TÍTULO:
DISEÑO ESTACIÓN DE CALIBRACIONES PARA IMPACTADORES DE PROTECCIÓN DE PEATONES

AUTOR: IVÁN PASTOR HERNÁNDEZ
TITULACIÓN: GRADO EN INGENIERÍA MECANICA
DIRECTOR: JOAN JOSEP ALIAU PONS
DEPARTAMENT: Departament d’ Expressió Gràfica a l’ Enginyeria
DATA: 13 Julio de 2016
Flex PLI GTR
User Manual
For information on Humanetics products, please visit our web site at www.humaneticsatd.com or contact:

Humanetics Innovative Solutions
47460 Galleon Drive
Plymouth, MI 48170, USA
Telephone: 734-451-7878
Fax: 734-451-9549

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording, mechanical or otherwise, without the express written consent of Humanetics Innovative Solutions.

Copyright © 2011 Humanetics Innovative Solutions. All rights reserved.

The information in this manual is furnished for informational use only, and is subject to change without notice. Humanetics Innovative Solutions assumes no responsibility or liability for any errors or inaccuracies that may appear in this manual.
Table of Contents

Section 1. Introduction .. 8
 1.1 Overview .. 8
 1.2 Tools Required .. 9

Section 2. Instrumentation .. 12
 2.1 Standard 12 Channel instrumentation ... 12
 2.2 Optional instrumentation ... 12
 2.3 ISO MME Codes ... 18
 2.3.1 Co-ordinate System ... 21
 2.3.2 Signal Polarity, Sensor function check ... 22
 2.3.3 Filter Class .. 22
 2.4 Data Acquisition Options ... 23
 2.5 Off Board DAS ... 23
 2.6 Messring M=BUS On Board Data Acquisition ... 25
 2.6.1 M=BUS description ... 25
 2.6.2 24 Channel M=BUS .. 28
 2.7 DTS Onboard SLICE Nano DAS ... 30
 2.8 SLICE 24 Channel Option ... 34

Section 3. Assembly and Disassembly .. 35
 3.1 Femur Exploded View .. 37
 3.1.1. Femur (Upper Leg) Assembly .. 39
 3.1.2. Femur after Calibration .. 42
 3.1.3. Femur Disassembly ... 42
 3.2 Knee Exploded View .. 43
 3.2.1. Knee Assembly ... 44
 3.2.2. After Calibration .. 47
 3.2.3. Knee Disassembly ... 47
 3.3 Tibia Exploded View .. 49
 3.3.1. Tibia Assembly .. 51
3.3.2. After Calibration ... 53
3.3.3. Tibia Disassembly ... 53
3.3.4. Leg Assembly ... 53
3.3.5. Leg Disassembly .. 56

Section 4. Weight Specification .. 57

Section 5. Calibration and certification testing 58
5.1 Overview .. 58
5.2 Femur and Tibia Bone Assembly Certification 59
5.2.1 Introduction .. 59
5.2.2 Femur and Tibia assembly Certification 59
5.3 Knee Calibration ... 62
5.4 Pendulum Dynamic Calibration 64
5.5 Leg Preparation for Pendulum Dynamic Calibration 66

Section 6. Leg Preparation for Dynamic Inverse Test 69
6.1 Introduction .. 69
6.2 Leg Preparation for Dynamic Inverse Test 69
6.3 Inverse Test Calibration Description 71
6.3.1. Requirements .. 72
6.3.1.1. Impactor .. 72
6.3.1.2. Temperature .. 72
6.3.1.3. Impactor Pitch, Roll and Yaw angle corridor 72
6.3.1.4. Flex PLI Inverse Test Corridor 72
6.4 Car Test .. 73

Section 7. Impactor Guide setting distance on Launcher 74

Section 8. Dynamic Rig .. 76
Table of Figures

Figure 1. T-Handle Wrenches .. 9
Figure 2. Hex Wrenches .. 10
Figure 3. Ratchet offset wrench with hex bits kit ... 10
Figure 4. Leg wire setting tool 133-5112 ... 11
Figure 5. Knee spacer tool 133-5113, 2 are used to hold string potentiometer attachment plate 11
Figure 6. Optional Instrumentation, for Femur ... 13
Figure 7. Detail A, Exploded View ... 14
Figure 8. Wire routing for Detail A optional sensors ... 14
Figure 9. Wire routing out of segment for optional sensors Detail A in upper knee 15
Figure 10. Similar arrangement to Detail A but with 2 uni-ax Kyowa accels. Assembly 133-7600 15
Figure 11. Sensor IES 3103 ARS triax for Knee upper and lower used with M=BUS, (mount 133-7522) 16
Figure 12. Kyowa accel 3 axis option for leg top and bottom locations, (mount 133-7530) 16
Figure 13. Optional Instrumentation, for Tibia ... 17
Figure 14. Leg Local Sign Convention ... 21
Figure 15. Leg manipulations for positive output ... 22
Figure 16. Clamping Arrangement and Position for Off board Wires 23
Figure 17. Off Board DAS wiring left hand side of impact face .. 24
Figure 18. Off Board DAS wiring right hand side of impact face .. 24
Figure 19. Wiring Diagram for 12 channel M=BUS .. 25
Figure 20. M=BUS wiring arrangement in knee ... 26
Figure 21. Clamping of Messring Disconnect Connector ... 26
Figure 22. Messring Terminator housing installation in upper knee .. 27
Figure 23. Fixing Messring Wire to Launcher .. 27
Figure 24. Right hand side of knee, sensors not connected ... 28
Figure 25. Top right hand side of knee sensors connected ... 28
Figure 26. Bottom right hand side of knee sensors connected .. 29
Figure 27. Top left hand side of knee sensors connected .. 29
Figure 28. Bottom left hand side of knee sensors connected .. 30
Figure 29. Wiring diagram for 12 channel SLICE ... 31
Figure 30. Typical Slice wiring to knee with SLICE ... 31
Figure 31. Disconnect connector and clamp on leg ... 32
Figure 32. Left hand side of leg with knee covers fitted. Leg wires are not shown secured 32
Figure 33. Right hand side of knee showing earth strap terminations and connectors 33
Figure 34. Leg with disconnect wire, TDAS interface and power supply 33
Figure 35. Optional SLICE unit 24 channel option (right side) .. 34
Figure 36. Left side wiring example of 24 channel SLICE .. 34
Figure 37. Instrumented Leg, Exploded View .. 35
Figure 38. Femur Assembly, Exploded View .. 37
Figure 39. Femur bone assembly .. 39
Figure 40. Fitting end shims in femur .. 40
Figure 41. Passing segment over bone wire .. 40
Figure 42. Exit wire from femur ... 41
Figure 43. Exit cable restraint use cable ties (tie not shown trimmed) .. 42
Figure 44. Knee Assembly, Exploded View .. 43
Figure 45. Meniscus string pot assembly wire feed .. 45
Figure 46. Meniscus with all string pots assembled. String pots identified .. 45
Figure 47. Meniscus wire clamp .. 46
Figure 48. Attachment plate ready, crimp wires in tension for knee femur block assembly 47
Figure 49. Cross wire feed through on knee ... 47
Figure 50. Tibia Assembly, Exploded View .. 49
Figure 51. Typical shim arrangement with .05 inside main shim .. 52
Figure 52. Screws to be tightened to 8 Nm .. 53
Figure 53. Assembly of first flesh layer ... 54
Figure 54. Assembly of flesh second layer ... 55
Figure 55. Rubber flesh assembly Velcro positions ... 55
Figure 56. Rubber flesh tied on with Velcro ... 55
Figure 57. Leg with outer cover fitted .. 56
Figure 58. Bone Assembly Fixture (tibia shown) .. 60
Figure 59. Knee Calibration Fixture .. 62
Figure 60. Diagram of Dynamic Pendulum Fixture ... 64
Figure 61. Release Latch Wire Position ... 65
Figure 62. Attaching Ballast Weight .. 66
Figure 63. Step 3 Attaching Dynamic Rig Pivot Block ... 67
Figure 64. Screws to be torqued to 8 Nm .. 69
Figure 65. Stop cable clearance adjustment using setting tool ... 70
Figure 66. Diagram of Inverse guided impactor Certification ... 71
Figure 67. Optional catch rope bracket 133-5034 ... 73
Figure 68. Impactor guide width setting 113mm .. 74
Figure 69. Location of impactor guide on pusher (launch plate) JARI pusher shown as example 75
Figure 70. Exploded view Dynamic Rig .. 77
Table List

Table 1.	Contents of the tool kit provided with the leg on delivery.	11
Table 2.	12 Channel Instrumentation	12
Table 3.	Example of Optional Instrumentation Parts List	17
Table 4.	ISO MME Sensor Code table	20
Table 5.	Wire label codes for all sensors	21
Table 6.	Flex PLI Parts List	36
Table 7.	Femur Assembly, Parts List	38
Table 8.	Knee Assembly, Parts List	44
Table 9.	Tibia Assembly, Parts List	50
Table 10.	Flex PLI GTR Mass	57
Table 11.	Sensor Mass Breakdown	57
Table 12.	FLEX-PLI-GTR certification steps	58
Table 13.	Femur assembly calibration corridor showing a typical result	60
Table 14.	Tibia assembly calibration corridor showing a typical result	61
Table 15.	Figure MCL sensor elongation corridor	63
Table 16.	Figure ACL and PCL corridors	63
Table 17.	Draft GTR 9 Regulation Pendulum test corridors; values are up to 250 ms after impact	67
Table 18.	Draft non injurious Pendulum test corridors: values are up to 250 ms after impact	68
Table 19.	Dynamic Inverse test corridors. These peak values shall be within 50 ms after impact	72
Table 20.	Dynamic Rig Part List	78
Section 1. Introduction

1.1 Overview
Pedestrian Lower Legform Impactors are used to evaluate pedestrian protection afforded by passenger cars in case of vehicle collision with a pedestrian. The current EEVC WG17 Pedestrian lower legform impactor is known to have certain limitations regarding the biofidelity and the repeatability of the test results. Therefore, Japan proposed to use a completely new legform, the so-called Flexible Pedestrian Legform Impactor (FlexPLI). In the year 2000, the Japan Automobile Manufacturers Association, Inc. (JAMA) and the Japan Automobile Research Institute (JARI) initiated development of the “Flexible Pedestrian Leg form Impactor (Flex-PLI)”. In 2002, an initial design was made available, followed by the Flex-GT version in 2006. The FLEX-PLI features biomechanically based femur, tibia and knee design, with biofidelic bending characteristics. In the knee the ligaments are represented according to human anthropometry. A Technical Evaluation Group (FLEX-TEG), consisting of governmental and industrial parties, is evaluating the possibility to use the leg form impactor for Global Technical Regulation on Pedestrian Safety (PS-GTR). FTSS is a member of this group as dummy manufacturer. FTSS was asked to review the GT design and manufacture the leg. This review highlighted a number of improvements and the proposed GTR design was accepted. The performance of the leg was intended to remain the same to ensure existing test data was still valid.

The main improvements were centralising the deflection sensors to avoid impact direction sensitivity, balancing the spring force load in the knee joint to prevent knee joint twist about vertical axis, various improvements related to handling, introduction of full bridge strain gauge configuration, adding additional optional sensors and incorporating on board Data Acquisition System (DAS) to improve free flight motion.

FTSS also reviewed and updated the numerous quasi static calibration procedures for internal bones, thigh, knee and lower leg assemblies. The dynamic calibration rig and procedure were also updated to provide more realistic loading. An inverse linear guided impactor test will be required as an additional dynamic calibration method.

The standard leg instrumentation has 12 channels; this includes 3 full bridge strain gage sensors in the thigh and 4 in the lower leg all measuring leg bending moment, an accelerometer and 4 string potentiometers in the knee, each one measures specific ligament elongation. There are also options for a further 26 linear accelerometer channels and 6 Angular Rate Sensors (ARS).

Flex GTR has symmetric design so can represent a right or left leg.
1.2 Tools Required

Several types of standard tools are used in the assembly and disassembly of the dummy. T-handle wrenches (Figure 1) and hex wrenches (Figure 2) can be used to access most of the fasteners in the dummy. In some cases, access to fasteners is easier if a ratchet offset wrench with hex bits is used (Figure 3).

Figure 1. T-Handle Wrenches
8, 4 mm and 1/8" open ended wrenches are required along with 8mm socket and ratchet. Wire spacer tool 133-5112 is required see Figure 4 to help set bone assembly wires and there is another spacer tool to space the knee string potentiometer attachment part 133-5113 See Figure 5. All these tools are provided with the leg as part of the tool box.
Note: Apart from the string potentiometer #2-56 UNC cap head screws and the ARS optional angular rate sensors which use #0-80 cap heads all the leg screws are metric.

Table 1. Contents of the tool kit provided with the leg on delivery.

A strong double sided tape supplied by Teraoke is used extensively on the Flex leg. FTSS recommends the use of this tape or a tape with the same strength to maintain performance.
Section 2. Instrumentation

2.1 Standard 12 Channel instrumentation

FLEX-PLI-GTR is offered with 12 channel standard instrumentation, measuring tibia and femur bending moments and knee ligament elongations as well as tibia acceleration in impact direction. The standard instrumentation channels are listed in Table 2. The channels intended for injury assessment are tibia bending moments and knee medial collateral ligament (MCL) elongation. These channels are controlled by the certification procedures given in Section 5.

<table>
<thead>
<tr>
<th>Instrument Channels</th>
<th>Purpose</th>
<th>Standard</th>
<th>DAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur moment 1,2 and 3</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Tibia moment 1,2,3 and 4</td>
<td>Injury Assessment</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tibia top acceleration ax</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MCL elongation</td>
<td>Injury Assessment</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ACL elongation</td>
<td>Monitoring</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PCL elongation</td>
<td>Monitoring</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>LCL elongation</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2. 12 Channel Instrumentation

2.2 Optional instrumentation

The FLEX-PLI offers a range of optional instrumentation for research purpose. When running regulatory tests with optional instrumentation, it is recommended to check that the total mass of the tool, including a certain amount of cable length, does not exceed the regulatory requirement. Each individual femur and tibia segment can be instrumented with an accelerometer in impact direction. Tri-axial accelerometers and/or angular rate sensors are also offered at various locations. It is recommended that damped accelerometers are used on the flex.
Figure 6. Optional Instrumentation, for Femur
Figure 7. Detail A, Exploded View

Figure 8. Wire routing for Detail A optional sensors
Figure 9. Wire routing out of segment for optional sensors Detail A in upper knee

Figure 10. Similar arrangement to Detail A but with 2 uniax Kyowa accels. Assembly 133-7600
Sensor IES 3103 ARS triax for Detail A position used with M=BUS. A single uniax accel either a Kyowa ASE-500 or MSI model 64 or similar can also be used here with this sensor. Assembly 133-7522, Figure 11. Figure 12 shows Kyowa accelerometer option for femur top and tibia bottom locations.

Figure 11. Sensor IES 3103 ARS triax for Knee upper and lower used with M=BUS, (mount 133-7522)

Figure 12. Kyowa accel 3 axis option for leg top and bottom locations, (mount 133-7530)
Figure 13. Optional Instrumentation, for Tibia

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>133-7508</td>
<td>ACCEL INSTRUMENTED OPTION LEG TOP & BOTTOM</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>133-7514</td>
<td>IMPACT SEGMENT - INSTRUMENTED ASSEMBLY (FEMUR)</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>133-7514</td>
<td>IMPACT SEGMENT - INSTRUMENTED ASSEMBLY (TIBIA)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>133-7507</td>
<td>ACCEL & ARS INSTRUMENTED OPTION FOR KNEE</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>133-7502</td>
<td>KNEE END ACCEL MOUNT</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>133-7516</td>
<td>TAPE, DOUBLE SIDED</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5000164</td>
<td>SCREW, SHCS M2 X 0.4 X 18</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>IT-TBD</td>
<td>DTS ANGULAR RATE SENSOR</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>9003103</td>
<td>SCREW, SHCS #0-80 X 5/16</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>MS-68C</td>
<td>ACCELEROMETER, LINEAR TRIAXIAL, MEASUREMENT SPECIALTIES MS 68C</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>133-7506</td>
<td>SPECIAL M2 ACCEL FIXING</td>
</tr>
</tbody>
</table>

Table 3. Example of Optional Instrumentation Parts List
2.3 ISO MME Codes

For the identification of sensor channels and for computer processing of signals the following codes have been established for ISO MME.

<table>
<thead>
<tr>
<th>No.</th>
<th>Location (Description)</th>
<th>Category</th>
<th>Test Object</th>
<th>Position</th>
<th>Transd Main Location</th>
<th>Fine Location 1</th>
<th>Fine Location 2</th>
<th>Fine Location 3</th>
<th>Physical Dimension</th>
<th>Direction</th>
<th>Filter Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Femur Moment 3 Upper, X</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>UP</td>
<td>00</td>
<td>PF</td>
<td>MO</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Femur Moment 2 Y</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>MI</td>
<td>00</td>
<td>PF</td>
<td>MO</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Femur Moment 1 Lower, X</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>LO</td>
<td>00</td>
<td>PF</td>
<td>MO</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Knee LCL Elongation</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>KNEE</td>
<td>LC</td>
<td>00</td>
<td>PF</td>
<td>DS</td>
<td>Z</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>Knee ACL Elongation</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>KNEE</td>
<td>AC</td>
<td>00</td>
<td>PF</td>
<td>DS</td>
<td>Z</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>Knee PCL Elongation</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>KNEE</td>
<td>PC</td>
<td>00</td>
<td>PF</td>
<td>DS</td>
<td>Z</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>Knee MCL Elongation</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>KNEE</td>
<td>MC</td>
<td>00</td>
<td>PF</td>
<td>DS</td>
<td>Z</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>Tibia Moment 1 Upper, X</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>TIBI</td>
<td>UP</td>
<td>00</td>
<td>PF</td>
<td>MO</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>Tibia Moment 2 Middle Upper, X</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>TIBI</td>
<td>MI</td>
<td>UP</td>
<td>PF</td>
<td>MO</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>Tibia Moment 3 Middle Lower, X</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>TIBI</td>
<td>MI</td>
<td>LO</td>
<td>PF</td>
<td>MO</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>Tibia Moment 4 Lower, X</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>TIBI</td>
<td>LO</td>
<td>00</td>
<td>PF</td>
<td>MO</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>Knee Bottom Acceleration, Y</td>
<td>standard</td>
<td>0</td>
<td>0</td>
<td>KNEE</td>
<td>BO</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>Femur Top Acceleration, X</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>TP</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>Femur Top Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>TP</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>Femur Top Acceleration, Z</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>TP</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>Z</td>
<td>C</td>
</tr>
<tr>
<td>16</td>
<td>Femur Segment 1 Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>01</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>17</td>
<td>Femur Segment 2 Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>02</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>18</td>
<td>Femur Segment 3 Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>03</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>19</td>
<td>Femur Segment 4 Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>04</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>20</td>
<td>Femur Segment 5 Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>FEMR</td>
<td>05</td>
<td>00</td>
<td>PF</td>
<td>AC</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Femur</td>
<td>Knee Upper</td>
<td>Knee Upper</td>
<td>Knee Upper</td>
<td>Knee Upper</td>
<td>Knee Lower</td>
<td>Knee Lower</td>
<td>Knee Lower</td>
<td>Knee Lower</td>
<td>Tibia Segment 1</td>
<td>Tibia Segment 2</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>21</td>
<td>Segment 6</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Femr</td>
<td>06</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>22</td>
<td>Knee Upper</td>
<td>Acceleration, X</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Up</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>X</td>
</tr>
<tr>
<td>23</td>
<td>Knee Upper</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Up</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>24</td>
<td>Knee Upper</td>
<td>Acceleration, Z</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Up</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Z</td>
</tr>
<tr>
<td>25</td>
<td>Knee Upper</td>
<td>Angular Rate, (\omega_x)</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Up</td>
<td>00</td>
<td>Pf</td>
<td>Av</td>
<td>X</td>
</tr>
<tr>
<td>26</td>
<td>Knee Upper</td>
<td>Angular Rate, (\omega_y)</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Up</td>
<td>00</td>
<td>Pf</td>
<td>Av</td>
<td>Y</td>
</tr>
<tr>
<td>27</td>
<td>Knee Upper</td>
<td>Angular Rate, (\omega_z)</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Up</td>
<td>00</td>
<td>Pf</td>
<td>Av</td>
<td>Z</td>
</tr>
<tr>
<td>28</td>
<td>Knee Lower</td>
<td>Acceleration, X</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Lo</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>X</td>
</tr>
<tr>
<td>29</td>
<td>Knee Lower</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Lo</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>30</td>
<td>Knee Lower</td>
<td>Acceleration, Z</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Lo</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Z</td>
</tr>
<tr>
<td>31</td>
<td>Knee Lower</td>
<td>Angular Rate, (\omega_x)</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Lo</td>
<td>00</td>
<td>Pf</td>
<td>Av</td>
<td>X</td>
</tr>
<tr>
<td>32</td>
<td>Knee Lower</td>
<td>Angular Rate, (\omega_y)</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Lo</td>
<td>00</td>
<td>Pf</td>
<td>Av</td>
<td>Y</td>
</tr>
<tr>
<td>33</td>
<td>Knee Lower</td>
<td>Angular Rate, (\omega_z)</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Kner</td>
<td>Lo</td>
<td>00</td>
<td>Pf</td>
<td>Av</td>
<td>Z</td>
</tr>
<tr>
<td>34</td>
<td>Tibia Segment 1</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Tibi</td>
<td>01</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>35</td>
<td>Tibia Segment 2</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Tibi</td>
<td>02</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>36</td>
<td>Tibia Segment 3</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Tibi</td>
<td>03</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>37</td>
<td>Tibia Segment 4</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Tibi</td>
<td>04</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>38</td>
<td>Tibia Segment 5</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Tibi</td>
<td>05</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>39</td>
<td>Tibia Segment 6</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Tibi</td>
<td>06</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>40</td>
<td>Tibia Segment 7</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Tibi</td>
<td>07</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
<tr>
<td>41</td>
<td>Tibia Segment 8</td>
<td>Acceleration, Y</td>
<td>additional</td>
<td>0</td>
<td>0</td>
<td>Tibi</td>
<td>08</td>
<td>00</td>
<td>Pf</td>
<td>Ac</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 4. ISO MME Sensor Code table

<table>
<thead>
<tr>
<th>Location (Description)</th>
<th>Wire Label Code</th>
<th>TRIAX Sensor wire label code</th>
<th>ISOMMECODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur Moment 3 Upper, X</td>
<td>F3</td>
<td>F1-3</td>
<td>00FEMRUP00PFMOXC</td>
</tr>
<tr>
<td>Femur Moment 2 Middle, X</td>
<td>F2</td>
<td></td>
<td>00FEMRM00PFMOXC</td>
</tr>
<tr>
<td>Femur Moment 1 Lower, X</td>
<td>F1</td>
<td></td>
<td>00FEMRL00PFMOXC</td>
</tr>
<tr>
<td>Knee LCL Elongation</td>
<td>LCL</td>
<td></td>
<td>00KNEELC00PPDSZC</td>
</tr>
<tr>
<td>Knee ACL Elongation</td>
<td>ACL</td>
<td></td>
<td>00KNEEAC00PPDSZC</td>
</tr>
<tr>
<td>Knee PCL Elongation</td>
<td>PCL</td>
<td></td>
<td>00KNEEPC00PPDSZC</td>
</tr>
<tr>
<td>Knee MCL Elongation</td>
<td>MCL</td>
<td></td>
<td>00KNEEMC00PPDSZC</td>
</tr>
<tr>
<td>Tibia Moment 1 Upper, X</td>
<td>T1</td>
<td>T1-3</td>
<td>00TIBIUP00PFMOXC</td>
</tr>
<tr>
<td>Tibia Moment 2 Middle Upper, X</td>
<td>T2</td>
<td></td>
<td>00TIBIMIUPPFMOXC</td>
</tr>
<tr>
<td>Tibia Moment 3 Middle Lower, X</td>
<td>T3</td>
<td></td>
<td>00TIBIMILOPFMOXC</td>
</tr>
<tr>
<td>Tibia Moment 4 Lower, X</td>
<td>T4</td>
<td></td>
<td>00TIBIL00PFMOXC</td>
</tr>
<tr>
<td>Knee Bottom Acceleration, Y</td>
<td>AY-KB</td>
<td></td>
<td>00KNEEB000PPACYC</td>
</tr>
<tr>
<td>Femur Top Acceleration, X</td>
<td>AX-FT</td>
<td>A-FT</td>
<td>00FEMRTP00PPACXC</td>
</tr>
<tr>
<td>Femur Top Acceleration, Y</td>
<td>AY-FT</td>
<td></td>
<td>00FEMRTP00PPACYC</td>
</tr>
<tr>
<td>Femur Top Acceleration, Z</td>
<td>AZ-FT</td>
<td></td>
<td>00FEMRTP00PPACZC</td>
</tr>
<tr>
<td>Femur Segment 1 Acceleration, Y</td>
<td>AY-S1</td>
<td></td>
<td>00FEMR0100PPACYC</td>
</tr>
<tr>
<td>Femur Segment 2 Acceleration, Y</td>
<td>AY-S2</td>
<td></td>
<td>00FEMR0200PPACYC</td>
</tr>
<tr>
<td>Femur Segment 3 Acceleration, Y</td>
<td>AY-S3</td>
<td></td>
<td>00FEMR0300PPACYC</td>
</tr>
<tr>
<td>Femur Segment 4 Acceleration, Y</td>
<td>AY-S4</td>
<td></td>
<td>00FEMR0400PPACYC</td>
</tr>
<tr>
<td>Femur Segment 5 Acceleration, Y</td>
<td>AY-S5</td>
<td></td>
<td>00FEMR0500PPACYC</td>
</tr>
<tr>
<td>Femur Segment 6 Acceleration, Y</td>
<td>AY-S6</td>
<td></td>
<td>00FEMR0600PPACYC</td>
</tr>
<tr>
<td>Knee Upper Acceleration, X</td>
<td>AX-KU</td>
<td>A-KU</td>
<td>00KNEEFUP00PPACXC</td>
</tr>
<tr>
<td>Knee Upper Acceleration, Y</td>
<td>AY-KU</td>
<td></td>
<td>00KNEEFUP00PPACYC</td>
</tr>
<tr>
<td>Knee Upper Acceleration, Z</td>
<td>AZ-KU</td>
<td></td>
<td>00KNEEFUP00PPACZC</td>
</tr>
<tr>
<td>Knee Upper Angular Rate, ωX</td>
<td>ARX-KU</td>
<td>AR-KU</td>
<td>00KNEEUP00PPAVXC</td>
</tr>
<tr>
<td>Knee Upper Angular Rate, ωY</td>
<td>AXY-KU</td>
<td></td>
<td>00KNEEUP00PPAVYC</td>
</tr>
<tr>
<td>Knee Upper Angular Rate, ωZ</td>
<td>ARZ-KU</td>
<td></td>
<td>00KNEEUP00PPAVZC</td>
</tr>
<tr>
<td>Knee Lower Acceleration, X</td>
<td>AX-KL</td>
<td>A-KL</td>
<td>00KNEEL000PPACXC</td>
</tr>
<tr>
<td>Knee Lower Acceleration, Y</td>
<td>AY-KL</td>
<td></td>
<td>00KNEEL000PPACYC</td>
</tr>
<tr>
<td>Knee Lower Acceleration, Z</td>
<td>AZ-KL</td>
<td></td>
<td>00KNEEL000PPACZC</td>
</tr>
<tr>
<td>Knee Lower Angular Rate, ωX</td>
<td>ARX-KL</td>
<td>AR-KL</td>
<td>00KNEEL000PPAVXC</td>
</tr>
<tr>
<td>Knee Lower Angular Rate, ωY</td>
<td>AXY-KL</td>
<td></td>
<td>00KNEEL000PPAVYC</td>
</tr>
<tr>
<td>Knee Lower Angular Rate, ωZ</td>
<td>ARZ-KL</td>
<td></td>
<td>00KNEEL000PPAVZC</td>
</tr>
<tr>
<td>Tibia Segment 1 Acceleration, Y</td>
<td>AY-S7</td>
<td></td>
<td>00TIBI0100PPACYC</td>
</tr>
<tr>
<td>Tibia Segment 2 Acceleration, Y</td>
<td>AY-S8</td>
<td></td>
<td>00TIBI0200PPACYC</td>
</tr>
<tr>
<td>Tibia Segment 3 Acceleration, Y</td>
<td>AY-S9</td>
<td></td>
<td>00TIBI0300PPACYC</td>
</tr>
<tr>
<td>Tibia Segment 4 Acceleration, Y</td>
<td>AY-S10</td>
<td></td>
<td>00TIBI0400PPACYC</td>
</tr>
<tr>
<td>Tibia Segment 5 Acceleration, Y</td>
<td>AY-S11</td>
<td></td>
<td>00TIBI0500PPACYC</td>
</tr>
<tr>
<td>Tibia Segment 6 Acceleration, Y</td>
<td>AY-S12</td>
<td></td>
<td>00TIBI0600PPACYC</td>
</tr>
</tbody>
</table>
2.3.1 Co-ordinate System

Recommended local co-ordinate system for standardization.
2.3.2 Signal Polarity, Sensor function check
The leg can be pushed manually as shown in Figure 15 below to test polarity and function for positive output. A spacer can be placed under the leg to assist in the bending of the leg. The positive outputs shown in Figure 15 below are preferred for standardization; users can use their own polarity if required.

Figure 15. Leg manipulations for positive output

2.3.3 Filter Class
The filter class CFC to be used on the Flex PLI is 180.
2.4 Data Acquisition Options

The FLEX PLI can be used with various options for data acquisition systems. The most basic version is a system with connection cables to a static laboratory Data Acquisition System (DAS), the so called off-board DAS option. As the FLEX-PLI is a tool that is in free flight after launch, the off board cables may affect the free flight trajectory accuracy and the cables are susceptible to damage when the tool lands after rebound from the vehicle. Therefore the use of off board DAS is only recommended during calibration of the FLEX-PLI. To solve issues with free flight trajectory and cable damage, the FLEX-PLI-GTR can be executed with on board DAS systems from various suppliers. Currently FTSS is working in close co-operation with and offering systems from Messring, DTS, Hentschel and Kayser-Threde. The Messring and DTS systems are described in 2.6 and 2.7.

2.5 Off Board DAS

For off board DAS umbilical cables of 10m long exit the leg just below the knee. This position is close to the CG of the leg to minimize the mass affect from the cables in free flight. The cables are clamped to the leg via the top shoulder link bolts of the tibia to provide restraint protection to the connectors see Figure 16. See Figure 17 for left hand side wiring arrangement. The connectors at the off board DAS side are specified by the customer and fitted by FTSS as all users have different systems.

Figure 16 . Clamping Arrangement and Position for Off board Wires
Most of the wiring for the off board configuration is in the tibia block. Only the femur bone wire bridges the knee joint, see Figure 18 for wiring on right hand side.

All the sensors use miniature round connectors with locking latch, either a 7 pin or 16 pin is used. The 16 pin connectors are for the 3 femur strain gages and for 3 of the 4 tibia strain gages. 16 pin connectors are also used for optional triaxial accelerometers.

All the sensor wires are identified to ensure correct connection.
The leg wires must be balanced to ensure good free flight after launch with 6 channels each side. On the right side are 2 single channel string pots, 1 single channel accelerometer and 1 three channel wire for the three femur bone gages. On the left side there are 2 single channel string pots, 1 single channel tibia bone gage and 1 three channel wire for the other tibia bone gages.

It is important to route the off board cables out of the knee to ensure good free flight to the target. See Figure 14 for an example. Users can establish their own wire routing but the important issues to note are that both sides are balanced and there is no restriction at release from the pusher plate when fired.

2.6 Messring M=BUS On Board Data Acquisition

2.6.1 M=BUS description

An overview of the M=BUS system is shown in Figure 19. The M=BUS is a 6 channel logger fitted inside a magnesium housing; connection is made to the logger via a plug in PCB board. For the standard 12 channels there are two M=BUS units one either side of the knee, three M3 FHCS fix the units to the knee. The sensor connection is made by either a 7 pin or 16 pin miniature round connector with locking latch. For M=BUS left hand side of leg see Figure 20. For detailed use and specifications please refer to the suppliers user instructions.

![Diagram of M=BUS system](image)

Figure 19. Wiring Diagram for 12 channel M=BUS

For leg wire routing please refer to Figure 20 below, this is typical for both sides.
The disconnect wire is a blue coax cable, the brass end fitting is clamped to one of the off board cable clamps just below the knee see Figure 21. This direct clamping avoids any damage to the connector. Be careful not to crush the connector when clamping. Only one cable clamp requires fitting for Messring installation. A hole also has to be cut in the outer cover to allow exit of the cable.

After the test the disconnect is reconnected and data can be downloaded to a PC. Inside the femur block there is a terminator housing to complete the coax wiring, see Figure 22, two M3 SHCS retain the part. The terminator can only be accessed when the knee is disassembled. If the knee is stripped down for access it is recommended the knee is recalibrated.

The loggers are programmed to specific sensors for sensitivity, range and software recognition. Loggers cannot change location and connector labels must match to ensure connection to the sensor.

Figure 20. M=BUS wiring arrangement in knee

Figure 21. Clamping of Messring Disconnect Connector
Figure 22. Messring Terminator housing installation in upper knee

Figure 23, shows the M=BUS disconnect wire on the launcher and how the coax wire is routed and fixed to the launcher. The disconnect design has a low release force, however a strong tape is recommended to hold the wire in place, see Figure 23.

Figure 23. Fixing Messring Wire to Launcher
2.6.2 24 Channel M=BUS

Four, six channel loggers can be fitted to the leg to provide 24 channels of data recording. See figures below for typical installation. Wire connections can vary according to optional sensors installed.

Figure 24. Right hand side of knee, sensors not connected

Figure 25. Top right hand side of knee sensors connected
Figure 26. Bottom right hand side of knee sensors connected

Figure 27. Top left hand side of knee sensors connected
2.7 DTS Onboard SLICE Nano DAS

For detailed use and specifications please refer to suppliers user instructions. The SLICE is a modular system where a 3 channel bridge SLICE can be stacked onto a base SLICE; in this case one base SLICE handles 12 channels of data. As the FLEX-PLI has limited space to package the SLICE stack a mounting board has been designed by DTS to link four bridges together allowing one base SLICE to be used. The unit is fixed using four M3 pozi head screws. Sensor connection to the DAS is via either 7 or 16 pin round miniature connectors see Figure 30 for 12 channel wiring arrangement.

After disconnect the SLICE is powered by a Super capacitor mounted on the same side of the knee as the standard 12 channel DAS See Figure 30. The super capacitor is quickly charged when reconnected. The wire disconnect is a round 12 pin connector hard mounted to the launch guide bracket at the top of the femur see Figure 31. This disconnect position allows disconnect in the push phase from the launcher to avoid the connector affecting free flight stability. On reconnect after the test data can be downloaded to a PC.

If required there is provision to wire in a tape switch for T=0, a wire is provided for this option out of the supercap housing.
Figure 29. Wiring diagram for 12 channel SLICE

Typical Slice wiring to knee with SLICE units, on the right in tibia knee block and super cap on the left in femur knee block, Figure 30.

Figure 30. Typical Slice wiring to knee with SLICE
To assemble the SLICE fit the SLICE unit with the higher stack part closest to the knee joint as shown in Figure 30 using four M3 Pozi type screws two 25mm and two 20mm long. Then fit the super capacitor with the disconnect wire pointing downward towards the tibia using four M3 x 16 long screws. All the connectors are identified so connect like for like, MCL to MCL etc. For the two string pot wires that pass across the knee tie wrap mounts are provided both sides to anchor the wires, see Figure 33 showing connectors on the right hand side of the knee. Route the wires as shown to provide adequate slack in the knee joint to prevent any disconnection or damage to the wires when the knee flexes. The disconnect bracket is fixed to the launch guide as shown in Figure 31 using M2.5 screws and the 12 pin connector is mated with the connector coming out of the bottom of the base SLICE. Most of the wires and connectors are behind the knee covers but the gage wires coming out of the leg must be properly restrained. There should be two tie wraps fixing the bone gage wires coming out of each bone (tibia and femur) to the end link where it exits the leg. Before fitting the covers note there are two covers with three holes, one of these covers part 133-5314 must be fitted over the SLICE unit for screw head clearance as shown in Figure 32, the other cover 133-5315 is necessary for 24 channel DAS when two SLICE units are fitted. If 24 channels are not being used this cover can go to any of the other three locations.
Figure 33. Right hand side of knee showing connectors

Figure 34. Leg with disconnect wire, TDAS interface and power supply
2.8 SLICE 24 Channel Option

To complete the DAS system to 24 channels on board DAS for optional instrumentation, an additional 12 channel SLICE unit is packaged on the opposite side to the standard 12 channel unit in the upper knee for balance and for access to upper leg sensors to reduce the number of wires crossing the knee joint. See below. The arrangement of SLICE bridge units and wiring will vary depending on the optional sensors selected.

Figure 35. Optional SLICE unit 24 channel option (right side)

Figure 36. Left side wiring example of 24 channel SLICE
Section 3. Assembly and Disassembly

Figure 37. Instrumented Leg, Exploded View
<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>133-5300</td>
<td>KNEE ASSEMBLY, FLEX PLI</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>133-5500</td>
<td>TIBIA ASSEMBLY, FLEX PLI</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>133-5100</td>
<td>FEMUR ASSEMBLY, FLEX PLI</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>133-5020</td>
<td>BUFFER SHEET ASSEMBLY, LEG (NOT SHOWN)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>133-5013</td>
<td>COVER, INNER, FEMUR (NOT SHOWN)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>133-5014</td>
<td>COVER, OUTER, FEMUR (NOT SHOWN)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>133-5015</td>
<td>COVER, INNER, TIBIA (NOT SHOWN)</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>133-5016</td>
<td>COVER, OUTER, TIBIA (NOT SHOWN)</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>133-5017</td>
<td>COVER, FLEX PLI GTR (NOT SHOWN)</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>133-5019</td>
<td>VELCRO BUNDLE TIE, 500mm LONG (NOT SHOWN)</td>
</tr>
</tbody>
</table>

Table 6. Flex PLI Parts List
3.1 Femur Exploded View

Figure 38. Femur Assembly, Exploded View
<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>133-5105</td>
<td>FEMUR BONE ASSEMBLY TESTED & CERTIFIED</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>133-5508</td>
<td>BONE CLAMP THIN, KNEE</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>133-5503</td>
<td>BONE CLAMP THIN, FEMUR/TIBIA</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>133-5506</td>
<td>BONE CLAMP THICK, KNEE</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>133-5502</td>
<td>BONE CLAMP THICK, FEMUR/TIBIA</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>133-5505</td>
<td>SPACER, BONE CONTACT, THICK</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>133-5504</td>
<td>SHIM, BONE CLAMP (.4 THICK) OPTIONAL</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>133-5510</td>
<td>RUBBER BUFFER, FEMUR/TIBIA END</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>133-5507</td>
<td>SPACER, BONE CONTACT, THIN</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>133-5509</td>
<td>SHIM (.04 THICK) OPTIONAL</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>133-5514</td>
<td>INNER SEGMENT, KNEE</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>133-5534</td>
<td>INNER SEGMENT ASSEMBLY</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>133-5535</td>
<td>INNER SEGMENT ASSEMBLY CLOSES TO KNEE</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>5000465</td>
<td>SCREW, BHCS M6 X 1 X 18</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>133-5515</td>
<td>LINK</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>133-5108</td>
<td>SEGMENT TOP, FEMUR</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>133-5102</td>
<td>PLATE, TOP</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>133-5103</td>
<td>LAUNCH GUIDE</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>133-5104</td>
<td>WASHER, 12 ID X 26 OD X 3</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>133-5106</td>
<td>SHOULDER BOLT</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>500094</td>
<td>WASHER, FLAT M6 (6.7 ID X 12.5 OD X 1.0 THK,</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>5000604</td>
<td>SCREW, SHCS M6 X 1 X 14</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>5000008</td>
<td>SCREW, SHCS M6 X 1 X 30</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>133-5107</td>
<td>ROLLER</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>133-5521</td>
<td>WASHER, CABLE</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>133-5110</td>
<td>CABLE ASSEMBLY, FEMUR</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>5000522</td>
<td>HEX NUT, M5 X 0.8 NYLOK</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>133-5516</td>
<td>END COVER</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>500072</td>
<td>SCREW, BHCS M6 X 1 X 16</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>5000814</td>
<td>SCREW BHCS, M5 X .8 X 8</td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>5000393</td>
<td>SCREW, SHCS M3 X .5 X 6</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>5000769</td>
<td>SCREW, MSSFP M8 X 16</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>133-5025</td>
<td>TAPE, IMPACT SEGMENT</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>133-5028</td>
<td>TAPE, END COVER, 12 X 24</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>133-5027</td>
<td>TAPE, END COVER, 10 X 12</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>133-5026</td>
<td>TAPE, END COVER, 12 X 16</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>133-5518</td>
<td>COVER, END IMPACT</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>133-5519</td>
<td>COVER, END IMPACT, (KNEE END)</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>133-5517</td>
<td>IMPACT SEGMENT</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>133-5001</td>
<td>SHIM, (T0-5) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>133-5002</td>
<td>SHIM, BONE CLAMP (T0-05) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>133-5003</td>
<td>SHIM, BONE CLAMP (T0-5) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
<td>133-5004</td>
<td>SHIM, BONE CLAMP (T0-6) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>133-5005</td>
<td>SHIM (T0-6) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>45</td>
<td>15</td>
<td>133-5012</td>
<td>SHIM, (.05) OPTIONAL (NOT SHOWN)</td>
</tr>
</tbody>
</table>

Table 7. Femur Assembly, Parts List
3.1.1. Femur (Upper Leg) Assembly

Before assembly check all rubber buffers are bonded to segments. If for any reason a buffer should become dislodged, damaged or lost it will need re-bonding. When bonding the segment buffers ensure surfaces of both parts are prepped before bonding, prepare plastic with 240 grit paper and rubber with 80 grit, degrease then bond with Loctite 401 or similar.

