss′
, (5.11)

B̂n
s = Jns − JNs −N

S∑
s
′
=1

(
ℵnN
ss′
− 2ℵNN

ss′
+ ℵNn

ss′
)
, (5.12)

Ĉ∗ = Ĉ∗ −N
S∑
s=1

JNs +N2

S∑
s=1

S∑
s′=1

ℵNN
ss′

(5.13)

This is the final spectral formulation of the effective properties.

5.3 Spectral representation of Orientation Distribution

Function (ODF)

In this section only the main expressions for spectral representation are presented as these will

be used later for decomposition of homogenization theories.

The ODF can be expanded as a Fourier series using generalized spherical harmonic (GSH)

basis functions, Tmnl , as

f(g) =
∞∑
l=0

+l∑
m=−l

+l∑
n=−l

Fmn
l Tmnl (g) (5.14)

For representing ODF using DFT, we transform the orientation space to a distortion-free

space defined by (φ1,Φ, φ2) [3]. Then for a periodic domain of interest the 3D Bunge-Euler
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space in divided into a B1xB2xB3 grid, and let (b1, b2, b3) enumerate the grid points. So the

DFT representation of ODF is defined as

fb1b2b3 =
1

B1B2B3

B1−1∑
k1=0

B2−1∑
k2=0

B3−1∑
k3=0

Fk1k2k3e
2πik1b1
B1 e

2πik2b2
B2 e

2πik3b3
B3 (5.15)

where fb1b2b3 denote the value of the ODF at the grid point (b1, b2, b3).

5.4 Microstructure Hull and its Reduced Order Repre-

sentation

The concept of the convex and compact microstructure hull was introduced by Adams et. al

(Adams et al., 2001). The advantage of a convex and compact representation is that, each point

in the hull represents a unique microstructure and all points outside the hull are non-physical.

The lines on the hull as seen in Fig.(3.7) represent linear combinations of microstructures at the

endpoints.

Mathematically, a continuous ODF can be defined in terms of the discrete set of crystals

using delta functions (Fullwood et. al, 2010).

f(g) =
∑
k

akδ(g − gk), 0 ≤ ak ≤ 1,
∑
k

ak = 1 (5.16)

where the Dirac-delta function, δ(g − gk), represents the oDF of a single crystal of orientation

gk, with akdenoting volume fraction in a polycrystal.

As seen in Sec.(3.2), the ODF can be expressed as a Fourier series using GSH basis function

T µνl . This gives us the opportunity to visualize the ODF as a point in an infinite dimensional

space, whose axes are defined by Fourier coefficient F µν
l and the coordinates of the point are

given by the corresponding value of F µν
l as seen in Fig.(3.7).
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Figure 5.2: Left: representation of the texture hull for cubic-orthorhombic materials in the rst
three dimensions of the Fourier space. Right: the hexagonalorthorhombic texture hull projected
in the three dominant dimensions of the Fourier space. Image courtesy [3]

Now a convex compact microstructure hull [], in terms of Fourier coefficients can be written

as

M =

{
F µν
l |F

µν
l =

∑
k

akkF
µν
l ,k F µν

l ∈M
k, ak ≥ 0,

∑
k

ak = 1

}
(5.17)

where

Mk =

{
kF µν

l |
kF µν

l =
1

2l + 1

...
T
µν∗
l (gk)

}
(5.18)

where the asterik operator denotes complex conjugate.

In a 1-point hull, a single point represents all microstructures with same ODF. Higher

order statistics such as spatial correlations can be captured in the hull, need higher-order hulls.

Construction procedure of higher-order hulls of a composite system is outlined in [2, 9, 7].

5.5 Property Closures

As briefly mentioned in the opening section of this chapter, property closures enable solving the

inverse problem i.e. they help the material designer identify the feasible range of the combination

of selected properties of interest in a given material system.

Delineation of first order property closures of two effective anisotropic elastic-plastic properties

P and Q can be visualized through following steps
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1. Identify the subset of microstructure hulls that are theoretically predicted to correspond

to a selected value of one of the effective property (say, P=P̃ ).

2. From this subset of microstructures, the maximum and minimum values of Q that are

theoretically feasible.

3. Explore P̃ between its own theoretically feasible maximum and minimum values, to

complete the first-order property closure

First order closures for a broad range of cubic materials, can be seen in Fig.(5.2). These

correspond to the effective modulus in uniaxial strain and the effective shear modulus in a

sample.

Figure 5.3: Atlas of (C∗1111, C
∗
1313) first-order closures for a broad selection of cubic materials.Image

courtesy [3]

The procedure of delineating Second-Order property closures was introduced by Binci (Binci

and Kalidindi, 2008). In this procedure components (say P and Q) of effective stiffness tensor

are evaluated using Eq.(5.9). Then the complete range of feasible effective property combinations

(P∗,Q∗) defines the second-order property closures.
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5.6 Spectral formulation for Localization Tensors

The main aim of the localization relationships is to connect the macroscale loading to the mi-

croscale response. Structure-property linkages are established through a fourth-rank localization

tensor which is derived from second-order homogenization theory. For instance, a loading at

macro-scale can be connected to local elastic properties such as stress and strain.

Building upon the spectral representation of microstructure function presented in Sec.(3.3.1),

now we introduce the spectral representation of localization tensors. Localization tensors

establish the linkages between different hierarchical scales occurring in materials. These linkages

provide efficient scale-bridging relationships of microstructure parameters defined at different

length scales. The localization tensors are proven to be computationally more efficient then FEM

models in predicting local properties of composites [1, 8, 4]. This is accomplished by recasting

the localization tensors into a Fourier space, which decouples the microstructure coefficients

from other parameters known as influence coefficients (see chapter 5). The main expressions for

calculating influence coefficients are written next (for details of the derivation see (Binci and

Kalidindi, 2008)).

The fourth-rank localization tensor, a, links the response local elastic strain to any strain

imposed on the macroscale as

ε(x) = a(x) 〈ε(x)〉 , (5.19)

a(x) = I−
〈
Γ
′
(x,x

′
)C
′
(x
′
)
〉

+
〈
Γr(x,x

′
)C
′
(x
′
)Γr(x

′
,x
′′
)C
′
(x
′′
)
〉
− . . . (5.20)

where I is the fourth-rank identity tensor, C
′
(x) is the deviation in the local stiffness at spatial

location x w.r.t that of a selected reference medium, Γr is a symmetrized derivative of the

Green’s function defined using the elastic properties of the selected reference media, and 〈〉

brackets represent ensemble averages over RVE. The first 〈〉 on the right hand side captures the

contribution to the tensor a(x) from a particular local state at point x
′
. Thus by evaluating the

localization tensor at different x
′

in the material and taking an average, the contribution from

the local 2-point statistics of the microstructure is captured. Similarly, the second 〈〉 term in

Eq.(5.16) reflects contribution of two local states at points x
′

and x
′′
.
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However, there are underlying problems in direct evaluation of terms in Eq.(5.15). The first

problem is the evaluation of the convolution integrals with singular integrands and the secondly,

the solution obtained once would need to reevaluated for every change in microstructure. The

spectral method resolves these problems and provides an efficient

Recalling, the Fourier representation of the microstructure function, considering orientation

and spatial dependence separately, as

M(x,h) ≈ Dn
sXs(x)X n(h) (5.21)

where Dn
s are the microstructure coefficients, Xs(x) and X n(h) are the primitive basis as noted

in Sec.(3.1.1)

The real space and the local state space H with primitive basis is equivalent to tessellation

of the RVE into cuboids ωs(s = 1 . . . S), as shown in Fig.(5.2.a),and to the tessellation of the

space H into bins γn(n = 1 . . . N).

Figure 5.4: (a) Tesselation of the RVE into cuboids ωs(s = 1 . . . S) (b)Cluster of first neighboring
volume bins used in the truncated spectral representation of the localization tensor. Image
courtesy [2]

Now to transform the Eq.(5.15) into Fourier space, first we write the local elastic stiffness in

terms of microstructure function as

C
′
(x) =

∫
H

C
′
(h)M(x,h)dh (5.22)
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where C
′
(h) is the deviation in elastic stiffness of the local state h as compared to the reference

medium, and can be represented in Fourier space C
′
(h) ≈ C

′nX n(h) and C
′n is the average

deviation of elastic stiffness tensor of local states γn from reference medium.

Replacing Fourier decomposition of microstructure function and deviation in elastic stiffness

into Eq.(5.17), we get

C
′
(x) ≈

∫
H

C
′n
′

X n
′

(h)Dn
SX (x)X n(h)dh =

1

N
C
′nDn

SXs(x) (5.23)

The term Γr(x,x
′
) in Eq.(5.15), can be decomposed as

Γr(x,x
′
) = Krδ(x− x

′
) + ξrΦ(x− x

′
) + ηrΨ(x− x

′
) (5.24)

where δ represents the Dirac delta function. Further, spatial dependence of functions can be

expressed in Fourier space as

δ(x− x
′
) ≈ δSS′XS(x)X ′S(x

′
), (5.25)

Φ(x− x
′
) ≈ ΦSS′X (x)XS′ (x

′
), (5.26)

Ψ(x− x
′
) ≈ ΨXS(x)XS′ (x

′
) (5.27)

with,

ΦSS′ =

(
S

V ol(Ω)

)2 ∫
Ω

∫
Ω

Φ(x− x
′
)XS(x)XS′ (x

′
)dx

′
dx, (5.28)

ΨSS′ =

(
S

V ol(Ω)

)2 ∫
Ω

∫
Ω

Ψ(x− x
′
)XS(x)XS′ (x

′
)dx

′
dx (5.29)

Finally, we can write the spectral decomposition as

Γr(x,x
′
) ≈ Γr

SS′
XS(x)XS′ (x

′
) (5.30)
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Now, the localization tensor can be written as

a(x) = xŜXŜ(x) (5.31)

Now the first terms of Eq.(5.15), that represents contribution of 2-point correlations can be

written as,

〈
Γ(x,x

′
)C
′
(x
′
)
〉

=

∫
Ω

Γr(x,x
′
)C
′
(x
′
)dx

′ ≈ V ol(Ω)

NS
Γr
ŜS

C
′nDn

SXŜ(x) (5.32)

second term in the expansion represents contribution of 3-point correlations and can be

written as

〈
Γr(x,x

′
)C
′
(x
′
)Γr(x

′
,x
′′
)C
′
(x
′′
)
〉

=

∫
Ω

Γr(x,x
′
)C
′
(x
′
)