Fit thick bone clamp, Item 5 (133-5502) to 'Segment Top', Item 16 (133-5108), fit to impact side using two M6 x 16, BHCS (Black button head cap screw). The difference between thick and thin spacer is 0.5mm (12.75 thick, 12.25 thin). Place this assembly onto a flat work surface and place the rubber buffer, Item 8 (133-5510) under. Place the bone assembly, Item 1 inside the assembly with the PCB board upper most on the non impact side and fit the thin bone clamp, Item 3 (133-5503) see Figure 39. Measure the gap clearance between the thin clamp and the segment wall with metric feeler gauges or use the shims. This gap must be filled with the shims so that the parts fit as tight as possible See Figure 40 note that by screwing in two screws the shim will say in place while sizing the gap. Shim thicknesses are 0.05, 0.4, 0.5 and 0.6, use any combination to achieve this fit. Shim part numbers are 133-5002, 5003, 5004 and 5504. When a good tight fit has been achieved align the holes and fit two M6x16, BHCS (Item 35). The 16mm long button heads are black to distinguish them for this location from the 18 long ones.

Warning: When fitting the bone clamps and spacers take care not to damage any gage wires or gages, laid down the center of the bone.

Figure 39. Femur bone assembly
Select one of the plastic segments, Item 12 (133-5513) which has the best tight fit over the bone clamp, rubber buffers must interface with the part already fitted, take care not to damage the shims then fit four M6 x 18 BHCS (Item 14) two each side diagonally spaced.

Note: That the connector will have to pass through each of the segments as they are assembled over the bone. Do not pull on this wire as the wire is not fully restrained at the PCB mounted on the bone at this stage. See Figure 41.

Stand the assembly on the bench again over the 2mm buffer and slide a segment assembly over the bone with the buffers facing down. Fit the thick spacer, Item 6 (133-5505) with radius against the bone to the front of the segment by pressing gently against the segment this will keep the holes aligned, then fit two M6 x 18 BHCS diagonally as shown in exploded view. Slide in the thin bone contact spacer, Item 9 (133-5507) in the rear side of the segment with radius against the bone. Shim the part on the rear side to get the same tight fit as mentioned above. Use shims 133-5001, 5005, 5509 and 5012 to achieve the
required fit. Note: only one 0.4, 0.5 or 0.6mm shim can be assembled; any number of 0.05, 0.1 or 0.2 shims can be used inside the thicker shim to achieve this fit. Align holes and fit the two M6x18, BHCS. Repeat this procedure for the next five plastic segments. Once a spacer has been shimmed, start the next segment with the same shim arrangement as a starting point to save time.

The last blue segment Item 13 (133-5535) to be fitted will have rubber buffers on both sides. The thin spacer and shims will have to be assembled from the underside of the segment due to the position of the PCB on the bone.

The PCB cable can exit on either side with reference to the impact direction at this point depending on DAS configuration. Lay the thin bone clamp Item 2 (133-5508) over the PCB as shown in Figure 42. Lay up the other clamp, Item 4 (133-5506) to the other side and slide over segment knee, Item 11 (133-5514). Fit two M6x16, BHCS to the front and fit two M8x16, SSFP (Socket set flat point) to the rear so that they are just touching the clamp. Ensure the buffer 133-5510 is fitted under and centralized, this should be lightly bonded in place with super glue in case it is disassembled and falls out. Fit the ‘plate top’ Item 17 (133-5102) with four M6x18, BHCS. Pass the connector through a link, Item 15 (133-5515) then assemble all the links and washers using shoulder screws as shown on assembly both sides. The segments may need adjusting slightly to fit the shoulder bolts.

![Figure 42. Exit wire from femur](image)

Place washer, Item 26 (133-5521) over each of the four stainless steel cables, Item 27 (133-5110) and feed through the holes in the leg segments. Place washer (133-5521) over threaded fitting and fit four M5 Nyloc nuts. Set the gap between nut and washer to 9.1mm. Check with spacer tool 133-5112, if nuts are removed FTSS recommends the Nyloc nuts should only be used twice. Ensure bone clamps are flush with ends of bone and tighten all segment screws to recommended 2.3-2.5 Nm. Do not over tighten. Fit one double sided tape profile, Item 34 (133-5025) to the third plastic segment from the knee then fit one impact segment, Item 40 (133-5517) locating over two BHCS. When fitting double sided tape it would be good policy to degrease the surfaces.
Where the wire comes out through the link, tie on two cable ties one on the link and one on wire attached to each other as shown in Figure 43 to provide restraint to the wire. The assembly is now ready for calibration.

Note: a few of the links, washers and shoulder screws will need to be removed and replaced to fit onto the calibration fixture. Keep parts together ready for final assembly.

3.1.2. **Femur after Calibration**

Fit four M3x6, SHCS (Socket head cap screws) into front inner segment knee and segment top. Fit all the double sided tape profiles and fit impact segments. Fit launch guide and roller as shown in exploded view. Fit end cover, Item 28 (133-5516) after dynamic calibration with four M5 x 8 screws. Also fit any optional sensors and mounts.

3.1.3. **Femur Disassembly**

Disassembly is the reverse of assembly except you can disassemble from either end, care must be observed when removing bone spaces and shims not to damage bone wires and gages. The double sided tape can be reused if still sticky and is not folded over. It will also be important to check for any damaged parts that would need replacement.
3.2 Knee Exploded View

Figure 44. Knee Assembly, Exploded View

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>133-5330</td>
<td>KNEE BLOCK, TIBIA, FLEX PLI</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>133-5313</td>
<td>MENISCUS ASSEMBLY</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5000774</td>
<td>SCREW, SHCS M5 X .8 X 10, LOWHEAD</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>133-5320</td>
<td>KNEE BLOCK, FEMUR</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>133-5302</td>
<td>ATTACHMENT PLATE, STRING POT</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>9003159</td>
<td>SPRING, 12 X 40 (AMISTAR DB 12 x 40)</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>9003158</td>
<td>SPRING, 18 X 80 (AMISTAR DB 18 x 80)</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>133-5310</td>
<td>SPRING CAP</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>133-5311</td>
<td>CABLE WASHER</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>133-5350</td>
<td>CABLE ASSEMBLY, KNEE ML</td>
</tr>
</tbody>
</table>
3.2.1. Knee Assembly

Make a note of the string pot serial numbers and their ligament positions this is needed for off board and onboard DAS identification for sensitivity input.

Referring to Meniscus assembly Item 2 (133-5313) feed the connector of one of the right hand (RH) pull string pots through the inner side of one of the central holes, see Figure 45. The RH and the LH string pots can be identified from the serial number the RH has an R at the end of the number and the LH an L. The two RH pull string pots are positioned closest to the main flange of the meniscus, one is shown fitted in Figure 45. Attach the string pot with the #2-56 x ¼ long cap head screws making sure the pull wire is directed towards the furthest away outer bronze bush. Fit the other RH pull string pot in the same way on the opposite side. Pass the pull wires through their designated bushes. Carry out the same procedure with the Left hand pull string pots, the pull wires are directly in line with the two inner bushes. Feed the pull wires through the bushes. Make sure electrical wires are inside the cavity as much as possible then run cables through channels both sides and clamp with retaining plate see Figure 47. Fit assembly to knee block bottom and retain with four M5x10, low head cap screws, ensure wires are in their grooves before clamping down.

If the Messring on board DAS system is to be installed a terminator has to be fitted at this stage.
For details of onboard DAS installation see Sections 2.6 and 2.7.
Figure 45. Meniscus string pot assembly wire feed

Figure 46. Meniscus with all string pots assembled. String pots identified
Pass all four ball crimps through attachment plate, Item 5 (133-5302) and place two spacers below it, the pot wires will then be in tension see Figure 48. Two tubular soft plastic spacers are shown in the photo to show attachment clearly, there are special spacers in the tool kit for this purpose 133-5113.

Place four of the Ø12 x 40 long springs Item 6 into the knee block femur and place washer, Item 9 (133-5311) on top of springs, insert wires, Item 16 (133-5360) through springs. Lower this block assembly carefully over the tibia knee block guiding the wires across to their designated holes and locating over the attachment plate see Figure 49. Double check the knee femur block is the right way round, ref exploded view and the wires are in their aligned holes. Carefully turn the whole assembly over and locate the remaining Ø12 springs over the wires. Fit all four washers and nuts; tighten nuts down until the washers are exactly flush with the Femur block. Two wrenches 8mm and 1/8" are required to tighten nuts. Once removed FTSS recommends that the Nyloc nuts are only used twice, after that new nuts should be fitted. Fix the attachment plate with M3x8 countersunk screws. Place eight Ø18 springs into the femur block counter bores and place washer, Item 8 (133-5310) on top, feed through the 8 wires, Item 10 (133-5350). Turn knee joint over and fit remaining 8 springs into their counter bores, fit washers Item 8 and M5 Nyloc nuts, tighten until washers are flush with Tibia block, this can be checked with a flat edge. As a double check the spring protrusion on the Femur block should be 3mm. In this condition the knee is now ready for calibration. Keep remaining parts together for final assembly.
3.2.2. **After Calibration**

Fit the single channel accelerometer to impact side of tibia block. Accelerometer will plug into a labelled matching connector if DAS is fitted. The front covers should be fitted when the leg bones are being assembled to the knee, see leg assembly 3.3.4. The side covers can be fitted at this stage as well for wiring or DAS attachment.

3.2.3. **Knee Disassembly**

Remove aluminum side and front blue covers if these have not already been removed to disassemble leg bones. See section 3.3.4 for details.

Take off the accelerometer if not already removed then remove the 8 large springs from each end by unscrewing the eight M5 Nyloc nuts on one end of the wires. Hold the wire on its end with a 1/8" open ended wrench to allow this.

Before removing the small cross ligament springs the attachment plate holding the string pot wires must be unscrewed otherwise string pots could be damaged when the two knee blocks are pulled apart.

Remove the two M3 Flat head screws fixing the attachment plate to the femur block.

Now unscrew the four M5 Nyloc nuts holding the cross wires and remove with the remaining eight smaller springs.
The fitting on the end of the cross wire can catch on the hole in the counter bore so the cables may require some alignment to free them. Disconnect the crimped ends of the spring pots from the attachment plate.

To remove the meniscus for access to spring pots remove the four M5 low head cap screws and pull it away from the tibia block. If the string pots need servicing remove wire retaining clamps and unscrew the #2-56 cap screws fixing the pots.

Check all parts for damage and replace if necessary take note to check there has been no slippage on the crimps on the string pot mechanical wires. The left hand and right hand pull wires should both be 61.5 mm from the stop at the potentiometer to the start of the ball fitting. It is recommended that the Knee assembly is re-calibrated after a strip down.
3.3 Tibia Exploded View

Figure 50. Tibia Assembly, Exploded View
<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>133-5501</td>
<td>TIBIA BONE ASSEMBLY TESTED & CERTIFIED</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>133-5502</td>
<td>BONE CLAMP THICK, FEMUR/TIBIA</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>133-5503</td>
<td>BONE CLAMP THIN, FEMUR/TIBIA</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>133-5504</td>
<td>SHIM, BONE CLAMP (.4 THICK)</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>133-5505</td>
<td>SPACER, BONE CONTACT, THICK</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>133-5506</td>
<td>BONE CLAMP THICK, KNEE</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>133-5507</td>
<td>SPACER, BONE CONTACT, THIN</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>133-5508</td>
<td>BONE CLAMP THIN, KNEE</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>133-5509</td>
<td>SHIM (0.4 THICK)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>133-5510</td>
<td>RUBBER BUFFER, FEMUR/TIBIA END</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>133-5511</td>
<td>SEGMENT BOTTOM, TIBIA</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>133-5534</td>
<td>INNER SEGMENT ASSEMBLY</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>133-5535</td>
<td>INNER SEGMENT ASSEMBLY CLOSES TO KNEE</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>133-5514</td>
<td>INNER SEGMENT, KNEE</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>133-5515</td>
<td>LINK</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>133-5104</td>
<td>WASHER, 12 ID X 26 OD X 3</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>133-5106</td>
<td>SHOULDER BOLT</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>133-5521</td>
<td>WASHER, CABLE</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>133-5530</td>
<td>CABLE ASSEMBLY, TIBIA</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>5000465</td>
<td>SCREW, BHCS M6 X 1 X 18</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>5000522</td>
<td>HEX NUT, M5 X 0.8 NYLOK</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>133-5516</td>
<td>END COVER</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>5000814</td>
<td>SCREW, BHCS M5 X 0.8 X 8</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>5000393</td>
<td>SCREW, SHCS M3 X .5 X 6</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>5000769</td>
<td>SCREW, MSSFP M8 X 16</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>133-5025</td>
<td>TAPE, IMPACT SEGMENT</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>133-5028</td>
<td>TAPE, END COVER, 12 X 24</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>133-5027</td>
<td>TAPE, END COVER, 10 X 12</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>133-5026</td>
<td>TAPE, END COVER, 12 X 16</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>133-5519</td>
<td>COVER, END IMPACT, (KNEE END)</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>133-5517</td>
<td>IMPACT SEGMENT</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>133-5518</td>
<td>COVER, END IMPACT</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>133-5001</td>
<td>SHIM, (T0-5) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>133-5002</td>
<td>SHIM, BONE CLAMP (T0-05) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>133-5003</td>
<td>SHIM, BONE CLAMP (T0-5) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>133-5004</td>
<td>SHIM, BONE CLAMP (T0-6) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>37</td>
<td>7</td>
<td>133-5005</td>
<td>SHIM (T0-6) OPTIONAL (NOT SHOWN)</td>
</tr>
<tr>
<td>38</td>
<td>21</td>
<td>133-5012</td>
<td>SHIM, .05 (OPTIONAL) (NOT SHOWN)</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>5000072</td>
<td>SCREW, BHCS M6 X 16</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>133-5522</td>
<td>WIRE EXIT BASE</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>133-5523</td>
<td>WIRE EXIT CLAMP</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>5000654</td>
<td>SCREW, BHCS M5 X .8 X 12</td>
</tr>
</tbody>
</table>

Table 9. Tibia Assembly, Parts List
3.3.1. Tibia Assembly

Before assembly check all rubber buffers Item are bonded to segments. If for any reason a buffer should become dislodged, lost or damaged it will need replacing or re-bonding. When bonding the buffer ensure surfaces of both parts are prepared before bonding, prepare plastic with 240 grit paper and rubber with 80 grit, degrease then bond with Loctite 401 or similar.

Place rubber buffer (133-5510) centrally inside segment bottom tibia Item 11 (133-5511). Place the thick bone spacer, Item 2 (133-5502) into the impact (front) side of the segment bottom and attach the two M6x16, BHCS. Fit the bone assembly Item 1 into the segment bottom with the PCB on the non impact side and at the top, then place the thin bone clamp, Item 3 (133-5503) on the other side of the bone. There is a difference between the thin and thick spacers of 0.5mm (12.25 and 12.75). Measure the gap clearance between the thin clamp and the segment wall with a metric feeler gauge or use shims. This gap must be filled with shims so that the shims create a tight fit so that there is no clearance against the bone. Shim thicknesses are 0.05, 0.4, 0.5 and 0.6, use any combination to achieve this fit. Shim part numbers here are 133-5002, 5003, 5004 and 5504. When a good fit has been achieved align holes and fit two M6x16, BHCS.

Warning: When fitting the bone clamps and spacers take care not to damage any strain gage wires or gages laid down the center of the bone.

Select one of the plastic segments which has the best tight fit over the bone clamp. Rubber buffers must interface with the part already fitted, be careful not to damage the shims then fit four M6x18 BHCS, Item 14 as shown in exploded view.

Note: the connector will have to pass through each of the segments as they are assembled.

Stand the assembly on the bench and slide a plastic segment over the bone with the buffers facing down. Fit the thick bone spacer to the impact side of the assembly, apply pressure to the segment to hold the bone spacer in position against the bone to allow fitting of screws, fit two M6 x18 BHCS. Slide the thin bone contact spacer, Item 7 (133-5507) in the rear side of the segment with radius against the bone. Measure and shim the parts to get the same tight slide fit as mentioned above. Use shims 133-5001, 5005, 5509 and 5012 to achieve the required fit. Note that the inner 0.05, 0.1 or 0.2 thick shims locate inside the other shims see Figure 51. Align holes and fit two M6x18, BHCS as shown. Repeat this procedure for the next six plastic segments. Once a spacer has been shimmed, start the next segment with the same shim arrangement to save time measuring the clearance, only fine adjustment if any would be necessary. The PCB cable will have to be passed though each segment when slid down the bone. Be careful not to pull too heavily on the wire as it is not fully restrained at this time.
Figure 51. Typical shim arrangement with .05 inside main shim

The last blue segment to be fitted will have rubber buffers on both sides and the thin spacer and shims will have to be assembled from the underside of the segment due to the position of the PCB on the bone.

The PCB cable can exit on either side to impact direction at this point as this will depend on DAS configuration. Lay the thin bone clamp, Item 8 (133-5508) with groove over the PCB. Fit the clamp, Item 6 (133-5506) to knee segment, Item 14 (133-5514) using two M6 x 16, BHCS then lower over bone, fit two M8x16 set screws to the rear just touching the clamp. Pass the connector through a link 133-5515 then assemble all the links and washers with shoulder screws as shown in exploded view both sides. The segments may need adjusting slightly to align holes for shoulder bolts. If off board DAS or Messring DAS is being used fit the wire clamps Items 40 and 41 under the shoulder bolts closest to the knee see Figure 16. The two washers Item 16 will have to be removed to fit these clamps. The wire clamps are only used for off board wires or when one clamp is fitted one side for the Messring disconnect wire. Note that if fitted and not used to clamp a wire the clamp screw can interfere with the stopper cables and reduce free bending of the tibia.

Place washer 133-5521 over each stainless steel cable 133-5530 and feed through the holes in the leg segments. Place another 133-5521 washer over threaded fitting end and fit four M5 Nyloc nuts. Set the gap between nut and washer to 10.3 mm using 4 and 8mm wrenches. Check gap with spacer tool 133-5112. If the Nyloc nuts are removed FTSS recommends they are only used twice.

Ensure bone clamps are flush with end of bones and tighten all screws except M8 SSFP (socket set flat point). Be careful not to over tighten.

If fitting new double sided tape, unpeel cover material on one side (Item 26) and fit on the forth plastic segment from the knee. Fit an impact segment, Item 31 locating over two BHCS. Where the wire comes out through the link, tightly tie on two cable ties as shown in Figure 43 to provide restraint to the wire. The assembly is now ready for calibration.

Note: If recalibrating a few of the links, washers and shoulder screws will need to be removed and replaced to allow fitting to the calibration fixture. Keep all parts together ready for final assembly.
3.3.2. **After Calibration:**
Fit four M3x6, SHCS (Item 24) into front inner segment knee and segment top. Fit all the double sided tape profiles and attach impact segments as shown in Tibia exploded view. The end cover item 22 should be fitted after dynamic calibration with M5 button head cap screws. Also fit any optional instrumentation.

3.3.3. **Tibia Disassembly**
Disassembly is the reverse of assembly starting at knee end however care must be observed when removing bone spaces and shims not to damage bone wires and gages down the center of the bone. The double sided tape can be reused if still sticky and is not folded over. It will also be important to check for any damaged parts that would need replacement.

3.3.4. **Leg Assembly**
When the leg is not being used or shipped the tight fitting flesh system should be removed to prevent stretching and long term indentation from the leg components.

Carefully prize away the two blue front plastic covers (if assembled) on the knee assembly. Use a screwdriver inside one of the covers lightening holes and gently lever off the double sided tape attaching it to the knee. Insert the Femur into the knee block femur (133-5320). Fit two M8x35, BHCS into the counter bored holes and loosely tighten. Fit two M8x30 set screws to the rear of the leg and screw in to their stops. Carry out the same fitting for the tibia, tighten all these screws. The M8 set screws on the non impact side must be tightened to 8 Nm as do the M8 set screws in the aluminum leg segments see figure below. Note when tightening the segment screws start with the screw nearest to the knee. Remove the four side knee covers if fitted, and make wire connections. For off board and on board configurations wires will require careful routing and securing see section 2. Refit all front and side covers.

![Figure 52. Screws to be tightened to 8 Nm](image)

©2011 Humanetics Innovative Solutions
On the day of the test or for certification the flesh covers are fitted over the leg. To simplify the fitting of the flesh system all the covers should be laid on the bench in reverse order of assembly. Place the large outer cover on the bench with lettering face down. Lay 6 strips of Velcro tape over with fluffy side down, then place the rubber buffer sheet assembly 133-5020 over the strips. The large rubber part goes to the top of the leg; this is the opposite end to where the zipper on the outer cover starts. Adjust the tape so that all the Velcro strips line up with the six markers on the rubber. Lay Thigh 2 and Leg 2 covers over, with the two knee end inside arrows pointing towards each other allowing a gap for the knee area then do the same with Thigh 1 and leg 1 covers. Place the leg assembly onto the laid out flesh covers with thigh (femur) section over thigh covers and leg (tibia) over leg covers with the leg assembly on its side. Fit the black plastic protective end covers to the ends of the leg with 4x M5 BHCS.

Do up the zippers on Thigh 1 and Leg 1 making sure each zipper is positioned on the side of the leg. Turn the leg over and do up the Thigh 2 and Leg 2 zippers making sure these zippers are on the opposite side to the first. No zipper should be at the back of the leg or it will interfere with the flat surface of the launcher plate. Wrap the rubber buffer assembly tightly around the leg using the six Velcro straps see Figures 55 and 56 there are markers on the rubber showing the exact position for the Velcro. It is important that the fluffy side of the Velcro is to the outside otherwise the outer cover cannot be stretched over due to grip from the eye side of the strap. To get a tight fit with the Velcro, it is easier to get someone to pull the rubber sheet around the leg while you are locking the Velcro. Finally pass any off board wires through the holes in the outer cover and wrap around the leg. The outer cover must be zipped up from the bottom of the leg to make zipper fitting easier and to ensure wire exit holes are in the correct place if cut. If Messring onboard DAS is being used just one wire will exit the leg just below the knee. It may be necessary to cut a hole for this wire. Lay the zipper tag back on itself to lock it and cover over with the Velcro tab to protect zipper and to prevent undoing.
Figure 54. Assembly of flesh second layer

Figure 55. Rubber flesh assembly Velcro positions

Figure 56. Rubber flesh tied on with Velcro
3.3.5. **Leg Disassembly**

Remove outer covers and flesh rubber. Unclamp off board wires (if fitted) and remove side covers from knee. Disconnect wires as required. Remove front blue covers on knee and remove M8 screws and set screws holding on the femur and tibia. The leg parts can then be pulled out of the knee.
Section 4. Weight Specification

<table>
<thead>
<tr>
<th>Leg Part</th>
<th>Weight (kg)</th>
<th>Weight Tol (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur (133-5100)</td>
<td>2.46</td>
<td>±0.12</td>
</tr>
<tr>
<td>Knee (133-5300)</td>
<td>*4.28</td>
<td>±0.21</td>
</tr>
<tr>
<td>Tibia (133-5500)</td>
<td>2.64</td>
<td>±0.13</td>
</tr>
<tr>
<td>Femur, Knee & Tibia</td>
<td>9.38</td>
<td>±0.47</td>
</tr>
<tr>
<td>Flesh System</td>
<td>**3.82</td>
<td>±0.21</td>
</tr>
<tr>
<td>Leg Total</td>
<td>13.2</td>
<td>±0.7</td>
</tr>
</tbody>
</table>

Table 10. Flex PLI GTR Mass

*If off board DAS is used knee has 0.1 kg allocated for cables.

** Includes tape and Velcro straps

<table>
<thead>
<tr>
<th>Description</th>
<th>Mass without Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>String Pot (series ISO subminiature)</td>
<td>15g</td>
</tr>
<tr>
<td>Kyowa ASE-500-AS7</td>
<td>3g</td>
</tr>
<tr>
<td>DTS ARS (optional)</td>
<td>3g</td>
</tr>
<tr>
<td>Model 68C Measurement Specialties (optional)</td>
<td>7g</td>
</tr>
<tr>
<td>IES 3103 three axis gyro sensor</td>
<td>22g</td>
</tr>
<tr>
<td>Model 64 Measurement Specialties (optional)</td>
<td>1g</td>
</tr>
</tbody>
</table>

Table 11. Sensor Mass Breakdown
Section 5. Calibration and certification testing

5.1 Overview

Certification of the FLEX-PLI-GTR requires nine different procedures to ensure certified performance of all components. All steps that may be performed by the users are discussed in this section. Calibration of string potentiometers, accelerometer and bending moment strain gauges are not presented in this user manual, as this requires operations only to be carried out by experienced and trained lab personnel. The subsequent steps of certifying the FLEX-PLI-GTR is given in Table 12.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>When Required</th>
<th>Pass-Fail Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a</td>
<td>Femur Gauge Calibration</td>
<td>1. Annually, recommended 2. After exceeding injury thresholds for FLEX-GTR in an application test, recommended</td>
<td>1. ±1.0% linearity full scale 2. ±2.0% hysteresis full scale all gauges</td>
</tr>
<tr>
<td>0b</td>
<td>Tibia Gauge Calibration</td>
<td>1. Annually</td>
<td>±1.0% (VRCI-P-100A)</td>
</tr>
<tr>
<td>0c</td>
<td>String Potentiometer Calibration</td>
<td>1. Annually</td>
<td>1. ±1.0% linearity full scale</td>
</tr>
<tr>
<td>0d</td>
<td>Accelerometer Calibration</td>
<td>1. Annually</td>
<td>1. ±1.0% linearity full scale</td>
</tr>
<tr>
<td>1a</td>
<td>Femur Assembly Bending Test</td>
<td>1. Annually recommended 2. After exceeding injury thresholds, recommended 3. After maintenance and/or component exchange, recommended</td>
<td>1. Femur centre bending moment-deflection corridor 2. Tibia centre bending moment-deflection corridor</td>
</tr>
<tr>
<td>1b</td>
<td>Tibia Assembly Bending Test</td>
<td>1. Annually recommended 2. After exceeding injury thresholds, recommended 3. After maintenance and/or component exchange, recommended</td>
<td>1. Femur centre bending moment-deflection corridor 2. Tibia centre bending moment-deflection corridor</td>
</tr>
<tr>
<td>2</td>
<td>Knee Assembly Bending Test</td>
<td>1. Annually recommended 2. After exceeding injury thresholds, recommended 3. After maintenance and/or component exchange, recommended</td>
<td>1. Bending moment - MCL elongation corridor 2. ACL and PCL elongation - force corridors</td>
</tr>
<tr>
<td>3</td>
<td>Dynamic Pendulum Impact</td>
<td>1. Annually 2. After 10 vehicle tests max 3. After exceeding injury thresholds 4. After maintenance and/or component exchange</td>
<td>1. Peak bending moment tibia 1, tibia 2, tibia 3 and tibia 4 2. peak elongation MCL, PCL, ACL</td>
</tr>
</tbody>
</table>

5.2 Femur and Tibia Bone Assembly Certification

5.2.1 Introduction
Prior to the femur and tibia assembly calibration the bone cores are tested to established corridors. Each pair of gages impact side and none impact side (compression and tension) are tested individually to check correct function and establish gage sensitivity. It is highly recommended that this operation is carried out by the FTSS. Bone gage sensitivities must be taken form the bone gage calibration sheet provided in the calibration report and not the bone assembly. The assembly components are certified to ensure biofidelity at component level and to help assure acceptance at dynamic certification.

5.2.2 Femur and Tibia assembly Certification
This operation requires the use of a materials testing machine with high definition load cell and calibration fixture 133-8120. Fit the bone assembly to fixture as shown see Figure 58 and place assembly over the roller carriages on the fixture base. Do not tighten the two cap head screws at the end segments of the assembly to allow free rotation.
The femur bone is loaded on the third plastic segment from the knee and on the tibia the forth plastic segment. The loading spigot is connected to a high definition load cell. Connect to recording equipment. Each bone assembly is loaded to 400 Nm; 4848 N for femur and 3902 N for tibia. Check output is inside corridor see Tables 13 and 14. Temperature for this test must be between 20±2 °C. Note that the loading path from the machine must have no rubber damping otherwise the load curve will be inaccurate. To calculate moment loading centres for femur it is 330mm and for tibia 410mm. For femur moment MF = \([F (N)/2] \times 0.165 \text{ (m)}\) and for tibia MT = \([F (N)/2] \times 0.205 \text{ (m)}\). Loading rate is 10 to 100 mm/min.
Figure 58. Bone Assembly Fixture (tibia shown)

Table 13. Draft Femur assembly calibration corridor showing a typical result

![Graph showing Moment vs. Deflection](image_url)
Table 14. Draft Tibia assembly calibration corridor showing a typical result
5.3 Knee Calibration

This operation requires the use of a materials testing machine with high definition load cell and some parts from calibration fixture 133-8120. Temperature for this test must be between 20±2 °C. Locate the femur insert into the femur knee block and tibia insert into the tibia block fit M8 x 35 BHCS and tighten then fit the M8 x 30 set screws on the opposite side and torque to 8 Nm. Assemble the fixture as shown ensuring the impact side is on the top and the two blue plastic covers have been removed. Place assembly over the center of the roller carriages on the base plate.

The testing machine must be fitted with Ø100mm 'D' shaped profile part 133-8105, see Figure below. The center of the profile must be aligned with the corner of the meniscus a line is marked on the profile for this alignment. Plug string pots into recording equipment. A piece on Neoprene 90 x 150 x 5mm thick is placed over the loading point to prevent damage.

The knee is then loaded to 4 kN at 10 to 100 mm/min moment knee Mk = [F/2] x 0.2. LCL, ACL, PCL, and MCL string pot deflections are recorded. The LCL deflection is not specifically needed for this test as it would be in compression. The results must be inside the corridors below in Tables 15 and 16.

![Figure 59. Knee Calibration Fixture](image-url)
Table 15. Figure MCL sensor elongation corridor

Table 16. Figure ACL and PCL corridors
5.4 Pendulum Dynamic Calibration

The dynamic pendulum calibration test is carried on the Dynamic Certification Test Rig as shown in Figure 60. All standard 12 channels are tested 7 must meet the Draft GTR 9 regulation see Table 17. The corridors will be finalized when more test data has been obtained as the corridors were based on limited test results.

This test is carried out at build and mandatory after every 10 car tests, this test can be carried out at any time if required to check the leg before testing. The test must be carried out at a stabilized temperature of 20° ±2 and the temperature must be recorded.

The leg assembly is calibrated with the flesh cover parts fitted and the leg is inverted so that the leg pivots from the bottom of the tibia to increase the impact moment on the knee. Remove the end rubber buffers if fitted, 133-5516 and launch guide from the leg. Then fit the 5 kg end weight to the top of the femur using two M8 x 50 long cap head bolts see Figure 62. Fit the pivot hinge to the tibia base as per Figure 63 using four M6 x 18 SHCS.

Figure 60. Diagram of Dynamic Pendulum Fixture
Fit the leg to the pivot block on the rig using the M10 SHSS. Refer to rig assembly in Appendix A. Route the off board wires (if fitted) onto the rig and tape up so that they do not interfere with the free swing motion of the leg when tested. If using onboard DAS route the disconnect to allow detachment and fix with tape to the top cross member. The impact bar must be positioned so that the top of the blue meniscus of the knee is 30 mm below the bottom of the inclined impact plate. Adjust the impact bar if not.

Note: The leg sensors are zeroed in the vertical impact position. Check all sensors are working and polarity is correct by flexing the leg.

The leg is lifted back to the release mechanism and secured using a steel wire rope. The rope has been made so that the angle of the leg before release is 15° from the horizontal, this should be checked with a digital angle block laid on the back of the knee. The steel rope is tied to the ballast weight via an eye bolt which can be used for fine height adjustment. When ready the leg is armed ready for release.

The leg is released from a switch on the control box, if there is a problem with the switch there is a manual release button on the latch; **ensure no one is inside the drop zone during release to prevent any injury.** This can be ensured with the use of barriers etc. The wire must be fitted to the inside of the release latch as shown in Figure 61 otherwise the latch will not function. A trigger for data collection can be from the accelerometer on the leg, started manually or from a speed gate. All 12 channels on the standard leg are recorded. See draft corridors Tables 17 and 18. Table 17 channels are mandatory.

After initial impact the leg will continue to bounce, where possible the leg should be caught or stopped to prevent this. This action must be done from the side of the rig; **under no circumstances should anyone be behind the leg or in its swing plane during testing.** The springs in the knee and the elastic response from the rubber flesh create a strong rebound. **It is highly recommended that a barrier is erected in the swing/rebound area to avoid any injury. If there is any doubt about safety allow the leg to bounce.**

If a test is to be repeated the leg should rest for 45 minutes minimum before repeating.

![Figure 61. Release Latch Wire Position](image)
5.5 Leg Preparation for Pendulum Dynamic Calibration

Introduction
After a maximum of 10 car test the leg must be calibrated using the pendulum test.

Step 1: Check the eight M8 set screws shown in Figure 65 are tightened to 8 Nm

Step 2: Check the washers over the knee springs are flush INLINE with the tibia knee block.

Step 3: Check the four stop cable clearances passing through the femur is set to 9.1 mm and 10.3 on the tibia. See Figure 65 and special tool 133-5112 is used for this.

Step 4: Check knee block alignment by using a straight edge, check that the back faces of the 2 knee blocks are aligned, checking the left and right outer areas. Also with the same straight edge check on 1 side that the 2 knee blocks are aligned by checking either side of the 2 side covers. If there are any misalignments, by hand, push one of the knee blocks until there is alignment in all the 4 alignment check positions.

Step 5: Check all segment screws and side aluminum shoulder screws are tightened between 2.3 to 2.5 Nm this can done by feel, after torque wrench setting so a torque wrench is not mandatory, for these screws

Step 6: Remove the aluminum launch guide yoke fitted to the top of the leg along with the black protective cover

Step 7: Attach the ballast weight as shown in Figure 62 below to the top of the femur using two M8 x 50 long cap head screws

Figure 62. Attaching Ballast Weight
Step 8: Remove the black protective cover from the tibia bottom and attach the pivot block as shown in Figure 63 below using four M6 x 18 long screws.

![Figure 63. Step 9 Attaching Dynamic Rig Pivot Block](image)

Step 9: Fit the suit as in section 3.3.4 allowing for onboard or off board wire exit. For off board a hole may need cutting in the knee area, cut marks are provided. The leg is now ready to be hung on the rig.

The bone is shimmed tight at build to allow for wear on the bone however after a relatively high number of tests the blue segments will become lose as the interfacing parts wear. Having some play is acceptable as long as the leg passes either pendulum or inverse test certification. If the user is concerned with a high amount of play the bone can be re-shimmed to remove it.

<table>
<thead>
<tr>
<th>GTR Pendulum Dynamic Calibration Results</th>
<th>Peak Moment @ Tibia Gage 1</th>
<th>Peak Moment @ Tibia Gage 2</th>
<th>Peak Moment @ Tibia Gage 3</th>
<th>Peak Moment @ Tibia Gage 4</th>
<th>Peak ACL Elongation</th>
<th>Peak MCL Elongation</th>
<th>Peak PCL Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>272</td>
<td>211</td>
<td>160</td>
<td>108</td>
<td>11.0</td>
<td>26.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Lower</td>
<td>235</td>
<td>185</td>
<td>135</td>
<td>94</td>
<td>9.0</td>
<td>23.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 17. Draft GTR 9 Regulation Pendulum test corridors; values are up to 250 ms after impact.
GTR Pendulum Dynamic Calibration Results

<table>
<thead>
<tr>
<th>GTR Pendulum</th>
<th>Peak Moment @ Femur Gage 1</th>
<th>Peak Moment @ Femur Gage 2</th>
<th>Peak Moment @ Femur Gage 3</th>
<th>Peak LCL Elongation</th>
<th>Peak Acceleration @ Knee Tibia Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>220.3</td>
<td>158.1</td>
<td>100.4</td>
<td>4.5</td>
<td>72.9</td>
</tr>
<tr>
<td>Lower</td>
<td>176.9</td>
<td>121.2</td>
<td>82.1</td>
<td>2.0</td>
<td>48.1</td>
</tr>
</tbody>
</table>

Table 18. Draft non injurious Pendulum test corridors: values are up to 250 ms after impact.
Section 6. Leg Preparation for Dynamic Inverse Test

6.1 Introduction
After 30 car tests or before homologation testing a dynamic inverse test must be carried out. The preparation for the leg is described below. All standard 12 channels must be tested 7 of these channels must meet the test corridor as per the GTR 9 specification.

6.2 Leg Preparation for Dynamic Inverse Test

Step 1: Check the eight M8 set screws shown below, tightened to 8 Nm.

![Screws to be torqued to 8 Nm](image)

Step 2: Check all the spring washers under the tibia block in the knee are flush (inline) with the housing.

Step 3: Check the four stop cables passing through the femur block are set to have a clearance of 9.1 mm and the four tibia cables have a clearance of 10.3 mm see femur example below. A special setting tool 133-5112 is provided for this check.
Step 4: Check knee block alignment by using a straight edge, check that the back faces of the two knee blocks are aligned, checking the left and right outer areas. Also with the same straight edge check on one side that the two knee blocks are aligned by checking either side of the two side covers. If there are any misalignments, by hand, push one of the knee blocks until there is alignment in all the four alignment check positions.

Step 5: Check all segment screws and side aluminum shoulder screws are tightened between 2.3 to 2.5 Nm this can done by feel, after torque wrench setting so a torque wrench is not mandatory, for these screws.

Step 6: Fit the inner flesh system as described in 3.3.4

Step 7: All wires are correctly positioned to avoid damage and any exit wires are restrained in their clamps.

Step 8: Replace the outer cover skin and the leg is ready.

Step 9: The lunch guide at the top of the leg is locked vertically with the two M6 side screws.

The bone is shimmed tight at build to allow for wear on the bone however after a relatively high number of tests the blue segments will become lose as the interfacing parts wear. Having some play is acceptable as long as the leg passes either pendulum or inverse test certification. If the user is concerned with a high amount of play the bone can be re-shimmed to remove it.
6.3 Inverse Test Calibration Description

The inverse test is a dynamic calibration test where the fully assembled leg is stationary suspended vertically from a sprung hook which releases on impact. The leg is struck with an 8.1 kg linear guided impactor with a honeycomb face fired at 11.1 m/s (40 kph) the same speed as the car test. This procedure is carried out at build along with the pendulum test then after thirty car tests or before any homologation testing.

![Diagram of Inverse guided impactor Certification](image_url)

Figure 66. Diagram of Inverse guided impactor Certification
6.3.1. Requirements

6.3.1.1. Impactor
- Mass 8.1 Kg ±0.05
- Speed 11.1 m/s ±0.2

The impactor is covered with 5052 Aluminum honeycomb with a crush strength of 75 PSI ±10 and covered with paper cloth less than 1mm thick and taped over honeycomb to prevent damage to the leg covers. To ensure repeatability the honeycomb should be 3/16" cell size with a density of 3.1 or 2.0 pcf or ¼" cell size with density of 2.3 pcf. The top of the impactor plate must be in line with the honeycomb at time of first contact and the upper edge of the honeycomb must be vertically in line with the knee joint (top of blue tibia knee block) ± 2 mm. The size of the honeycomb is to be; width 200 ±2, length 160 ±2 and depth 60 ±5. On impact the leg is to be released from the rig within 10 ms to ensure free flight condition.

6.3.1.2. Temperature

The test facility used for the certification must have a stabilized temperature of 20 ±2 °C during the certification and the temperature is to be recorded.

6.3.1.3. Impactor Pitch, Roll and Yaw angle corridor

The pitch angle of the impactor (rotation around y-axis) at the time of first contact shall be within a tolerance of 0 ± 2° in relation to the lateral vertical plane. The roll angle of the impactor (rotation around x-axis) at the time of first contact shall be within a tolerance of 0 ±2° in relation to the longitudinal vertical plane. The yaw angle of the impactor (rotation around z-axis) at the time of first contact shall be within a tolerance of 0 ±2°.

6.3.1.4. Flex PLI Inverse Test Corridor

<table>
<thead>
<tr>
<th>GTR Invers Dynamic Calibration Results</th>
<th>Peak Moment @ Tibia Gauge 1</th>
<th>Peak Moment @ Tibia Gauge 2</th>
<th>Peak Moment @ Tibia Gauge 3</th>
<th>Peak Moment @ Tibia Gauge 4</th>
<th>Peak ACL Elongation</th>
<th>Peak MCL Elongation</th>
<th>Peak PCL Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>277</td>
<td>269</td>
<td>204</td>
<td>120</td>
<td>10.5</td>
<td>23</td>
<td>6.0</td>
</tr>
<tr>
<td>Lower</td>
<td>237</td>
<td>223</td>
<td>176</td>
<td>98</td>
<td>8.5</td>
<td>18</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 19. Dynamic Inverse test corridors. These peak values shall be within 50 ms after impact

For further details of the test requirements refer to document ECE/TRANS/WP.2.9/GSRP/2009/21
6.4 Car Test

For the car test a special launch plate or pusher is required which is attached to a firing ram or launch system for an example see Figure 69. The design of the guide and push stroke length is important to maintain stable release conditions when the leg leaves the launcher. The leg is fired at the car at 40 kph or 11.1 m/s ± 0.2. The loading level of impactor during free flight for tibia bending moments are recommended to be less than +/- 10 Nm and knee ligament (MCL, ACL, PCL) elongations are recommended to be less than +/- 1mm. If it is difficult to achieve the loading level, we recommend to refine a propelling system by changing pushing surface profile by changing the spacing between knee and legs.

The leg step preparation steps described above in 6.2 also apply to the car test.

The launch guide at the top of the femur is tilted back about 15 degrees and locked for launch.

The side link shoulder screws on the aluminium segments can become loose in testing. It is an option to use a weak thread lock like loctite on these to prevent them coming loose.

For the specifications and requirements of the test refer to ECE/TRANS/WP.2.9/GSRP/2009/21

WARNING! VIOLENT REBOUND!

After impact with the car the leg can be thrown high into the air or can be deflected some distance therefore it will be important to protect anyone exposed in the test lab. Laboratory staff must be clear of the test site and they must be behind Barriers during the launch.

A catch rope attachment bracket is available to attach at each end of the leg allowing a 4 point rope attachment. The protective covers are removed and replaced with a high strength aluminum Catch Rope Bracket, see Figure 67. This allows the leg to be tied into a frame preventing any damage or injury from rebound. The ropes are quickly retracted after impact to keep the leg inside the frame.

![Optional catch rope bracket 133-5034](image-url)
Section 7. Impactor Guide setting distance on Launcher

Impactor guide must be set to 113mm as shown in Figure 68 below.

![Figure 68. Impactor guide width setting 113mm](image_url)
Figure 69. Location of impactor guide on pusher (launch plate) JARI pusher shown as example
Section 8. Dynamic Rig

8.1 Dynamic Rig Assembly Instructions
If the assembly has been stripped down use the following steps to assemble the rig. Normally when shipped the rig is mostly assembled. Please follow assembly instructions from ‘assembly as shipped’.

8.2 Assembly after Complete Strip Down
Stand the Left and Right support weldments, Items 1 and 3 opposite each other and about 400mm apart, ensure the tapped hole flanges are facing inwards. Fit the cross bars, Item 2 and tighten, this will bring the side supports together. Now loosen the screws on the cross bars and fit Impact Bar Item 5 and pivot cross bar Item 4, tighten the screws this will pull the support weldments square with the Impact and pivot cross bars. The Cross Bar screws can now be tightened.

The top ‘A’ frame assembly can be assembled on the ground and lifted on to the base or assembled directly on to the base. Note it will be important to keep all the screws loose while the parts are being fitted. Fit the two ‘A’ Frames Item 6, then fit two side supports making sure diagonals go in the opposite direction. Do up all the bolts so there is no slack but the parts can still move. Assembly continues as per assembly as shipped.
Figure 70. Exploded view Dynamic Rig
<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>133-8401</td>
<td>LEFT BASE SUPPORT WELDMENT</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>133-8412</td>
<td>BASE CROSS BAR WELDMENT</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>133-8402</td>
<td>RIGHT BASE SUPPORT WELDMENT</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>133-8415</td>
<td>PIVOT CROSS BAR WELDMENT</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>133-8420</td>
<td>IMPACT BAR WELDMENT</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>133-8424</td>
<td>A-FRAME SUPPORT</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>133-8429</td>
<td>A-FRAME SIDE SUPPORT</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>133-8431</td>
<td>TOP CROSS MEMBER</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>133-8432</td>
<td>NUT PLATE</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>5000267</td>
<td>WASHER, FLAT M12 (13.0 ID X 24.0 OD X 2.5 THK.)</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>5000587</td>
<td>SCREW, SHCS M8 X 1.25 X 70</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>5000441</td>
<td>SCREW, SHCS M12 X 1.75 X 30</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>5000314</td>
<td>SCREW, SHCS M10 X 1.5 X 16</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>5000444</td>
<td>SCREW, SHCS M10 X 1.5 X 30</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>5000552</td>
<td>WASHER, FLAT M8 (8.4 ID X 16.0 OD X 1.6 THK.)</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>5000486</td>
<td>HEX NUT, M8 NYLOK</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>133-8419</td>
<td>PIVOT CLEARANCE BLOCK</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>5000785</td>
<td>SCREW, SHCS M10 X 1.5 X 120</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>133-8418</td>
<td>PIVOT HINGE</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>5000786</td>
<td>SCREW, SHCS M12 X 50</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>133-8423</td>
<td>IMPACT BLOCK</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>5000028</td>
<td>SCREW, SHCS M8 X 1.25 X 50</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>9000244</td>
<td>WASHER, FLAT ¼"</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>133-8438</td>
<td>BRACKET RELEASE MECH</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>6002571</td>
<td>RELEASE SYSTEM (TENNEN BV 099-005-A)</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5000499</td>
<td>SCREW, SHCS M8 X 1.25 X 60</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>133-8436</td>
<td>CALIBRATION BALLAST FEMUR</td>
</tr>
<tr>
<td>28</td>
<td>10</td>
<td>5000105</td>
<td>WASHER, FLAT M10 (10.85 ID X 20 OD X 2.5 THK.)</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>5000797</td>
<td>EYEBOLT, M6 X 1 X 12, ZINC-PLATED (MCM#3107T41)</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>6002575</td>
<td>RELEASE SYSTEM CONTROL BOX (TENNEN BV TE-RSCB-100)</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>5000001</td>
<td>SCREW, SHCS M6 X 1 X 20</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>5000030</td>
<td>SCREW, SHCS M8 X 1.25 X 25</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>6001587</td>
<td>CONNECTOR SOCKET (NOT SHOWN)</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>6001588</td>
<td>SOCKET TERMINAL (NOT SHOWN)</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>6001737</td>
<td>PIN TERMINAL (60618-1 NEWARK)</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>6001738</td>
<td>CONNECTOR, AMP MATE-N-LOCK (NOT SHOWN)</td>
</tr>
<tr>
<td>37</td>
<td>11 FT.</td>
<td>6003042</td>
<td>SERVICE CORD (16AWG 2-CONDUCTOR) (NOT SHOWN)</td>
</tr>
</tbody>
</table>

Table 20. Dynamic Rig Part List
8.3 Assembly, as shipped

Fit the top cross member, Item 8 and then tighten all the screws ensuring the top cross member is in line with the impact face. Fit the pivot clearance block. Fit the control release box, this can be fitted either side depending on user requirement. Fit the release latch and connect up to the control box, tape or loop the wire to the frame. The control box comes with a gate switch. If a barrier is required around the fixture during testing this switch can be used in the barrier to ensure the barrier is in place during the testing. When the leg is fitted adjust the impact face so that the bottom of the impactor face is 30 mm above the top of the plastic blue meniscus of the knee (center of knee).
I

(Actos adoptados en aplicación de los Tratados CE/Euratom cuya publicación es obligatoria)

REGLAMENTOS

REGLAMENTO (CE) N° 631/2009 DE LA COMISIÓN
de 22 de julio de 2009

por el que se establecen las normas de desarrollo del anexo I del Reglamento (CE) n° 78/2009 del Parlamento Europeo y del Consejo relativo a la homologación de vehículos en lo que se refiere a la protección de los peatones y otros usuarios vulnerables de la vía pública, por el que se modifica la Directiva 2007/46/CE y por el que se derogan las Directivas 2003/102/CE y 2005/66/CE

LA COMISIÓN DE LAS COMUNIDADES EUROPEAS,

Visto el Tratado constitutivo de la Comunidad Europea,

Visto el Reglamento (CE) n° 78/2009 del Parlamento Europeo y del Consejo, de 14 de enero de 2009, relativo a la homologación de vehículos en lo que se refiere a la protección de los peatones y otros usuarios vulnerables de la vía pública, por el que se modifica la Directiva 2007/46/CE y por el que se derogan las Directivas 2003/102/CE y 2005/66/CE

(2) DO L 263 de 9.10.2007, p. 1.

Considerando lo siguiente:

(1) El Reglamento (CE) n° 78/2009 es uno de los actos jurídicos independientes en el contexto del procedimiento de homologación establecido en la Directiva 2007/46/CE del Parlamento Europeo y del Consejo, de 5 de septiembre de 2007, por la que se crea un marco para la homologación de los vehículos de motor y de los remolques, sistemas, componentes técnicos y unidades técnicas independientes destinados a dichos vehículos («Directiva marco»)

(2) El Reglamento (CE) n° 78/2009 establece los requisitos básicos para la protección de los peatones y otros usuarios vulnerables de la vía pública en forma de ensayos y valores límite, para la homologación de vehículos y de sistemas de protección delantera como unidades técnicas independientes.

(3) Los ensayos establecidos en el Reglamento (CE) n° 78/2009 se basan en los requisitos establecidos en la Directiva 2003/102/CE del Parlamento Europeo y del Consejo, de 17 de noviembre de 2003, relativa a la protección de los peatones y otros usuarios vulnerables de la vía pública antes y en caso de colisión con un vehículo de motor y por la que se modifica la Directiva 70/156/CEE del Consejo, y por la Directiva 2005/66/CE del Parlamento Europeo y del Consejo, de 26 de octubre de 2005, relativa al uso de sistemas de protección delantera en vehículos de motor y por la que se modifica la Directiva 70/156/CEE del Consejo

(4) Un estudio realizado sobre las especificaciones de determinados requisitos establecidos en la Directiva 2003/102/CE puso de manifiesto la necesidad de introducir modificaciones.

(5) Las prescripciones técnicas necesarias para la aplicación de los requisitos del Reglamento (CE) n° 78/2009 deben basarse en las especificaciones de la Decisión 2004/90/CE de la Comisión, de 23 de diciembre de 2003, relativa a las prescripciones técnicas para la aplicación del artículo 3 de la Directiva 2003/102/CE del Parlamento Europeo y del Consejo, de 17 de noviembre de 2003, a la protección de los peatones y otros usuarios vulnerables de la vía pública en caso de colisión con un vehículo de motor y antes de la misma, y por la que se modifica la Directiva 70/156/CEE, y de la Decisión 2006/368/CE de la Comisión, de 20 de marzo de 2006, sobre los requisitos técnicos detallados para realizar los ensayos especificados en la Directiva 2005/66/CE del Parlamento Europeo y del Consejo relativa al uso de sistemas de protección delantera en vehículos de motor.

(8) A Study on the feasibility of measures relating to the protection of pedestrians and other vulnerable road users (Estudio sobre la viabilidad de las medidas sobre protección de los peatones y otros usuarios vulnerables de la vía pública) — Final 2006, Transport Research Laboratory, Reino Unido.

(9) DO L 31 de 4.2.2004, p. 21.
(10) DO L 140 de 29.5.2006, p. 33.
(6) Las medidas previstas en el presente Reglamento se ajustan al dictamen del Comité técnico sobre vehículos de motor.

HA ADOPTADO EL PRESENTE REGLAMENTO:

Artículo 1
El presente Reglamento establece las prescripciones técnicas necesarias para realizar los ensayos y cumplir los requisitos que recoge el anexo I del Reglamento (CE) n° 78/2009.

Artículo 2
Los ensayos recogidos en el anexo I del Reglamento (CE) n° 78/2009 se realizarán con arreglo a lo dispuesto en el anexo del presente Reglamento.

El presente Reglamento será obligatorio en todos sus elementos y directamente aplicable en cada Estado miembro.

Hecho en Bruselas, el 22 de julio de 2009

Por la Comisión
Günter VERHEUGEN
Miembro de la Comisión
ANEXO

PARTE I: REQUISITOS GENERALES Y DEFINICIONES

1. Generalidades

Para realizar las mediciones de un vehículo descritas en la presente parte, el vehículo estará en disposición normal de circulación.

Si el vehículo está provisto de algún emblema, figura u otra estructura que pudiera doblarse o ceder al aplicarse una carga ligera de 100 N como máximo, esta deberá aplicarse antes de las mediciones o durante las mismas.

Todo componente de vehículo que pueda cambiar de forma o posición, diferentes de los componentes de la suspensión u otros sistemas activos de protección de los peatones, deberán encontrarse en su posición fija.

2. Definiciones

A los efectos del presente anexo se aplicarán las siguientes definiciones:

2.1. «Altura del borde delantero del capó» (de cualquier sección de un vehículo): distancia vertical entre el suelo y la línea de referencia del borde delantero del capó en un punto determinado.
2.2. «Línea de referencia del borde frontal del capó»: trazo geométrico que forman los puntos de contacto entre una regla de 1 000 mm de longitud y la superficie delantera del capó cuando la regla, mantenida en paralelo al plano vertical longitudinal del vehículo e inclinada 50° hacia atrás y con el extremo inferior a 600 mm por encima del suelo, pasa por el borde frontal del capó manteniéndose en contacto con el mismo (véase la figura 16).

En los vehículos cuya parte superior del capó tenga una inclinación de 50°, de forma que la regla esté en contacto continuo o en contacto con múltiples puntos en lugar de tener un punto de contacto único, la línea de referencia se determinará con la regla inclinada 40° hacia atrás con respecto a la vertical.

En los vehículos en los que el primer contacto se produzca entre el extremo inferior de la regla y el vehículo, se tomará ese contacto como línea de referencia del borde frontal del capó, en esa posición lateral.

En los vehículos en los que el primer contacto se produzca entre el extremo superior de la regla y el vehículo, se tomará como línea de referencia del borde frontal del capó en esa posición lateral el trazo geométrico de la distancia perimétrica de 1 000 mm.

El borde superior del parachoques se considerará también borde frontal del capó cuando haya contacto entre este y la regla.

2.3. «Línea de referencia trasera del capó»: trazo geométrico de los puntos de contacto posteriores entre una esfera de 165 mm y la superficie superior delantera, cuando la esfera se coloca en la superficie superior delantera en contacto con el parabrisas (véase la figura 1). Para realizar esta operación se retirarán las escobillas y las varillas de los limpiaparabrisas.

Si se encuentra a una distancia perimétrica superior a 2 100 mm, la línea de referencia trasera del capó se define por el trazo geométrico de la distancia perimétrica de 2 100 mm. Si la línea de referencia trasera del capó y las líneas de referencia laterales no se cruzan, se modificará la primera de acuerdo con el procedimiento establecido en el punto 2.17.

2.4. «Saliente del parachoques» (de cualquier corte longitudinal del vehículo): distancia horizontal medida en un determinado plano vertical longitudinal del vehículo entre la línea de referencia superior del parachoques y la línea de referencia del borde delantero del capó.

2.5. «Centro de la rodilla»: punto efectivo de flexión de la rodilla.

2.6. «Ángulo del parachoques»: punto de contacto del vehículo con un plano vertical que forma un ángulo de 60° con el plano vertical longitudinal del vehículo y es tangencial a la superficie exterior del parachoques (véase la figura 2).

2.7. «Ángulo del sistema de protección delantera»: punto de contacto del sistema de protección delantera con un plano vertical que forma un ángulo de 60° con el plano vertical longitudinal del vehículo y es tangencial a la superficie exterior del sistema de protección delantera (véase la figura 3).

2.8. «Ángulo del borde delantero del sistema de protección delantera»: punto de contacto del sistema de protección delantera con un plano vertical que forma un ángulo de 45° con el plano vertical longitudinal del vehículo y es tangencial a la superficie exterior del sistema de protección delantera. El borde inferior del plano debe estar a una altura de 600 mm, o bien situarse 200 mm por debajo de la parte más alta del sistema de protección delantera; de estas dos posiciones, se elegirá la que resulte más alta.

2.9. «Punto de referencia angular»: punto de intersección entre la línea de referencia del borde delantero del capó y la línea de referencia lateral (véase la figura 4).

2.10. «Dimensiones esenciales del extremo frontal externo»: puntos sólidos en el espacio del marco de ensayo, que representan todos los puntos del tipo de vehículo real previsto sobre los que el sistema de protección delantera puede impactar durante el ensayo.

2.11. «Fémur»: conjunto de componentes o partes de componentes (incluidos la masa muscular, el recubrimiento dérmico, los amortiguadores, los instrumentos y soportes, las poleas y otros accesorios fijados al impactador para su lanzamiento) situados por encima del centro de la rodilla.

2.12. «Frente del sistema de protección delantera» (respecto a cualquier punto situado en el sistema): distancia horizontal entre la línea de referencia superior del sistema de protección delantera y la posición del punto en cuestión en dicho sistema. Esta distancia debe medirse en un plano vertical paralelo al plano vertical longitudinal del vehículo.
2.13. «Borde delantero del sistema de protección delantera»: la estructura externa superior del sistema de protección delantera, excluidos el capó y las aletas, los elementos superiores y laterales del marco de los faros y cualquier otro accesorio acoplable que solo sirva para proteger los faros, como las rejillas.

2.14. «Altura del borde delantero del sistema de protección delantera» (respecto a cualquier sección vertical longitudinal del sistema): distancia vertical entre el nivel de referencia del suelo y la línea de referencia del borde delantero del sistema de protección delantera en esa sección, con el vehículo en disposición normal de circulación.

2.15. «Línea de referencia del borde delantero del sistema de protección delantera»: trazo geométrico que forman los puntos de contacto entre una regla de 1 000 mm de longitud y la superficie delantera del sistema de protección delantera cuando la regla, mantenida en paralelo al plano vertical longitudinal del vehículo, inclinada 30° hacia atrás y con el extremo inferior a 600 mm del suelo, pasa por el borde delantero del capó manteniéndose en contacto con él. En el caso de que la parte superior del sistema de protección delantera tenga una inclinación global de 30°, de forma que la regla esté en contacto continuo o entre en contacto con múltiples puntos en lugar de tener un punto de contacto único, la línea de referencia se determinará con la regla inclinada en un ángulo de 40° hacia atrás. En los sistemas de protección delantera en los que el primer contacto se produzca con el extremo inferior de la regla, se tomará ese contacto como línea de referencia del borde delantero del sistema de protección delantera, en esa posición lateral. En los sistemas de protección delantera en los que el primer contacto se produzca con el extremo superior de la regla, se tomará como línea de referencia del borde delantero del sistema de protección delantera en esa posición lateral el trazo geométrico de la distancia perimetrique de 1 000 mm. El borde superior del sistema de protección delantera se considerará también como borde delantero del sistema de protección delantera a los efectos del presente Reglamento cuando haya contacto entre este y la regla durante este procedimiento (véase la figura 5).

2.16. «Punto de impacto»: punto del vehículo con el que se produce el primer contacto al realizar el ensayo. La proximidad entre este punto y el objetivo depende del ángulo de desplazamiento del impactador de ensayo y del contorno de la superficie del vehículo (véase el punto B en la figura 6).

2.17. «Intersección entre las líneas de referencia trasera y lateral del capó»: si las líneas de referencia trasera y lateral del capó no se cruzan, la primera se ampliará o modificará por medio de una plantilla semicircular de 100 mm de radio. La plantilla será una hoja delgada flexible que pueda curvarse fácilmente en cualquier dirección. En la medida de lo posible, la plantilla deberá resistir una curvatura doble o compleja que pudiera resultar en su arrugado. El material recomendado es una fina chapa de plástico revestida de espuma para que la plantilla pueda «agarrarse» a la superficie del vehículo.

Con la plantilla extendida en una superficie plana, se determinarán en ella cuatro puntos, «A» a «D», como se indica en la figura 7. La plantilla se colocará sobre el vehículo de manera que los puntos «A» y «B» coincidan con la línea de referencia lateral. Tras asegurarse de que los dos puntos coinciden con la línea de referencia lateral, la plantilla se deslizará progresivamente hacia atrás hasta que su arco entre en contacto con la línea de referencia trasera del capó. En este proceso, la plantilla deberá adoptar de la manera más precisa posible el contorno exterior del capó del vehículo sin arrugarlo ni doblarse. Si el contacto entre la plantilla y la línea de referencia trasera del capó es tangencial y el punto de tangencia se encuentra fuera del arco delimitado por los puntos «C» y «D», deberá extenderse o modificarse la línea de referencia trasera del capó siguiendo la circunferencia de la plantilla hasta la línea de referencia lateral, como se ilustra en la figura 8.

Si no se consigue que la plantilla esté en contacto simultáneo con la línea de referencia lateral en los puntos «A» y «B» y, de manera tangencial, con la línea de referencia trasera del capó, o si el punto en el que se tocan la línea de referencia trasera del capó y la plantilla se encuentra dentro del arco delimitado por los puntos «C» y «D», se utilizarán plantillas adicionales con incrementos progresivos del radio de 20 mm hasta que se cumplan todos los requisitos descritos anteriormente.

Una vez determinada, la línea de referencia trasera del capó modificada será la que se tenga en cuenta en todos los apartados posteriores y dejarán de utilizarse los extremos originales de la línea.

2.18. «Altura inferior del parachoques» (en cualquier posición transversal): distancia vertical entre el suelo y la línea de referencia inferior del parachoques, con el vehículo en disposición normal de circulación.

2.19. «Línea de referencia inferior del parachoques»: línea que identifica el extremo inferior respecto a los puntos de contacto significativos entre el parachoques y un peatón. La línea equivale al trazo geométrico que forman los puntos inferiores de contacto entre una regla de 700 mm de longitud y el parachoques cuando la regla, mantenida en paralelo al plano vertical longitudinal del vehículo e inclinada 25° hacia delante, pasa por la parte delantera del vehículo manteniéndose en contacto con el suelo y con la superficie del parachoques (véase la figura 9).

2.20. «Altura inferior del sistema de protección delantera» (en cualquier posición transversal): distancia vertical entre el suelo y la línea de referencia inferior del sistema de protección delantera, con el vehículo en disposición normal de circulación.
2.21. «Línea de referencia inferior del sistema de protección delantera»: extremo inferior de los puntos de contacto significativo entre el sistema de protección delantera y un peatón. Se define como el trazo geométrico que forman los puntos inferiores de contacto entre una regla de 700 mm de longitud y el sistema de protección delantera cuando la regla, mantenida en paralelo al plano vertical longitudinal del vehículo e inclinada 25° hacia delante, pasa por la parte delantera del vehículo manteniéndose en contacto con el suelo y con la superficie del sistema de protección delantera (véase la figura 10).

2.22. «Línea de referencia trasera del parabrisas»: trazo geométrico de los puntos de contacto delanteros entre una esfera y el parabrisas, cuando la esfera, de 165 mm de diámetro, se coloca de forma que se mantenga en contacto tanto con el marco superior del parabrisas, incluida cualquier franja, como con el parabrisas (véase la figura 11).

2.23. «Línea de referencia lateral»: trazo geométrico que forman los puntos de contacto superiores entre una regla de 700 mm de longitud y el lado de un vehículo, cuando la regla, mantenida en paralelo al plano vertical transversal del vehículo e inclinada 45° hacia la parte interior, pasa por el lado y se mantiene en contacto con los laterales de la superficie superior delantera (véase la figura 12).

2.24. «Punto objetivo»: intersección de la proyección del eje longitudinal del simulador de cabeza con la superficie delantera del vehículo (véase el punto A de la figura 6).

2.25. «Tercio del borde delantero del capó»: trazo geométrico comprendido entre los puntos de referencia angulares, medido con una cinta métrica flexible que recorra el contorno exterior del borde delantero, dividido en tres partes iguales.

2.26. «Tercio de la parte superior del capó»: trazo geométrico comprendido entre las líneas de referencia laterales, medido con una cinta métrica flexible que recorra el contorno exterior de cualquier sección transversal del capó, dividido en tres partes iguales.

2.27. «Tercio del sistema de protección delantera»: trazo geométrico comprendido entre los ángulos del sistema de protección delantera, medido con una cinta métrica flexible que recorra el contorno externo horizontal del sistema de protección delantera, dividido en tres partes iguales.

2.28. «Tercio del borde delantero del sistema de protección delantera»: trazo geométrico comprendido entre los ángulos del borde delantero superior del sistema de protección delantera, medido con una cinta métrica flexible que recorra el contorno externo horizontal del sistema de protección delantera, dividido en tres partes iguales.

2.29. «Tercio del parachoques»: trazo geométrico comprendido entre los ángulos del parachoques, medido con una cinta métrica flexible que recorra el contorno exterior del parachoques, dividido en tres partes iguales.

2.30. «Tibia»: conjunto de componentes o partes de componentes (incluyendo la masa muscular, el recubrimiento dérmico, los amortiguadores, los instrumentos y soportes, las poleas y otros accesorios fijados al impactador para su lanzamiento) situados por debajo del centro de la rodilla. Conviene observar que la tibia, tal como se define, incluye márgenes de tolerancia para la masa, etc., del pie.

2.31. «Línea de referencia superior del parachoques»: línea que identifica el extremo superior respecto a los puntos de contacto significativos entre el parachoques y un peatón.

En relación con los vehículos dotados de un parachoques con estructura identificable, equivale al trazo geométrico que forman los puntos superiores de contacto entre una regla y el parachoques cuando la regla, mantenida en paralelo al plano vertical longitudinal del vehículo e inclinada hacia atrás 20°, pasa por la parte delantera del vehículo manteniéndose en contacto con la superficie del parachoques (véase la figura 13).

En relación con los vehículos dotados de un parachoques con estructura no identificable, se define como el trazo geométrico que forman los puntos superiores de contacto entre una regla de 700 mm de longitud y el parachoques, cuando la regla, mantenida en paralelo al plano vertical longitudinal del vehículo e inclinada hacia atrás 20° con respecto a la vertical, pasa por la parte delantera del vehículo manteniéndose en contacto con el suelo y con la superficie del parachoques (véase la figura 13).

Si es necesario, se cortará la regla para evitar el contacto con estructuras situadas por encima del parachoques.

2.32. «Altura superior del sistema de protección delantera» (en cualquier posición transversal): distancia vertical entre el suelo y la línea de referencia superior del sistema de protección delantera, con el vehículo en disposición normal de circulación.
2.33. «Línea de referencia superior del sistema de protección delantera»: línea que identifica el extremo superior de los puntos de contacto significativos entre el sistema de protección delantera y un peatón. Se define como el trazo geométrico que forman los puntos superiores de contacto entre una regla de 700 mm de longitud y el sistema de protección delantera, cuando la regla, mantenida en paralelo al plano vertical longitudinal del vehículo e inclinada 20° hacia atrás, pasa por la parte delantera del vehículo manteniéndose en contacto con el suelo y con la superficie del sistema de protección delantera (véase la figura 14).

Si es necesario, se cortará la regla para evitar el contacto con estructuras situadas por encima del sistema de protección delantera.

2.34. «Tipo de vehículo»: categoría de vehículo cuya parte anterior a los montantes A no difiere en ninguno de los aspectos siguientes, en la medida en que se considere que las diferencias puedan tener un efecto negativo sobre los resultados de los ensayos de impacto establecidos en el Reglamento (CE) n° 78/2009:

a) la estructura;

b) las dimensiones principales;

c) los materiales de las superficies exteriores del vehículo;

d) la disposición de los componentes (externos o internos);

e) el método de instalación de un sistema de protección delantera, si dispone de uno.

Para poder homologar los sistemas de protección delantera como unidades técnicas independientes, cualquier referencia al vehículo podrá interpretarse como una referencia al bastidor en que se monta el sistema para su ensayo y cuya finalidad es representar las dimensiones delantera y exterior del vehículo concreto para el que se desea homologar el sistema.

2.35. «Distancia perimétrica»: trazo geométrico descrito en la superficie superior delantera del sistema de protección delantera por el extremo de una cinta métrica flexible colocada en un plano vertical longitudinal del vehículo de manera que pase por la superficie superior delantera del sistema de protección delantera. La cinta métrica se mantendrá tensa durante la operación, manteniendo un extremo en contacto con el nivel de referencia del suelo en la vertical de la cara delantera del parachoques o del sistema de protección delantera y el otro extremo en contacto con la superficie superior delantera o el sistema de protección delantera (véase la figura 15, por ejemplo). El vehículo deberá encontrarse en disposición normal de circulación.

Este procedimiento se aplicará, utilizando cintas métricas de longitud adecuada, para describir distancias perimétricas de 900 mm (WAD900), 1 000 mm (WAD1000), 1 700 mm (WAD1700) y 2 100 mm (WAD2100).

Figura 1

Determinación de la línea de referencia trasera del capó
Figura 2
Determinación del ángulo del parachoques

Figura 3
Determinación del ángulo del sistema de protección delantera
Figura 4
Determinación del punto de referencia angular; punto de intersección entre la línea de referencia del borde delantero del capó y la línea de referencia lateral

Figura 5
Determinación de la línea de referencia del borde delantero del sistema de protección delantera

Figura 6
Punto de impacto y punto objetivo
Figura 7

Diseño de la plantilla e indicación de los puntos utilizados para enlazar la línea de referencia trasera del capó y la línea de referencia lateral.

Figura 8

Vista cenital del ángulo trasero del capó: extensión de la línea de referencia trasera del capó para que enlace con la línea de referencia lateral siguiendo la circunferencia de la plantilla.
Figura 9
Determinación de la línea de referencia inferior del parachoques

Figura 10
Determinación de la línea de referencia inferior del sistema de protección delantera
Figura 11
Determinación de la línea de referencia trasera del parabrisas

Figura 12
Determinación de la línea de referencia lateral
Figura 13
Determinación de la línea de referencia superior del parachoques

Figura 14
Determinación de la línea de referencia superior del sistema de protección delantera
Figura 15
Determinación de la distancia perimétrica del sistema de protección delantera

Figura 16
Determinación de la línea de referencia del borde delantero del capó

PARTE II
ESPECIFICACIONES DE ENSAYO DE LOS VEHÍCULOS

CAPÍTULO I
Condiciones generales

1. **Vehículo completo**

1.1. Los ensayos en vehículos completos se ajustarán a las condiciones detalladas en los puntos 1.1.1, 1.1.2 y 1.1.3.

1.1.1. El vehículo estará en disposición normal de circulación y montado de forma segura sobre soportes elevados o parado en una superficie plana con el freno de mano echado.

1.1.2. Todos los dispositivos concebidos para proteger a los usuarios vulnerables de la vía pública estarán correctamente activados antes de realizarse el ensayo correspondiente o en funcionamiento durante el mismo. La responsabilidad de demostrar que los dispositivos actúan de la forma prevista en caso de atropello de un peatón corresponderá al solicitante de la homologación.
1.1.3. Los vehículos que dispongan de componentes que puedan cambiar de forma o posición que no sean dispositivos activos de protección de los peatones y que tengan más de una forma o posición fijas deberán cumplir los requisitos con esos componentes en cada una de las formas o posiciones fijas.

2. **Subsistema del vehículo**

2.1. Cuando solo se suministre un subsistema del vehículo para los ensayos, este deberá ajustarse a las condiciones especificadas en los puntos 2.1.1, 2.1.2, 2.1.3 y 2.1.4.

2.1.1. En el ensayo se incluirán todas las partes de la estructura del vehículo, el capó y los componentes situados debajo del capó o detrás del parabrisas, que puedan intervenir en una colisión frontal con un usuario vulnerable de la vía pública, a fin de que pueda comprobarse el comportamiento y las interacciones de todas las partes implicadas del vehículo.

2.1.2. El subsistema estará bien montado en el vehículo y en disposición normal de circulación.

2.1.3. Todos los dispositivos concebidos para proteger a los usuarios vulnerables de la vía pública estarán correctamente activados antes de realizarse el ensayo correspondiente, o estar en funcionamiento durante el mismo. La responsabilidad de demostrar que los dispositivos actúan de la forma prevista en caso de atropello de un peatón corresponderá al solicitante de la homologación.

2.1.4. Los vehículos que dispongan de componentes que puedan cambiar de forma o posición que no sean dispositivos activos de protección de los peatones y que tengan más de una forma o posición fijas deberán cumplir los requisitos con esos componentes en cada una de estas formas o posiciones.

CAPÍTULO II

Ensayo de impacto del simulador de pierna contra el parachoques

1. **Ámbito de aplicación**

 Este procedimiento de ensayo es aplicable a los requisitos establecidos en la letra a) de los puntos 2.1 y 3.1 del anexo I del Reglamento (CE) nº 78/2009.

2. **Generalidades**

 2.1. Para los ensayos del parachoques, el impactador simulador de la pierna se encontrará en situación de «vuelo libre» en el momento del impacto. El impactador se dejará en vuelo libre a suficiente distancia del vehículo para que, al rebotar, no entre en contacto con el sistema de propulsión e influya en los resultados del ensayo.

 2.2. El impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. **Especificaciones del ensayo**

 3.1. El objetivo de este ensayo es asegurarse del cumplimiento de los requisitos establecidos en la letra a) de los puntos 2.1 y 3.1 del anexo I del Reglamento (CE) nº 78/2009.

 3.2. Este ensayo es aplicable a los vehículos con una altura inferior del parachoques menor de 425 mm.

 Para los vehículos con una altura inferior del parachoques igual o mayor de 425 mm pero menor de 500 mm, el fabricante podrá elegir llevar a cabo el ensayo establecido en el capítulo III.

 En los vehículos con una altura igual o superior a 500 mm, se aplicará el capítulo III.

 3.3. Se realizarán como mínimo tres ensayos de impacto del simulador de pierna contra el parachoques, uno con cada tercio (tercio central y tercios exteriores) del parachoques, en las posiciones consideradas más susceptibles de causar lesiones. Cuando existan variaciones de estructura en la zona evaluada, los ensayos se realizarán con distintos tipos de estructura. Los puntos de ensayo seleccionados estarán separados por una distancia mínima de 132 mm y se situarán entre los ángulos definidos del parachoques, a 66 mm de estos como mínimo. Estas distancias mínimas se medirán con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo. En el informe de ensayo se indicarán los puntos ensayados por los laboratorios.

4. **Procedimiento de ensayo**

 4.1. El estado del vehículo o del subsistema se ajustará a los requisitos establecidos en el capítulo I.

 4.1.1. El impactador de ensayo o, al menos, la espuma de la masa muscular, se mantendrá durante un mínimo de cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada de 35 % ± 15 % y una temperatura estable de 20 ± 4 °C antes de retirar el impactador para el ensayo. Después de retirarlo de la zona de almacenamiento, el impactador no se someterá a condiciones distintas de las existentes en la zona de ensayo.
4.1.2. Cada ensayo deberá completarse en un plazo de dos horas a partir del momento de la retirada de la zona de almacenamiento del impactador que se va a utilizar.

4.2. El impactador simulador de pierna que se utilizará a los efectos de este ensayo se ajustará a la descripción de la parte V, sección I.

4.3. El impactador deberá montarse, propulsarse y liberarse de acuerdo con lo establecido en los puntos 2.1 y 2.2.

4.4. La dirección del vector de velocidad del impacto se situará en el plano horizontal y será paralela al plano vertical longitudinal del vehículo. El margen de tolerancia aplicable a la dirección del vector de velocidad en el plano horizontal y el plano longitudinal será de ± 2° en el momento del primer contacto.

4.5. El eje del impactador será perpendicular al plano horizontal, con un margen de tolerancia de ± 2° en los planos lateral y longitudinal. Los planos horizontal, longitudinal y lateral serán ortogonales entre sí (véase la figura 1).

4.6. En el momento del primer contacto con el parachoques, la base del impactador estará 25 mm por encima del nivel de referencia del suelo (véase la figura 2), con un margen de tolerancia de ± 10 mm.

Al fijar la altura del sistema de propulsión, deberá preverse un margen para el efecto de la gravedad durante el período de vuelo libre del impactador.

En el momento del primer contacto, el impactador estará debidamente orientado sobre su eje vertical de forma que la articulación de rodilla funcione correctamente, con un margen de tolerancia de ± 5° (véase la figura 1).

4.7. En el momento del primer contacto, el eje central del impactador coincidirá con el punto de impacto elegido, con un margen de tolerancia de ± 10 mm.

4.8. Durante el contacto entre el impactador y el vehículo, el primero no deberá tocar el suelo ni objeto alguno que no forme parte del vehículo.

4.9. La velocidad de impacto del impactador al golpear el parachoques será de 11,1 ± 0,2 m/s. Al calcular la velocidad de impacto a partir de las mediciones realizadas antes del primer contacto, deberá tenerse en cuenta el efecto de la fuerza de la gravedad.

Figura 1

Márgenes de tolerancia de los ángulos para el impactador simulador de pierna en el momento del primer impacto
CAPÍTULO III

Ensayo de impacto del simulador de muslo y cadera contra el parachoques

1. Ámbito de aplicación

Este procedimiento de ensayo es aplicable a los requisitos establecidos en la letra b) de los puntos 2.1 y 3.1 del anexo I del Reglamento (CE) n° 78/2009.

2. Generalidades

2.1. Para el ensayo contra el parachoques, el impactador simulador de muslo y cadera se montará en el sistema de propulsión mediante una junta limitadora de la torsión que evite que el sistema de guía resulte dañado por la aplicación de cargas pesadas fuera de eje. El sistema de guía estará equipado con guías de baja fricción, insensibles a las cargas fuera de eje, que permitan que, al entrar en contacto con el vehículo, el impactador se mueva únicamente en la dirección de impacto especificada. Las guías evitarán el movimiento en otras direcciones, incluida la rotación sobre cualquier eje.

2.2. El impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. Especificaciones del ensayo

3.1. El objetivo de este ensayo es asegurarse del cumplimiento de los requisitos establecidos en la letra b) de los puntos 2.1 y 3.1 del anexo I del Reglamento (CE) n° 78/2009.

3.2. Este ensayo es aplicable a los vehículos con una altura inferior del parachoques igual o superior a 500 mm. Para los vehículos con una altura inferior del parachoques igual o mayor de 425 mm pero menor de 500 mm, el fabricante podrá elegir llevar a cabo el ensayo establecido en el capítulo II. En los vehículos con una altura inferior del parachoques de menos de 425 mm, será aplicable el capítulo II.