∫
Ω

Γr(x
′
,x
′′
)C
′
(x
′′
)dx

′′
dx
′ ≈

≈
(
V ol(Ω)

NS

)2

Γr
Ŝa

C
′nΓr

bS′
C
′n
′

δSabD
n
SD

n
′

S′
XŜ(x) (5.33)

where δ is Kronecker delta. Finally, substituting Eqs.(5.26)-(5.28) in Eq.(5.15) we get the

quadratic expression

aŝ = I− Jn
ŜS
Dn
S + Lnn

′

ŜSS′
Dn
SD

n
′

S′
(5.34)

where,

Jn
ŜS

=
V ol(Ω)

NS

[
KrC

′nδŜS + (χrΦŜS + ηrΨŜS) C
′n
]
, (5.35)

and

Lnn
′

ŜSS′
=

(
V ol(Ω)

NS

)2

.

(
KrC

′nKrC
′n
′

δŜSS′+

KrC
′n
(
χrΦbS′+ηrΨ

bS
′

)
C
′n
′

δŜSb+

(δrΨŜa + ηrΨŜa) C
′nKrC

′n
′

δŜaS′+

(δrΨŜa + ηrΨŜa) C
′n (δrΨbS′ + ηrΨbS′ ) C

′n
′

δSab

)
(5.36)

where Jn
ŜS

and Lnn
′

ŜSS′
are referred to as the influence coefficients. These coefficients quantify the
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influence of presence of local states n and n
′

in bins S and S
′
, on bin S

′
.

The sensitivity of the localization tensor in bin Ŝ to changes in specific microstructure

coefficients can be given by

∂aŜ
∂Dn

S

= −Jn
ŜS

+
(
Lnn

′

ŜSS′
+ Ln

′
n

ŜS′S

)
Dn

′

S′
(5.37)
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Chapter 6

Material Knowledge Systems

6.1 Introduction

Building upon the concepts described in previous chapters, now we discuss the Material

Knowledge System [3], which is described as a computational framework to extract, store and

recall hierarchical PSP linkages for a broad range of material systems by [6]. MKS uses Digital

Signal Processing (DSP) methods establish relations between microstructure topologies and

field response variables of the material (Shan and Wang, 2010). Using the expressions derived

in Eqs.(5.17)-(5.19) and analogous of the concept in DSP the localization of the field response

variables can be noted as a series of higher-order convolutions connecting structure and response

signals as:

PS
P̄

=

( H∑
h=1

∑
t∈S

αhtm
h
S+t +

H∑
h=1

∑
h′=1

∑
t∈S

∑
t′∈S

αhh
′

tt′
mh

S+tm
h
′

S+t+t′
+ . . .

)
(6.1)

Where PS is the digital representation of local response field of interest (e.g. local stress,

strain, etc.). The subscript S represents the spatial cell where the local response field is

being calculated. The first and second order influence coefficients represented by αht and

αhh
′

tt′
respectively, are fourth-rank tensors and are completely independent of microstructure

coefficients mh
s .

For a selected materials system, αht essentially captures the influence of a local state h placed
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at a distance t on the spatial cell S of interest. As expected, αhh
′

tt′
, which includes higher order

statistics about the microstructure, captures the influence of simultaneous placement of local

states h and h
′

at a distance of S + t and S + t+ t
′

on the spatial cell of interest.

The influence coefficients also known as impulse filters described in the last chapter,

can infer the local effect of microstructure structure on the local material response. The

learning or calibration of these influence coefficients is done once for a selected composite

material system, as the coefficients are independent of the morphology of the underlying

microstructure.

Figure 6.1: The first-order influence coefficients αht capture the contribution of the response
variable in spatial cell S from the placement of local state h in spatial bins S + t. Similarly,

αhh
′

tt′
captures the influence of placement of h and h

′
in spatial bins S + t and S + t+ t

′
.Image

courtesy [8]

Classical approach to calculate influence coefficients as per statistical continuum theory is

analytical. However, this approach poses computational challenges. To overcome this challenge

Landi and coworkers [1] and [2, 5] established a more efficient way of obtaining numerical values

for these coefficients, by calibrating it against finite element (FE) models. Another limitation of

the existing formulation is that, the influence coefficients are coupled. To simplify, a decoupling

process by using convolution properties of DFT was proposed as

Pk =

( H∑
h=1

βh∗k M
h
k

)
+

 H∑
h=1

H∑
h′=1

∑
r∈S

βhh
′∗

kr Mh
′

r Mk−r

+ . . .

 (6.2)
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βhk = =
(
αht
)
, Pk = =(pS/p̂), Mh

k = =k(mh
s ) (6.3)

where =k() denotes the multi-dimensional DFT operation w.r.t. spatial variables t or s, and

asterisk represents complex conjugate. This new formulation decouples the coefficients and

makes their calibration against FE models computationally efficient.

The first-order MKS have been used accurately for plastic-responses, elastic stress and strain

fields, and thermo-elastic. With first-order system, only two discrete phases with weak contrast

between their Poisson ratio and Young’s modulus.

However, there is a need to incorporate higher-order influence coefficients in order to improve

accuracy. The Fourier transform isn’t efficient because it can’t decouple the higher-order

localization relationship. If it is done in any case, there will be a need to include every

higher-order term up to N − th order, which makes it unfeasible computationally.