3.3. Los ensayos de impacto del simulador de muslo y cadera contra el parachoques se llevarán a cabo en relación con las posiciones de ensayo seleccionadas en el capítulo II, punto 3.3.

4. Procedimiento de ensayo

4.1. El estado del vehículo o del subsistema se ajustará a los requisitos establecidos en el capítulo I.

4.1.1. El impactador de ensayo o, al menos, la espuma de la masa muscular, se mantendrá durante un mínimo de cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada de 35 ± 15 % y una temperatura estable de 20 ± 4 °C antes de retirar el impactador para el ensayo. Después de retirarlo de la zona de almacenamiento, el impactador no se someterá a condiciones distintas de las existentes en la zona de ensayo.
4.1.2. Cada ensayo deberá completarse en un plazo de dos horas a partir del momento de la retirada de la zona de almacenamiento del impactador que se va a utilizar.

4.2. El impactador simulador de muslo y cadera que se utilizará a los efectos de este ensayo se ajustará a la descripción de la parte V, sección 2.

4.3. El impactador de ensayo deberá montarse, propulsarse y liberarse de acuerdo con lo establecido en los puntos 2.1 y 2.2.

4.4. La dirección del impacto será paralela al eje longitudinal del vehículo, con el eje del simulador de muslo y cadera en posición vertical en el momento del primer contacto. El margen de tolerancia de estas indicaciones será de ± 2°. En el momento del primer contacto, la línea central del impactador deberá coincidir con un punto equidistante verticalmente entre las líneas de referencia superior e inferior del parachoques, con un margen de tolerancia de ± 10 mm; la línea central vertical del impactador se colocará lateralmente con respecto al lugar de impacto elegido, con un margen de tolerancia de ± 10 mm.

4.5. La velocidad del impactador de muslo y cadera al golpear el parachoques será de 11,1 ± 0,2 m/s.

CAPÍTULO IV

Ensayo de impacto del simulador de muslo y cadera contra el borde delantero del capó

1. **Ámbito de aplicación**

Este procedimiento de ensayo se aplica a los requisitos establecidos en los puntos 2.2 y 3.2 del anexo I del Reglamento (CE) nº 78/2009.

2. **Generalidades**

2.1. Para el ensayo contra el borde delantero del capó, el impactador simulador de muslo y cadera se montará en el sistema de propulsión mediante una junta limitadora de la torsión que evite que el sistema de guía resulte dañado por cargas pesadas fuera de eje. El sistema de guía estará equipado con guías de baja fricción, insensibles a las cargas fuera de eje, que permitan que, al entrar en contacto con el vehículo, el impactador se mueva únicamente en la dirección de impacto especificada. Las guías evitarán el movimiento en otras direcciones, incluida la rotación sobre cualquier eje.

2.2. El impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. **Especificaciones del ensayo**

3.1. El objetivo de este ensayo es asegurarse del cumplimiento de los requisitos establecidos en los puntos 2.2 y 3.2 del anexo I del Reglamento (CE) nº 78/2009.

3.2. Se realizarán como mínimo tres ensayos de impacto del simulador de muslo y cadera contra el borde delantero del capó, uno con cada tercio (tercio central y tercios exteriores) del borde delantero del capó, en las posiciones consideradas más susceptibles de causar lesiones. No obstante, el punto de ensayo de cada tercio se seleccionará, siempre que sea posible, de forma que la energía cinética de impacto requerida, definida en el punto 4.8, sea superior a 200 J. Cuando existan variaciones de estructura en la zona evaluada, los ensayos se realizarán con distintos tipos de estructura. Los puntos de ensayo seleccionados estarán separados por una distancia mínima de 150 mm y se situarán entre los puntos de referencia angulares, como mínimo a 75 mm de ellos. Estas distancias mínimas se medirán con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo. En el informe de ensayo se indicarán los puntos ensayados por los laboratorios.

3.3. Deberá estar instalado todo equipamiento de serie de la parte delantera del vehículo.

4. **Procedimiento de ensayo**

4.1. El estado del vehículo o del subsistema se ajustará a los requisitos establecidos en el capítulo I.

4.1.1. El impactador de ensayo o, al menos, la espuma de la masa muscular, se mantendrán durante al menos cuatro horas en una zona de almacenamiento controlado con una humedad estabilizada de 35 ± 15 % y una temperatura estable de 20 °C ± 4 °C antes de retirar el impactador para los ensayos. Después de retirarlo de la zona de almacenamiento, el impactador no se someterá a condiciones distintas de las existentes en la zona de ensayo.

4.1.2. Cada ensayo deberá completarse en un plazo de dos horas a partir del momento de la retirada de la zona de almacenamiento del impactador que se va a utilizar.

4.2. El impactador simulador de muslo y cadera que se utilizará a los efectos de este ensayo se ajustará a la descripción de la parte V, sección 2.

4.3. El impactador simulador de muslo y cadera deberá montarse y propulsarse de acuerdo con lo establecido en los puntos 2.1 y 2.2.
4.4. El impactador simulador de muslo y cadera se alinearé de modo que la línea central del sistema de propulsión y el eje longitudinal del impactador sean paralelos al plano vertical longitudinal del vehículo sometido a ensayo. El margen de tolerancia de estas indicaciones será de ± 2°. En el momento del primer contacto, la línea central del impactador coincidirá con la línea de referencia del borde delantero del capó, con un margen de tolerancia de ± 10 mm (véase la figura 3), y lateralmente con el punto de impacto elegido, también con un margen de tolerancia de ± 10 mm.

4.5. La velocidad y dirección del impacto, así como la masa del impactador simulador de muslo y cadera, se determinarán de acuerdo con lo establecido en los puntos 4.7 y 4.8. El margen de tolerancia con respecto a la velocidad del impacto será ± 2 % y con respecto a la dirección del impacto, ± 2°. Al calcular la velocidad de impacto a partir de las mediciones realizadas antes del primer contacto, se tendrá en cuenta el efecto de la gravedad. La masa del impactador simulador de muslo y cadera deberá medirse con una precisión superior a ± 1 % y, si el valor medido difiere del requerido, la diferencia se compensará ajustando la velocidad requerida, como se especifica en el punto 4.8.

4.6. Determinación de la forma del vehículo

4.6.1. La posición de la línea de referencia superior del parachoques se establecerá de acuerdo con las disposiciones de la parte I.

4.6.2. La línea de referencia del borde delantero del capó se establecerá de acuerdo con las disposiciones de la parte I.

4.6.3. Para el ensayo relativo al borde delantero del capó, la altura del mismo y el saliente del parachoques se establecerán de acuerdo con las disposiciones de la parte I.

4.7. Deberá determinarse la velocidad y la dirección de impacto (figuras 4 y 5) en relación con los valores de la altura del borde delantero del capó y del saliente del parachoques establecidos en el punto 4.6.3.

4.8. La masa total del impactador simulador de muslo y cadera incluirá los elementos de propulsión y de guía que formen parte integrante del mismo durante el impacto, incluidos los pesos añadidos.

La masa del impactador simulador de muslo y cadera se calculará mediante la fórmula:

\[
M = \frac{2E}{V^2}
\]

donde:

- \(M\) = Masa [kg]
- \(E\) = Energía del impacto [J]
- \(V\) = Velocidad [m/s]

La velocidad requerida será el valor obtenido con arreglo a las disposiciones del punto 4.7, y la energía se obtendrá conforme a la figura 6, con referencia a los valores de la altura del borde delantero del capó y del saliente del parachoques establecidos en el punto 4.6.3.

La masa del impactador simulador de muslo y cadera podrá ajustarse a partir del valor calculado hasta un ± 10 %, a condición de que la velocidad de impacto requerida también se modifique aplicando la fórmula indicada, para mantener la energía cinética del impactador.

4.9. Para obtener la masa del impactador simulador de muslo y cadera calculada de acuerdo con lo establecido en el punto 4.8 podrán añadirse los pesos necesarios a la parte trasera del elemento posterior del impactador o a los componentes del sistema de guía que formen parte integrante del impactador en el momento del impacto.

Figura 3

Ensayos de impacto del simulador de muslo y cadera contra el borde delantero del capó
Figura 4

Velocidad de los ensayos de impacto del simulador de muslo y cadera contra el borde delantero del capó en función de la forma del vehículo

Notas:
1. Interpolar horizontalmente entre curvas.
2. Con configuraciones por debajo de 5,56 m/s, realizar el ensayo a 5,56 m/s.
3. Con configuraciones por debajo de 11,1 m/s, realizar el ensayo a 11,1 m/s.
4. Los salientes de parachoques negativos se asimilarán a un saliente nulo.
5. Los salientes de parachoques superiores a 400 mm se asimilarán a salientes de 400 mm.
Figura 5

Ángulo del ensayo de impacto del simulador de muslo y cadera contra el borde delantero del capó en función de la forma del vehículo

Leyenda:
- A = saliente del parachoques de 0 mm
- B = saliente del parachoques de 50 mm
- C = saliente del parachoques de 150 mm

Notas:
1. Interpolar verticalmente entre curvas.
2. Los salientes de parachoques negativos se asimilarán a un saliente nulo.
3. Los salientes de parachoques superiores a 150 mm se asimilarán a salientes de 150 mm.
4. Toda altura de borde delantero del capó superior a 1 050 mm se asimilará a una altura de 1 050 mm.
Figura 6

Energía cinética de los ensayos de impacto del simulador de muslo y cadera contra el borde delantero del capó en función de la forma del vehículo

Leyenda:
- A = saliente del parachoques de 50 mm
- B = saliente del parachoques de 100 mm
- C = saliente del parachoques de 150 mm
- D = saliente del parachoques de 250 mm
- E = saliente del parachoques de 350 mm

Notas:
1. Interpolar verticalmente entre curvas.
2. Los salientes de parachoques superiores a 50 mm se asimilarán a salientes de 50 mm.
3. Toda altura de borde delantero del capó superior a 1 050 mm se asimilará a una altura de 1 050 mm.
4. Si se requiere una energía cinética superior a 700 J, se efectuará el ensayo a 700 J.
5. Si se requiere una energía cinética igual o inferior a 200 J, no es necesario realizar ensayos.
6. Los salientes de parachoques superiores a 350 mm se asimilarán a salientes de 350 mm.

CAPÍTULO V

Ensayos de impacto del simulador de cabeza de niño o adulto pequeño contra la parte superior del capó

1. Ámbito de aplicación

Este procedimiento de ensayo es aplicable a los requisitos establecidos en el punto 2.3 del anexo I del Reglamento (CE) nº 78/2009.
2. **Generalidades**

2.1. En el ensayo con la parte superior del capó, en el momento del impacto el impactador simulador de cabeza se encontrará en situación de «vuelo libre». El impactador se dejará en vuelo libre a suficiente distancia del vehículo para que, al rebotar, no entre en contacto con el sistema de propulsión e influya en los resultados del ensayo.

2.2. El impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. **Especificaciones del ensayo**

3.1. El objetivo de este ensayo es asegurarse del cumplimiento de los requisitos establecidos en el punto 2.3 del anexo I del Reglamento (CE) nº 78/2009.

3.2. Los ensayos con el impactador simulador de cabeza se realizarán contra la parte superior del capó. Se llevarán a cabo como mínimo 18 ensayos (seis con los tercios centrales y doce con los tercios laterales) de la parte superior del capó, en las posiciones consideradas más susceptibles de causar lesiones. Cuando existan variaciones de estructura en la zona evaluada, los ensayos se realizarán con distintos tipos de estructura.

Entre el mínimo de 18 ensayos que deben realizarse, al menos 12 deberán realizarse con el impactador simulador de cabeza en la «zona HPC1000» y un mínimo de seis en la «zona HPC2000», tal como se indica en el punto 3.2.1.

Los puntos de ensayo estarán situados de forma que el impactador no golpee primero de refilón en la parte superior del capó y rebote fuertemente contra el parabrisas o un montante.

Los puntos seleccionados para el ensayo con el impactador simulador de cabeza de niño o adulto pequeño deberán estar separados por una distancia mínima de 165 mm y estar situados entre las líneas de referencia lateral establecidas, a un mínimo de 82,5 mm de las mismas y a 82,5 mm como mínimo por delante de la línea de referencia trasera del capó.

Asimismo, cada punto seleccionado para el ensayo con el impactador simulador de cabeza de niño o adulto pequeño deberá encontrarse un mínimo de 165 mm por detrás de la línea de referencia delantera del borde del capó, a menos que ninguno de los puntos situados en la zona de ensayo del borde delantero del capó, dentro de una franja de 165 mm de ancho, en caso de ser escogido para un ensayo de impacto del simulador de muslo y cadera contra el borde delantero del capó, requiera una energía cinética de impacto superior a 200 J.

Estas distancias mínimas se medirán con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo. Si se seleccionan varias posiciones de ensayo y la zona de ensayo restante es demasiado pequeña para seleccionar otra posición de ensayo respetando la separación mínima entre los ensayos, el número de los mismos podrá ser inferior a 18. Los puntos ensayados por los laboratorios se indicarán en el informe de ensayo.

No obstante, los servicios técnicos responsables realizarán tantos ensayos como sea necesario para garantizar la conformidad del vehículo con los requisitos establecidos para el criterio de protección de la cabeza (HPC), a saber, 1 000 para la «zona HPC1000» y 2 000 para la «zona HPC2000», especialmente en los puntos próximos a los límites entre los dos tipos de zona.

3.2.1. **Delimitación de la «zona HPC1000» y de la «zona HPC2000»**. El constructor identificará las zonas de la parte superior del capó en las que el criterio de protección de la cabeza (HPC) no excederá de, respectivamente, 1 000 (zona HPC1000) y 2 000 (zona HPC2000), de acuerdo con los requisitos establecidos en el punto 2.3 del anexo I del Reglamento (CE) nº 78/2009 (véase la figura 7).
3.2.2. La delimitación de la zona de impacto de la parte superior del capó, así como de la «zona HPC1000» y de la «zona HPC2000» se basará en un dibujo del constructor visto desde un plano aéreo horizontal paralelo al plano horizontal cero del vehículo. El constructor indicará un número suficiente de coordenadas [x & y] para delimitar las zonas en el vehículo, teniendo en cuenta el perfil externo del mismo en la dirección [z].

3.2.3. La «zona HPC1000» y la «zona HPC2000» pueden constar de un número ilimitado de partes.

3.2.4. El cálculo de la superficie de la zona de impacto, de la «zona HPC1000» y de la «zona HPC2000» se basará en una proyección del capó visto desde un plano aéreo horizontal paralelo al plano horizontal cero del vehículo, sobre la base de los datos de un dibujo del constructor.

4. Procedimiento de ensayo

4.1. El estado del vehículo o del subsistema se ajustará a los requisitos establecidos en el capítulo I. La temperatura estable del dispositivo de ensayo y del vehículo o subsistema será de 20 °C ± 4 °C.

4.2. El impactador simulador de cabeza de niño o adulto pequeño que se utilizará para los fines del presente ensayo se ajustará a lo establecido en la parte V, sección 3.

4.3. El impactador deberá montarse, propulsarse y liberarse de acuerdo con lo establecido en los puntos 2.1 y 2.2.

4.4. Los ensayos realizados con la parte trasera del capó se realizarán sin que el impactador simulador de cabeza entre en contacto con el parabrisas o los montantes A antes de golpear el capó.

4.5. La dirección de impacto se situará en el plano longitudinal vertical del vehículo a través del punto de impacto. El margen de tolerancia de esta dirección será de ± 2°. La dirección de impacto de los ensayos realizados con la parte superior del capó será descendente y hacia la parte trasera, como si el vehículo se encontrase sobre el suelo. En los ensayos con impactador simulador de cabeza de niño o adulto pequeño, el ángulo de impacto será de 50° ± 2° respecto al nivel de referencia del suelo. Al calcular la velocidad de impacto a partir de las mediciones realizadas antes del primer contacto, deberá tenerse en cuenta el efecto de la fuerza de gravedad.

4.6. En el momento del primer contacto, el punto de contacto del impactador simulador de cabeza deberá encontrarse dentro de un margen de tolerancia de ± 10 mm respecto al punto de impacto elegido.

4.7. La velocidad de impacto del impactador simulador de cabeza al golpear la parte superior del capó será de 9,7 ± 0,2 m/s.

4.7.1. La velocidad del mismo se medirá en un punto durante el vuelo libre antes del impacto, conforme al método establecido en la norma ISO 3784:1976. La medición de la velocidad se hará con una precisión de ± 0,01 m/s. La velocidad medida se ajustará teniendo en cuenta todos los factores que puedan afectar al impactador entre el punto de medición y el punto de impacto, a fin de determinar la velocidad del impactador en el momento del impacto.

4.8. Se registrarán las resultantes aceleración-tiempo y se calculará el HIC. Se registrará el primer punto de contacto con la estructura frontal del vehículo. El registro de los resultados de los ensayos será conforme a la norma ISO 6487:2002.

CAPÍTULO VI
Ensayo de impacto del simulador de cabeza de adulto contra el parabrisas

1. Ámbito de aplicación

Este procedimiento de ensayo es aplicable a los requisitos establecidos en el punto 2.4 del anexo I del Reglamento (CE) nº 78/2009.

2. Generalidades

2.1. En el ensayo con la parte superior de las parabrisas, el impactador simulador de cabeza se encontrará en situación de «vuelo libre» en el momento del impacto. El impactador se dejará en vuelo libre a suficiente distancia del vehículo para que, al rebotar, no entre en contacto con el sistema de propulsión e influya en los resultados del ensayo.

2.2. El impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otra método que tenga los mismos resultados demostrables.
3. **Especificaciones del ensayo**

3.1. El objetivo de este ensayo es asegurarse del cumplimiento de los requisitos establecidos en el punto 2.4 del anexo I del Reglamento (CE) no 78/2009.

3.2. Los ensayos del impactador simulador de cabeza de adulto se realizarán contra el parabrisas. Se realizará un mínimo de cinco ensayos con el impactador simulador de cabeza en las posiciones consideradas más susceptibles de causar lesiones.

Los puntos seleccionados para el ensayo del impactador simulador de cabeza de adulto contra el parabrisas deberán estar separados por una distancia mínima de 165 mm, y situarse entre los límites del parabrisas, a un mínimo de 82,5 mm de los mismos, tal como se indica en la Directiva 77/649/CEE, y un mínimo de 82,5 mm por delante de la línea de referencia trasera del parabrisas (véase la figura 8).

Estas distancias mínimas se medirán con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo. Si se seleccionan varias posiciones de ensayo y la zona de ensayo restante es demasiado pequeña para seleccionar otra posición de ensayo respetando la separación mínima entre los ensayos, el número de estos podrá ser inferior a cinco. En el informe de ensayo se indicarán los puntos ensayados por los laboratorios.

4. **Procedimiento de ensayo**

4.1. El estado del vehículo o del subsistema se ajustará a los requisitos establecidos en el capítulo I. La temperatura estable del dispositivo de ensayo y del vehículo o subsistema será de 20 °C ± 4 °C.

4.2. El impactador simulador de cabeza de adulto que se utilizará para los fines del presente ensayo se ajustará a lo establecido en la parte V, sección 4.

4.3. El impactador simulador de cabeza deberá montarse, propulsarse y liberarse de acuerdo con lo establecido en los puntos 2.1 y 2.2.

4.4. La dirección de impacto se situará en un plano longitudinal vertical del vehículo que pase por el punto de impacto. El margen de tolerancia de esta dirección será de ± 2°. El ángulo de impacto será de 35° ± 2° en sentido descendente y hacia atrás respecto al nivel de referencia del suelo. Al calcular la velocidad de impacto a partir de las mediciones realizadas antes del primer contacto, deberá tenerse en cuenta el efecto de la fuerza de gravedad.

4.5. En el momento del primer contacto, el punto de primer punto de contacto del impactador simulador de cabeza deberá coincidir con el punto de impacto elegido, con un margen de tolerancia de ± 10 mm.

4.6. La velocidad de impacto del impactador simulador de cabeza al golpear el parabrisas será de 9,7 ± 0,2 m/s.

4.6.1. La velocidad del impactador simulador de cabeza se medirá en un punto durante el vuelo libre antes del impacto, conforme al método establecido en la norma ISO 3784:1976. La medición de la velocidad se hará con una precisión de ± 0,01 m/s. La velocidad medida se ajustará teniendo en cuenta todos los factores que puedan afectar al impactador entre el punto de medición y el punto de impacto, a fin de determinar la velocidad del impactador en el momento del impacto.

4.7. Se registrarán las resultantes aceleración-tiempo y se calculará el HIC. Se registrará el primer punto de contacto con la estructura frontal del vehículo. El registro de los resultados de los ensayos será conforme a la norma ISO 6487:2002.

Figura 8

Área de impacto del parabrisas
CAPÍTULO VII

Ensayo de impacto del simulador de cabeza de niño o adulto pequeño y de adulto contra la parte superior del capó

1. Ámbito de aplicación

Este procedimiento de ensayo es aplicable a los requisitos establecidos en los puntos 3.3 y 3.4 del anexo I del Reglamento (CE) n° 78/2009.

2. Generalidades

2.1. En el ensayo con la parte superior del capó el impactador simulador de cabeza se encontrará en situación de «vuelo libre» en el momento del impacto. Los impactadores se dejarán en vuelo libre a suficiente distancia del vehículo para que, al rebatir, no entren en contacto con el sistema de propulsión e influyan en los resultados del ensayo.

2.2. Los impactadores podrán propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. Especificaciones del ensayo

3.1. El objetivo de este ensayo es asegurarse del cumplimiento de los requisitos establecidos en los puntos 3.3 y 3.4 del anexo I del Reglamento (CE) n° 78/2009.

3.1.1. Se realizarán como mínimo nueve ensayos (tres con los tercios centrales y seis con los tercios exteriores de las zonas de ensayo) con cada impactador simulador de cabeza de niño o adulto pequeño o de adulto contra la correspondiente parte superior del capó, en las posiciones consideradas más susceptibles de causar lesiones. Los ensayos con la sección delantera de la parte superior del capó, definida en el punto 3.2, se realizarán con impactador simulador de cabeza de niño o adulto pequeño. Los ensayos con la sección posterior de la parte superior del capó, definida en el punto 3.3, se realizarán con impactador simulador de cabeza de adulto. Cuando existan variaciones de estructura en la zona evaluada, los ensayos se realizarán con distintos tipos de estructura, en las posiciones consideradas más susceptibles de causar lesiones.

3.2. Los puntos seleccionados para el ensayo con el impactador simulador de cabeza de niño o adulto pequeño deberán:

a) estar separados por una distancia mínima de 165 mm;

b) situarse entre las líneas de referencia lateral, a un mínimo de 82,5 mm de las mismas;

c) situarse a un mínimo de 82,5 mm por delante de la línea de referencia trasera del capó, o por delante de una distancia perimétrica de 1 700 mm, la que esté situada más adelante en el punto de ensayo seleccionado;

d) situarse a un mínimo de 82,5 mm por detrás de la línea de referencia del borde delantero del capó, o por detrás de una distancia perimétrica de 1 000 mm, la que esté situada más atrás en el punto de ensayo seleccionado.

3.3. Los puntos seleccionados para el ensayo con el impactador simulador de cabeza de adulto deberán:

a) estar separados por una distancia mínima de 165 mm;

b) situarse entre las líneas de referencia lateral, a un mínimo de 82,5 mm de las mismas;

c) situarse a un mínimo de 82,5 mm por delante de la línea de referencia trasera del capó, o por delante de una distancia perimétrica de 2 100 mm, la que esté situada más adelante en el punto de ensayo seleccionado;

d) situarse a un mínimo de 82,5 mm por detrás de la línea de referencia del borde delantero del capó, o por detrás de una distancia perimétrica de 1 700 mm, la que esté situada más atrás en el punto de ensayo seleccionado.

3.3.1. Los puntos de ensayo estarán situados de forma que el impactador no golpee primero de refilón en la parte superior del capó y rebote después con fuerza contra el parabrisas o un montante. Estas distancias mínimas se medirán con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo. Si se seleccionan varias posiciones de ensayo y la zona de ensayo restante es demasiado pequeña para seleccionar otra posición de ensayo respetando la separación mínima entre ensayos, el número de estos podrá ser inferior a nueve. En el informe de ensayo se indicarán los puntos ensayados por los laboratorios. No obstante, los servicios técnicos responsables realizarán tantos ensayos como sea necesario para garantizar la conformidad del vehículo con los valores límite de los criterios de protección de la cabeza (HPC), a saber, 1 000 para la zona de impacto HPC1000 y 1 700 para la zona de impacto HPC1700, especialmente en los puntos próximos a los límites entre los dos tipos de zona.
3.3.2. Identificación de las zonas de impacto HPC1000 y HPC1700. El constructor identificará las zonas de impacto de la parte superior del capó en las que el criterio de protección de la cabeza (HPC) no excederá de, respectivamente, 1 000 (zona HPC1000) y 1 700 (zona HPC1700), de acuerdo con los requisitos establecidos en el punto 3.5 del anexo I del Reglamento (CE) n° 78/2009.

Figura 9
Determinación de las zonas HPC1000 y HPC1700

3.3.3. La delimitación de la zona de impacto de la parte superior del capó, así como de las zonas de impacto HPC1000 y HPC1700 se basará en un dibujo del constructor visto desde un plano aéreo horizontal paralelo al plano en el que se encuentra el vehículo. El constructor indicará un número suficiente de coordenadas «x» e «y» para delimitar las zonas en el vehículo, teniendo en cuenta el perfil externo del mismo en la dirección «z». La «zona HPC1000» y la «zona HPC1700» pueden constar cada una de un número ilimitado de partes. El cálculo de la superficie de la zona de impacto y de las zonas de impacto HPC1000 y HPC1700 se basará en una proyección del capó visto desde un plano horizontal paralelo al plano horizontal cero aéreo del vehículo, sobre la base de los datos de un dibujo del constructor.

4. Procedimiento de ensayo

4.1. El estado del vehículo o del subsistema se ajustará a los requisitos establecidos en el capítulo I. La temperatura estable del dispositivo de ensayo y del vehículo o subsistema será de 20 °C ± 4 °C.

4.2. Los impactadores simuladores de cabeza de niño o adulto pequeño y de adulto que se utilizarán para los fines del presente ensayo se ajustarán a lo establecido en la parte V, secciones 3 y 4.

4.3. Los impactadores deberán montarse, propulsarse y liberarse de acuerdo con lo establecido en los puntos 2.1 y 2.2.

4.4. Los ensayos realizados contra la parte trasera de la parte superior del capó se realizarán sin que el impactador simulador de cabeza entre en contacto con el parabrisas o los montantes A antes de golpear la parte superior del capó.

4.4.1. La dirección de impacto se situará en un plano longitudinal vertical del vehículo que pase por el punto de impacto. El margen de tolerancia de esta dirección será de ± 2°. La dirección de impacto de los ensayos realizados con la parte superior del capó será descendente y hacia la parte trasera, como si el vehículo se encontrase sobre el suelo. En los ensayos con impactador simulador de cabeza de niño, el ángulo de impacto será de 50° ± 2° respecto al nivel de referencia del suelo. En los ensayos con impactador simulador de cabeza de adulto, el ángulo de impacto será de 65° ± 2° respecto al nivel de referencia del suelo. Al calcular el ángulo de impacto a partir de las mediciones realizadas antes del primer contacto, deberá tenerse en cuenta el efecto de la fuerza de gravedad.

4.5. En el momento del primer contacto, el punto de contacto del impactador simulador de cabeza deberá estar dentro de un margen de tolerancia de ± 10 mm respecto al punto de impacto elegido.

4.6. La velocidad de impacto de los impactadores simuladores de cabeza al golpear la parte superior del capó será de 9,7 ± 0,2 m/s.

4.6.1. La velocidad del impactador simulador de cabeza se medirá en un punto durante el vuelo libre antes del impacto, conforme al método establecido en la norma ISO 3784:1976. La medición de la velocidad se hará con una precisión de ± 0,01 m/s. La velocidad medida se ajustará teniendo en cuenta todos los factores que puedan afectar al impactador entre el punto de medición y el punto de impacto, a fin de determinar la velocidad del impactador en el momento del impacto.
4.7. Se registrarán las resultantes aceleración-tiempo y se calculará el HIC. Se registrará el primer punto de contacto con la estructura frontal del vehículo. El registro de los resultados de los ensayos será conforme a la norma ISO 6487:2002.

PARTE III

ESPECIFICACIONES DE LOS SISTEMAS DE ASISTENCIA EN LA FRENADA

1. Generalidades

El objetivo de esta parte es asegurar el cumplimiento de los requisitos de ensayo para la verificación de los sistemas de asistencia en la frenada, como dispone el anexo I, sección 4, del Reglamento (CE) nº 78/2009.

1.1. Características de funcionamiento de los sistemas de asistencia en la frenada de categoría «A»

Si se detecta una fuerza relativamente elevada sobre el pedal como consecuencia de una situación de emergencia, la fuerza adicional del pedal para activar completamente el sistema antibloqueo de frenos (ABS) se reducirá en comparación con la fuerza sobre el pedal necesaria si el sistema ABS no se activa.

El cumplimiento de este requisito está sujeto al cumplimiento de las disposiciones de los puntos 7.1 a 7.3.

1.2. Características de funcionamiento de los sistemas de asistencia en la frenada de categoría «B» y categoría «C».

Si se detecta una situación de emergencia a consecuencia, por lo menos, de una manipulación brusca del pedal del freno, el sistema de asistencia en la frenada incrementará la presión para proporcionar el coeficiente máximo de frenado o para activar completamente el sistema antibloqueo de frenos (ABS).

El requisito establecido en el presente punto está sujeto al cumplimiento de las disposiciones de los puntos 8.1 a 8.3.

2. A efectos de la presente parte se entenderá por:

2.1. Sistema de asistencia en la frenada de categoría «A»: dispositivo que detecta una situación de frenada de emergencia sobre la base de la fuerza que el conductor aplica sobre el pedal del freno.

2.2. Sistema de asistencia en la frenada de categoría «B»: dispositivo que detecta una situación de frenada de emergencia sobre la base de la velocidad a la que el conductor utiliza el pedal de freno.

2.3. Sistema de asistencia en la frenada de categoría «C»: dispositivo que detecta una situación de frenada de emergencia sobre la base de varios criterios, uno de los cuales será el coeficiente de uso del pedal del freno.

3. Requisitos

Al realizar los ensayos especificados en la presente parte se medirán las siguientes variables:

3.1. Fuerza ejercida sobre el pedal de freno, \(F_p \), aplicada en el centro de la palanca del pedal del freno, a lo largo de una curva tangencial al pivote del pedal del freno.

3.2. Velocidad longitudinal del vehículo, \(v_x \).

3.3. Aceleración longitudinal del vehículo, \(a_x \).

3.4. Temperatura del freno, \(T_d \), medida en la superficie del recorrido de frenado del disco o tambor de los frenos delanteros.

3.5. Presión de freno, \(P \), si es aplicable.

3.6. Carrera del pedal de freno, \(S_p \), medida en el centro de la palanca del pedal o desde una posición en el mecanismo del pedal con un desplazamiento proporcional al desplazamiento desde el centro de la palanca del pedal, permitiendo un calibrado simple de la medición.
4. **Mediciones**

4.1. Las variables enumeradas en la sección 3 se medirán mediante los transductores adecuados. En la norma ISO 15037-1:2006 se describen la precisión, los rangos de funcionamiento, las técnicas de filtrado, el tratamiento de datos y otros requisitos.

4.2. La precisión de las mediciones de la fuerza sobre el pedal y la temperatura del disco serán las indicadas a continuación:

<table>
<thead>
<tr>
<th>Medición</th>
<th>Rango de funcionamiento típico de los transductores</th>
<th>Máximos errores de registro recomendados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuerza sobre el pedal</td>
<td>0 a 2 000 N</td>
<td>± 10 N</td>
</tr>
<tr>
<td>Temperatura del disco de freno</td>
<td>0-1 000 °C</td>
<td>± 5 °C</td>
</tr>
<tr>
<td>Presión de freno (*)</td>
<td>0-20 MPa (*)</td>
<td>± 100 kPa (*)</td>
</tr>
</tbody>
</table>

(*) Aplicable según se especifica en el punto 7.2.5.

4.2.1. Se requiere una frecuencia de muestreo para la recopilación de datos de 500 Hz como mínimo.

4.2.2. El apéndice 2 de la presente parte contiene información más detallada sobre el tratamiento digital y analógico de los datos relativos a los procedimientos de ensayo del sistema de asistencia en la frenada.

4.2.3. Podrán permitirse métodos de medición alternativos siempre que se demuestre que tienen un nivel de precisión al menos equivalente a los mencionados.

5. **Condiciones del ensayo**

5.1. Condición de carga del vehículo de ensayo

El vehículo deberá encontrarse sin carga. Podrá haber, además del conductor, una segunda persona sentada en el asiento delantero, encargada de tomar nota de los resultados de los ensayos.

6. **Método de ensayo**

6.1. Para realizar los ensayos descritos en las secciones 7 y 8, la velocidad de arranque será de 100 ± 2 km/h. El vehículo se conducirá en línea recta a la velocidad de ensayo.

6.2. Antes de los ensayos, la temperatura media de los frenos delanteros, que se medirá de conformidad con el punto 3.4 y se registrará antes de cada ensayo, deberá estar entre los 65 °C y los 100 °C.

6.3. Los ensayos de frenado se realizarán en una pista de ensayo asfaltada y seca, de conformidad con la norma ISO 15037-1:1998.

6.4. A efectos de los ensayos, el tiempo de referencia, \(t_0 \), se define como el momento en el que la fuerza del pedal del freno alcanza los 20 N.

Nota:

En los vehículos provistos de un sistema de frenado asistido por una fuente de energía, la fuerza aplicada sobre el pedal depende necesariamente del nivel de energía existente en el dispositivo de acumulación de energía. Por tanto, al principio del ensayo se asegurará un nivel de energía suficiente.

7. **Evaluación de la presencia de un sistema de asistencia en la frenada de categoría <A>**

Los sistemas de asistencia en la frenada de categoría <A> se ajustarán a los requisitos establecidos en las secciones 7.1 y 7.2.

7.1. **Ensayo 1: ensayo de referencia para determinar \(F_{ABS} \) y \(a_{ABS} \)**

7.1.1. Los valores de referencia \(F_{ABS} \) y \(a_{ABS} \) se determinarán de acuerdo con el procedimiento descrito en el apéndice 1.
7.2. **Ensayo 2: activación del sistema de asistencia en la frenada**

7.2.1. Cuando se haya detectado una situación de frenado de emergencia, los sistemas sensibles a la fuerza sobre el pedal permitirán un incremento significativo del ratio entre:

- la presión del circuito de frenado y la fuerza sobre el pedal del freno, en la medida que lo permitan las disposiciones del punto 7.2.5, o
- la deceleración del vehículo y la fuerza sobre el pedal del freno.

7.2.2. Los requisitos de funcionamiento de los sistemas de asistencia en la frenada de categoría «A» se cumplen si se puede determinar una característica específica de frenado en la que la fuerza sobre el pedal requerida experimente un descenso de entre el 40 % y el 80 % para \(F_{ABS} - F_{T}\) en comparación con \(F_{ABS,\text{extrapolada}} - F_{T}\).

7.2.3. \(F_{T}\) y \(a_{T}\) son, respectivamente, el límite de fuerza y el límite de deceleración, tal como muestra la figura 1. Los valores de \(F_{T}\) y \(a_{T}\) se suministrarán al servicio técnico al presentar la solicitud de homologación. El valor de \(a_{T}\) se encontrará entre 3,5 m/s\(^2\) y 5,0 m/s\(^2\).

7.2.4. Se marcará una línea recta que, desde el origen, pase por el punto \(F_{T}, a_{T}\) (como muestra la figura 1a). El valor «\(F\)» relativo a la fuerza sobre el pedal del freno, en el punto de intersección entre esta línea y una línea horizontal expresada como \(a = a_{ABS}\), se definirá como \(F_{ABS,\text{extrapolada}}\):

\[
F_{ABS,\text{extrapolada}} = \frac{F_{T} \times a_{ABS}}{a_{T}}
\]

7.2.5. En el caso de los vehículos de categoría N\(_1\) y un peso bruto de más de 2 500 kg, o de categoría M\(_1\) derivados de los anteriores, el fabricante puede optar por basar los valores \(F_{T}, F_{ABS,\text{min}}, F_{ABS,\text{max}}\) y \(F_{ABS,\text{extrapolada}}\), relativos a la fuerza ejercida sobre el pedal del freno en la reacción a la presión del circuito de frenado, en vez de basarlos en la deceleración del vehículo. Esta característica se medirá al aumentar la fuerza sobre el pedal del freno.

7.2.5.1. La presión a la que se activará el ABS se determinará mediante cinco ensayos a 100 ± 2 km/h en los que se pisará el pedal del freno hasta que se active el ABS; las cinco presiones a las que esto ocurre, determinadas a partir de la presión en la rueda delantera, se registrarán y el valor medio obtenido se designará como \(p_{abs}\).

7.2.5.2. El umbral de presión \(P_{T}\) viene determinado por el fabricante y corresponde a una deceleración del orden de 2,5 a 4,5 m/s\(^2\).

7.2.5.3. La figura 1b se construirá de acuerdo con las disposiciones del punto 7.2.4, pero utilizando las mediciones de la presión de funcionamiento para definir los parámetros enumerados en el punto 7.2.5, donde:

\[
F_{ABS,\text{extrapolada}} = \frac{F_{T} \times P_{ABS}}{P_{T}}
\]

Figura 1a

Valor de la fuerza sobre el pedal necesario para alcanzar una deceleración máxima con un sistema de asistencia en la frenada de categoría «A».
7.3. Evaluación de los datos

La presencia de un sistema de asistencia en la frenada de categoría «A» queda probada si

\[F_{ABS,\text{min}} \leq F_{ABS} \leq F_{ABS,\text{max}} \]

donde

\[F_{ABS,\text{max}} - F_T \leq (F_{ABS,\text{extrapolada}} - F_T) \times 0.6 \]

y

\[F_{ABS,\text{min}} - F_T \leq (F_{ABS,\text{extrapolada}} - F_T) \times 0.2 \]

8. Evaluación de la presencia de un sistema de asistencia en la frenada de categoría «B»

Los sistemas de asistencia en la frenada de categoría «B» se ajustarán a los requisitos establecidos en las secciones 8.1 y 8.2.

8.1. Ensayo 1: ensayo de referencia para determinar \(F_{ABS} \) y \(a_{ABS} \).

8.1.1. Los valores de referencia \(F_{ABS} \) y \(a_{ABS} \) se determinarán de acuerdo con el procedimiento descrito en el apéndice 1.

8.2. Ensayo 2: activación del sistema de asistencia en la frenada

8.2.1. El vehículo se conducirá en línea recta a la velocidad de ensayo establecida en el punto 6.1. El conductor activará bruscamente el pedal del freno de conformidad con la figura 2, simulando una situación de frenado de emergencia a fin de que el sistema de asistencia en la frenada se active y el ABS funcione plenamente.

8.2.2. Para activar el sistema de asistencia en la frenada es preciso pisar el pedal del freno siguiendo las instrucciones del fabricante del vehículo. Este notificará al servicio técnico los valores de entrada del pedal del freno requeridos al presentar la solicitud de homologación. Es preciso demostrar, a satisfacción del servicio técnico, que, en las condiciones específicas por el fabricante, el sistema de asistencia en la frenada se activa como sigue:

8.2.2.1. En los sistemas de categoría B, mediante la definición de la velocidad del pedal del freno que deberá alcanzarse para que se active el sistema de asistencia en la frenada (por ejemplo, una velocidad de carrera del pedal de 9 mm/s durante un intervalo de tiempo determinado).

8.2.2.2. En los sistemas de categoría C, mediante la definición de las variables de entrada que influyen en la activación del sistema de asistencia en la frenada y la relación entre las mismas, así como la fuerza sobre el pedal necesaria para activar el sistema de asistencia en la frenada en los ensayos descritos en la presente parte.
8.2.3. Después de $t = t_0 + 0.8 \, \text{s}$ y hasta que la velocidad del vehículo se haya reducido a 15 km/h, deberá mantenerse la fuerza sobre el pedal del freno en un intervalo situado entre $F_{\text{ABS, superior}}$ y $F_{\text{ABS, inferior}}$. El valor de $F_{\text{ABS, superior}}$ será de $0.7 \times F_{\text{ABS}}$ y el de $F_{\text{ABS, inferior}}$ de $0.5 \times F_{\text{ABS}}$.