6.2 Higher Order MKS

A new methodology to incorporate higher-order coefficients and thus more information of the

microstructure topology was proposed by Fast [3].

6.2.1 Higher Order Microstructure Function

First the higher-order microstructure equation is modified to be written as

lm
h̃
S+ti

= mh1
S+t1

mh2
S+t1+t2

. . .mhN

S+t1+···+tN (6.4)

where h̃ is the local state identifier, thus (h1, . . . , hN) are ordered set of combination of local

states and H̃ being the product space of individual local state variables. .
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Figure 6.2: (a) Illustration of higher-order terms in localization relationship, where all selected
vectors are independent of all others. (b) Illustration of higher order terms in reformulated
localization relationship presented in [3]

6.2.2 Generalized Localization Relationship

When the constraint on number of local states is removed, the first-order localization relationship

generalizes to

ps =
H∑
h=1

S−1∑
t=0

αhtms+t′ (6.5)

here H is upper bounded LSS indices takes a value s.t. H ≥ 2.

6.2.3 Higher Order Localization Relationship

Using higher-order microstructure function definition from Eq.(6.4) in Eq. (6.5) we get

ps =
l∑

i=1

H∑
h=1

S−1∑
t1=0

iαht1
imh

S+t1
+ eS(I) (6.6)

iαµνl is the compact notation of influence-coefficients of higher-order with the local vectors

indexed by i, and truncation error is given by eS(I).

61



CHAPTER 6. MATERIAL KNOWLEDGE SYSTEMS

6.3 Applications of MKS

Integrated Computational Materials Engineering (ICME) project is focused on multiscale

modelling of materials and developing schemes for effective communication between constitutive

models at different length scales. This is inline with the fact that, material structure is naturally

hierarchical, with varying length and time scales at each step of the hierarchy. Development of

multiscale modelling techniques will enable faster design, development and accelerated material

discovery for insertion into existing manufacturing processes. Multiscale modelling can be

basically divided into two classes, hierarchical and concurrent.

In the Hierarchical modelling approach, scale bridging relationships are used to transfer

information from one scale to another. The main advantage of hierarchical simulations over

concurrent modelling is the saving in computational effort. However, for achieving higher

computational efficiency, hierarchical modelling compromises on accuracy by incorporating

simplifying assumptions about the material. On the other hand, concurrent modelling, although

more accurate, but are computationally very expensive as constitutive models are solved

simultaneously at all the length scales while exchanging information continuously.

For the purpose of this thesis, we will focus on Hierarchical modelling, due to it’s relatively

easier implementation and lesser requirements for computational power. Until recently, the

primary focus of hierarchical modelling has been on Homogenization, thus the information flow

has been usually one sided i.e., from lower to higher scales. Therefore, the localization problem

is relatively not well addressed. As discussed in previous chapters, Localization techniques can

provide the spatial distribution of local response fields of interest (local stresses, strains etc.),

resulting from a macroscale boundary condition/loading.

MKS scale-bridging framework has been successfully implemented in several case studies

for determining the localized response fields ([6, 7, 3]). In a nutshell, MKS addresses the

localization problem by using better statistical measures, i.e. n-point spatial correlations, of the

microstructures.

Now using the theory and concepts we have laid out in earlier chapters, we will use the

MKS framework for a case study where we evaluate the elastic response of a three-dimensional
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voxel-based microstructure dataset using novel DFT-based knowledge systems as described in

[9].

6.3.1 Numerical Example: Elastic response of a composite material

system.

In this case study, DFT-based localization relationship is used to calculate the elastic response

of a 3D voxel based dataset comprising of two different phases. Both the phases have isotropic

elastic properties, with Young’s moduli of 200 and 300 GPa respectively. The ratio of modulis

is 1.5 which means its a medium contrast material. Poisson ratio for both phases is chosen 0.3.

Selection of microstructure for influence coefficient calibration.

In order to estimate the influence coefficients as shown in Eq.(6.2), we create and use a FE

model of a delta microstructure (see Fig.(7.1)) in Abaqus[4]. The Abaqus .inp file used to create

this model can be seen in Appendix.

Figure 6.3: Finite element model of Delta mi-
crostructure of size 21x21x21, resulting in a
total of 9361 C3D8 type elements.

Figure 6.4: Delta microstructure used in this
numerical example. Image courtesy [7]

The delta microstructure is the one where one of the local state occupies the central spatial

bin, and is completely surrounded by the other local state as shown in Fig.(7.2). Landi [9]

established that use of delta microstructures is specially suited for using DFTs. This is primarily

because delta microstructures function in mh
s produces non-zero values of Mh

k . Moreover, in the

field of digital signal processing a well defined methodology is to identify output for an impulse
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(delta microstructure in our case) and then outputs are obtained as a convolution of the impulse

input signal.

The FE model was created in Abaqus[4], with 3-D, eight noded solid elements (C3D8). The

cubic elements closely resemble the voxel based discretization of microstructures, thus such

meshes can be produced naturally from microstructure datasets. The domain in comprised of

21x21x21 = 9261 elements as can be seen in Fig.(7.1).

Boundary conditions for FE analyses

For this problem we will consider estimation of the (βhk )ij11 component of the fourth rank tensor

βhk same as the αht tensor. For estimation of this coefficient a uniaxial strain is applied at the

macroscale, and the spatial variation of the response strain components are documented in the

Abaqus .dat file (see Appendix), while all the other strain components are kept equal to zero.

Periodic boundary conditions are applied to the FE model, which are as follows

u3+
i = u3−

i , u2+
i = u2−

i , u1+
i 6=3 = u1−

i 6=3, u1+
3 − u1−

3 , uBi = 0 (6.7)

Figure 6.5: Periodic boundary conditions are applied using conditions described in Eq.(7.1).

Imosing periodic bcs, ensures that the equations are set up in a way that, displacements of

nodes on opposite faces are related. Details of the surfaces and boundary conditions can be

visually verified from Fig. (7.3)
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Establishing the first-order coefficients

Recalling the procedure described, in order to establish (βhk )ij11 in the previous chapters. The

first order coefficients can be calculated as

(eij)k =

(
H∑
h=1

((βhk )ij11)∗Mh
k

)
ε̄11 (6.8)

Accordingly, the constraints on microstructure function in the DFT space transform to

H∑
h=1

Mh
0 = |S|,

H∑
h=1

Mk
k 6=0 = 0 (6.9)

Then, replacing Eq.(7.3) into Eq.(7.2) we get

(eij)k 6=0 =

(
2∑

h=1

(βhk )∗ij11M
h
k

)
ε̄11 = (β1

k − β2
k) ∗M1

k ε̄11 = γ1
kM

1
k ε̄11 (6.10)

(eij)0 =
[
(β1

0 − β2
0)∗M1

0 + (β2
0)∗|S|

]
ε̄11 (6.11)

Figure 6.6: Visualization of influence function. It can be seen that the function dies out with
increasing value of t.

From the FE models, we obtain two datasets of ((eij)k,M
1
k ). Next estimates of (γ1

k)ij11 which

will best fit the datasets is found using linear regression analysis methods. As was mentioned
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earlier, the influence coefficients are independent of each other, therefore only the values of γ1
k.

So, from the best estimates of (γ1
k)ij11 the values of (α̃1

t )ij11 = α1
t )ij11 − α2

t )ij11 can be recovered.

The function α1
t )ij11 decays rapidly with increasing value of t, which can be seen from Fig.(7.4).

Results and discussion

The coefficients of influence that were learnt from the FE analysis were used to predict the local

response fields on application of a macroscale strain on a random microstructure. As can be

seen the results obtained from both the procedures are in excellent agreement. However, the

biggest advantage with using MKS is the saving of computational time. The MKS approach

found the solution in 0.0039 sec whereas Abaqus took a CPU time of 21.30 secs both on a 8GHz

CPU with 8GB RAM.

Figure 6.7: Predicted values of ε11 from the
middle section of the random microstructure
using FEM.

Figure 6.8: Predicted values of ε11 from the
middle section of the random microstructure
using MKS.

The error between DFT-based localization relationships and Finite Element methods can be

given by

Err = maxs∈S

(
((εs)11)FEM − ((εs)11)MKS

ε̃11

)
x100% (6.12)

The error between both methods was approximately 1%, as can be seen from the Fig.(7.7).
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Figure 6.9: Periodic boundary conditions are applied using conditions described in Eq.(7.1).
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Chapter 7

Conclusions and Future Work

1. Validation of MKS framework This work demonstrated that MKS framework can

be efficiently used for prediction of localised strains using DFT based approach. The

effective property was calculated as the sum of series whose terms are made up of structure

morphology and structure independent influence coefficients.

2. Reduction in Computational Effort compared to FEM The biggest advantage of

MKS over FEM is the reduction in computational effort, by calibrating the coefficients

against FE results. The calibration of influence coefficients for larger microstructure

datasets is computationally expensive, but this is a one time effort because the influence

coefficients are independent of the microstructure morphology. Once the calibration is

done, results can be obtained very rapidly for any new random microstructure sets of the

same material system.

3. MKS Framework is extendable to High Contrast Materials The numerical ex-

ample presented here was for medium contrast composite material system, using only

first order coefficients. For high contrast systems, where the ratio of Young moduli of

the phases is more than 1.5, we will need to use higher order influence coefficients. The

influence coefficient functions have compact support and die out with the increasing

distance between spatial cell with a certain local state and the spatial cell of interest. This

aligns naturally with the physics of material structure.
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4. High accuracy A major improvement was seen in the calculation of results using MKS,

with an accuracy of within 1% of the results obtained from FEM

5. Use of Delta Microstructures for Calibration It was demonstrated that using only

two ”delta” microstructures, are sufficient for calibration of the influence coefficients

instead of calibrating against hundreds of microstructure samples.

6. Established Localization Linkages can be used in Scale-Bridging multi-scale

modelling simulations. These relationship can capture the most prominent features

of the structure-property linkages across disparate length scales. In the work done by [1]

FEM was used on the macro-scale and spectral methods were used for prediction on the

lower length scales.

7. The MKS framework is in perfect alignment with Microstructure Informatics

MKS sets ground for true material-by-design methodology. It uses classification techniques

from Data Science which further establishes the ground work for new generation of material

databases, where the information will not be limited to only effective properties.

Figure 7.1: Main components of Data Science approach for establishing PSP linkages.
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Appendix A

Description of the code

In this section important functions of the code are commented.