8.2.4. Se considera que también se cumplen los requisitos si después de $t = t_0 + 0.8 \, \text{s}$ la fuerza sobre el pedal se sitúa por debajo de $F_{\text{ABS, inferior}}$, siempre que se cumpla el requisito del punto 8.3.

8.3. Evaluación de los datos

8.3.1. La presencia de un sistema de asistencia en la frenada de categoría «B» queda probada si se mantiene una deceleración media de al menos $0.85 \times a_{\text{ABS}}$ desde el momento en que $t = t_0 + 0.8 \, \text{s}$ hasta el momento en que la velocidad del vehículo se ha reducido a 15 km/h.

Figura 2

Ejemplo de ensayo 2 de un sistema de asistencia en la frenada de categoría «B»

9. Evaluación de la presencia de un sistema de asistencia en la frenada de categoría «C»

9.1. Los sistemas de asistencia en la frenada de categoría «C» se ajustarán a los requisitos establecidos en los puntos 8.2 y 8.3.

9.2. Evaluación de los datos

Los sistemas de asistencia en la frenada de categoría «C» se ajustarán a los requisitos del punto 8.3.
Apéndice I

Método de determinación de F_{ABS} y a_{ABS}

1. La fuerza sobre el pedal F_{ABS} es la fuerza mínima sobre el pedal que debe aplicarse en un vehículo determinado a fin de alcanzar la máxima deceleración que indique que el ABS funciona plenamente. El valor a_{ABS} designa la deceleración de un vehículo determinado durante la deceleración ABS definida en el punto 7.

2. El pedal del freno se debe accionar suavemente (sin activar el sistema de asistencia en la frenada en el caso de los dispositivos de categoría B o C) de forma que la deceleración aumente constantemente hasta que el ABS funcione plenamente (véase la figura 3).

3. La deceleración plena se alcanzará en un intervalo de tiempo de $2,0 \pm 0,5$ s. La curva de deceleración registrada en función del tiempo se situará en un intervalo de $\pm 0,5$ s alrededor de la línea central del intervalo de la curva de deceleración. El ejemplo de la figura 3 se origina en la intersección entre el tiempo t_0 y la línea a_{ABS} a dos segundos. Cuando se haya alcanzado la plena deceleración, la carrera del pedal S_p no disminuirá durante, al menos, un segundo. El tiempo de activación plena del sistema ABS se define como el momento en el que se alcanza la fuerza sobre el pedal F_{ABS}. La medición se realizará en el intervalo correspondiente a las variaciones en el incremento de deceleración (véase la figura 3).

4. Se llevarán a cabo 5 ensayos conforme a los requisitos del punto 3. En cada uno de estos ensayos válidos, la deceleración del vehículo se representará gráficamente como una función de la fuerza registrada sobre el pedal del freno. Para realizar los cálculos descritos más adelante solo se tendrán en cuenta los datos registrados a velocidades superiores a los 15 km/h.

5. Para determinar a_{ABS} y F_{ABS} se aplicará un filtro de paso bajo de 2 Hz tanto para la deceleración del vehículo como para la fuerza sobre el pedal.

6. La deceleración media se calculará a partir de los valores de las cinco curvas individuales de «deceleración en función de la fuerza sobre el pedal del freno» con incrementos de 1 N. La curva así obtenida representará la deceleración media en función de la fuerza sobre el pedal del freno, designada en el presente apéndice como «curva maF».

7. El valor máximo de deceleración del vehículo se determina a partir de la «curva maF» y se denomina «a_{max}».

8. Todos los valores de la «curva maF» por encima del 90 % de este valor de deceleración «a_{max}» se promedian. Este valor de «a» representa la deceleración a_{ABS} mencionada en la presente parte.

9. La fuerza mínima sobre el pedal ($F_{ABS, \text{min}}$) suficiente para alcanzar la deceleración a_{ABS} calculada en el punto 7 se define como el valor F correspondiente a $a = a_{ABS}$ en la curva maF.
Apéndice II

Tratamiento de los datos de los sistemas de asistencia en la frenada

1. Tratamiento analógico de los datos

El ancho de banda de todo el sistema combinado de transductor y registrador no será superior a 30 Hz.

Para poder llevar a cabo el filtrado de señales necesario, se utilizarán filtros de paso bajo de cuarto orden o superior. El ancho de la banda de paso (de 0 Hz a una frecuencia de $f_a - 3 \text{ dB}$) no será inferior a 30 Hz. Los errores de amplitud serán inferiores a un ± 0,5 % en la gama de frecuencias pertinente entre 0 Hz y 30 Hz. Todas las señales analógicas se procesarán con filtros cuyas características de fase sean suficientemente parecidas para garantizar que los retardos debidos al filtrado no excedan los límites de precisión requeridos para la medición del tiempo.

Nota:

Durante el filtrado analógico de señales con contenidos de frecuencias diferentes se pueden producir desplazamientos de fase. Por tanto, es preferible utilizar un método de tratamiento de datos conforme a lo establecido en la sección 2.

2. Tratamiento digital de los datos

2.1. Consideraciones generales

La preparación de las señales analógicas incluye consideraciones relativas a la atenuación de la amplitud del filtro y a la frecuencia de muestreo para evitar errores de solape, así como desfases y retardos debidos al filtrado. Los parámetros de muestreo y digitalización incluyen un amplificado de las señales previo al muestreo a fin de reducir al mínimo los errores de digitalización; el número de bits por muestra; el número de muestras por ciclo; amplificadores para el muestreo y la retención de señales y un espaciamiento temporal adecuado de las muestras. Entre los parámetros adicionales para un filtrado digital sin fases se encuentra la selección de bandas de paso y bandas recortadas y la atenuación y ondulación admisible de cada una de ellas, así como la corrección de los desfases debidos al filtrado. Se tendrá en cuenta cada uno de estos factores a fin de lograr una precisión global relativa de ± 0,5 % en la adquisición de los datos.

2.2. Errores de solape

Con objeto de evitar errores de solape imposibles de corregir, las señales analógicas deben filtrarse de forma adecuada antes del muestreo y la digitalización. El orden de los filtros utilizados, así como su banda de paso, se elegirán en función tanto del aplanamiento en la gama de frecuencias pertinente como de la frecuencia de muestreo requeridos.

Las características de filtrado y la frecuencia de muestreo mínimas deberán cumplir los siguientes requisitos:

a) en la gama de frecuencias pertinente de 0 Hz a $f_{max} = 30 \text{ Hz}$, la atenuación será inferior a la resolución del sistema de adquisición de datos, y

b) a una frecuencia equivalente a la mitad de la frecuencia de muestreo (es decir, la frecuencia Nyquist o frecuencia de «solape») se reducirán las magnitudes de todos los componentes de frecuencia de la señal y el ruido hasta valores inferiores a los de la resolución del sistema.

Para una resolución de 0,05 %, la atenuación del filtro será inferior al 0,05 % en la gama de frecuencias entre 0 y 30 Hz, y superior al 99,95 % en todas las frecuencias superiores a la mitad de la frecuencia de muestreo.

Nota:

La atenuación para un filtro Butterworth se determina por la siguiente fórmula:

$$A^2 = \frac{1}{1 + \left(\frac{f_{max}}{f_a}\right)^{2n}}$$

y

$$A^2 = \frac{1}{1 + \left(\frac{f_H}{f_a}\right)^{2n}}$$
donde:

- n: representa el orden del filtro;
- f_{max}: representa la gama de frecuencias pertinente (30 Hz);
- f_0: representa la frecuencia de corte del filtro
- f_N: representa la frecuencia de Nyquist o frecuencia de «solape».

Con respecto a un filtro de cuarto orden

Si $A = 0,9995$:

$$f_0 = 2,37 \times f_{\text{max}}$$

Si $A = 0,0005$:

$$f_{\text{S}} = 2 \times (6,69 \times f_0), \text{ donde } f_{\text{S}}, \text{ representa la una frecuencia de muestreo } = 2 \times f_N.$$

2.3. Desfases y retardos para un filtrado sin solapes

Se evitará el filtrado analógico excesivo y todos los filtros presentarán características de fase suficientemente similares para asegurar que los retardos debidos al filtrado no excedan los límites de precisión requeridos para la medición del tiempo. Los desfases son especialmente significativos si se multiplican entre sí las variables medidas para formar nuevas variables, ya que, al multiplicar las amplitudes, aumentan también los desfases y los retardos asociados. Los desfases y los retardos se reducen al aumentar el valor de f_0. Si las ecuaciones que describen los filtros de premuestreo son conocidas, resulta práctico suprimir los desfases y retardos de las mismas aplicando algoritmos simples en el dominio de la frecuencia.

Nota:

En la gama de frecuencias en las que las características de amplitud del filtro permanecen planas, el desfase Φ de un filtro Butterworth se calculará por medio de las siguientes ecuaciones:

- $\Phi = 81 \times (f/f_0)$ grados para un filtro de segundo orden
- $\Phi = 150 \times (f/f_0)$ grados para un filtro de cuarto orden
- $\Phi = 294 \times (f/f_0)$ grados para un filtro de octavo orden

El retardo para todos los filtros, independientemente de su orden será: $t = (\Phi/360) \times (1/f_0)$.

2.4. Muestreo y digitalización de los datos

A 30 Hz, la amplitud de la señal puede sufrir variaciones de, como máximo, un 18 % por milésima de segundo. Para reducir hasta un 0,1 % los errores dinámicos debidos a los cambios en las señales analógicas de entrada, el tiempo de muestreo o de digitalización será inferior a 32 μs. Todos los pares o conjuntos de datos de muestreo que deben compararse se recopilarán simultáneamente o en un periodo de tiempo suficientemente corto.

2.5. Requisitos de sistema

El sistema de datos tendrá una resolución de 12 bits (± 0,05 %) como mínimo, y una precisión de 2 LSB (± 0,1 %). Los filtros antisolape serán de cuarto orden o superiores y el intervalo de datos pertinente f_{max} estará comprendido entre 0 y 30 Hz.

Para los filtros de cuarto orden, la frecuencia de la banda de paso f_0 (entre 0 Hz y la frecuencia f_0) será superior a $2,37 \times f_{\text{max}}$ si posteriormente se ajustan los errores de fase durante el tratamiento digital de los datos; en caso contrario, será superior a $5 \times f_{\text{max}}$. La frecuencia de muestreo f_S para los filtros de cuarto orden será superior a $13,4 \times f_0$.
PARTE IV

ESPECIFICACIONES DE ENSAYO DE LOS SISTEMAS DE PROTECCIÓN DELANTERA

CAPÍTULO I

Condiciones generales aplicables

1. Sistema de protección delantera como equipamiento original montado en un vehículo.

1.1. El sistema de protección delantera montado en el vehículo reunirá las condiciones establecidas en el anexo I, sección 6, del Reglamento (CE) n° 78/2009.

1.2. El vehículo estará en disposición normal de circulación y montado de forma segura sobre soportes elevados o parado en una superficie plana con el freno de mano echado. El vehículo estará equipado con el sistema de protección delantera que vaya a someterse a ensayo. Deberán seguirse las instrucciones de montaje del sistema de protección delantera del fabricante, que incluirán los pares de apriete de todas las fijaciones.

1.3. Todos los dispositivos concebidos para proteger a los peatones y otros usuarios vulnerables de la vía pública deberán estar correctamente activados antes de realizarse el ensayo correspondiente, o estar en funcionamiento durante el mismo. El solicitante deberá demostrar que los dispositivos funcionarán como está previsto en el caso de que el vehículo golpee a un peatón u otro usuario vulnerable de la vía pública.

1.4. Los componentes del vehículo que puedan cambiar de forma o posición, por ejemplo los faros escamoteables, y que no sean dispositivos para proteger a los peatones y otros usuarios de la vía pública, se dispondrán en la forma o posición que los servicios técnicos consideren más adecuada para la realización del ensayo.

2. Sistema de protección delantera como unidad técnica independiente

2.1. Si únicamente se suministra el sistema de protección delantera para los ensayos, las condiciones establecidas en el anexo I, sección 6, del Reglamento (CE) n° 78/2009 deberán cumplirse cuando dicho sistema se monte en el tipo de vehículo con el que esté relacionada la homologación de tipo de la unidad técnica independiente.

2.2. El ensayo podrá realizarse con el sistema de protección delantera montado en un vehículo del tipo al que esté destinado o bien en un marco de ensayo que represente fielmente las dimensiones esenciales del extremo frontal externo del tipo de vehículo previsto. Si se utiliza un marco de ensayo y el sistema de protección delantera entra en contacto con él durante el ensayo, este deberá repetirse con el sistema de protección delantera montado en el tipo de vehículo real al que esté destinado. Cuando los ensayos se realicen con el sistema de protección delantera montado en un vehículo, serán aplicables las condiciones de la sección 1.

3. Información que debe proporcionarse

3.1. Todos los sistemas de protección delantera, tanto si forman parte de la homologación de un vehículo equipado con sistema de protección delantera como si deben homologarse como unidad técnica independiente, irán acompañados de información relativa al vehículo o vehículos para los cuales se han homologado.

3.2. Todos los sistemas de protección delantera homologados como unidades técnicas independientes irán acompañados de unas instrucciones de montaje detalladas con información suficiente para que una persona capacitada pueda instalarlos en el vehículo adecuadamente. Las instrucciones estarán redactadas en el idioma o idiomas del Estado miembro en el que vaya a comercializarse el sistema de protección delantera.
CAPÍTULO II

Ensayo de impacto del simulador de pierna contra el sistema de protección delantera

1. Ámbito de aplicación

Este procedimiento de ensayo es aplicable a los requisitos establecidos en el anexo I, punto 5.1.1, del Reglamento (CE) n° 78/2009.

2. Generalidades

2.1. En el momento del impacto, el impactador simulador de pierna para los ensayos del sistema de protección delantera se encontrará en situación «de vuelo libre». El impactador se dejará en vuelo libre a suficiente distancia del vehículo para que, al rebotar, no entre en contacto con el sistema de propulsión e influya en los resultados del ensayo.

2.2. En todos los casos, el impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. Especificaciones del ensayo

3.1. Deberán realizarse como mínimo tres ensayos de impacto del simulador de pierna contra el sistema de protección delantera en puntos de ensayo situados entre las líneas de referencia superior e inferior del sistema de protección delantera. Los puntos de ensayo deberán situarse en las posiciones que la autoridad en materia de ensayos considere con más probabilidades de causar lesiones. Cuando existan variaciones de estructura en la zona evaluada, los ensayos se realizarán en los distintos tipos de estructura. En el informe de ensayo se indicarán los puntos sometidos a ensayo por los servicios técnicos.

3.2. Los requisitos de este ensayo se aplicarán a los vehículos con una línea de referencia inferior del sistema de protección delantera situada a menos de 425 mm de altura.

A discreción del fabricante, en los vehículos con una línea de referencia inferior del sistema de protección delantera situada a una altura de 425 mm o más, pero de menos de 500 mm, se podrán aplicar los requisitos establecidos en el capítulo III.

Los requisitos establecidos en el capítulo III serán aplicables a los vehículos con una línea de referencia inferior del sistema de protección delantera situada a una altura de 500 mm o más.

4. Procedimiento de ensayo

4.1. El estado del vehículo o el subsistema se ajustará a los requisitos del capítulo I.

4.1.1. El impactador para el ensayo o, al menos, la espuma de la masa muscular, se mantendrá durante un período de al menos cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada del 35 % ± 15 % y una temperatura estabilizada de 20 ± 4 °C antes de la retirada del impactador para el ensayo. Una vez se haya retirado de la zona de almacenamiento, el impactador no se someterá a condiciones distintas de las existentes en la zona de ensayo.

4.1.2. Cada ensayo deberá completarse en un plazo de dos horas a partir del momento de la retirada del impactador que se vaya a utilizar.

4.2. El impactador simulador de pierna se describe en la parte V, sección 1.

4.3. El impactador deberá montarse y propulsarse de acuerdo con lo establecido en los puntos 2.1 y 2.2.

4.4. La dirección del impacto se situará en el plano horizontal y será paralela al plano vertical longitudinal del sistema de protección delantera, tal como este esté montado en el vehículo o el marco de ensayo. El margen de tolerancia aplicable a la dirección del vector de velocidad en el plano horizontal y el plano longitudinal deberá ser de ± 2° al producirse el primer contacto.

4.5. El eje del impactador será perpendicular al plano horizontal, con un margen de tolerancia de ± 2° en los planos lateral y longitudinal. Los planos horizontal, longitudinal y lateral serán ortogonales entre sí (véase la figura 2).

4.6. Al producirse el primer contacto con el sistema de protección delantera, la base del impactador deberá estar 25 mm por encima del nivel de referencia del suelo (véase la figura 1), con un margen de tolerancia de ± 10 mm.

Al fijar la altura del sistema de propulsión, deberá preverse un margen para el efecto de la fuerza de gravedad durante el período de vuelo libre del impactador.
4.7. Al producirse el primer contacto, el impactador estará orientado sobre su eje vertical de forma que la articulación de rodilla funcione correctamente, con un margen de tolerancia de ± 5°.

4.8. En el momento del primer contacto, el eje central del impactador deberá coincidir con la posición de impacto elegida, con un margen de tolerancia de ± 10 mm.

4.9. Durante el contacto entre el impactador y el sistema de protección delantera, el primero no deberá tocar el suelo ni objeto alguno que no forme parte del sistema de protección delantera o del vehículo.

4.10. La velocidad de impacto del impactador al golpear el sistema de protección delantera será de 11,1 ± 0,2 m/s. Al calcular la velocidad de impacto a partir de las mediciones realizadas antes del primer contacto, deberá tenerse en cuenta el efecto de la fuerza de gravedad.

Figura 1

Ensaios de impacto del simulador de pierna contra el sistema de protección delantera con un vehículo completo en disposición normal de circulación (izquierda), con un vehículo completo sobre soportes (centro) o con una unidad técnica independiente montada en un marco de ensayo (derecha) (como alternativa a la unidad técnica independiente montada en un vehículo)

Figura 2

Márgenes de tolerancia de los ángulos para el impactador simulador de pierna en el momento del primer impacto
CAPÍTULO III

Ensayo de impacto del simulador de muslo y cadera contra el sistema de protección delantera

1. Ámbito de aplicación

1.1. Este procedimiento de ensayo es aplicable a los requisitos establecidos en el anexo I, punto 5.1.2, del Reglamento (CE) nº 78/2009.

2. Generalidades

2.1. El impactador simulador de muslo y cadera para los ensayos contra el sistema de protección delantera se montará en el sistema de propulsión mediante una junta limitadora de la torsión que evite que el sistema de guía resulte dañado por la aplicación de cargas pesadas fuera de eje. El sistema de guía irá equipado con guías de baja fricción, insensibles a las cargas fuera de eje, que, cuando el impactador entre en contacto con el sistema de protección delantera, solo le permitan moverse en la dirección de impacto especificada. Las guías deberán evitar movimientos en otras direcciones, incluida la rotación sobre cualquier otro eje.

2.2. El impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. Especificaciones del ensayo

3.1. Deberán realizarse como mínimo tres ensayos de impacto del simulador de muslo y cadera contra el sistema de protección delantera en puntos de ensayo situados entre las líneas de referencia superior e inferior del sistema de protección delantera. Los puntos de ensayo deberán situarse en las posiciones que la autoridad en materia de ensayos considere con más probabilidades de causar lesiones. Cuando existan variaciones de estructura en la zona evaluada, los ensayos se realizarán en los distintos tipos de estructura. En el informe de ensayo se indicarán los puntos sometidos a ensayo por los servicios técnicos.

3.2. Los requisitos del capítulo II se aplicarán a los vehículos con una línea de referencia del sistema de protección delantera situada a una altura inferior a 425 mm.

En los vehículos con una línea de referencia inferior del sistema de protección delantera situada a 425 mm o más, pero a menos de 500 mm, también se podrán aplicar, a discreción del fabricante, los requisitos establecidos en el capítulo II.

Los requisitos de este ensayo se aplicarán a los vehículos con una línea de referencia del sistema de protección delantera situada a una altura igual o superior a 500 mm.

4. Procedimiento de ensayo

4.1. El estado del vehículo o el subsistema se ajustará a los requisitos del capítulo I.

4.1.1. El impactador de ensayo o, al menos, la espuma de la masa muscular, se mantendrá durante un período de al menos cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada del 35 % ± 15 % y una temperatura estabilizada de 20 ± 4 °C antes de la retirada del impactador para el ensayo. Una vez se haya retirado del lugar de almacenamiento, el impactador no se someterá a condiciones distintas de las existentes en la zona de ensayo.

4.1.2. Cada ensayo deberá completarse en un plazo de dos horas a partir de la retirada del impactador que vaya a utilizarse de la zona de almacenamiento controlada.

4.2. El impactador simulador de muslo y cadera se describe en la parte V, sección 2.

4.3. El impactador se montará y propulsará como se especifica en los puntos 2.1 y 2.2.

4.4. La dirección del impacto será paralela al eje longitudinal del sistema de protección delantera, tal como esté montado en el vehículo o el marco de ensayo, con el eje del simulador de muslo y cadera en posición vertical en el momento del primer contacto. El margen de tolerancia de estas indicaciones será de ± 2°. Al producirse el primer contacto, la línea central del impactador deberá coincidir con el punto de ensayo seleccionado, con un margen de tolerancia de ± 10 mm tanto lateral como verticalmente.

4.5. La velocidad de impacto del impactador al golpear el sistema de protección delantera será de 11,1 ± 0,2 m/s.
Ensayo de impacto del simulador de muslo y cadera contra el borde delantero del sistema de protección delantera

CAPÍTULO IV

1. Ámbito de aplicación

1.1. Este procedimiento de ensayo es aplicable a los requisitos establecidos en el anexo I, punto 5.2, del Reglamento (CE) n° 78/2009.

2. Generalidades

2.1. El impactador simulador de muslo y cadera para los ensayos contra el borde delantero del sistema de protección delantera se montará en el sistema de propulsión mediante una junta limitadora de la torsión que evite que el sistema de guía resulte dañado por cargas pesadas fuera de eje. El sistema de guía estará equipado con guías de baja fricción, insensibles a las cargas fuera de eje, que, cuando el impactador entre en contacto con el sistema de protección delantera, solo le permitan moverse en la dirección de impacto especificada. Las guías deberán evitar movimientos en otras direcciones, incluida la rotación sobre cualquier otro eje.

2.2. En todos los casos, el impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. Especificaciones del ensayo

3.1. Deberán realizarse como mínimo tres ensayos contra la línea de referencia del borde delantero del sistema de protección delantera, en los puntos que la autoridad en materia de ensayos considere con mayores probabilidades de causar lesiones. Cuando existan variaciones de estructura en la zona evaluada, los ensayos se realizarán con distintos tipos de estructura. En el informe de ensayo se indicarán los puntos sometidos a ensayo por los servicios técnicos.

4. Procedimiento de ensayo

4.1. El estado del vehículo o el subsistema se ajustará a los requisitos del capítulo I.

4.1.1. El impactador para el ensayo o, al menos, la espuma de la masa muscular, se mantendrá durante un período de al menos cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada del 35 % ± 15 % y una temperatura estabilizada de 20 ± 4 °C antes de la retirada del impactador para el ensayo. Una vez se haya retirado del lugar de almacenamiento, el impactador no se someterá a condiciones distintas de las existentes en la zona de ensayo.

4.1.2. Cada ensayo deberá completarse en un plazo de dos horas a partir de la retirada del impactador que vaya a utilizarse de la zona de almacenamiento controlada.

4.2. El impactador simulador de muslo y cadera se describe en la parte V, sección 2.

4.3. El impactador se montará y propulsará como se especifica en los puntos 2.1 y 2.2.

4.4. El impactador deberá alinearse de modo que la línea central del sistema de propulsión y el eje longitudinal del impactador sean paralelos al plano longitudinal del sistema de protección delantera tal como esté montado en el vehículo o el marco de ensayo. Los márgenes de tolerancia aplicables a este respecto serán de ± 2°. Al producirse el primer contacto, la línea central del impactador deberá coincidir con la posición de ensayo seleccionada, con un margen de tolerancia de ± 10 mm (véase la figura 3) y un margen de tolerancia lateral de ± 10 mm.

4.5. La velocidad de impacto requerida, el ángulo de impacto y la masa del impactador deberán determinarse de acuerdo con los puntos 4.6 y 4.8.1. El margen de tolerancia con respecto a la velocidad del impacto será de ± 2 % y con respecto a la dirección del impacto, de ± 2°. El efecto de la fuerza de gravedad se tendrá en cuenta antes de que se produzca el primer contacto. La masa del impactador deberá medirse con una precisión superior a ± 1 % y, si el valor medido difiere del requerido, la diferencia se compensará ajustando la velocidad requerida de acuerdo con el punto 4.8.1.

4.6. La velocidad de impacto requerida y el ángulo de impacto se determinarán a partir de las figuras 4 y 5, con referencia a la altura vertical de la posición de impacto prevista en la línea de referencia del borde delantero del sistema de protección delantera en el frente del sistema de protección delantera.

4.7. La energía de ensayo requerida del impactador se determinará con referencia a la figura 6.
4.8. La masa total del impactador incluirá los elementos de propulsión y de guía que formen parte integrante del mismo durante el impacto, incluidos los pesos añadidos.

4.8.1. El valor de ensayo que debe tener la masa del impactador se calculará mediante la fórmula:

\[M = \frac{2E}{V^2} \]

donde:

\[M = \text{Masa resultante [kg]} \]
\[E = \text{Energía del impacto [J]} \]
\[V = \text{Velocidad [m/s]} \]

La velocidad requerida será el valor obtenido en el punto 4.6 y la energía se obtendrá conforme a la figura 6 con referencia a los valores de la altura del borde delantero del sistema de protección delantera y el frente del sistema de protección delantera en el plano longitudinal vertical con el punto de impacto elegido.

La masa del impactador podrá ajustarse a partir del valor calculado hasta un ± 10 %, a condición de que la velocidad de impacto requerida también se modifique, aplicando la fórmula indicada, para mantener la energía cinética requerida del impactador.

4.9. Para obtener la masa del impactador calculada de acuerdo con el punto 4.8.1, deberán colocarse los pesos adicionales necesarios en la parte trasera del elemento posterior del impactador o en los componentes del sistema de guía que formen parte integrante del impactador al producirse el impacto.

Figura 3

Ensayo de impacto del simulador de muslo y cadera contra el borde delantero del sistema de protección delantera
Figura 4
Velocidad de impacto del simulador de muslo y cadera contra el borde delantero del sistema de protección delantera

Notas:
1. Interolar horizontalmente entre curvas.
2. Con configuraciones por debajo de 5,56 m/s, el ensayo se realizará a 5,56 m/s.
3. Con configuraciones por encima de 11,1 m/s, el ensayo se realizará a 11,1 m/s.
4. Si el valor del frente del SPD es negativo, el ensayo se realizará tomando un frente cero.
5. Si el valor del frente del SPD es superior a 400 mm, el ensayo se realizará tomando un frente de 400 mm.
Figura 5
Ángulo de impacto del simulador de muslo y cadera contra el borde delantero del sistema de protección delantera

Leyenda:

A = frente del SPD de 0 mm
B = frente del SPD de 50 mm
C = frente del SPD de 150 mm

Notas:

1. Interpolar verticalmente entre curvas.
2. Si el valor del frente del SPD es negativo, el ensayo se realizará tomando un frente SPD cero.
3. Si el valor del frente del SPD es superior a 150 mm, el ensayo se realizará tomando un frente de 150 mm.
4. Si la altura del punto de impacto es superior a 1050 mm, el ensayo se realizará tomando una altura de 1050 mm.
Energía cinética del impacto del simulador de muslo y cadera contra el borde delantero del sistema de protección delantera

Leyenda:

A = frente del SPD de 50 mm
B = frente del SPD de 100 mm
C = frente del SPD de 150 mm
D = frente del SPD de 250 mm
E = frente del SPD de 350 mm

Notas:

1. Interpolar verticalmente entre curvas.
2. Si el valor del frente del SPD es superior a 50 mm, el ensayo se realizará tomando un frente de 50 mm.
3. Si el valor del frente del SPD es superior a 350 mm, el ensayo se realizará tomando un frente de 350 mm.
4. Si la altura del punto de impacto es superior a 1 050 mm, el ensayo se realizará con referencia a 1 050 mm.
5. Si la energía cinética requerida es superior a 700 J, el ensayo se realizará a 700 J.
6. Si la energía cinética requerida es igual o inferior a 200 J, el ensayo se realizará a 200 J.
CAPÍTULO V

Ensayo de impacto del simulador de cabeza de niño o adulto pequeño contra el sistema de protección delantera

1. Ámbito de aplicación

1.1. Este procedimiento de ensayo es aplicable a los requisitos establecidos en el anexo I, punto 5.3, del Reglamento (CE) n° 78/2009.

2. Generalidades

2.1. Al producirse el impacto, el impactador simulador de cabeza de niño o adulto pequeño para los ensayos del sistema de protección delantera se encontrará en situación de vuelo libre. El impactador se dejará en vuelo libre a suficiente distancia del vehículo para que, al rebotar, no entre en contacto con el sistema de propulsión e influya en los resultados del ensayo.

2.2. En todos los casos, el impactador podrá propulsarse mediante una pistola de aire, de resorte o hidráulica, o mediante cualquier otro método que tenga los mismos resultados demostrables.

3. Especificaciones del ensayo

3.1. Deberán realizarse como mínimo tres ensayos de impacto del simulador de cabeza en las posiciones que los laboratorios de ensayo consideren con mayores probabilidades de causar lesiones. Cuando existan variaciones de estructura en la zona evaluada, los ensayos se realizarán con distintos tipos de estructura. En el informe de ensayo se indicarán los puntos sometidos a ensayo por los servicios técnicos.

3.2. Deberán seleccionarse los puntos de ensayo para el impactador simulador de cabeza de niño o adulto pequeño en partes del sistema de protección delantera donde la distancia perimétrica de dicho sistema supere los 900 mm con el vehículo en su disposición normal de circulación, o con el sistema de protección delantera montado en un marco de ensayo que represente el vehículo en el que esté previsto que se monte en disposición normal de circulación.

4. Procedimiento de ensayo

4.1. El estado del vehículo o el subsistema se ajustará a los requisitos del capítulo I de la presente parte. La temperatura estable de los aparatos de ensayo y del vehículo o la unidad técnica independiente será de 20 ± 4 °C.

4.2. El impactador simulador de cabeza de niño o adulto pequeño se describe en la parte V, sección 3.

4.3. El impactador se montará y propulsará como se especifica en los puntos 2.1 y 2.2.

4.4. La dirección del impacto se situará en un plano longitudinal vertical que pase por el sistema de protección delantera por el punto elegido para el ensayo. El margen de tolerancia aplicable a este respecto será ±2°. La dirección de impacto será descendente y hacia la parte trasera, en un ángulo de 50° ± 2° respecto del nivel de referencia del suelo. Al calcular la velocidad de impacto a partir de las mediciones realizadas antes del primer contacto, se tendrá en cuenta el efecto de la gravedad.

4.5. Al producirse el contacto, el primer punto de contacto del impactador deberá coincidir con el punto de impacto elegido, con un margen de tolerancia de ± 10 mm.

4.6. La velocidad de impacto del impactador al golpear en la posición de impacto deberá ser de 9,7 ± 0,2 m/s.

4.6.1. La velocidad del impactador simulador de cabeza se medirá en un punto determinado durante el vuelo libre antes del impacto, de conformidad con el método especificado en la norma ISO 3784:1976. La precisión de las mediciones de velocidad será de 0,01 m/s. La velocidad medida se ajustará teniendo en cuenta todos los factores que puedan afectar al impactador entre el punto de medición y el punto de impacto, a fin de determinar la velocidad del impactador en el momento del impacto.

4.7. Se registrarán las resultantes aceleración-tiempo y se calculará el HIC. Se registrarán el primer punto de contacto con la estructura frontal del vehículo. El registro de los resultados de los ensayos se hará conforme a la norma ISO 6487:2002.

PARTE V

IMPACTADORES DE ENSAYO

1. Impactador simulador de pierna

1.1. El impactador simulador de pierna constará de dos segmentos rígidos recubiertos de espuma, que representarán el fémur (muslo) y la tibia (pierna), unidos por una articulación deformable a modo de rodilla. El impactador tendrá una longitud total de 926 ± 5 mm y será conforme a la figura 1.
La longitud del fémur y de la tibia será de 432 mm y 494 mm respectivamente desde el centro de la rodilla.

Los centros de gravedad del fémur y la tibia estarán a 217 ± 10 mm y 233 ± 10 mm respectivamente del centro de la rodilla.

Los soportes, poleas, etc., fijados al impactador para su propulsión podrán incrementar las dimensiones indicadas en la figura 1, a excepción de la posición del centro de gravedad.

1.2. El fémur y la tibia tendrán un diámetro de 70 ± 1 mm, y ambos estarán provistos de masa muscular de espuma y recubrimiento dérmico. La masa muscular estará constituida por espuma Confor™ tipo CF45, o equivalente, de 25 mm de grosor. La piel estará hecha de espuma de neopreno, recubierta por ambos lados de tela de nailon de 0,5 mm de grosor, con un grosor total de 6 mm.

1.3. La masa del fémur y la tibia será de 8,6 ± 0,1 kg y 4,8 ± 0,1 kg respectivamente, y la masa total del impactador, de 13,4 ± 0,2 kg.

1.4. El momento de inercia del fémur y la tibia, sobre un eje horizontal que cruce el centro de gravedad respectivo y sea perpendicular a la dirección del impacto, será de 0,127 ± 0,010 kg/m² y 0,120 ± 0,010 kg/m², respectivamente.

1.5. Los transductores deberán montarse de forma que midan el ángulo de flexión y el desplazamiento de cizalladura de la rodilla. En el lado no impactado de la tibia, a 66 ± 5 mm por debajo del centro de la articulación de rodilla, se fijará un acelerómetro uniaxial con su eje sensible en la dirección del impacto.

1.6. El sistema de desplazamiento de cizalladura estará dotado de un amortiguador que podrá montarse dentro del impactador o en cualquier punto de su cara posterior. Las características del amortiguador permitirán que el impactador se ajuste a los requisitos de desplazamiento de cizalladura tanto estáticos como dinámicos y evite vibraciones excesivas en el sistema de desplazamiento de cizalladura.

1.7. El valor de la frecuencia del canal de la respuesta de los instrumentos, definido en la norma ISO 6487:2002, será equivalente a 180 para todos los transductores. Los valores de respuesta de la amplitud del canal, definidos en la norma ISO 6487:2002, serán de 50° para el ángulo de flexión de la rodilla, 10 mm para el desplazamiento de cizalladura y 500 g para la aceleración. Ello no significa que el propio impactador tenga que poder alcanzar físicamente ese ángulo de flexión o ese desplazamiento de cizalladura.

1.8. El impactador se ajustará a los requisitos de certificación establecidos en la sección 2 del apéndice I y estará dotado de elementos de rodilla deformables del mismo lote que los utilizados en los ensayos de certificación.

1.8.1. En cada ensayo, el impactador estará revestido de masa muscular formada por hasta cuatro láminas consecutivas de espuma Confor™ a imitación de la carne, o material equivalente, procedentes del mismo lote de fabricación (cortadas de un bloque o rollo de espuma), a condición de que la espuma de una de esas láminas haya sido utilizada en el ensayo dinámico de certificación, y el peso individual de cada lámina no difiera más del ± 2 % del peso de la lámina utilizada en el ensayo de certificación.

1.8.2. El impactador de ensayo o, al menos, la masa muscular de espuma, se mantendrá durante un mínimo de cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada de 35 % ± 15 % y una temperatura estable de 20 ± 4 °C antes de retirar el impactador para su calibrado. Una vez se haya retirado de la zona de almacenamiento, el impactador no se someterá a condiciones distintas de las existentes en la zona de ensayo.

1.8.3. Cada ensayo deberá completarse en un plazo de dos horas a partir del momento de la retirada de la zona de almacenamiento del impactador que se vaya a utilizar.

1.9. El impactador certificado podrá utilizarse en 20 impactos como máximo, tras lo cual deberá volver a certificarse. En cada ensayo se utilizarán nuevos elementos de rodilla plásticamente deformables.

Los impactadores deberán volver a certificarse cuando haya transcurrido más de un año desde su última certificación o si, en uno de los impactos, el transductor supera la amplitud del canal especificada o alcanza los límites mecánicos de la capacidad de deformación del impactador de pierna.
2. **Impactador simulador de muslo y cadera**

2.1. El impactador simulador de muslo será rígido, tendrá recubierta de espuma la cara del impacto y una longitud de 350 ± 5 mm y se ajustará a lo establecido en la figura 2.

La distancia entre las líneas centrales de los transductores de carga será de 310 ± 1 mm, y el diámetro del elemento delantero, de 50 ± 1 mm.
2.2. La junta limitadora de la torsión se instalará de modo que el eje longitudinal del elemento delantero sea perpendicu lar al eje del sistema de guía, con un margen de tolerancia de ± 2°; la torsión por fricción de la junta será de 675 ± 25 Nm.

2.3. El centro de gravedad de las partes del impactador situadas delante de la junta limitadora de la torsión, incluidos los pesos adicionales fijados, estará situado en la línea central longitudinal del impactador, con un margen de tolerancia de ± 10 mm.

2.4. La masa total del impactador simulador de muslo y cadera, incluidos los elementos de propulsión y guía que formen parte integrante del mismo, será de 9,5 kg ± 0,1 kg.

La masa total del elemento delantero y otros componentes situados delante de los elementos de montaje del trans ductor de carga, junto con los elementos de montaje del transductor de carga situados delante de los elementos activos, sin incluir la espuma y la piel, será de 1,95 ± 0,05 kg.

2.5. Se instalarán dos transductores de carga para medir por separado las fuerzas ejercidas en cada extremo del elemento anterior del impactador simulador de muslo y cadera.

2.6. El impactador irá equipado con tres extensómetros para medir los momentos de flexión del elemento anterior, como muestra la figura 2, para lo cual cada uno de ellos utilizará un canal separado. Los dos extensómetros exteriores se situarán a 50 ± 1 mm del eje de simetría del impactador. El extensómetro central estará situado sobre el eje de simetría, con un margen de tolerancia de ± 1 mm.

2.7. El valor de la frecuencia del canal, definido en la norma ISO 6487:2002, de la respuesta de los instrumentos será de 180 para todos los transductores. Los valores de la amplitud del canal, definidos en la norma ISO 6487:2002, serán de 10 kN para los transductores de fuerza y de 1 000 Nm para las mediciones de los momentos de flexión.

2.8. El impactador simulador de muslo y cadera deberá ajustarse a los requisitos de certificación especificados en el apéndice I, sección 3, y estará equipado con espuma cortada de la lámina de material utilizada en el ensayo dinámico de certificación.

2.9. En cada ensayo, la espuma estará constituida por dos láminas nuevas de Confor™ tipo CF-45, o equivalente, de 25 mm de grosor. La piel deberá estar formada por una capa de caucho reforzada con fibra de un grosor de 1,5 mm. La espuma y la piel de caucho pesarán juntas 0,6 ± 0,1 kg (excluyendo todo refuerzo, elemento de montaje, etc., que se utilice para fijar los bordes traseros de la piel de caucho al elemento posterior).

La espuma y la piel de caucho deberán estar dobladas hacia atrás, con la piel de caucho fijada mediante espaciadores al elemento posterior de forma que sus bordes se mantengan paralelos.

La espuma tendrá un tamaño y una forma que permitan mantener un espacio adecuado entre ella y los componentes situados detrás del elemento anterior, a fin de evitar transmisiones de carga significativas entre la espuma y estos componentes.

2.9.1. El impactador de ensayo o, al menos, la masa muscular de espuma, se mantendrá durante un mínimo de cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada de 35 % ± 15 % y una temperatura estable de 20 ± 4 °C antes de retirar el impactador para su calibrado. Una vez se haya retirado de la zona de almacenamiento, el impactador no se someterá a condiciones distintas de las existentes en la zona de ensayo.

2.9.2. Cada ensayo deberá completarse en un plazo de dos horas a partir del momento en que se retire el impactador que se vaya a utilizar de la zona de almacenamiento.

2.10. El impactador certificado podrá utilizarse en 20 impactos como máximo, tras lo cual deberá volver a certificarse (este límite no será aplicable a los elementos de propulsión o de guía).

El impactador también volverá a certificarse si ha transcurrido más de un año desde su última certificación o si el resultado de cualquiera de sus transductores en cualquier impacto ha superado el valor de amplitud del canal establecido.
3. **Impactador simulador de cabeza de niño o adulto pequeño**

3.1. El impactador simulador de cabeza de niño o adulto pequeño será una esfera rígida de aluminio con piel sintética, que se ajustará a lo especificado en la figura 3 de la presente parte. Tendrá un diámetro de 165 ± 1 mm, tal como se indica en la figura. Su masa total, incluyendo los instrumentos, será de 3,5 ± 0,07 kg.

3.2. Al menos la mitad de la esfera estará cubierta con piel sintética de 14,0 ± 0,5 mm de grosor.

3.3. El centro de gravedad del impactador, incluidos los instrumentos, estará situado en el centro de la esfera, con un margen de tolerancia de ± 2 mm. El momento de inercia en torno a un eje que pasa por el centro de gravedad y es perpendicular a la dirección de impacto será del orden de los 0,008 a 0,012 kgm².
3.4. La esfera deberá estar provista de un hueco para montar un acelerómetro triaxial o tres acelerómetros uniaxiales con una tolerancia de posicionamiento de la masa sismica de ± 10 mm del centro de la esfera respecto del eje de medición y de ± 10 mm del centro de la esfera respecto de la dirección perpendicular al eje de medición. Los acelerómetros se posicionarán de acuerdo con lo dispuesto en los puntos 3.4.1 y 3.4.2.

3.4.1. Si se utilizan tres acelerómetros uniaxiales, el eje sensible de uno de los acelerómetros será perpendicular a la cara de montaje A (véase la figura 3), y su masa sismica deberá situarse en un campo de tolerancia cilíndrico de 1 mm de radio y 20 mm de longitud. La línea central del campo de tolerancia será perpendicular a la cara de montaje y su punto central coincidirá con el centro de la esfera del impactador simulador de cabeza.

3.4.2. Los ejes sensibles de los acelerómetros restantes serán perpendiculares entre sí y paralelos a la cara de montaje A, y su masa sismica deberá situarse en un campo de tolerancia esférico de 10 mm de radio. El centro del campo de tolerancia coincidirá con el centro de la esfera del impactador simulador de cabeza.

3.6. El impactador se ajustará a los requisitos de funcionamiento especificados en el apéndice I, sección 4. El impactador certificado podrá utilizarse en 20 impactos como máximo, tras lo cual deberá volver a certificarse. El impactador volverá a certificarse si ha transcurrido más de un año desde su última certificación o si en uno de los impactos el transductor supera el valor de la amplitud del canal establecido.

3.7. La primera frecuencia natural del impactador será superior a 5 000 Hz.

4. **Impactador simulador de cabeza de niño o adulto pequeño (dimensiones en mm)**

4.1. El impactador simulador de cabeza de adulto será una esfera rígida de aluminio con piel sintética, que se ajustará a lo especificado en la figura 4. Tendrá un diámetro de 165 ± 1 mm, tal como se indica en la figura.

4.1.1. A efectos de los ensayos dirigidos a verificar el cumplimiento de los requisitos establecidos en la parte II, capítulo VI, la masa total del impactador, incluidos los instrumentos, será de 4,8 ± 0,1 kg.

4.1.2. A efectos de los ensayos dirigidos a verificar el cumplimiento de los requisitos establecidos en la parte II, capítulo VII, la masa total del impactador, incluidos los instrumentos, será de 4,5 ± 0,1 kg.

4.2. Al menos la mitad de la esfera estará cubierta con piel sintética de 14,0 ± 0,5 mm de grosor.
4.3. El centro de gravedad del impactador, incluidos los instrumentos, estará situado en el centro de la esfera, con un margen de tolerancia de ± 5 mm. El momento de inercia en torno a un eje que pasa por el centro de gravedad y es perpendicular a la dirección de impacto será del orden de los 0.010 a 0.013 kgm².

4.4. La esfera deberá estar provista de un hueco para montar un acelerómetro triaxial o tres acelerómetros uniaxiales con una tolerancia de posicionamiento de la masa sísmica de ± 10 mm del centro de la esfera respecto del eje de medición y de ± 10 mm del centro de la esfera respecto de la dirección perpendicular al eje de medición. Los acelerómetros se posicionarán de conformidad con los puntos 4.4.1 y 4.4.2.

4.4.1. Si se utilizan tres acelerómetros uniaxiales, el eje sensible de uno de los acelerómetros será perpendicular a la cara de montaje A (véase la figura 4), y su masa sísmica deberá situarse en un campo de tolerancia cilíndrico de 1 mm de radio y 20 mm de longitud. El eje central del campo de tolerancia será perpendicular a la cara de montaje y su punto central coincidirá con el centro de la esfera del impactador simulador de cabeza.

4.4.2. Los ejes sensibles de los acelerómetros restantes serán perpendiculares entre sí y paralelos a la cara de montaje A, y su masa sísmica deberá situarse en un campo de tolerancia esférico de 10 mm de radio. El centro del campo de tolerancia coincidirá con el centro de la esfera del impactador simulador de cabeza.

4.6. El impactador se ajustará a los requisitos de funcionamiento especificados en el apéndice I, sección 4. El impactador certificado podrá utilizarse en 20 impactos como máximo, tras lo cual deberá volver a certificarse. El impactador volverá a certificarse si ha transcurrido más de un año desde su última certificación o si en uno de los impactos el transductor supera el valor de la amplitud del canal establecido.

4.7. La primera frecuencia natural del impactador será superior a 5 000 Hz.

Figura 4

Impactador simulador de cabeza de adulto (dimensiones en mm)
Certificación de los impactadores

1. Requisitos de certificación

1.1. Los impactadores utilizados en los ensayos detallados en la parte II y en la parte IV deberán cumplir los requisitos de funcionamiento pertinentes.

Los requisitos que deben cumplir los impactadores simuladores de pierna se especifican en la sección 2; los correspondientes al impactador simulador de muslo y cadera se especifican en la sección 3; y los impactadores simuladores de cabeza de adulto, niño y niño o adulto pequeño, en la sección 4.

2. Impactador simulador de pierna

2.1. Ensayos estáticos

2.1.1. El impactador simulador de pierna deberá ajustarse a los requisitos especificados en el punto 2.1.2 cuando el ensayo se realice conforme a las disposiciones del punto 2.1.4, y a los requisitos especificados en el punto 2.1.3 cuando el ensayo se realice conforme a las disposiciones del punto 2.1.5.

En ambos ensayos, el impactador estará orientado sobre su eje longitudinal de forma que la articulación de rodilla funcione correctamente, con un margen de tolerancia de ± 2°.

La temperatura estable del impactador durante la certificación deberá ser de 20 °C ± 2 °C.

Los valores de respuesta de amplitud del canal, definidos en la norma ISO 6487:2002, serán de 50° para el ángulo de flexión de la rodilla y de 500 N para la fuerza aplicada al someter el impactador a un ensayo de flexión de acuerdo con el punto 2.1.4, y de 10 mm para el desplazamiento de cizalladura y 10 kN para la fuerza aplicada al someter el impactador a un ensayo de cizalladura de acuerdo con el punto 2.1.5. En ambos ensayos podrá aplicarse un filtro de paso bajo a una frecuencia adecuada, para eliminar los ruidos de frecuencia superior sin afectar significativamente a la medición de la respuesta del impactador.

2.1.2. Al aplicar la carga de flexión de acuerdo con el punto 2.1.4, la fuerza aplicada y el ángulo de flexión resultante estarán dentro de los límites indicados en la figura 1. Asimismo, la energía liberada para generar una flexión de 15,0° deberá ser de 100 ± 7 J.

2.1.3. Al aplicar la carga de cizalladura de acuerdo con el punto 2.1.5, la fuerza aplicada y el desplazamiento de cizalladura resultante estarán dentro de los límites indicados en la figura 2.

2.1.4. El impactador simulador de pierna, sin revestimiento de espuma ni piel, deberá montarse con la tibia sujeta firmemente mediante abrazaderas sobre una superficie horizontal fija y con un tubo de metal firmemente ensamblado en el fémur, como muestra la figura 3. El eje de rotación de la articulación de rodilla del impactador estará en posición vertical. Para evitar errores de fricción, no se proporcionará ningún soporte ni a la sección femoral ni al tubo de metal. El momento de flexión aplicado en el centro de la articulación de rodilla por el peso del tubo de metal y otros componentes (excluyendo el propio simulador de pierna) no excederá de 25 Nm.

Se aplicará una fuerza horizontal normal al tubo de metal a una distancia de 2,0 m ± 0,01 m del centro de la articulación de rodilla, y se registrará el ángulo de deviación de la rodilla resultante. La carga deberá incrementarse de forma que el coeficiente de aumento del ángulo de desviación de la rodilla esté entre 1,0°/s y 10°/s hasta que el ángulo de desviación sobrepase los 22°. Se permitirán las pequeñas desviaciones de estos límites debidas, por ejemplo, al uso de una bomba manual.

La energía se calculará integrando la fuerza en función del ángulo de flexión expresado en radianes y multiplicando por una longitud de palanca de 2,0 m ± 0,01 m.

2.1.5. El impactador, sin revestimiento de espuma ni piel, se montará con la tibia sujeta firmemente mediante abrazaderas sobre una superficie horizontal fija y un tubo de metal firmemente ensamblado en el fémur y sujetó a 2,0 m del centro de la articulación de rodilla, como muestra la figura 4.

Se aplicará una fuerza horizontal normal al fémur a una distancia de 50 mm del centro de la articulación de rodilla, y se registrará el desplazamiento de cizalladura de la rodilla resultante. La carga se incrementará de forma que el coeficiente de aumento del desplazamiento de cizalladura de la rodilla esté entre 0,1 mm/s y 20 mm/s hasta que supere los 7,0 mm o la carga sea superior a 6,0 kN. Se permitirán las pequeñas desviaciones de estos límites debidas, por ejemplo, al uso de una bomba manual.
2.2. Ensayos dinámicos

2.2.1. El impactador simulador de pierna deberá ajustarse a los requisitos especificados en el punto 2.2.2 cuando se someta a ensayo conforme al punto 2.2.4.

2.2.1.1. La espuma de la masa muscular del impactador de ensayo se mantendrá durante un mínimo de cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada de 35 % ± 15 % y una temperatura estabilizada de 20 °C ± 2 °C antes de retirar el impactador para su calibrado. En el momento del impacto, la temperatura del impactador de ensayo será de 20 °C ± 2 °C. Los márgenes de tolerancia respecto a la humedad del impactador serán aplicables con una humedad relativa del 40 ± 30 % después de un período de estabilización de, como mínimo, cuatro horas antes de su utilización en un ensayo.

2.2.1.2. El dispositivo de ensayo utilizado para el ensayo de calibrado tendrá una humedad estabilizada de 40 ± 30 % y una temperatura estabilizada de 20 ± 4 °C durante el calibrado.

2.2.1.3. El calibrado deberá completarse en un plazo de dos horas a partir del momento de la retirada de la zona de almacenamiento del impactador que se vaya a utilizar.

2.2.1.4. La humedad relativa y la temperatura del área de calibrado se medirán en el momento del calibrado y se registrarán en el informe correspondiente.

2.2.2. Cuando el impactador reciba el golpe de un impactador de certificación de guía lineal, como se especifica en el punto 2.2.4, la aceleración máxima en la parte superior de la tibia no será inferior a 120 g ni superior a 250 g. El ángulo máximo de flexión no será inferior a 6,2° ni superior a 8,2°. El desplazamiento de cizalladura máximo no será inferior a 3,5 mm ni superior a 6,0 mm.

Las lecturas utilizadas para todos estos valores serán las del impacto inicial con el impactador de certificación, y no las de la fase de detención. Los eventuales sistemas que se utilicen para detener el impactador o el impactador de certificación estarán dispuestos de forma que la fase de detención no coincida en el tiempo con el impacto inicial. El sistema de detención no influirá en los resultados de los transductores de forma que estos excedan los valores de la amplitud del canal establecidos.

2.2.3. El valor de la frecuencia del canal de respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 180 para todos los transductores. Los valores de respuesta de la amplitud del canal, definidos en la norma ISO 6487:2002, serán de 50° para el ángulo de flexión de la rodilla, 10 mm para el desplazamiento de cizalladura y 500 g para la aceleración. Ello no supone que el propio impactador tenga que poder alcanzar físicamente ese ángulo de flexión o ese desplazamiento de cizalladura.

2.2.4. Procedimiento de ensayo

2.2.4.1. El impactador, incluidos el revestimiento de espuma y la piel, se suspenderá horizontalmente mediante tres cables metálicos de 1,5 ± 0,2 mm de diámetro y 2,0 m de longitud mínima, como muestra la figura 5a. Su eje longitudinal estará suspendido en posición horizontal, con un margen de tolerancia de ± 0,5°, y perpendicular a la dirección del movimiento del impactador de certificación, con un margen de tolerancia de ± 2°. El impactador estará orientado sobre su eje longitudinal de forma que la articulación de rodilla funcione correctamente, con un margen de tolerancia de ± 2°. El impactador se ajustará a los requisitos especificados en la parte II, capítulo II, punto 3.4.1.1, con las abrazaderas de los cables fijadas.

2.2.4.2. La masa del impactador de certificación, incluidos los elementos de propulsión y guía que formen parte integrante del mismo durante el impacto, será de 9,0 ± 0,05 kg. Las dimensiones de la cara del impactador de certificación serán las especificadas en la figura 5b. La cara del impactador de certificación será de aluminio, con un acabado de la superficie externa superior a 2,0 μm.

El sistema de guía estará equipado con guías de baja fricción, insensibles a las cargas fuera de eje, que permitan que, al entrar en contacto con el vehículo, el impactador se mueva únicamente en la dirección de impacto especificada cuando entre en contacto con el impactador simulador de pierna. Las guías evitarán el movimiento en otras direcciones, incluida la rotación sobre cualquier eje.

2.2.4.3. El impactador se certificará con espuma que no se haya utilizado previamente.

2.2.4.4. La espuma del impactador no se manipulará ni deformará excesivamente ni antes de fijarla, ni mientras se fija, ni una vez fijada.

2.2.4.5. El impactador de certificación se impulsará horizontalmente a una velocidad de 7,5 ± 0,1 m/s contra el impactador estacionario, como muestra la figura 5a. El impactador de certificación se colocará de forma que su línea central coincida con un punto en la línea central de la tibia situado a 50 mm del centro de la rodilla, con márgenes de tolerancia de ± 3 mm tanto lateral como verticalmente.
3. **Impactador simulador de muslo y cadera**

3.1. El impactador simulador de muslo y cadera deberá ajustarse a los requisitos especificados en el punto 3.2 cuando se someta a ensayo conforme al punto 3.3.

3.1.1. La espuma de la masa muscular del impactador de ensayo se mantendrá durante al menos cuatro horas en una zona de almacenamiento controlado con una humedad estabilizada del 35 % ± 10 % y una temperatura estabilizada de 20 °C ± 2 °C antes de retirar el impactador para su calibrado. En cuanto al propio impactador de ensayo, en el momento del impacto tendrá una temperatura de 20° ± 2 °C. Los márgenes de tolerancia respecto de la temperatura del impactador serán aplicables con una humedad relativa del 40 ± 30 % después de un período de estabilización de, como mínimo, cuatro horas antes de su utilización en un ensayo.

3.1.2. El dispositivo de ensayo utilizado para el ensayo de calibrado tendrá una humedad estabilizada del 40 % ± 30 % y una temperatura estabilizada del 20 °C ± 4 °C durante el calibrado.

3.1.3. El calibrado deberá completarse en un plazo de dos horas a partir del momento de la retirada de la zona de almacenamiento del impactador que se vaya a utilizar.

3.1.4. La humedad relativa y la temperatura del área de calibrado se medirán en el momento del calibrado y se registrarán en el informe correspondiente.

3.2. **Requisitos**

3.2.1. Al impulsar el impactador contra un péndulo cilíndrico estacionario, la fuerza máxima registrada en cada transductor de carga no será inferior a 1,20 kN ni superior a 1,55 kN, y la diferencia entre las fuerzas máximas registradas en los transductores de carga superior e inferior no será superior a 0,10 kN. Además, el momento máximo de flexión registrado por los extensómetros no será inferior a 190 Nm ni superior a 250 Nm en la posición central, y no será inferior a 160 Nm ni superior a 220 Nm en las posiciones externas. La diferencia entre los momentos máximos de flexión superior e inferior no sobrepasará los 20 Nm.

Las lecturas utilizadas para todos estos valores serán las del impacto inicial con el péndulo, y no las de la fase de detención. Los eventuales sistemas que se utilicen para detener el impactador o péndulo se dispondrán de forma que la fase de detención no coincida en el tiempo con el impacto inicial. El sistema de detención no influirá en los resultados de los transductores de forma que estos excedan los valores de la amplitud del canal establecidos.

3.2.2. El valor de la frecuencia del canal de respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 180 para todos los transductores. Los valores de la amplitud del canal de respuesta, definidos en la norma ISO 6487:2002, serán de 10 kN para los transductores de fuerza y de 1 000 Nm para las mediciones de los momentos de flexión.

3.3. **Procedimiento de ensayo**

3.3.1. El impactador estará montado en el sistema de propulsión y guía mediante una junta limitadora de la torsión. La junta limitadora de la torsión estará instalada de modo que el eje longitudinal del elemento anterior sea perpendicu lar al eje del sistema de guía, con un margen de tolerancia de ± 2°; la torsión por fricción de la junta será de 675 ± 25 Nm como mínimo. El sistema de guía irá equipado con guías de baja fricción que, cuando el impactador entre en contacto con el péndulo, solo le permitan moverse en la dirección de impacto especificada.

3.3.2. La masa total del impactador, incluidos los elementos de propulsión y guía que formen parte integrante del mismo durante el impacto, será de 12 kg ± 0,1 kg.

3.3.3. El centro de gravedad de las partes del impactador situadas delante de la junta limitadora de la torsión, incluidos los pesos adicionales fijados, estará situado en la línea central longitudinal del impactador, con un margen de tolerancia de ± 10 mm.

3.3.4. El impactador se certificará con espuma que no se haya utilizado previamente.

3.3.5. La espuma del impactador no se manipulará ni deformará excesivamente ni antes de fijarla, ni mientras se fija, ni una vez fijada.
3.3.6. El impactador, con el elemento anterior en posición vertical, se impulsará horizontalmente a una velocidad de 7,1 ± 0,1 m/s contra el péndulo estacionario, como muestra la figura 6.

El tubo del péndulo tendrá una masa de 3 ± 0,03 kg, un diámetro exterior de 150 mm ± 1 mm y un grosor de pared de 3 ± 0,15 mm. Su longitud total será de 275 ± 25 mm. Este tubo deberá ser de acero acabado en frío sin soldadura (podrá llevar un baño metálico superficial contra la corrosión), con un acabado de la superficie externa superior a 2,0 μm. Se suspenderá mediante dos cables metálicos de 1,5 ± 0,2 mm de diámetro y 2,0 m de longitud mínima. La superficie del péndulo estará limpia y seca. El tubo del péndulo se colocará de modo que el eje longitudinal del cilindro sea perpendicular tanto al elemento anterior (o sea, nivelado), con un margen de tolerancia de ± 2°; el centro del tubo del péndulo estará alineado con el centro del elemento anterior del impactador, con márgenes de tolerancia de ± 5 mm tanto lateral como verticalmente.

4. Impactadores simuladores de cabeza

4.1. Criterios de comportamiento

Los impactadores simuladores de cabeza deberán cumplir los requisitos especificados en el punto 4.2 cuando se sometan a ensayo conforme al punto 4.4.

4.2. Requisitos

4.2.1. Cuando los impactadores simuladores de cabeza se dejen caer desde una altura de 376 ± 1 mm de conformidad con el punto 4.4 la aceleración máxima resultante registrada en el acelerómetro triaxial (o en los tres acelerómetros uniaxiales) del simulador de cabeza será la siguiente:

- a) para el impactador simulador de cabeza de niño o adulto pequeño, no será inferior a 245 g ni superior a 300 g;
- b) para el impactador simulador de cabeza de adulto, no será inferior a 225 g ni superior a 275 g.

Las curvas resultantes de aceleración y tiempo serán unimodales.

4.2.2. Los valores de la frecuencia del canal de respuesta de los instrumentos, así como el valor de la amplitud del canal de cada acelerómetro, serán de 1 000 Hz y 500 g respectivamente, como define la norma ISO 6487:2002.

4.2.3. Condiciones relativas a la temperatura

En el momento del impacto, los impactadores simuladores de cabeza estarán a una temperatura de 20 ± 2 ºC. Los márgenes de tolerancia de la temperatura se aplicarán con una humedad relativa del 40 ± 30 % después de un período de estabilización de al menos cuatro horas antes de su utilización en un ensayo.

4.3. Una vez superado el ensayo de certificación, cada impactador simulador de cabeza podrá utilizarse en 20 ensayos de impacto como máximo.

4.4. Procedimiento de ensayo

4.4.1. El impactador simulador de cabeza estará suspendido de una instalación para el ensayo de caída como muestra la figura 7.

4.4.2. El impactador simulador de cabeza se dejará caer desde la altura especificada de forma que se asegure un impacto inmediato contra una plancha de acero plana y horizontal con un soporte rígido de más de 50 mm de grosor y 300 x 300 mm de superficie limpia y seca con un acabado entre 0,2 μm y 2,0 μm.

4.4.3. El impactador simulador de cabeza se dejará caer de forma que su parte posterior forme el siguiente ángulo respecto al plano vertical:

- a) 50° ± 2° para el impactador simulador de cabeza de niño;
- b) 65° ± 2° para el impactador simulador de cabeza de adulto.

4.4.4. El impactador simulador de cabeza estará suspendido de forma que no se produzca rotación durante la caída.

4.4.5. El ensayo de caída se efectuará tres veces; entre los ensayos, el impactador simulador de cabeza se hará girar 120° alrededor de su eje de simetría.
Figura 1
Requisito de relación fuerza-ángulo de flexión de los ensayos estáticos de certificación de la flexión del impactador de pierna

Figura 2
Requisito de relación fuerza-desplazamiento en los ensayos estáticos de certificación de la cizalladura del impactador de pierna
Figura 3
Vista aérea del dispositivo para los ensayos estáticos de certificación de la flexión del impactador simulador de pierna

Figura 4
Vista aérea del dispositivo para los ensayos estáticos de certificación de cizalladura
Dispositivo para los ensayos dinámicos de certificación del impactador simulador de pierna (diagrama superior: vista lateral; diagrama inferior: vista aérea)
Figura 5ter

Detalles de la cara del impactador para el ensayo dinámico de certificación del simulador de pierna

Notas:
1) El soporte puede ser de diámetro completo o cortado, como se muestra en la figura, para hacer dos componentes.
2) Las zonas sombreadas pueden eliminarse para obtener la forma alternativa mostrada.
3) El margen de tolerancia en todas las dimensiones será de ± 1,0 mm.
Material: aleación de aluminio.

Figura 6

Dispositivo para los ensayos dinámicos de certificación del impactador simulador de muslo y cadera
Figura 7
Dispositivo para los ensayos dinámicos certificación del impactador simulador de cabeza
TRL PEDESTRIAN LEGFORM IMPACTOR

USER MANUAL

Version 2.2: January 2001

Copyright: TRL Limited 2001
USER MANUAL FOR TRL
PEDESTRIAN LEGFORM IMPACTOR

1. INTRODUCTION

EEVC WG10 have made proposals for sub-systems tests to cars that would ensure that car models which passed the tests were much safer in impacts into pedestrians. These test procedures were included in a draft European Commission (EC) directive in 1996. The test procedures have since been revised by WG17 (EEVC WG17 report dated Dec 1998). The revised test procedures were passed to the EC in 1999. It is anticipated that they will form the basis of a new draft EC directive in the near future.

In the legform to bumper test procedure a legform impactor is used to test the front of the car, primarily the bumper area, to determine if certain injury criteria have been exceeded. The measurements taken can be related to the risk of a pedestrian receiving knee ligament injuries or tibia fractures. TRL has developed the legform impactor to meet the requirements of the EEVC WG17, and it is the only legform impactor approved by WG17. The United Kingdom Department of the Environment, Transport and the Regions funded the development of the TRL Legform Impactor.

The WG17 test procedure requires that the knee shear displacement in the legform should be damped. Earlier, prototype, versions of the TRL legform were not fitted with a damper and do not, therefore, meet the WG17 requirements. This version of the manual covers the damped legform, supplied by TRL from Sept 2000 onwards.

The EEVC WG17 report makes it clear that the dynamic legform certification test limits etc. are provisional. It is part of TRL's task for WG17 to confirm or adjust these provisional values. Following recent work to finalise the dynamic certification method TRL has concluded that the provisional test is too severe. This causes excessive crushing of the legform flesh, which makes the dynamic certification test unduly sensitive to variations in the properties of the Confor foam. TRL will, therefore, be proposing to the EEVC a number of changes to the certification procedure. More details are given in Section 9.2.

The legform can also be used to test to the Euro-NCAP protocol. The current protocol neither requires nor prohibits the damper. However, for consistency we would advise that, until Euro-NCAP requires a damped legform, such tests should be performed either with the prototype undamped legform, if you have one, or with the damper removed from the damped legform.

This manual covers maintenance and preparation of the legform for impact testing. However, it is not intended to be a complete guide to performing impact tests with the legform. Users should also have available a copy of the latest version of the test procedures. If you find any errors in this manual or if you have any suggestions to improve it then please contact TRL (see Section 11.1).

The diagrams showing the legform in cross-section (Figure 1), and those showing the knee deformed in bending and shear (Figures 2 and 3), should be of help in understanding the manual.

The EEVC WG17 report is available from the EEVC web site: www.eevc.org.
2. INSTRUMENTATION

The Legform is fitted with two potentiometers and an accelerometer. One potentiometer in the femur section is used to obtain the shear displacement, the other in the tibia section is used to obtain the knee bending angle. The accelerometer measures the acceleration at a point near the top of the tibia section.

The CFC (Channel Frequency Class) specified in the EEVC WG17 test procedure is 180 Hz, for both of the potentiometers and the accelerometer.

2.1 POTENTIOMETERS

The potentiometers are made by Contelec and are type GL 60. Their impedance is 10 kohm and their electrical angle 354°.

We would advise you to hold spare potentiometers in case the potentiometers in the legform or their cables get damaged. The shear potentiometer supplied by TRL has been modified, by machining two threaded holes in it. Ready drilled potentiometers are available from TRL, see Section 11.1.

The potentiometers fitted to the legform have been calibrated by TRL and certificates are supplied.

It may be necessary, depending on your specific instrumentation system, to add bridge completion resistors. A diagram and some notes are enclosed (see Figure 5) to assist with wiring up the potentiometers.

TRL has designed and has made available for purchase a purpose made potentiometer calibration rig, which has fixed stops at a series of angles. This rig also has the advantage that the femur potentiometer can be calibrated without removing it from its mounting plate. Alternatively, users can use their own calibration equipment to record the potentiometer output over a series of increments of about 5°.

Instructions for removing and refitting the shear and bending potentiometers can be found in Sections 5 and 6.

The knee bending angle and shear displacement can be calculated from the potentiometer angles, using the formulae in figures 2 and 3.

Normally, immediately after a vehicle test, the bending angle output will remain at a level just below the peak output, but the shear displacement output will have returned virtually to the initial position. However, it is possible, in tests that have resulted in physical bottoming out of the knee bending mechanism, for the shear displacement to show a residual displacement as a result of friction between the femur and tibia sections. This will not have affected the accuracy of the measured peak shear displacement. The shear displacement will return to the initial position when the deformed ligaments are removed.

2.2 ACCELEROMETER

The legform is designed to take an Endevco 7264, 7264A or 7264B accelerometer. A 7264B-2000 accelerometer is supplied by TRL. This has a 2000 g range, however the 500 g version can also be used.
The manufacturer's manuals, data sheet and calibration certificate should be referred to for connections, sensitivity, mounting screw torque etc. These are supplied by TRL for the accelerometer installed in the legform. In some cases, where significant time had elapsed since the Endevco calibration, the accelerometer will also have been calibrated by TRL, and our certificate will also have been included.

Note that the sensitivity value supplied will be appropriate for the end of the attached cable. It will normally be necessary to introduce an extension cable, in which case a correction may be necessary to the sensitivity quoted, to take account of drop in excitation voltage along the extension cable.

The Endevco 7264 is attached to the knee insert using the screw holes furthest from the knee centre whilst the 7264A and 7264B use the holes nearest to the knee centre. These screw holes have 0-80 UNF threads ‡ to take the UNF mounting screws supplied by Endevco.

3. IMPACTOR MASS

The draft directive specifies the mass of the femur and tibia sections, and of the complete legform.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur</td>
<td>8.6 ± 0.1 kg</td>
</tr>
<tr>
<td>Tibia</td>
<td>4.8 ± 0.1 kg</td>
</tr>
<tr>
<td>Legform</td>
<td>13.4 ± 0.2 kg</td>
</tr>
</tbody>
</table>

Note that, for this purpose, the impactor includes flesh, skin, ligaments, attached support system components, instrumentation and internal cable (but not external cable). Moreover, all components must be part of the femur, part of the tibia or shared out between the two. Components that cross the centre of the knee (flesh, skin, ligaments and potentiometer rod) should have their weight allocated in proportion to the length either side of the knee. In the case of the ligaments, this is effectively one complete ligament in each section of the legform.

TRL will normally have adjusted the femur and tibia weights so that they will be close to the centre of the allowed range when used with flesh and skin of typical weight. Note that the mass of the femur section supplied by TRL includes an allowance of 50 g for the user to attach support system components.

The mass of replacement fleshes and skins will vary, so ensure that the femur and tibia masses remain within tolerance when the flesh or skin is changed.

The assembled mass of the tibia can be increased by placing additional washers and / or nuts on the M8 studding, or decreased by removing washers. These additional washers can, most conveniently, be placed next to the tibia centre weight. If the tibia weight is disturbed it should be noted that the slot in the tibia weight should be aligned with the accelerometer pocket in the knee insert. Also, the distance between the shoulder on the knee insert and the facing side of the tibia weight should be approximately 210 mm.

‡ This is for knee inserts supplied with impactors serial number TRL-PT-L12 and higher, and all knee inserts made in stainless steel. Knee inserts originally supplied with earlier impactors up to serial number TRL-PT-L11 had M1.6 threaded holes and for these the UNF screws supplied by Endevco should not be used.
The assembled mass of the femur can be varied by adding washers to or removing washers from the hip end bolt, inside the femur tube. A spring on the bolt, between the hip end and the washers, is used to hold the washers in place. However, it is important to ensure that the spring will not become fully compressed when the hip end is attached to the femur tube, as this would reduce the tension on the end of the shear spring. Also, ensure that the potentiometer cable does not become trapped in the coils of the spring or under the washers.

The draft directive also specifies values and tolerances for the femur and tibia centre of gravity and moment of inertia. The effect of adding or subtracting washers to achieve the required mass tolerances are unlikely to take the centres of gravity or moments of inertia outside their respective tolerances.

4. IMPACTOR ON DELIVERY

The Impactor is delivered fully assembled and covered with its flesh and skin. To take it apart after delivery, unzip the skin and carefully remove the flesh.

To remove the ligaments, the four ligament screws should be slackened and the leg knocked sideways, by hand, to release the ligaments from their tapers. Then remove the tibia ligament screws and slide the two halves of the legform apart. Note that the ligaments fit into tapered seals to prevent rattling.

5. FEMUR SECTION

Before working on the femur section it is recommended that the bending potentiometer rod be removed because it is vulnerable to handling damage when the femur is not attached to the tibia. This rod can normally be unscrewed by hand from the ball joint located in the end of the shear spring, which can be seen through the central slot in the femur. This rod can also be damaged in tests that generate bending in excess of the design limit of 30 degrees. Further details on checking it and obtaining replacements are given in Section 10.2.

The shear potentiometer can be removed for calibration by removing the four screws holding its mounting plate to the knee end of femur section. It is possible to calibrate the potentiometer without further disassembly. If you wish to remove the potentiometer from the mounting plate, unscrew the setscrew in the mounting plate several turns and carefully push out the potentiometer. This will involve breaking a thread-locking adhesive bond. The potentiometer follower can also be removed; again this involves breaking a thread-locking adhesive bond between the potentiometer and the potentiometer follower.

When attaching the potentiometer follower to the additional holes in the potentiometer, place a spot of thread-locking adhesive (Loctite Studlock 270 or similar) between the potentiometer follower saddle and the body of the potentiometer.

Either remove the setscrew on the shear potentiometer boss, or fix it using thread-locking adhesive, so that it sits just below the surface of the boss. (Spare shear potentiometers supplied by TRL will not have had thread-locking adhesive applied to the setscrew, so that they can still be used as bending potentiometers if necessary.) For impactors up to TRL LG31 inclusive, do not remove the setscrew, as it provides a surface for one of the clamping screws in the mounting plate to contact if it should happen to line up with the hole. Note: Impactors TRL LG 32 and higher have a single setscrew in the mounting plate to avoid this
problem of the mounting plate setscrew coinciding with the setscrew in the potentiometer boss.

When replacing the shear potentiometer it should be rotated until it is electrically balanced and clamped in the mounting plate so that the ball shaped potentiometer follower is aligned with the setscrew in the mounting plate (for old style mounting plates with two setscrews mark one end as the knee end and align on that). Ensure that the outer part of the potentiometer can still rotate freely. The clamping setscrew and potentiometer boss should be fixed using thread-locking adhesive (Loctite Studlock 270) or similar on final assembly to prevent them working loose.

Check occasionally that the potentiometer follower is not working loose from the potentiometer; however, this is only known to have occurred once, before the use of thread-locking adhesive. This is a possible cause of a failure in the shear certification test; and can be identified by the force output starting to rise before the displacement output. Also, check occasionally that the potentiometer follower is still straight and that it is showing no signs of damage.

The cable for the shear potentiometer is run inside the femur tube, through a groove at the base of the shear spring and out through a hole in the hip end. Tie a knot in the potentiometer cable, to prevent it pulling through the hip end, leaving some slack inside the legform.

The ball end of the potentiometer follower should be located in the groove in the shear spring. The mounting plate should be fitted so that the end with the setscrew is towards the knee.

The hip end can be removed by undoing the M10 socket head cap screw in the hip end. On assembly the hip end screw should be tightened to a torque of 70 Nm ‡, with the thread dry (i.e. not greased or oiled) ‡. To tighten this screw the femur tube can be gripped at the hip end in a soft jawed vice, with the vice jaws centred on a point about 60 mm from the hip end of the tube. If washers are fitted on the hip end bolt to increase the mass, see also Section 3.

5.1 DAMPER ASSEMBLY

If the damper hasn’t been used for several months, the damper should be fully stroked through two cycles to ensure the seals are free, before using the legform again. With the damper in the legform this would more easily be achieved by stroking the shear spring using the shearing certification equipment.

Damper removal:

The damper may need to be removed for replacement or to perform an undamped (Euro-NCAP) test. Do not attempt to unscrew the piston rod of the damper from the rod end bearing, as these two components are held together by thread-locking adhesive (Loctite). The removal procedure is:

1. Remove damper cover.

2. As you face the end of the damper, with the knee end of the femur uppermost, knock out the dowel pin, from the left hand side, as the dowel is intended to come out on the right hand side.

‡ For earlier impactors with a M8 hip end screw a torque of 40 Nm is recommended, with the screw thread greased.
3. Using the special spanner supplied, loosen and remove the damper locknut, and unscrew the damper.

If the legform is used in undamped mode, with the damper removed, weight should be added to compensate for the weight removed. This could be in the form of a plate attaching to the femur tube lugs, where the damper cover is normally fitted. Note: the femur lugs should always be joined when testing to help reduce the risk of them being damaged, e.g. by the impactor rebounding into the propulsion system.

Installing a Damper:

The procedure to fit a replacement damper is as follows. If the previous damper is being refitted then step 1 can be omitted.

1. With both the modified rod end and the damper out of the legform screw the rod end fully into the piston, using thread-locking adhesive (Loctite). Allow the adhesive to reach handling strength before proceeding further.

2. Ensure that the trunnion is centred between the lugs; there should be a gap of about 0.5 mm each side (see Figure 4).

3. Before fitting the damper, it should be fully stroked through two cycles to ensure the seals are lubricated. Do not grip the damper shaft directly for this, hold the ball of the modified rod end in a soft jawed vice, and pull and push the damper body by hand.

4. Measure the damper stroke (this should be 18.9 to 19.3 mm) using a depth gauge between the rear face of the damper and the rear end of the piston rod. Also, measure the position of the rear end of the piston rod in the fully in position (this will be with the rear end of the piston rod almost but not necessarily exactly flush with the rear, hexagonal end of the damper body). Finish with the piston rod fully out.

5. Hold the damper locknut against the inside face of the trunnion and offer up the damper. Screw the damper into the trunnion, whilst preventing the piston rod from turning by using a 4 mm hexagon key in the socket in the rear of the piston rod. Screw the damper in until the hole in the modified rod end on the piston rod lines up with the dowel holes in the shear spring. Screw on the damper locknut but don’t yet tighten it.

6. Attach the modified rod end to the shear spring by knocking in the Ø5 x 30 dowel pin. Note that the chamfered end of the dowel pin has a slightly reduced diameter to enable it to fit freely in the modified rod end. As you face the damper with the knee end at the top, insert the dowel pin, chamfered end first, from the right side, as this side of the hole is a sliding fit. Once the dowel pin has been pushed through the modified rod end, knock it in using a suitable punch until it is centralised in the shear spring; don’t knock it beyond the centre position.

7. Ensure that damper position is such that the damper stroke has equal amounts of spare stroke either side of the range of the shear spring displacement. This can be done by measuring between the rear of the damper body and piston rod. However, do not assume that the shear spring is perfectly centred. Accurately measure the gap between the shear spring and the inner wall of the femur tube, at a position opposite the damper. The nominal distance is 8.51 mm and this can be compared with the measured value to determine the offset if any. Compensate
for any offset when positioning the damper. Obtain the correct position by rotating the damper body, while holding the piston rod still by using a 4 mm hex key in the hex socket in its end, to keep the modified rod end centred in its slot. Tighten the damper locknut and recheck that the damper is correctly positioned, including rechecking the offset of the shear spring.

8. Fit the damper cover using 4 off M4 x 8 button screws and a 2.5 mm hex key.

6. TIBIA SECTION

The bending potentiometer and the accelerometer are mounted in the knee insert in the tibia. The knee insert has to be removed from the tibia tube to calibrate or replace these transducers. To remove the knee insert first undo the three setscrews located about halfway down the aluminium tibia tube. Next undo the M8 nut at the foot end of the tibia and remove the foot plate. Push on the end of the M8 studs at the foot end and the knee insert will slide out complete with the studung and tibia centre weight.

To remove the potentiometer from the knee insert, first pull out the guide tube, which is a push fit into the plastic bobbin. The end of this tube can be seen in the central slot in the knee insert. The two setscrews in the knee insert, which clamp the potentiometer into the knee insert, should then be slackened and the potentiometer and bobbin will slide out. If it is necessary to separate the potentiometer and bobbin, do so by levering with a screwdriver between the potentiometer and bobbin, not by pulling apart or poking through the bore of the potentiometer. Check that the potentiometer still rotates freely. If it does not or if it did not easily slide out from the knee insert then check that the large hole in the knee insert has not become distorted. (This hole may become distorted if the impactor experiences large axial loads during a secondary impact.) If it has been distorted, the knee insert will need to be replaced.