#reads in the Abaqus output file and returns the desired strains for all

elements in a 3d array

def ABstrains(ABout):

f = open(ABout, ’r’)

cur_line = f.readline()

while(cur_line != "" and "NUMBER OF ELEMENTS IS" not in

cur_line):

cur_line = f.readline()

#get number of elements to loop through

num_elements = int((cur_line.split())[4])

currentStep = 1

keepProcessing = True

strains = None

visco = False

searchStaticOrVisco = "S T E P {} (S T A T I C A N A L Y S I

S)".format(currentStep)

m = re.search(searchStaticOrVisco, cur_line)

while(cur_line != "" and not m):
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cur_line = f.readline()

m = re.search(searchStaticOrVisco, cur_line)

if (cur_line == ""):

return None

if m.group(1) == "V I S C O A N A L Y S I S":

visco = True

while (keepProcessing):

# Read strains for the next step, for static analysis,

there should be only one

stepStrains = ReadStrainsStep(currentStep, f,

num_elements, visco)

if (stepStrains == None):

keepProcessing = False

else:

if strains == None:

strains = stepStrains

else:

strains = np.concatenate((strains,

stepStrains), axis=3)

currentStep = currentStep + 1

return strains

#MicroSF are the Microstructure functions, ABout are the ABAQUS output file

names, Macro is the imposed macro strain in the 11 direction

def GenC(MicroSF_1, MicroSF_2, ABout1, ABout2, Macro):

#process ABAQUS output files and return 11 strains for each element

strains_1 = ABstrains(ABout1)

strains_2 = ABstrains(ABout2)

strains_1 = strains_1/np.mean(strains_1)
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strains_2 = strains_2/np.mean(strains_2)

#calculate DFT space responses and microstructure functions

response_1_k = np.fft.fftn(strains_1)

micro_1_k = zeros(MicroSF_1.shape,dtype=complex)

micro_1_k[:,:,:,0] = np.fft.fftn(MicroSF_1[:,:,:,0])

micro_1_k[:,:,:,1] = np.fft.fftn(MicroSF_1[:,:,:,1])

response_2_k = np.fft.fftn(strains_2)

micro_2_k = zeros(MicroSF_2.shape,dtype=complex)

micro_2_k[:,:,:,0] = np.fft.fftn(MicroSF_2[:,:,:,0])

micro_2_k[:,:,:,1] = np.fft.fftn(MicroSF_2[:,:,:,1])

#explicitly invert matrix and solve for coefficients

dim_len = response_1_k.shape[0]

coeff = zeros( (dim_len,dim_len,dim_len,2) , dtype=complex)

#attempt to perform least squares solution

for i in range(dim_len):

for j in range(dim_len):

for k in range(dim_len):

#u,v,w = i,j,k

#The following 2 quantities are used in the

normal equation during regression.

MM = np.zeros((2,2)) + 0j*np.zeros((2,2))#

Microstucture matrix (M’ M*)

PM = np.zeros((2,1)) + 0j*np.zeros((2,1))#

Property matrix (P M*)

mSQc = np.conjugate(micro_1_k[i,j,k,:]) #

Conjugate of FFT of Microstructure

mSQt = np.mat(micro_1_k[i,j,k,:]).T # Transpose

of FFT of Microstructure

MM = MM + np.outer(mSQt,mSQc) # Calculate MM
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PM = PM + (response_1_k[i,j,k] * mSQc) #

Calculate PM

mSQc = np.conjugate(micro_2_k[i,j,k,:]) #

Conjugate of FFT of Microstructure

mSQt = np.mat(micro_2_k[i,j,k,:]).T # Transpose

of FFT of Microstructure

MM = MM + np.outer(mSQt,mSQc) # Calculate MM

PM = PM + (response_2_k[i,j,k] * mSQc) #

Calculate PM

if ((i==0 and j ==0) and (k==0 or k==1)):

p = independent_columns(MM, .001)

calred = MM[p,:][:,p] # Linearly independent

columns of MM

resred = PM[p,0].conj().T # Linearly independent

columns of PM

coeff[i,j,k,p] = np.linalg.solve(calred, resred)

#coeff[:,:,:] = response_1_k/micro_1_k[:,:,:,0]

return coeff

#solves for new response given inputs

#macro is the imposed macro strain, coeff are the conj DFT coefficients,

MSf is the microstructure function

#returns the spatial (not DFT) response

def NewResponse(coeff, macro, MSf):

print np.nonzero(MSf)

response = zeros(coeff.shape[0:3])

MSf_DFT = zeros(MSf.shape,dtype=complex)

MSf_DFT[:,:,:,0] = np.fft.fftn(MSf[:,:,:,0])

MSf_DFT[:,:,:,1] = np.fft.fftn(MSf[:,:,:,1])
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response = lin_sum = np.sum(np.conjugate(coeff) * MSf_DFT[:,:,:,:], 3)

response = np.fft.ifftn(response)

return np.real_if_close(response)

This function takes an Eigen microstructure and returns a function that is

microstructure function in the fifth dimension of the array.

(The first four dimension will be used for space and time.)

The microstructure function provides the percentage of a voxel that belongs

to each state space.