If the bobbin needs to be refitted to the potentiometer, rotate the potentiometer until it is electrically balanced. Line up the counterbore in the bobbin with the screw hole, next to the exit of the cable, in the side of the potentiometer. Push the potentiometer and bobbin together and tighten the setscrew. When refitting the potentiometer to the knee insert, the potentiometer should be rotated until it is electrically balanced. Then clamp it in the knee insert so that the hole in the bobbin for the guide tube is in the centre of the slot in the knee insert and pointing towards the knee centre (first tighten one setscrew fully to force the potentiometer against the side, then tighten the other). The guide tube should then be pushed back into the hole in the bobbin (probably only one end of the guide tube will be a push fit into the hole).

If the tibia centre weight has been disturbed, ensure that the slot in the tibia centre weight is aligned with the accelerometer pocket in the knee insert (this will ensure that the setscrews clamping this weight do not damage the transducer cables). Also ensure that the distance between the shoulder on the knee insert and the facing side of the tibia weight is about 210 mm. The transducer cables should be routed through the slot in the tibia centre weight and taped to the M8 studing and the weight. The knee assembly can then be reassembled. The knee insert should be rotated so that the scribed line on the knee insert aligns with the line on the tibia tube, the foot plate replaced, the thread greased and the nut tightened to a torque of 20 Nm. The three setscrews, located about halfway down the aluminium tibia tube, should then be tightened. (It should be noted that the M8 studing to knee insert joint has been assembled with thread-locking adhesive (Loctite Studlock 270), to prevent rotation of
this joint when the foot end nut is turned. This should be reapplied if this joint is disturbed during maintenance.)

7. ASSEMBLY FOR TESTING

To assemble the leg for testing, a new pair of bending ligaments should be fitted to the femur section, with the wide side of the ligament taper to the outside (if the bending potentiometer rod has been removed then first re-fit it by screwing it into the ball joint located in the shear spring, which can be seen through the central slot in the femur). The M5 ligament screws are passed through the holes in the outer tube but should not yet be fully tightened. The tibia and femur sections should then be laid on a flat surface and aligned in preparation for pushing the knee parts together. Make sure that the "Rear" of the femur and tibia are on the same side, then enter the bending potentiometer rod into the guide tube in the centre slot of the tibia knee insert and slide the ligaments into their sockets in the knee insert. Insert the tibia ligament screws through the holes provided. Push the ligaments to the bottom of their sockets and tighten all four screws to a torque of 10 Nm ‡. (Note that the ends of the ligament sockets control dimensions 'a' and 'c' that are used in the calculation to convert potentiometer angle to knee bending angle, see Figure 2. It is therefore important to ensure that the ligaments are in contact with the ends of their sockets, for greater accuracy and consistency of results.)

Note that the ligaments fit into tapered seats to prevent rattling. To take the ligaments out after a test the four screws should be slackened and the leg knocked sideways, by hand, to release the ligaments from their tapers. Then remove the tibia ligament screws and slide the two halves of the legform apart.

TRL recommends using a new Confor foam 'flesh' for each test. Use Confor foam type CF-45, 1 inch (25.4 mm) thick. Care should be taken in handling and storing the Confor foam to keep distortion and crushing of the foam to a minimum. It should be stored on a flat surface and protected from extremes of temperature and direct sunlight.

The Confor foam needs to be cut to size. Note that the foam is slightly longer than the assembled impactor length because it foreshortens slightly on assembly.

Use an impact adhesive, preferably in aerosol form, such as Klik heavy-duty adhesive. For details see Section 13. Apply the adhesive to the long sides, allow to dry and repeat. Fit around the legform and press the sides together. Slide the skin under the legform, then route the accelerometer and bending potentiometer cables up the back of the legform, and zip the outer skin around the leg with the zip towards the back and the damper protruding through the hole in the skin. The bottom of the flesh and skin should be in line with the bottom of the foot plate, and the top should be roughly in line with the step in the hip end. Because of the need to change ligaments and flesh between each test it may be helpful if lightweight connectors are inserted in the instrumentation cables at the hip end of the impactor; these can be tucked inside the skin at the side or rear of the impactor. (The connectors used by TRL weigh less than 10 g per male and female pair.)

‡ This is for impactors with knee inserts made from stainless steel. For earlier impactors with knee inserts made of plated mild steel a torque of 7 Nm should be used.
8. PROPELLING AND LAUNCHING THE LEGFORM

The legform has to be propelled and launched in such a way that, at impact, it meets the requirements of the test procedure. The WG17 test procedure primarily requires that it impacts at the specified velocity, to within the allowed tolerance. However, there are also requirements on impact position, impact direction and impactor orientation at impact. These include requirements on both horizontal and vertical impact direction. As the latter limits the vertical velocity component, it will only be possible to meet requirements by launching the impactor horizontally if it is released into free flight close to impact. This in turn will increase the likelihood of the impactor being damaged by being rebounded into the propulsion system. The alternative is to launch the impactor at a slight upwards angle, so it hits the test vehicle at the top of its arc. Only the velocity vector should be inclined, of course, the axis of the legform should still be vertical.

The legform should be supported along its full length, throughout its acceleration up to speed, and be released cleanly. A semicircular support cradle attached to the propulsion system is recommended. The TRL propulsion system makes use of a support cradle with a support pin at the top. An aluminium bracket with a nylon pulley is attached to the M6 hole on the side of the hip end of the femur and the legform is suspended from the support pin. The legform is then free to roll off the support pin at the end of the acceleration phase. Details of the TRL support pin, the pulley bracket and the nylon pulley are given in Figure 6. Note that the mass of the femur section includes an allowance of 50 g for the attached components of a support system of this type.

The damper protrudes backwards from the cylindrical part of the legform. Its centreline is 35 mm above the knee centre. If the impactor is supported and propelled as recommended above, then a hole in the cradle will be needed to allow the damper to protrude through the support cradle. Dimensions of the damper assembly are therefore given in Figure 7. It should be noted that the legform will move back in the cradle during the acceleration stroke as the flesh is compressed, therefore, additional clearance depth should be allowed. It is recommended that the hole be a total of about 10 mm wider and longer than the metal parts of the damper assembly, to prevent the skin being trapped during the acceleration stroke.

The propulsion system acceleration stroke should be no less than 1 m, to keep the acceleration down to about 20 g, thereby minimising crushing of the flesh and flexing of the knee. Alternatively, the legform could be accelerated more rapidly, by loading the metal legform components directly, using support pins passing through the flesh and skin. Such a system would have to release cleanly so as not to affect the legform’s trajectory, and must not interfere with the performance of the flesh at the front of the legform. To avoid flexing of the knee, support to the metal parts each side of the knee joint and at each end of the impactor would be required. However, the complete legform with these modifications must meet the EEVC WG17 requirements for mass, moment of inertia and centre of gravity (small holes should not put it out of tolerance).

9. CERTIFICATION TESTS

Shear, bending and dynamic certification test results are included with the documentation.

The impactor should be re-certified at the intervals and occasions specified in the EEVC WG17 test procedures.
9.1 SHEAR CERTIFICATION

Now that the legform impactor has the required damper, it can no longer be displaced in the shear certification test in the direction that typically occurs in a test. This is because the damper is so positioned that it is no longer practical to apply the shear force from the rear at the specified 50 mm distance from the knee centre; it must be loaded from the front. This is not a problem because the impactor’s shear performance is the same in each direction. However, TRL recommends that the impactor be subjected to one pre-certification loading cycle in the shear certification test, in order to bed-in the impactor. Following the static shear certification test TRL recommends that the impactor be bedded-in in the normal operational direction, by loading from the rear of the impactor, at a distance of approximately 75 mm from the knee centre, using the shear certification equipment.

When loading the femur tube, do not apply load to the mounting plate, to avoid any possibility of it moving, and thereby causing an offset in the potentiometer output. The slot in the femur tube for the mounting plate can be used to indicate the position that the force should be applied at, as the end nearest the knee is almost exactly 50 mm from the knee centre.

On one occasion, before TRL used thread-locking adhesive to retain the shear potentiometer follower, the follower was found to have worked loose. A loose potentiometer follower can be identified in the shear certification test results from the force output starting to rise before the displacement output.

9.2 DYNAMIC CERTIFICATION

The EEVC WG17 report makes it clear that the dynamic legform certification test limits etc. are provisional. EEVC has tasked TRL to confirm or adjust these provisional values. Following recent work to finalise the dynamic certification method, TRL has concluded that the provisional test is too severe, causing excessive crushing of the legform flesh which makes it unduly sensitive to variations in the properties of the Confom foam. The foam in the contact area is crushed and exhibits bottoming-out behaviour. TRL is therefore recommending that the test should be less severe.

TRL is currently considering a revised certification impactor mass of 9 kg (8.95 to 9.05 kg). This mass has therefore been used in the certification test on your impactor. At this time, TRL has not yet decided whether it will recommend this mass to the EEVC or make further adjustments. If this mass is confirmed TRL will determine new limits of peak knee bending angle, shear displacement and tibia acceleration. The choice of these new limits would be informed by the test results obtained, including tests of the impactors sold. Once these test parameters and limits are decided, TRL will make a formal proposal for changes to the EEVC.

A certification impactor face is provided. No mounting holes are provided by TRL, so that you have maximum flexibility to drill and tap mounting holes to suit the requirements of your propulsion and guidance system. The impactor face is made to the EEVC WG17 drawing, except that the flanges are a 7 mm radius instead of 6 mm. This is more consistent with the other dimensions, so virtually no blending in is required. This change will also be included in TRL’s formal proposal to the EEVC.

A bracket is also provided for use when suspending the legform for the certification test. This should be fitted to the M6 tapped hole on the hip end, replacing the support components. It weighs about 50 g, so, if the pulley bracket and pulley support components recommended in Section 8 are used, the legform mass will be virtually the same for certification and vehicle
testing. A M3 tapped hole is provided in the foot plate. If the suspension cable for this end is terminated in a lightweight, crimped on eye, it may be attached here.

10. CHECKING THE IMPACTOR

10.1 BEFORE EACH TEST

Check that the instrumentation cables are not damaged and the instrumentation appears to be working. The bending potentiometer can easily be tested before the ligaments are installed, by moving the guide tube.

Check that the skin is not cut, particularly in the likely impact area.

Check that the damper cover has not been damaged. There are only a few millimetres of free space inside the cover, and the damper inside has to be able to rotate on its pivot. It will therefore be necessary to repair or replace the cover if dented.

Check that the lugs on the femur tube, that support the damper assembly, have not been distorted. The dimension between the internal machined faces of the lugs should be 46.0 mm. The manufacturing tolerance for this dimension is ±0.1 mm. It would be acceptable for the dimension to exceed this tolerance in use, provided that the trunnion could still rotate freely. Note, however, that the damper has to be accurately aligned with the shear spring. If the mis-alignment exceeds the available compliance then high stresses could be generated in the damper piston rod and elsewhere, particularly at full rearward stroke of the shear spring.

10.2 AFTER SEVERE IMPACTS

In tests where the knee bends beyond its design limit, of about 30 degrees knee angle, the potentiometer rod may become bent. Therefore, after any tests in which the knee-bending angle reaches or is close to 30 degrees, the potentiometer rod should be checked. Replace it if a bend can be seen. However, even if it is not obviously bent, it should still be checked to ensure that it can slide smoothly through the bobbin. To do this, first unscrew it from the ball joint in the femur section. Replacements can be obtained from TRL.

10.3 ROUTINE CHECKS

These checks can be made less frequently, perhaps monthly or after each series of tests.

Check that there is virtually no free-play of the potentiometer rod within the bobbin.

Check that there is no free play within the ball joint that the bending potentiometer rod is mounted to, and replace the ball joint if necessary.

Check that the ligament seats are not becoming damaged by repeated overload testing; in time it may be necessary to replace worn parts.
11. SPARES AND SERVICES FOR THE LEGFORM

Replacement ligaments and skins, as well as other spare parts, can be purchased from TRL, see contact below.

11.1 CONTACTS

Technical advice
Brian Hardy
tel: +44 (0)1344 770675
dox: +44 (0)1344 770149
eemail: bhardy@trl.co.uk
or
Graham Lawrence
tel: +44 (0)1344 770994
dox: +44 (0)1344 770149
eemail: gliawrence@trl.co.uk

Consumables and Spare Parts
Mary Legget	el: +44 (0)1344 770159
dox: +44 (0)1344 770849
eemail: mleeg@trl.co.uk

11.2 IMPACTOR INSTRUMENTATION AND FLESH

1. Potentiometers. The bending and shear potentiometers are Contelec GL 60. The shear potentiometer is modified for this application. Their impedance is 10 kohm and their electrical angle 354°.

2. Accelerometer. The legform is designed to take an Endevco 7264, 7264A or 7264B accelerometer. The accelerometer supplied with the impactor is an Endevco 7264B 2000. This has a 2000 g range, however the 500 g version can also be used.

3. Impactor flesh. The impactor flesh is made from Confor foam, type CF-45100 (blue colour, 1 inch (approximately 25 mm) thick, in sheets 36 by 80 inches (approximately 900 mm by 2000 mm)).

It is recommended that the impactor flesh be replaced after every test. TRL can supply impactor flesh cut to size or it may be obtained in full sheets from the American manufacturers or their agents. A cutting diagram is available from TRL on request.

11.3 SPARE PARTS

TRL is able to supply consumables and spare parts. Some items are held ex-stock. For current prices please contact Mary Legg. For any other part that wears or breaks in use, TRL is able to provide costs for replacement.

<table>
<thead>
<tr>
<th>LG/BL</th>
<th>Bending Ligaments</th>
<th>Minimum order of 20 pairs (for WG10 and WG17 testing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG/PR</td>
<td>Potentiometer rods</td>
<td>Minimum order of 5</td>
</tr>
<tr>
<td>LG/SKD</td>
<td>Skin</td>
<td>Minimum order of 1 - Damped legform</td>
</tr>
<tr>
<td>LG/FLD</td>
<td>Flesh (Confor foam CF-45)</td>
<td>Minimum order of 1 sheet. 6 pieces cut to size, supplied flat packed, not certified.</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>LG/PF</td>
<td>Potentiometer follower</td>
<td>Minimum order of 1</td>
</tr>
<tr>
<td>LG/PO</td>
<td>Potentiometer</td>
<td>Ready drilled for replacement, not calibrated</td>
</tr>
<tr>
<td>LG/DA</td>
<td>Damper</td>
<td>Minimum order of 1</td>
</tr>
<tr>
<td>LG/DC</td>
<td>Damper cover</td>
<td>Minimum order of 1</td>
</tr>
<tr>
<td>LG/BG</td>
<td>Bobbin and guide tube</td>
<td>Minimum order of 1</td>
</tr>
</tbody>
</table>

12. TORQUE SETTINGS

<table>
<thead>
<tr>
<th>Position</th>
<th>Version</th>
<th>Torque (Nm)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip end</td>
<td>M10 screw</td>
<td>70</td>
<td>dry</td>
</tr>
<tr>
<td></td>
<td>M8 screw</td>
<td>40</td>
<td>greased</td>
</tr>
<tr>
<td>Ligaments</td>
<td>stainless knee insert</td>
<td>10</td>
<td>dry</td>
</tr>
<tr>
<td></td>
<td>plated knee insert</td>
<td>7</td>
<td>dry</td>
</tr>
<tr>
<td>Foot end</td>
<td>all versions</td>
<td>20</td>
<td>greased</td>
</tr>
</tbody>
</table>

Torques for current impactor in **bold**

13. TOOLS AND MATERIALS REQUIRED

The tools and materials required include the following:

- Screwdriver, small, flat
- Hex keys or bits: 8mm, 5 mm, 4 mm, 2.5 mm, 2.0 mm, 1.5 mm, 1.27 / 1.3 mm ‡
- Parallel pin punches: Ø5 mm, Ø6 mm
- Torque wrench or wrenches to cover range 10 – 70 Nm †
- Thread locking adhesive, for example Loctite Studlock 270 or similar.
- Heavy duty adhesive (for example Kilk, available from Unicorn Chemicals Ltd., Mowbray Drive, Blackpool, Lancs. UK. tel: +44 (0)1253 396101 fax: +44 (0)1253 302895)

† Legforms with plated mild steel knee inserts require 7 – 70 Nm.
Figure 1

Cross-Sectional Views of the Legform Impactor

FEMUR SECTION

TIBIA SECTION

Ligament screws

Ligament screws
The knee bending angle (β) can be found from the following formula:

$$\beta = C + \arcsin \left(\frac{a}{c} \times \sin C \right)$$

where:

- $a = 59.5 \text{ mm}$
- $c = 43.5 \text{ mm}$

Note: for greater accuracy and consistency of results ensure that the ligaments are in contact with the ends of their sockets, see the Assembly for Testing Section. If they are not in contact, dimensions 'a' and 'c' will be effectively increased.
Figure 3

Knee with Shear Displacement, Showing Instrumentation and Trigonometric Method of Calculating Knee Shear Displacement

The shear displacement \(d \) can be found from the following formula:

\[d = e \times \sin D \]

where:

\(e = 27.5 \text{ mm} \)
Figure 4

Section Through Damper Assembly

0.5 GAP
0.5 GAP
R2 and R3 are optional bridge completion resistors. R1 and R4 are optional resistors to reduce the excitation voltage across the potentiometer, thereby reducing the output voltage to a range suited to the amplifier input. If shunt calibration is used the calibration resistor should be switched across one of the fixed arms of the bridge, R2 or R3 above. This diagram is intended to show the general principle; you may need to switch over inputs or outputs to suit your instrumentation.

CW (Clockwise) and CCW (Counter-Clockwise) refer to when one is looking at the side of the potentiometer through which the cable enters. The bending output will be positive when the knee is pushed backwards in relation to the ends of the legform, as would happen when the legform wraps around a bumper. The shear output will be positive when the femur is forward of the tibia, which again is the direction normally obtained in a test.

The draft directive (EEVC WG17, Dec 1998) specifies CACs (Channel Amplitude Class) for the knee bending and shear displacement channels, which are equivalent to ±20.86° at the bending potentiometer and ±21.32° at the shear potentiometer. The range of mechanical travel in the legform limits the range actually obtained to less than this. The potentiometer has a 354° electrical angle, so the required output range would be ±6% of the excitation voltage, with respect to the output at the centre position. With 10 V excitation (the same as is specified for the accelerometer) the change in output would be ±0.6 V. However, the potentiometers can be used with excitation voltages up to 70 V, so if necessary higher outputs can be obtained without amplification.
Figure 6
Support System

1 OFF PULLEY IN NYLON

1 OFF PULLEY BRACKET IN 4 mm ALUMINIUM

1 OFF SUPPORT PIN IN ALUMINIUM
Figure 7

Position and Dimensions of Damper Assembly

Note that all dimensions are subject to production tolerances, and should therefore be considered as nominal.
USER DOCUMENTATION FOR THE TRL PEDESTRIAN

UPPER LEGFORM IMPACTOR

by

B J Hardy

Version 1.4c: 9 June 1997
Copyright: TRL Ltd 1997
CONTENTS

1. INTRODUCTION .. 1

2. INSTRUMENTATION .. 1
 2.1 BENDING MOMENT GAUGES ... 1
 2.2 LOAD TRANSDUCERS .. 3
 2.2.1 Components required .. 3
 2.2.2 Calibration and testing ... 4

3. ASSEMBLING THE IMPACTOR ... 6
 3.1 SETTING THE TORQUE LIMITING JOINT ... 6
 3.2 ASSEMBLING THE LOAD TRANSDUCER COMPONENTS ... 7
 3.3 CONNECTING TO THE PROPULSION AND GUIDANCE SYSTEM 8

4. IMPACTOR CERTIFICATION ... 9

5. TESTING WITH THE IMPACTOR .. 10
 5.1 DETERMINING THE TEST PARAMETERS ... 10
 5.1.1 Mass and velocity ... 10
 5.2 REPLACEMENT OF THE FLESH AND SKIN ... 11

APPENDICES .. 12
 A1. SUPPLIERS ... 12
 A2. DRAWINGS .. 14
 A3. PIEZO-ELECTRIC POWER SUPPLY AND RESET BOX ... 18
 A4. EXPLODED VIEW AND PARTS LIST ... 19
 A5. PROGRAM BLETEST ... 21
1. INTRODUCTION

Proposals have been made by EEVC WG10 for sub-systems tests to cars which would ensure that car models which passed the tests were much safer in impacts into pedestrians. These tests have been included in a draft EC directive.

One of these tests, the Upper Legform to Bonnet Leading Edge Test, was developed by the Transport Research Laboratory (TRL). An Upper Legform Impactor, representing an adult femur, is propelled into the front edge of the bonnet or wings of the car, as shown below\(^1\). The TRL Upper Legform Impactor was developed out of research funded by the United Kingdom's Department of Transport and the European Commission.

I hope you find that this documentation will help you to use the TRL Upper Legform Impactor. I have, however, assumed that you have available a copy of the draft EC directive. If you find any errors in this documentation or if you have any suggestions to improve it then please contact me, the author (see cover page).

\(^1\) The propulsion system shown is available for purchase. It can be used for all the pedestrian sub-system tests (i.e. the bonnet test using headforms and the bumper test, as well as the bonnet leading edge test).
2. INSTRUMENTATION

The impactor is instrumented to measure bending moments in the front member of the impactor, and is designed to be fitted with load transducers to measure force. These are the measurements required by the draft directive. The bending and force measurements correspond to the two principle modes of serious injury to pedestrians in contact with the bonnet leading edge, namely femur fracture in bending and pelvis fractures as a result of high forces transmitted from the femur into the pelvis.

No provision is made for measuring acceleration as this is not required by the directive but users could easily fit accelerometers if they think the extra information will prove useful for car development.

2.1 Bending moment gauges

The front member has full bridge strain gauges in three positions: on the centre-line and 50 mm above and below the centre-line. The upper and lower gauges are included as they may record higher bending moments than the centre gauge when the impactor is tested against cars that have their strongest points above or below the defined bonnet leading edge. The gauges are only on the rear of the front member as gauges at the front or even at the sides would suffer from false outputs caused by local strain effects.

<table>
<thead>
<tr>
<th>Bridge Impedance</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Excitation</td>
<td>10 V</td>
</tr>
<tr>
<td>Channel Amplitude Class (CAC)</td>
<td>1000 Nm</td>
</tr>
<tr>
<td>Channel Frequency Class (CFC)</td>
<td>180 Hz</td>
</tr>
</tbody>
</table>

Bending Gauge Connections

<table>
<thead>
<tr>
<th>Position</th>
<th>Function</th>
<th>Cable Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>+ Excitation - Excitation + Output - Output</td>
<td>Violet Black White Brown</td>
</tr>
<tr>
<td>Centre</td>
<td>+ Excitation - Excitation + Output - Output</td>
<td>Pink Yellow Green Orange</td>
</tr>
<tr>
<td>Lower</td>
<td>+ Excitation - Excitation + Output - Output</td>
<td>Red Turquoise Grey Blue</td>
</tr>
</tbody>
</table>

Connections for the bending gauges are shown in the table. A coupler socket is provided for use when making up a lead to connect the bending gauges to your amplifiers.

The front member, with the bending moment gauges, is supplied calibrated, but should be recalibrated annually or at your normal calibration interval. It should also be recalibrated if it has been overloaded. It is supplied with a pair of calibration levers so that you can calibrate it yourself.
If you use shunt calibration the following may help you select a suitable resistor. A shunt resistor of 72 kΩ will produce a step equivalent to about 1000 Nm and one of 330 kΩ a step equivalent to about 220 Nm (the proposed acceptance level).

In order to calibrate the bending moment gauges all impactor components should be removed from the front member and the arrangement shown in the figure below used to apply bending to the front member (the levers are supplied with the impactor). Alternative means of exerting and measuring a force between the ends of the levers may be used.

L is the effective length of the calibration levers in metres, measured centre-line of impactor to centre-line of studding.

Bending moments can be applied to the front member by winding nuts along the studding in the direction shown. The bending moment applied is the force measured by the reference load transducer multiplied by the lever length L. Initially, to 'bed in' the calibration set-up, a bending moment of 1000 Nm should be applied and removed twice. The bending moment should then be increased in a series of steps up to 1000 Nm while taking readings of force and bending gauge outputs.

A small correction needs to be made for the effect on the gauges of the tensile axial load on the front member, caused by this method of applying bending moments, which is equal in magnitude to the compressive load measured by the load transducer. The correction is +1.1/L% to the shunt calibration value in Nm or -1.1/L% to the mV/Nm value. With the levers supplied L is 0.576 m typically so the correction is 1.9%.

![Bending Moment Calibration Diagram]
As a check against any mechanical inconsistency along the length of the front member, the calibration factors for the outer gauges should not differ from that for the centre gauge by more than 10 percent. This also allows for small variations in calibration factor between the outer and centre gauges, as a result of end effects arising from the transfer of bending into the front member.

2.2 Load transducers

The impactor is designed to measure the force between the front member and the rear member with two load transducers, one at the top and one at the bottom. Most of the mass of the impactor is behind the load transducers, so they measure most of the impact force between the impactor and the test vehicle. The output of each load transducer is treated as a separate channel.

<table>
<thead>
<tr>
<th>Channel Amplitude Class (CAC)</th>
<th>10 kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Frequency Class (CFC)</td>
<td>180 Hz</td>
</tr>
</tbody>
</table>

The impactor uses piezo-electric load transducers which were chosen because they are less affected by shear loads and non-uniform stress distributions than piezo-resistive load transducers of similar dimensions would be. The disadvantages of piezo-electric types are that they don't provide true DC performance, that they need charge amplifiers, and that these amplifiers should preferably be fairly close to the load transducers as the connecting cable is expensive.

2.2.1 Components required

If you didn't purchase the impactor complete with load transducer components you will need the load transducers and centring sleeves listed below. No other type of load transducer is currently catered for with this design. You will also need suitable charge amplifiers, cables to connect them to the load transducers, and possibly (depending on the charge amplifiers selected) connecting cables (for the output side of the amplifiers), a power supply and a remote operate/reset control. You are recommended to use the charge amplifiers listed below which have a very good low frequency response and which can be mounted close to the impactor and controlled remotely. Also listed are the cables required to connect these amplifiers to the load transducers and the connectors required for making up cables for the output side of the amplifiers. You would need to provide DC power for these amplifiers and a switched voltage to remotely control the operate/reset function (see suggestions in Appendix A4).

The items in the following table can be purchased from Kistler (some addresses for Kistler are given in Appendix A1).

Some special lubricating grease is included with the load transducers, this is Kistler part number 1063 if you need to order more.
Load Transducer Components Required and Recommended

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>No. required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Transducer</td>
<td>9021A</td>
<td>2</td>
</tr>
<tr>
<td>Load Transducer Centring Sleeve</td>
<td>9524</td>
<td>2</td>
</tr>
<tr>
<td>Components Recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miniature Charge Amplifier †</td>
<td>5039A331</td>
<td>2</td>
</tr>
<tr>
<td>Cable, 5 m length #</td>
<td>1633C5</td>
<td>2</td>
</tr>
<tr>
<td>Connector</td>
<td>1500A57</td>
<td>2</td>
</tr>
</tbody>
</table>

† Numbers required are a minimum; purchasers would be well advised to obtain spares, particularly of the cables.

† Order Miniature Charge Amplifiers with the measuring range preset to ±40000 pC, which is approximately equivalent to the specified CAC (channel amplitude class). Amplifier output is ±10 V.

Longer cables are available if required. TRL suspend their charge amplifiers above the impactor, so that the cables are roughly at right angles to the direction of impact.

2.2.2 Calibration and testing

The load transducers are mounted in the impactor with pre-tensioned elastic (studies going through their centres, holding the front and rear members together. When the front member is loaded in an impact test the load transducers are compressed slightly, which in turn reduces the pre-tension on the studs. The change in load seen by the load transducers is therefore not equal to the applied load. For this reason the load transducer manufacturer's calibration cannot be used, and each load transducer has to be calibrated, with its associated components, as a system.

Users are reminded that as shunt calibration cannot be used with these transducers it will also be necessary to calibrate the amplifiers and data recorder, either as part of the load transducer calibration or separately.

If load transducers are supplied with the upper legform impactor then each will be supplied calibrated with its charge amplifier as a system, but they should be recalibrated annually or at your normal calibration interval. The impactor is supplied with a calibration mount so that you can calibrate the load transducers yourself.

The load transducer studs are described as elastic because the centre portions are made thinner to stretch more under tension, thereby increasing the proportion of the applied load seen by the load transducers.
Load Transducer Calibration

The load transducer and its associated components should be mounted on the calibration mount as shown in the figure. Use a little Kistler lubricating grease on both sides of the load transducer and the sliding washer. The elastic load transducer stud should be pre-tensioned to a force of about 10kN. Use the load transducer output to set the pre-tension, this would be 10 V output for the recommended amplifiers with an input span of ±40000 pC. The amplifier should then be reset, to restore the full CAC. Some pre-tension is necessary as the calibration slope would change if the elastic stud became slack. This pre-tension is, however, much larger than is necessary to keep the stud pre-tensioned during calibration or impact tests, but is applied to operate the load transducer in a higher part of its range (which is 35kN) for improved linearity. A similar pre-tension should subsequently be used when the load transducer is remounted in the impactor.

The mounted load transducer system should be calibrated in a loading machine. Start by twice applying a force of 10kN to 'bed in' the calibration set-up. Then apply a series of known forces up to 10kN while taking readings. If the loading machine does not have a sufficiently accurate output of applied force then a reference load transducer should be used.

The force should be applied and the measurements taken sufficiently quickly that during the time taken to do so the error in the output, caused by amplifier drift and non DC response, is not significant and is never more than ½ percent of the output step. If the force cannot be applied and stabilised sufficiently quickly then it may be better to take readings to measure the change in output when the force is removed.

Reassembly of the load transducer components into the impactor is described in Section 3.2.

When carrying out an impact test it is suggested that the charge amplifiers be reset shortly before the test, to zero their output levels. Ensure that they are set to Operate when you test.

Version 1.4a: 9 June 1997
3. ASSEMBLING THE IMPACTOR

Assembly of the impactor is mostly quite straightforward. Specific areas are dealt with in the sections below. Further information about attaching the flesh is given in Section 5.2. A drawing of the assembled impactor is included in Appendix A2 and an exploded view in Appendix A5.

3.1 Setting the torque limiting joint

The torque limiting joint is effectively a clutch which is designed so that it only rotates when forces that are both high in magnitude and offset vertically are applied to the impactor. It limits the torque that is transferred through to the propulsion system, thereby protecting the propulsion system from damage.

The draft directive requires that the torque limiting joint is set so that it does not rotate unless the torque on it is greater than 650Nm. This ensures that it does not rotate until after the measured forces have exceeded the proposed acceptance level. It is suggested that the joint torque is set by tightening the nut on the pivot bolt to a pre-determined torque which will ensure that the joint torque is in excess of the minimum requirement. The procedure given at the end of this section could be followed (perhaps at normal calibration intervals) to determine this torque on the nut.

For research (as opposed to type approval) testing it may suffice to set the joint torque by applying the torque to the pivot nut that was obtained by TRL as part of the pre-delivery testing, and which was advised to you on delivery of the impactor.

Note that the nut supplied for the pivot bolt is of a higher grade than ordinary high tensile nuts (in the British system it is grade 12 whereas an ordinary high tensile nut is grade 8, with the bolt being grade 12.9). The thread of the nut should be lightly oiled. It is, of course, important to keep the torque limiting joint surfaces and friction disc clean and free from oil.

To set the torque limiting joint first just loosen the four screws holding the clutch plates to the adaptor (to allow the pressure to remain even as the nut is tightened). Now set the torque on the nut of the pivot bolt, while ensuring that the rear member is perpendicular to the axis of the guidance system. Be careful not to exceed the torque required, as it is possible to damage components with excessive torques. Finally, re-tighten the screws holding the clutch plates to the adaptor.

If you wish to determine the torque on the nut of the pivot bolt required to set the torque limiting joint, start by removing the front member and load transducer components. Then bolt the rear member to a long lever, perhaps 2 m long, using the holes for the load transducer studs as shown in the figure. It may be necessary to remove the impactor from the test rig and hold the part attached to the clutch plates in a vice, or otherwise clamp it. It is important in the following procedure that you do not exceed a torque of 160 Nm on the nut.

\[\text{Torque on nut} = 180 \text{Nm} \]

\[23/4/2012 \]

Version 1.4a: 9 June 1997

Transport Research Laboratory
Put a known torque on the nut and pull on the far end of the lever through a load transducer or a spring balance, until the joint moves. Repeat this, increasing the nut torque each time, until the joint torque (force exerted times lever length L to impactor centre-line) exceeds 650 Nm. This nut torque is then the required pivot nut torque.

If you can't obtain a joint torque of 650 Nm then disassemble the joint and check and clean the clutch plates (including the inner plates on the rear member) and the friction discs. Check the thread of the nut is oiled and that any cleaning fluid used has evaporated from the friction discs, then reassemble and try again. If you still cannot obtain the required 650 Nm joint torque then contact TRL.

3.2 Assembling the load transducer components

Assembly of Load Transducer components

The load transducer components need to be disassembled for calibration of the load transducers and the bending gauges on the front member (see section 2). Note that the stud should not be removed from the load transducer adaptor as the stud is held in the correct position by a thread-locking adhesive.
When re-assembling the impactor remember that the end of the front member marked "TOP" should be uppermost, and that the same combinations of load transducer and elastic stud should be used for calibration and testing.

Assemble the load transducer components (except, at this stage, the cable ties) as shown in the diagram. Check that the centring sleeve is located correctly inside the load transducer and sliding washer. Check that the surfaces indicated are clean and smear then with a little Kistler lubricating grease. The elastic stud should be pre-tensioned by a similar amount to that used when calibrating (10 kN was recommended). Use the load transducer output to set the pre-tension. The load transducer adaptor is a loose fit on the adaptor pin. When the pre-load is applied it turns slightly, so finish by backing off the nut slightly to centre the slot in the adaptor about the pin. Before testing reset the amplifiers to restore the full CAC.

Now fit cable ties as shown and pull tight, keeping the connectors to the side. Trim off the ends of the ties. These cable ties are fitted to take up slack in the slotted holes and bold the adaptor pins in contact with the adaptors, thereby preventing mechanical impacts between these components during an impact which could cause spikes in the load transducer outputs.

The plastic cable ties supplied are 3.6 mm wide, from RS Components Ltd (part number 547-717), but any similar ties can be used.

3.3 Connecting to the propulsion and guidance system

The upper legform impactor needs to be propelled into the test vehicle at speeds of up to 40 km/h (11 m s⁻¹). It also needs to be guided throughout the impact, allowing it to move freely along the direction of travel while preventing it from rotating or moving at right angles to the direction of travel. As most users will be using existing test rigs which will have a great variety of designs, TRL are supplying only those parts of the impactor which are forward of the propulsion and guidance system. The user needs to join their propulsion and guidance system to the impactor supplied by TRL, by providing a flat face, at right angles to the direction of travel, onto which can be bolted the TRL supplied clutch plates. A drawing titled "Interface Details - Clutch Plate Mount/Adaptor" is included in Appendix A2 to provide details of the mounting hole positions etc.

The draft directive requires a maximum impactor mass, without the extra weights, of 9.5 kg, this includes those propulsion and guidance components which are effectively part of the impactor during the impact. The part supplied by TRL, with load transducers, will weigh between 5.6 and 5.85 kg, with much of this range in weight arising from variations in the weights of the flesh sets and skin assemblies. These propulsion and guidance parts should, therefore, weigh no more than 3.65 kg. If this is too difficult to achieve then for research (ie not type approval) testing users could take advantage of the 5 percent adjustment on mass allowed in the draft directive, which would increase the minimum mass to just under 10 kg. It may not be necessary to achieve even this weight as only some shapes of car will require a test mass this low.
4. IMPACTOR CERTIFICATION

The certification test checks that the impactor is performing as it should. It is also used to certify the foam used for the impactor's flesh. Re-certification of the impactor is required annually, after a CAC (Channel Amplitude Class) has been exceeded or after every 20 impacts (these 20 impacts would include any necessary pre-tests, not just tests into vehicles). Each sheet of foam used is required to be certified. As each 80 x 36 inches sheet can produce thirteen flesh sets, this would allow twelve vehicle tests to be performed, with previously unused flesh sets, for each sheet of foam used.

![Certification Test Set-Up](image)

The certification test set-up is shown in the figure. The impactor, fitted with a previously unused flesh set, and weighing 12 ±0.1 kg, is propelled at 7.1 ±0.1 m/s into the certification tube. This tube is suspended from two wire ropes, as a pendulum, so that it is free to move away when struck by the impactor. Note that the certification test temperature should be 20 ±2°C, which is a tighter tolerance than that required for vehicle tests.

The certification test pass criteria are:-

- Peak force (in each load transducer) ≥1.2 kN, ≤1.55 kN
- Difference between peak forces ≤0.1 kN
- Peak centre bending moment ≥190 Nm, ≤250 Nm
- Peak outer bending moment ≥160 Nm, ≤220 Nm
5. TESTING WITH THE IMPACTOR

Normally the flesh would be changed for each test, see section 5.2. Otherwise only a few quick checks and a weight adjustment are required before each test. The condition of the skin should be checked before each test. Check (visually) that the torque limiting joint has not rotated, and reset if necessary (see section 3.1). Check the instrumentation cables are undamaged and that the cable ties are still adequately tensioned.

Work out the required test parameters of angle, velocity and mass (see section 5.1). Angle and velocity are, of course, set by adjusting the user’s test rig. Adjust the mass by adding or removing weights from the brackets on the rear member, but keep the upper and lower weights about the same. Remember to allow for the mass of the screws used to attach the weights and for the mass of the propulsion and guidance components acting on the impactor at impact.

5.1 Determining the test parameters

The easiest, and most accurate and repeatable, way of obtaining the required impact angle, velocity and mass is to use program 'BLETEST', which is available from TRL. Information about the program is reproduced in Appendix A5 for convenience.

5.1.1 Mass and velocity

The wording of the draft directive concerning the impactor mass and velocity is somewhat complicated. The following may clarify the position:–

(i) Obtain the required values of energy and velocity, and hence mass, from the look-up graphs.

(ii) Set the impactor mass to a convenient value which is within 5% of the required value obtained in (i), and measure this mass with equipment which has an accuracy of better than 1%.

(iii) If the mass was not set exactly in (ii), recalculate the required velocity from the required energy obtained in (i) and the measured mass obtained in (ii).

(iv) Carry out the test and obtain the actual impact velocity. (Note that it may be necessary to correct the measured velocity to allow for the effect of gravity between the point of measurement and the impact point.)

(v) If the actual impact velocity obtained in (iv) is within ±5% of the adjusted required value obtained in (iii) then the test velocity is acceptable.

The program BLETEST can, of course, be used to help to automate stages (i) and (iii). The weights provided with the impactor will allow the mass to be set to within 10 g, and if desired greater accuracy can be achieved by adjusting the number of washers. It should therefore be possible to use the mass obtained in (i) above, thereby avoiding the need for stage (iii).
5.2 Replacement of the flesh and skin

Repeated tests to the same flesh set cause some degradation in the foam. In repeated certification tests, where the foam is effectively the only energy absorbing element, there is a gradual increase, of a few percent each time, in the measured forces and bending moments. This small deterioration of the flesh is likely to have a small effect on the results of tests to cars because, to pass the test, the majority of the energy will have to be absorbed by the car. For vehicle development tests this deterioration may be acceptable. However, the use of previously used flesh will make regulatory tests to vehicles a little more difficult to pass, therefore it would be advisable to fit new flesh before each test. Also, in tests to vehicles, the loading on the flesh will depend on the shape and stiffness of the vehicle, and the degree of damage sustained by the flesh will be impossible to predict.

If the flesh is not automatically replaced after each test it should at least be inspected. Remove the nuts on one side of the skin and pull back the studding enough to inspect the inner and outer layers of flesh. Replace the flesh whenever any splits are visible in the area that gets impacted. Also replace the flesh if it seems abnormally soft to the touch in the impact area. It will, however, be soft immediately after a test because it takes time to recover and to lose the heat generated by the impact.

If the flesh is not being replaced then the next test should not be carried out until the flesh has had time to recover. We suggest 30 minutes as a minimum time; more time would be preferable.

We advise users to obtain sheets of the foam directly from their local distributor (some addresses are given in Appendix A1). The dimensions of the inner and outer fleshes are given in Appendix A2. It is possible to obtain 13 sets of flesh from one 80 x 36 inches sheet of foam (see Appendix A2).