For example

Input:

Eigen Microstructure

[[1,2,1]

MAT = [1,2,1]

[1,2,2]]

Output:

Microstructure Function

[[[[[1, 0]]] <- MAT[0,0] = 1

[[[0, 1]]] <- MAT[0,1] = 2

[[[1, 0]]]] <- MAT[0,2] = 1

[[[[1, 0]]] <- MAT[1,0] = 1

MicroSF = [[[0, 1]]] <- MAT[1,1] = 2

[[[1, 0]]]] <- MAT[1,2] = 1

[[[[1, 0]]] <- MAT[2,0] = 1

[[[0, 1]]] <- MAT[2,1] = 2

[[[0, 1]]]]] <- MAT[2,2] = 2

’’’

def MSf(MAT):
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Dim = MAT.shape #np array dimension

l = len(Dim)

print "array dimensions = ",l

phases = sp.unique(MAT) #identify phases

print "unique phases = ",phases

numPhases = len(phases) #number of phases

print "number of phases = ", numPhases

if l == 2:

MicroSF = np.zeros([Dim[0],Dim[1],1,1,numPhases])

for ii in range(numPhases):

Mask = np.ma.masked_equal(MAT, phases[ii])

MicroSF[:,:,0,0,ii] = Mask*MicroSF[:,:,0,0,ii]

MicroSF[:,:,0,0,ii] = MicroSF[:,:,0,0,ii]/phases[ii]

elif l == 3:

MicroSF = np.zeros([Dim[0],Dim[1],Dim[2],1,numPhases])

for ii in range(numPhases):

Mask = np.ma.masked_equal(MAT, phases[ii])

MicroSF[:,:,:,0,ii] = Mask*MicroSF[:,:,:,0,ii]

MicroSF[:,:,:,0,ii] = MicroSF[:,:,:,0,ii]/phases[ii]

return MicroSF
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This is the input file used to create the delta microstructure FE Model

*Preprint, echo=NO, model=No, history=NO, contact=NO

*Heading

****************************************************

*node

1, 0, 0, 0

463, 0, 0, 20

22, 0, 20, 0

484, 0, 20, 20

10165, 20, 0, 0

10627, 20, 0, 20

10186, 20, 20, 0

10648, 20, 20, 20

*****************************************************

*NSET, NSET=A

1

*NSET, NSET=B

463

*NSET, NSET=C

22

*NSET, NSET=D

484

*NSET, NSET=E

10165

*NSET, NSET=F

10627

*NSET, NSET=G
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10186

*NSET, NSET=H

10648

****************************************************

*Nfill, Nset=AB

A, B, 21, 22

*Nfill, Nset=CD

C, D, 21, 22

*Nfill, Nset=ABCD

AB, CD, 21, 1

*Nfill, Nset=EF

E, F, 21, 22

*Nfill, Nset=GH

G, H, 21, 22

*Nfill, Nset=EFGH

EF, GH, 21, 1

*Nfill, Nset=ABCDEFGH

ABCD, EFGH, 21, 484

****************************************************

*Nfill, Nset=BD

B, D, 21, 1

*Nfill, Nset=FH

F, H, 21, 1

*Nfill, Nset=BDFH

BD, FH, 21, 484

*****************************************************

** Bottom Face Node Set

*Nfill, Nset=AC

A, C, 21, 1
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*Nfill, Nset=EG

E, G, 21, 1

*Nfill, Nset=ACEG

AC, EG, 21, 484

*****************************************************

*ELEMENT, TYPE=C3D8

1,1,2,24,23,485,486,508,507

*****************************************************

*ELGEN, elset=allel

1,21,1,1,21,22,21,21,484,441

*****************************************************

*ELSET, ELSET=elset1

4631,

*****************************************************

*ELSET, ELSET=elset2

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,

65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,

.

.

.

.

NODE LIST HAS BEEN DELETED TO SAVE SPACE

.

.

.
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*****************************************************

*NSET, NSET=n3minus_n1minus

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21,

*****************************************************

*NSET, NSET=n3minus_n1plus

10166, 10167, 10168, 10169, 10170, 10171, 10172, 10173, 10174, 10175, 10176, 10177, 10178, 10179, 10180, 10181,

10182, 10183, 10184, 10185,

*****************************************************

*NSET, NSET=n2minus_n3minus

485, 969, 1453, 1937, 2421, 2905, 3389, 3873, 4357, 4841, 5325, 5809, 6293, 6777, 7261, 7745,

8229, 8713, 9197, 9681,

*****************************************************

*NSET, NSET=n2plus_n3minus

506, 990, 1474, 1958, 2442, 2926, 3410, 3894, 4378, 4862, 5346, 5830, 6314, 6798, 7282, 7766,

8250, 8734, 9218, 9702,

*****************************************************

*NSET, NSET=n3plus_n1minus

464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479,

480, 481, 482, 483,

*****************************************************

*NSET, NSET=n3plus_n1plus

10628, 10629, 10630, 10631, 10632, 10633, 10634, 10635, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643,

10644, 10645, 10646, 10647,

*****************************************************

*NSET, NSET=n2minus_n3plus

947, 1431, 1915, 2399, 2883, 3367, 3851, 4335, 4819, 5303, 5787, 6271, 6755, 7239, 7723, 8207,

8691, 9175, 9659, 10143,

*****************************************************
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*NSET, NSET=n2plus_n3plus

968, 1452, 1936, 2420, 2904, 3388, 3872, 4356, 4840, 5324, 5808, 6292, 6776, 7260, 7744, 8228,

8712, 9196, 9680, 10164,

*****************************************************

*NSET, NSET=n1plus_n2minus

10187, 10209, 10231, 10253, 10275, 10297, 10319, 10341, 10363, 10385, 10407, 10429, 10451, 10473, 10495, 10517,

10539, 10561, 10583, 10605,

*****************************************************

*NSET, NSET=n1plus_n2plus

10208, 10230, 10252, 10274, 10296, 10318, 10340, 10362, 10384, 10406, 10428, 10450, 10472, 10494, 10516, 10538,

10560, 10582, 10604, 10626,

*****************************************************

*NSET, NSET=n1minus_n2minus

23, 45, 67, 89, 111, 133, 155, 177, 199, 221, 243, 265, 287, 309, 331, 353,

375, 397, 419, 441,

*****************************************************

*NSET, NSET=n1minus_n2plus

44, 66, 88, 110, 132, 154, 176, 198, 220, 242, 264, 286, 308, 330, 352, 374,

396, 418, 440, 462,

*****************************************************

** Implement Periodic Boundary Conditions

*Equation

3

n1plus, 1, 1, n1minus, 1, -1, 10648, 1, -1

2

n1plus, 2, 1, n1minus, 2, -1

2

n1plus, 3, 1, n1minus, 3, -1

**
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2

n2plus, 1, 1, n2minus, 1, -1

2

n2plus, 2, 1, n2minus, 2, -1

2

n2plus, 3, 1, n2minus, 3, -1

**

2

n3plus, 1, 1, n3minus, 1, -1

2

n3plus, 2, 1, n3minus, 2, -1

2

n3plus, 3, 1, n3minus, 3, -1

**

3

n1plus_n2plus, 1, 1, n1minus_n2plus, 1, -1, 10648, 1, -1

3

n1plus_n2minus, 1, 1, n1minus_n2minus, 1, -1, 10648, 1, -1

2

n1minus_n2plus, 1, 1, n1minus_n2minus, 1, -1

**

2

n1plus_n2plus, 2, 1, n1minus_n2plus, 2, -1

2

n1plus_n2minus, 2, 1, n1minus_n2minus, 2, -1

2

n1minus_n2plus, 2, 1, n1minus_n2minus, 2, -1

**

2
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n1plus_n2plus, 3, 1, n1minus_n2plus, 3, -1

2

n1plus_n2minus, 3, 1, n1minus_n2minus, 3, -1

2

n1minus_n2plus, 3, 1, n1minus_n2minus, 3, -1

**

**

3

n3plus_n1plus, 1, 1, n3plus_n1minus, 1, -1, 10648, 1, -1

3

n3minus_n1plus, 1, 1, n3minus_n1minus, 1, -1, 10648, 1, -1

2

n3plus_n1minus, 1, 1, n3minus_n1minus, 1, -1

**

2

n3plus_n1plus, 2, 1, n3plus_n1minus, 2, -1

2

n3minus_n1plus, 2, 1, n3minus_n1minus, 2, -1

2

n3plus_n1minus, 2, 1, n3minus_n1minus, 2, -1

**

2

n3plus_n1plus, 3, 1, n3plus_n1minus, 3, -1

2

n3minus_n1plus, 3, 1, n3minus_n1minus, 3, -1

2

n3plus_n1minus, 3, 1, n3minus_n1minus, 3, -1

**

**
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2

n2plus_n3plus, 1, 1, n2minus_n3plus, 1, -1

2

n2plus_n3minus, 1, 1, n2minus_n3minus, 1, -1

2

n2minus_n3plus, 1, 1, n2minus_n3minus, 1, -1

**

2

n2plus_n3plus, 2, 1, n2minus_n3plus, 2, -1

2

n2plus_n3minus, 2, 1, n2minus_n3minus, 2, -1

2

n2minus_n3plus, 2, 1, n2minus_n3minus, 2, -1

**

2

n2plus_n3plus, 3, 1, n2minus_n3plus, 3, -1

2

n2plus_n3minus, 3, 1, n2minus_n3minus, 3, -1

2

n2minus_n3plus, 3, 1, n2minus_n3minus, 3, -1

**** -----------------------------------------------------------------

** MATERIALS

**

*Solid Section, elset=elset1, material=material-1

1.,

*Material, name=material-1

*Elastic,type=isotropic

120, 0.3

** Solid (element 2 = elset2)
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**

*Solid Section, elset=elset2, material=material-2

1.,

**

*Material, name=material-2

*Elastic,type=isotropic

80, 0.3

** ----------------------------------------------------------------

**

** ----------------------------------------------------------------

**

** STEP: Step-1

**

*Step, name=Step-1

*Static

1., 1., 1e-05, 1.

**

** BOUNDARY CONDITIONS

**

** Name: BC-1 Type: Displacement/Rotation

*Boundary

**

1,1,3,0

463,1,3,0

22,1,3,0

484,1,3,0

10165,1,1,0.02

10627,1,1,0.02

10186,1,1,0.02
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10648,1,1,0.02

10165,2,3,0

10627,2,3,0

10186,2,3,0

10648,2,3,0

**

** OUTPUT REQUESTS

**

*output, field, frequency=0

**

*output, history, frequency=0

**

*el print, summary=no, totals=yes

E

**

*End Step
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