When replacing the flesh lay the skin face down on a flat surface. Put a small drop of a Cyanacrylate or other suitable adhesive on the skin near the top, equidistant between the sides. Repeat at the bottom. Do not use glue in the impact area. Carefully position the outer flesh on top of the skin. Repeat the procedure to attach the inner flesh to the outer.

Replace the skin if it becomes cut. It normally survives tests to metal parts well, but may be cut when the impactor is tested into a headlight.

The draft directive specifies a weight for the flesh and rubber skin together as 600 ± 100g. This weight does not include the angle strips which are used to attach the skin to the impactor. The rubber parts of the skin assemblies supplied by TRL weigh 275 ±25 g.

When changing the flesh or skin the new weight of the impactor should be obtained as there are variations in weight between different flesh sets and between different skin assemblies. It may then be necessary either to adjust the weights on the impactor, or to recalculate the required test velocity as described in Section 5.1, paragraph (iii). It should also be noted that the new skin may also affect the certification performance of the impactor.
APPENDICES

A1. Suppliers

Confor foam, type CF-45100 (blue colour, 1 inch (approx 25 mm) thick, in sheets 36 by 80 inches (approx 900 by 2000 mm)) is obtainable from the following (this is not a complete list, contact the American manufacturers for your local distributor):-

<table>
<thead>
<tr>
<th>USA</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>(the manufacturers)</td>
<td>Dowty Energy Control Products</td>
</tr>
<tr>
<td>E-A-R Speciality Composites</td>
<td>Unit 2</td>
</tr>
<tr>
<td>7911 Zionsville Road</td>
<td>Ryley Row</td>
</tr>
<tr>
<td>Indianapolis, IN 46268</td>
<td>Haigh Industrial Estate</td>
</tr>
<tr>
<td>(tel) (317) 692-1111</td>
<td>Ross-on-Wye</td>
</tr>
<tr>
<td>(fax) (317) 692-3111</td>
<td>Herefordshire</td>
</tr>
<tr>
<td>or</td>
<td>HR9 5NB</td>
</tr>
<tr>
<td>Delaware Industrial Park</td>
<td>UK</td>
</tr>
<tr>
<td>Newark, DE 19713</td>
<td>(tel) +44 (0)1989 565636</td>
</tr>
<tr>
<td>(tel) (302) 738-6800</td>
<td>(fax) +44 (0)1989 565410</td>
</tr>
<tr>
<td>(fax) (302) 738-6811</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UK</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyformes Ltd.</td>
<td>KCC Shokai Ltd.</td>
</tr>
<tr>
<td>Cherry Court Way</td>
<td>1-2-1 Murotani</td>
</tr>
<tr>
<td>Stanbridge Rd</td>
<td>Shi-Ku</td>
</tr>
<tr>
<td>Leighton Buzzard</td>
<td>Kobe 651-22</td>
</tr>
<tr>
<td>Bedfordshire</td>
<td>(tel) +81 (0)78992-1114</td>
</tr>
<tr>
<td>LU7 8UH</td>
<td></td>
</tr>
<tr>
<td>(tel) +44 (0)1525 852444</td>
<td>(tel) +44 (0)1525 850484</td>
</tr>
<tr>
<td>(fax) +44 (0)1525 850484</td>
<td></td>
</tr>
</tbody>
</table>

Kistler load transducers, amplifiers etc are obtainable from the following (this is not a complete list):-Kistler addresses from 7/93 distributor list.

<table>
<thead>
<tr>
<th>Switzerland (Parent Company)</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kistler Instrumente AG Winterthur</td>
<td>Kistler Instruments Ltd.</td>
</tr>
<tr>
<td>CH-8408 Winterthur</td>
<td>Alresford House</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Mill Lane</td>
</tr>
<tr>
<td>(tel) +41 (0)52 224 11 11</td>
<td>Alton</td>
</tr>
<tr>
<td>(fax) +41 (0)52 224 14 14</td>
<td>Hants.</td>
</tr>
<tr>
<td></td>
<td>GU34 2QJ</td>
</tr>
<tr>
<td></td>
<td>(tel) +44 (0)1420 54 44 77</td>
</tr>
<tr>
<td></td>
<td>(fax) +44 (0)1420 54 44 74</td>
</tr>
</tbody>
</table>
Japan
Kistler Japan Co., Ltd.
MT Building
7-5, Shibadaimon 2-chome
Minato-ku
Tokyo
105 Japan
(tel) +81 (0)3 35 78 02 71
(fax) +81 (0)3 35 78 02 78

USA
Kistler Instrument Corp.
75 John Glenn Drive
Amherst, NY 14228-2171
(tel) (716) 691-5100
(fax) (716) 691-5226

Germany
Kistler Instrumente GmbH
Postfach 1262
D-73748 Ostfildern
(tel) +49 (0)711 34 07-0
(fax) +49 (0)711 34 07-159

Netherlands
Geveke Werktuigbouw bv
Meet- en Testapparatuur
Postbus 820
(Kabelweg 21)
NL-1000 AV Amsterdam
(tel) +31 (0)20 582 91 11
(fax) +31 (0)20 686 16 04
A2. Drawings

Impactor Assembly Drawing.

Interface Details - Clutch Plate Mount/Adaptor.

Dimensions of Inner and Outer Fleshes

Guidelines for Cutting Flesh Sets from Sheet of Confor Foam.
Impactor Assembly Drawing

- **Flesh**
- **Skin**
- **Friction Disc**
- **Spacers, Studding etc., to mount skin**
- **Extra weights as required**
- **Pivot Bolt**
- **Clutch Plate**
- **Clutch Plate mount/adaptor fits here**
- **Impactor Body**
- **Holes for studding to attach skin**

Flesh, skin, spacers and studding not shown in this view.
NOTES:

1. DRAWING SHOWS INTERFACE DETAILS OF MOUNTING HOLE POSITIONS FOR ASSEMBLING IMPACTOR TO PROPULSION AND GUIDANCE SYSTEM. SURFACE SHOWN IS PERPENDICULAR TO THE DIRECTION OF MOVEMENT OF THE IMPACTOR.

2. IF NECESSARY TO SAVE WEIGHT A HOLE COULD BE MADE THROUGH THE CENTRE OF THE CLUTCH PLATE ADAPTOR (MAX. ø50).

3. DIMENSIONS IN mm

HOLE POSITIONS IN PROPULSION AND GUIDANCE SYSTEM.

VERTICAL AXIS OF IMPACTOR

(POSITIONAL TOLERANCE ø0.2)
Guidelines for Cutting Flesh Sets from a Sheet of Confor Foam

INNER FLESH "I"

OUTER FLESH "O"

Dimensions of Inner and Outer Fleshes

Note:
1. Sheet may be smaller than nominal size. If so reduce sizes shown evenly to make best use of material available.
2. Radial cut outs on inner "I" are not shown above.
3. Extra inner or outer may be cut if required.

Version 1.4a: 9 June 1997
A3. Piezo-electric power supply and reset box

If you use the recommended type 5039 charge amplifiers, you make find these suggestions for a 'Piezo-Electric Power Supply and Reset Box' useful. It has three functions:

(i) It provides a 30 V power supply for the charge amplifiers.
(ii) It has a reset switch which resets the output from the charge amplifier to zero.
(iii) It provides BNC sockets for connecting the output signals to the recording system.

Use an encapsulated ±15V power supply. This is wired up to produce a single 30V supply. Fit it into a suitable metal box, along with two isolated BNC sockets (label 'Top' and 'Bottom') for the signal outputs and a toggle switch with positions labelled 'Operate' (when closed) and 'Reset' (when open). Fuses on input and output, and an led indicator (across output with 2.2 k series resistor) are also advised. The instructions assume two 6 way sockets are used, with pins A-F, with mating plugs on the connecting cables (again, label 'Top' and 'Bottom'). The connecting cable screen is connected via the bodies of the plug, socket and box to mains earth.

Box Connections

<table>
<thead>
<tr>
<th>6 way Sockets</th>
<th>BNC Sockets</th>
<th>Switch</th>
<th>Power Supply</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Signal †</td>
<td>Connect</td>
<td>+15 V</td>
<td>+30 V Supply to Amplifier</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>-15 V</td>
<td>0 V Supply & Remote Operate Ground</td>
</tr>
<tr>
<td>C †</td>
<td>Screen †</td>
<td></td>
<td></td>
<td>Output Signal from Amplifier</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Connect</td>
<td></td>
<td>No Connection</td>
</tr>
<tr>
<td>E †</td>
<td></td>
<td></td>
<td></td>
<td>Signal Ground</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>Remote Operate</td>
</tr>
</tbody>
</table>

† Separate connections for Top and Bottom.

Cable Connections

<table>
<thead>
<tr>
<th>8 way connector</th>
<th>Wire Colours</th>
<th>6 way plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yellow</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>Screen</td>
<td>Body</td>
</tr>
<tr>
<td>3</td>
<td>Black</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>Green</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>White</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>Red</td>
<td>A</td>
</tr>
</tbody>
</table>

† Link together pins 2 & 6 inside the 8 way connector.

Disclaimer: It is the responsibility of companies or organisations manufacturing this item to ensure that it meets any requirements on Safety and ElectroMagnetic Compatibility that apply. The Transport Research Laboratory (TRL) disclaims any liability, as the detailed layout and manufacture of the item is outside TRL's control.
A4. Exploded view and parts list

Exploded view of the upper legform impactor
Parts List

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Ref. No.</th>
<th>Name</th>
<th>No</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT MEMBER</td>
<td>1</td>
<td>Front Member</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Adaptor Pins</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Cork Sleeves</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Multicore cable</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>REAR MEMBER</td>
<td>5</td>
<td>Rear Member</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Weights, large, 10 mm thick</td>
<td>12</td>
<td>Weights: use as required to achieve desired impactor mass</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Weights, large, 5 mm thick</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Weights, large, 3 mm thick</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Weights, large, 2 mm thick</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Weights, large, 1 mm thick</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Weights, small, 2 mm thick Weights, small, 1 mm thick</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Screws, M8x70</td>
<td>8</td>
<td>Use screws of appropriate length according to weights selected</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Screws, M8x60</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Screws, M8x50</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Screws, M8x40</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Screws, M8x30</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Screws, M8x20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Washers, M8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>LOAD TRANSDUCER</td>
<td>20</td>
<td>Load Transducer Adaptor/Stud</td>
<td>2</td>
<td>Treat as 1 part</td>
</tr>
<tr>
<td>ASSEMBLIES</td>
<td>21</td>
<td>Sliding Washers</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Load Transducers, 9021A</td>
<td>2</td>
<td>Kistler part</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Centring Sleeves, 9524</td>
<td>2</td>
<td>Kistler part</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Charge Amplifiers, 5039A331</td>
<td>2</td>
<td>Kistler part</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Cables, 1633C5</td>
<td>2</td>
<td>Kistler part</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Connectors, 1500A57</td>
<td>2</td>
<td>Kistler part</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Washers, M8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Nuts, M8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Cable Ties</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TORQUE LIMITING</td>
<td>30</td>
<td>Friction Discs</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>JOINT</td>
<td>31</td>
<td>Clutch Plates</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Pivot Bolt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>Pivot Nut, extra high tensile, M12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Washers, M12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>FLESH and SKIN</td>
<td>35</td>
<td>Flesh, Inner</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Flesh, Outer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>Skin</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>Studding</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>Spacers</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Washers, M5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>Nuts, M5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CALIBRATION and</td>
<td>42</td>
<td>Calibration Lever</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>43</td>
<td>Calibration Mount</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>Load Distribution Cap</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Certification Tube</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
A5. Program BLETEST

Release 1.3 February 1993

Proposals have been made by EEVC WG10 for sub-systems tests to cars. To pass these tests car models would have to provide a certain minimum standard of safety for pedestrians, in impacts with them. These tests have been included in a draft EC directive (document reference III/5021/96 EN).

One of these tests, the Bonnet Leading Edge test, was developed by the Transport Research Laboratory (TRL). An Upper Legform impactor, representing an adult femur, is propelled into the front edge of the bonnet or wings of the car. The angle of impact, impactor energy and velocity (and therefore mass) vary, depending on the shape of the car under test. Two parameters of car shape, Bonnet Leading Edge Height and Bumper Lead, have to be determined by a method specified in the draft directive. From these the test parameters can be obtained from three look up graphs which each have a series of curves on them. These graphs are a part of the directive. Typically two values would have to be read off from the curves and the test parameter obtained by interpolating between them.

Program BLETEST, given only the car shape parameters, can work out the test parameters automatically, accurately and repeatably. All the relevant details of the draft directive are built in, such as the minimum test energy and the mass adjustment.

Program Copyright:

Copyright TRL Ltd 1993

The program may be installed onto and used on a single machine only. See further details given on the software licence.

Status of program:

Because the directive is still in draft form it is possible that changes will be made during the approval process which will affect the calculation of the test parameters. Users should therefore ensure that the release of the program that they use relates to the draft of the directive which is current at the time that they are testing. Release 1.3 is valid for drafts of the directive at least up to the 7 February 1996 draft.

The use of this program is not specifically authorised by the draft directive. It is the test house's responsibility to ensure that the test parameters are correct. TRL does not accept liability for any errors in this program. See further details given on the software licence.

Installing and Running BLETEST:

The program can run on any IBM compatible PC. It requires DOS 2.10 or later. It can be run from DOS or as a DOS program within Windows.
DOS: To install create a suitable directory (mkdir c:\bletest) and copy the files to it (copy a:*.* c:\bletest). To run the program enter c:\bletest\bletest

Windows: (These instructions apply to Windows 3.1) To install, create a suitable directory (eg c:\bletest) and copy the files to it, using File Manager. Two .pif files are provided, use bletest.pif to run without printing or bletestp.pif to run with printing. In program manager either make active an existing program group or create a new one (File, New, Program Group). Then create a new program item (File, New, Program Item). In Description enter BLETEST. In Command Line enter c:\bletest\bletest.pif (or bletestp.pif). Click on Change Icon, ignore the message and click on OK. In File Name enter c:\bletest\bletest.ico, then click on OK twice. To run the program simply double click on the icon.

Command line parameters (eg enter BLETEST P to run):

H or ? displays a Help page. Program does not run.
M se this when using a Monochrome screen.
P Prints test parameters to suitable printer connected to port LPT1.

Technical Support and Program Sales:

Contact: Brian Hardy
Transport Research Laboratory
Crowthorne, Berkshire, RG45 6AU, UK.
National: Crowthorne (01344) 770675 fax: 01344 770149
International: +44 1344 770675 fax: +44 1344 770149
email: HardyB@trl.co.uk
Miniatur-Ladungsverstärker
Amplificateur de charge miniaturisé
Miniature Charge Amplifier

Der Miniatur-Ladungsverstärker Typ 5039A hat die Aufgabe, das Ladungssignal piezoelektrischer Sensoren in ein proportionales Spannungssignal umzusetzen.

Das Gerät ist in einem robusten Metallgehäuse gemäss Schutzart IP-65 untergebracht und für industriellen Einsatz konzipiert.

Der Typ 5039A ist ein einkanaliger Ladungsverstärker mit zwei ferngesteuert-umschalbare

Messebereichen. Ausser einem Ausgang für die Abnahme des Momentanwertes ist ein zweiter Ausgang für den gespeicherten Spitzenwert vorhanden.

- Ferngesteuert-umschaltbare Messebereiche
 - Gamme de mesure commutable par télécommande
 - Measuring ranges switchable through remote control
- Spitzenempfänger-Schaltm. mit separatem Ausgang
 - Mémoire de crête avec sortie séparée
 - Peak memory circuit with separate output
- Unterdrückung von Störsignalen
 - Suppression d'interferences entre la masse électronique
 - Suppression of interferences between input and output ground up to ± 4 V

L'amplificateur de charge miniaturisé type 5039A convertit les signaux de charges électriques provenant de capteurs piezoelectriques en des tensions proportionnelles.

L'instrument est incorporé dans un boîtier métallique robuste conforme à la classe de protection IP-65 et conçu pour l'usage industriel.

Lamplificateur de charge à un canal avec deux gammes de mesure commutables par télécommande. Il existe une sortie pour la valeur momentanée, une deuxième sortie est disponible pour la valeur de crête mémorisée.

The miniature charge amplifier Type 5039A converts the electrical charge signals yielded by piezoelectric sensors into proportional voltages.

The instrument is integrated into a rugged metal housing according to degree of protection IP-65 and conceived for industrial use.

The Type 5039A is a one-channel charge amplifier with two through remote control switchable measuring ranges. Besides the output for the instant value, another output for the stored peak value is available.

Technische Daten

<table>
<thead>
<tr>
<th>Ladungsverstärker</th>
<th>Amplificateur de charge</th>
<th>Charge amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messbereich Range I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abgeglichen auf 5039A1xx</td>
<td>5039A1xx</td>
<td>5039A1xx</td>
</tr>
<tr>
<td>5039A2xx</td>
<td>5039A2xx</td>
<td>5039A2xx</td>
</tr>
<tr>
<td>5039A3xx</td>
<td>5039A3xx</td>
<td>5039A3xx</td>
</tr>
<tr>
<td>Gamme de mesure Range I</td>
<td>régulée sur</td>
<td>adjusted to</td>
</tr>
<tr>
<td>*pC min.</td>
<td>± 5000</td>
<td>±5000</td>
</tr>
<tr>
<td>*pC max.</td>
<td>±50000</td>
<td>±50000</td>
</tr>
<tr>
<td>Messbereich Range II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verhältnis 5039A1x1</td>
<td>5039A1x1</td>
<td>5039A1x1</td>
</tr>
<tr>
<td>Range I / Range II 5039A2x2</td>
<td>5039A2x2</td>
<td>5039A2x2</td>
</tr>
<tr>
<td>5039A3x3</td>
<td>5039A3x3</td>
<td>5039A3x3</td>
</tr>
<tr>
<td>Gamme de mesure Range II</td>
<td>Rapport 5039A2x2</td>
<td>Ratio 5039A1x1</td>
</tr>
<tr>
<td>Range I / Range II 5039A2x2</td>
<td>5039A1x1</td>
<td>5039A1x1</td>
</tr>
<tr>
<td>5039A3x3</td>
<td>5039A3x3</td>
<td>5039A3x3</td>
</tr>
<tr>
<td>Measuring range Range II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*pC</td>
<td>≤10</td>
<td>≤10</td>
</tr>
<tr>
<td>*mV</td>
<td>≤10</td>
<td>≤10</td>
</tr>
<tr>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset/Operate-Sprung (es gilt der jeweils größerer Wert)</td>
<td>Drift (youngest value is relevant)</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of the input offset voltage</td>
<td>µV/K</td>
<td>4</td>
</tr>
<tr>
<td>pC/min</td>
<td>≤0.05</td>
<td>≤0.05</td>
</tr>
<tr>
<td>Signal-Polarität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Eingangsleitung</td>
<td>Charge négative (entrée)</td>
<td>Negative input charge</td>
</tr>
<tr>
<td>gibt positive Ausgangsspannung</td>
<td>charge negative charge</td>
<td></td>
</tr>
<tr>
<td>donne tension de sortie positive</td>
<td>yields positive output voltage</td>
<td></td>
</tr>
<tr>
<td>Zulässige Spannung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zwischen Sensor-Low und</td>
<td>Tension permise</td>
<td>V</td>
</tr>
<tr>
<td>Ausgangs-Spiegel-Niveau (0...500 Hz)</td>
<td>entre Sensor-Low et</td>
<td></td>
</tr>
<tr>
<td>GND Sortie/Alimentation</td>
<td>GND Sortie/Alimentation</td>
<td></td>
</tr>
<tr>
<td>500 Hz</td>
<td>500 Hz</td>
<td>500 Hz</td>
</tr>
<tr>
<td>Störsignalkreuzung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zwischen Sensor-Low und</td>
<td>Rejection of signals</td>
<td>Interference signal rejection</td>
</tr>
<tr>
<td>Ausgangs-Spiegel-GND (0...500 Hz)</td>
<td>zwischen Sensor-Low et</td>
<td></td>
</tr>
<tr>
<td>500 Hz</td>
<td>GND Sortie/Alimentation</td>
<td></td>
</tr>
<tr>
<td>Größtes Eingangssignal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ohne Beschädigung</td>
<td>Signal d‘entrée max.</td>
<td>Largest input signal</td>
</tr>
<tr>
<td>Spannung</td>
<td>sans cause de dommage</td>
<td></td>
</tr>
<tr>
<td>Ladung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pC</td>
<td>≤10</td>
<td>≤10</td>
</tr>
<tr>
<td>pC</td>
<td>150 000</td>
<td>150 000</td>
</tr>
</tbody>
</table>

1 g = 9,806 65 m · s⁻²; 1 m · s⁻² = 1019 g; 1 inch = 25.4 mm; 1 Nm = 0.737 56 lbf; 1 g = 0.035 27 oz

In all Kistler documents, the decimal sign is a comma on the line (ISO 31-0:1992).
Instant-Ausgang (Output)

<table>
<thead>
<tr>
<th>Fehler</th>
<th>Sorte Instant (Output)</th>
<th>Instant Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullpunktfehler</td>
<td>Erreur</td>
<td>Error</td>
</tr>
<tr>
<td>Ausgangsspannung</td>
<td>Erreur du zéro</td>
<td>Zero point error</td>
</tr>
<tr>
<td>Ausgangsspannungs-Begrenzung</td>
<td>Tension de sortie</td>
<td>Output voltage</td>
</tr>
<tr>
<td>Ausgangstrom</td>
<td>Courant de sortie</td>
<td>Output voltage limitation</td>
</tr>
<tr>
<td>Ausgangswiderstand</td>
<td>Impédance de sortie</td>
<td>Output current</td>
</tr>
<tr>
<td>Frequenzbereich</td>
<td>Gamme de fréquence</td>
<td>Output Impedance</td>
</tr>
<tr>
<td>Abfall: 5 %</td>
<td>Chute ≤5 %</td>
<td>Frequency limit</td>
</tr>
<tr>
<td>Abfall: 3 dB</td>
<td>Chute ≤3 db</td>
<td>Drop ≤5 %</td>
</tr>
<tr>
<td>Störsignal</td>
<td>Signal d'interférence</td>
<td>Interference signal</td>
</tr>
<tr>
<td>bei kleiner Eingangskapazität (0,1 Hz ... 1 kHz)</td>
<td>pour petite capacité d'entrée (0,1 Hz ... 1 kHz)</td>
<td>for small input capacitance (0,1 Hz ... 1 kHz)</td>
</tr>
</tbody>
</table>

Spitzenpeiler-Ausgang (Peak Out)

<table>
<thead>
<tr>
<th>Fehler</th>
<th>Sorte mémoire de crêtes (Output Peak)</th>
<th>Peak memory output (Output Peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullpunktfehler</td>
<td>Erreur</td>
<td>Error</td>
</tr>
<tr>
<td>Ausgangsspannung</td>
<td>Tension de sortie</td>
<td>Zero point error (Reset)</td>
</tr>
<tr>
<td>Ausgangsspannungs-Begrenzung</td>
<td>Limitation tension de sortie</td>
<td>Output voltage</td>
</tr>
<tr>
<td>Ausgangstrom</td>
<td>Courant de sortie</td>
<td>Output voltage limitation</td>
</tr>
<tr>
<td>Ausgangswiderstand</td>
<td>Impédance de sortie</td>
<td>Output current</td>
</tr>
<tr>
<td>Drift, bei 25 °C</td>
<td>Temps de montée, signal de sortie</td>
<td>Output Impedance</td>
</tr>
<tr>
<td>Spitzenpeiler-Reset</td>
<td>Dérive à 25 °C</td>
<td>Rise time (output signal 0 ... 99 %)</td>
</tr>
<tr>
<td>Spitzenspeiler-Reset erfolgt gleichzeitig mit dem Ladeverstärker-Reset. Index der Spitzenspeiler auf Tracking gesetzt wird.</td>
<td>Drift at 25 °C typ. 0,25 ms</td>
<td></td>
</tr>
</tbody>
</table>

Steuereingänge für Reset/Operate & Range II

<table>
<thead>
<tr>
<th>Galvanisch-getrennte Eingänge über Optokoppler</th>
<th>Entrees de contrôle pour Reset/Operate & Range II</th>
<th>Control inputs for Reset/Operate & Range II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansteuerungspannung</td>
<td>Tension de contrôle</td>
<td>Control voltage</td>
</tr>
<tr>
<td>Stromaufnahme</td>
<td>Courant consommé</td>
<td>Current consumption</td>
</tr>
<tr>
<td>Prüfspannung gegenüber der Verstärkerschaltung</td>
<td>Tension d'essai relative au circuit amplificateur</td>
<td>Test voltage versus amplifier circuit</td>
</tr>
</tbody>
</table>

Spannungsversorgung

<table>
<thead>
<tr>
<th>Speisespannung</th>
<th>Alimentation</th>
<th>Power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>kurzzeitig (1 < t 1 s)</td>
<td>Tension d' alimentation à court temps (1 < t 1 s)</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>Stromaufnahme (ohne Last)</td>
<td>Courant consommé (sans charge)</td>
<td>Current consumption (without load)</td>
</tr>
</tbody>
</table>

Allgemeine Daten

<table>
<thead>
<tr>
<th>Temperaturbereich</th>
<th>Données générales</th>
<th>General data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehäusematerial</td>
<td>Gamme de température</td>
<td>Temperature range</td>
</tr>
<tr>
<td>Schutzart nach DIN 40 505</td>
<td>min./max. température</td>
<td>min./max. temperature</td>
</tr>
<tr>
<td>Vibrationfestigkeit</td>
<td>Matériel du boîtier</td>
<td>Housing material</td>
</tr>
<tr>
<td>Shockfestigkeit</td>
<td>Résistance aux vibrations</td>
<td>Degree of protection acc. to DIN 40 505</td>
</tr>
<tr>
<td>Anschluss</td>
<td>Résistance aux chocs</td>
<td>Vibration resistance</td>
</tr>
<tr>
<td>Empfohlene Montageposition</td>
<td>Connexions: alimentation, sorties des signaux et entrées de contrôle</td>
<td>Connections: supply, signal outputs and control inputs</td>
</tr>
<tr>
<td>Gewicht</td>
<td>Weight</td>
<td>Weight</td>
</tr>
</tbody>
</table>

Eisenträger AG, CH-9408 Winterthur, Switzerland, Tel. (052) 224 11 11 Eisenträger Instrument Corp., Amherst, NY 14228-2171, USA, Phone (716) 691-5100
Beschreibung

Der Miniatur-Ladungsverstärker Typ 5039A enthält im Eingang einen kapazitiv gegengekoppelten Verstärker in Hybridbauweise mit extrem hoher Eingangsimpedanz.

Momentaner Ausgangssignal (Output) und ge speicherter Spitzennwert (Output Peak) können an getrennten Anschlüssen gleichzeitig abgenommen werden. Das Zurücksetzen des Spitzenn Wertes geschieht gleichzeitig mit dem Reset des Ladungsverstärker-Einganges.

Die Ansteuerung der Eingänge Operate und Range II erfolgt gegebenenfalls mit der Optokoppler.

Zur Speisung des Typs 5039A genügt eine unstabilisiert Gleichspannung von 18 ... 36 V, Strombedarf ca. 30 mA.

Auswirkung

Der Miniatur-Ladungsverstärker Typ 5039A kann dank seiner robusten und stoßfesten Ausführung ohne Komplikationen in industrieller Umgebung mit allen Arten piezoelektrischer Messwert Sensoren verwendet werden.

Seine Ausgangssignale können z.B. an industrielle Steuerungen weitergeleitet und verarbeitet werden.

Das dichte Gehäuse, der stoßfeste Aufbau und die einfache Stromversorgung ermöglichen den Einsatz an Produktionsmaschinen, in Fahrzeugen und in vielen anderen Bereichen.

Anwendung

L'amplicateur de charge miniaturisé type 5039A peut être utilisé grâce à sa construction robuste et résistante aux chocs – dans l'industrie avec toutes sortes de capteurs piézoélectriques. Les signaux de sortie peuvent être bran chés sur des commandes industrielles et terrain ultérieurement. Le boîtier étanche, la construction résistante aux chocs et l'alimentation simple permettent d'utiliser cet amplificateur sur des machines de production automobile et dans d'autres domaines.

Application

The miniature charge amplifier Type 5039A can be used – thanks to its rugged and shock-proof construction – in industrial applications with all kinds of piezoelectric sensors connected.

The output signals can for instance be wired to industrial controls and then be processed.

The light housing, the shock-proof construction and the unstabilized power supply allow to use the charge amplifier in manufacturing machines, in vehicles and for many other applications.
Bestellbezeichnung

Désignation de commande

Ordering Code

| Miniatur- | Amplificateur de charge | Miniature | 5039A |
Lautstärker	miniaurisé	Charge Amplifier	
50000 pC	50000 pC	50000 pC	1
20000 pC	20000 pC	20000 pC	2
gemäß Bestellung	selon commande	according to order	3

<table>
<thead>
<tr>
<th>Range I / Range II</th>
<th>Range I / Range II</th>
<th>Range I / Range II</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Charge Input

<table>
<thead>
<tr>
<th>Lieferumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNC neg. (für IP-65)</td>
</tr>
<tr>
<td>BNC neg.</td>
</tr>
<tr>
<td>Typ 1500A57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zubehör</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNC neg. – TNC pos.</td>
</tr>
<tr>
<td>Typ 1709</td>
</tr>
</tbody>
</table>

Obige Bestellbezeichnung kann durch Modifikation ergänzt sein: ...Y38 Stromausgang 4-20 mA anstelle «Output Peak».

Zusätzlich kann durch eine Modifikation die Referenz von Y38 Stromausgang 4-20 mA anstelle «Output Peak» ergänzt werden.

Abmessungen / Dimensions / Dimensions
MP-Series™ Low-Inertia Motors

Brushless servo motors with absolute feedback

The Allen-Bradley® MP-Series Low-Inertia, high-output brushless servo motors use innovative design characteristics to reduce motor size while delivering significantly higher torque. These compact and highly dynamic brushless servo motors from Rockwell Automation are designed to meet the demanding requirements of high-performance motion systems. This series of servo motors is typically used with the Allen-Bradley Kinetix® 6000, Kinetix 6200, Kinetix 6500, Kinetix 300, and Kinetix 350 servo drive families. Available in nine frame sizes, these motors provide continuous stall torque from 0.26 to 163 Nm (2.3-1440 lb-in.) and peak torque from 0.77 to 278 Nm (6.8-2460 lb-in.)

Applications where more power is required in a smaller package will benefit from the use of MP-Series Low-Inertia Motors. Typical applications include: packaging, converting, electronics assembly, automotive, metal forming, and material handling.

High-Performance Feedback

MP-Series Low-Inertia motors are available with high performance encoders with a choice of single-turn or multi-turn high-resolution feedback.

- Up to 2 million counts per revolution for smooth performance and precise control (MPL-A/B3xx, -A/B4xx, -A/B45xx, -A/B5xx, -B6xx, -B8xx, and -B9xx motors)
- Up to 260 thousand counts per revolution for smooth performance and precise control (MPL-A/B15xx and -A/B2xx motors)
- Multi-turn encoder provides high-resolution absolute position feedback within 4096 turns. The electromechanical design does not require a battery
- MP-Series servo motors with high resolution encoders may be used as a component of the Kinetix safe-off feature

Smart Motor Technology

- On-board memory retains motor identity
- Communication link automatically reports identity to the system upon startup for reduced commissioning time
230 Volt Motor Specifications

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Rated Speed rpm</th>
<th>Rated Output kW</th>
<th>Rotor Inertia* kg-m² (lb-in.^2)</th>
<th>Continuous Stall Torque Nm (lb-in.)</th>
<th>Peak Stall Torque Nm (lb-in.)</th>
<th>Continuous Stall Current Amperes (0-peak)</th>
<th>Peak Stall Current Amperes (0-peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPL-A1510V</td>
<td>8000</td>
<td>0.16</td>
<td>0.0000074 (0.000065)</td>
<td>0.26 (2.3)</td>
<td>0.77 (6.8)</td>
<td>1.1</td>
<td>3.4</td>
</tr>
<tr>
<td>MPL-A1520U</td>
<td>7000</td>
<td>0.27</td>
<td>0.000013 (0.00012)</td>
<td>0.49 (4.3)</td>
<td>1.58 (14)</td>
<td>1.8</td>
<td>6.1</td>
</tr>
<tr>
<td>MPL-A1530U</td>
<td>7000</td>
<td>0.39</td>
<td>0.000023 (0.00020)</td>
<td>0.90 (8.0)</td>
<td>2.82 (25)</td>
<td>2.8</td>
<td>10.1</td>
</tr>
<tr>
<td>MPL-A210V</td>
<td>8000</td>
<td>0.37</td>
<td>0.000015 (0.00013)</td>
<td>0.55 (4.9)</td>
<td>1.52 (14)</td>
<td>3.1</td>
<td>10.2</td>
</tr>
<tr>
<td>MPL-A220T</td>
<td>6000</td>
<td>0.62</td>
<td>0.000039 (0.00035)</td>
<td>1.61 (14)</td>
<td>4.74 (42)</td>
<td>4.5</td>
<td>15.5</td>
</tr>
<tr>
<td>MPL-A230P</td>
<td>5000</td>
<td>0.86</td>
<td>0.000063 (0.00056)</td>
<td>2.10 (19)</td>
<td>8.20 (73)</td>
<td>5.4</td>
<td>23.0</td>
</tr>
<tr>
<td>MPL-A310P</td>
<td>5000</td>
<td>0.73</td>
<td>0.000044 (0.00039)</td>
<td>1.58 (14)</td>
<td>3.61 (32)</td>
<td>4.9</td>
<td>14.0</td>
</tr>
<tr>
<td>MPL-A310F</td>
<td>3000</td>
<td>0.46</td>
<td>0.000044 (0.00039)</td>
<td>1.58 (14)</td>
<td>3.61 (32)</td>
<td>3.2</td>
<td>9.3</td>
</tr>
<tr>
<td>MPL-A320P</td>
<td>5000</td>
<td>1.3</td>
<td>0.000078 (0.00069)</td>
<td>3.05 (27)</td>
<td>7.91 (70)</td>
<td>9.0</td>
<td>29.5</td>
</tr>
<tr>
<td>MPL-A320H</td>
<td>3500</td>
<td>1.0</td>
<td>0.000078 (0.00069)</td>
<td>3.05 (27)</td>
<td>7.91 (70)</td>
<td>6.1</td>
<td>19.3</td>
</tr>
<tr>
<td>MPL-A330P</td>
<td>5000</td>
<td>1.8</td>
<td>0.000122 (0.0010)</td>
<td>4.18 (37)</td>
<td>11.1 (98)</td>
<td>12.0</td>
<td>38.0</td>
</tr>
<tr>
<td>MPL-A420P</td>
<td>5000</td>
<td>2.0</td>
<td>0.000266 (0.0023)</td>
<td>4.74 (42)</td>
<td>10.2 (90)</td>
<td>12.7</td>
<td>46.0</td>
</tr>
<tr>
<td>MPL-A430P</td>
<td>5000</td>
<td>2.2</td>
<td>0.000388 (0.0033)</td>
<td>5.99 (53)</td>
<td>19.8 (175)</td>
<td>16.8</td>
<td>67.0</td>
</tr>
<tr>
<td>MPL-A430H</td>
<td>3500</td>
<td>1.8</td>
<td>0.000388 (0.0033)</td>
<td>6.21 (55)</td>
<td>19.8 (175)</td>
<td>12.2</td>
<td>45.0</td>
</tr>
<tr>
<td>MPL-A4530F</td>
<td>2800</td>
<td>1.9</td>
<td>0.000400 (0.0036)</td>
<td>8.36 (74)</td>
<td>20.3 (180)</td>
<td>13.4</td>
<td>42.0</td>
</tr>
<tr>
<td>MPL-A4530K</td>
<td>4000</td>
<td>2.5</td>
<td>0.000400 (0.0036)</td>
<td>8.13 (72)</td>
<td>20.3 (180)</td>
<td>19.5</td>
<td>62.0</td>
</tr>
<tr>
<td>MPL-A4540C</td>
<td>1500</td>
<td>1.5</td>
<td>0.000520 (0.0046)</td>
<td>10.2 (90)</td>
<td>27.1 (240)</td>
<td>9.4</td>
<td>29.0</td>
</tr>
<tr>
<td>MPL-A540F</td>
<td>3000</td>
<td>2.6</td>
<td>0.000522 (0.0046)</td>
<td>10.2 (90)</td>
<td>27.1 (240)</td>
<td>18.4</td>
<td>58.0</td>
</tr>
<tr>
<td>MPL-A560F</td>
<td>3000</td>
<td>3.0</td>
<td>0.000786 (0.0067)</td>
<td>14.1 (125)</td>
<td>34.4 (305)</td>
<td>22.0</td>
<td>66.0</td>
</tr>
<tr>
<td>MPL-A520K</td>
<td>4000</td>
<td>3.5</td>
<td>0.000786 (0.0069)</td>
<td>10.7 (95)</td>
<td>24.3 (215)</td>
<td>23.0</td>
<td>65.0</td>
</tr>
<tr>
<td>MPL-A540K</td>
<td>4000</td>
<td>5.5</td>
<td>0.001471 (0.013)</td>
<td>19.4 (172)</td>
<td>48.6 (430)</td>
<td>41.5</td>
<td>120.0</td>
</tr>
<tr>
<td>MPL-A560F</td>
<td>3000</td>
<td>5.3</td>
<td>0.002131 (0.019)</td>
<td>26.8 (237)</td>
<td>61.0 (540)</td>
<td>42.0</td>
<td>120.0</td>
</tr>
</tbody>
</table>

*Rotor inertia values shown are for non-brake encoder motors. Inertias are higher for brake and resolver versions of the motors. The incremental encoder and resolver versions are available in limited sizes.

In addition to the MP-Series Low Inertia servo motors, Rockwell Automation offers a variety of other Allen-Bradley MP-Series motors, enabling you to use exactly the right motor for your application.

<table>
<thead>
<tr>
<th>Motor</th>
<th>Description</th>
<th>Features</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-Series Food Grade Motors</td>
<td>combine the characteristics of the MP-Series Low-Inertia Motors with features specifically designed to meet the unique needs of many food and beverage packaging and handling applications. These motors address the challenges of food environments by incorporating improved sealing techniques and non-corrosive food grade fasteners and coatings.</td>
<td>- Can be used in close proximity to food
- IP66 and IP67 for low pressure wash and incidental spillage protection
- Dilute cleaning compounds can be used
- Durable two-part food-grade epoxy
- Food-grade grease
- All stainless steel fasteners and shaft
- High-resolution feedback standard
- Speeds up to 5000 rpm</td>
<td>- Food packaging
- Volumetric filling
- Form, fill, seal
- Food handling
- For meat, poultry, dairy, and applications, the MP-Series Stainless Steel motors are recommended</td>
</tr>
<tr>
<td>MP-Series Stainless Steel Motors</td>
<td>are specifically designed to meet the unique needs of hygienic environments. Use these servo motors even in high pressure, highly caustic washdown conditions, such as meat and poultry and dairy applications.</td>
<td>- Can be used in close proximity to food
- IP66, IP67 and IP69K for 1200 psi caustic washdown
- Smooth, passivated 300 series stainless steel cylindrical exterior
- Factory sealed and leak tested
- High-resolution feedback standard</td>
<td>- Meat, poultry and dairy
- Food slicing and filling
- Raw food handling
- Processing
- Closing machinery
- Life science
- Consumer products</td>
</tr>
</tbody>
</table>
460 Volt Motor Specifications

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Rated Speed rpm</th>
<th>Rated Output kW</th>
<th>Rotor Inertia* kg·m² (lb·in·s²)</th>
<th>Continuous Stall Torque Nm (lb·in.)</th>
<th>Peak Stall Torque Nm (lb·in.)</th>
<th>Continuous Stall Current Amperes (0-peak)</th>
<th>Peak Stall Current Amperes (0-peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPL-B1510V</td>
<td>8000</td>
<td>0.16</td>
<td>0.00000074 (0.000065)</td>
<td>0.26 (2.3)</td>
<td>0.77 (6.8)</td>
<td>.95</td>
<td>3.1</td>
</tr>
<tr>
<td>MPL-B1520U</td>
<td>7000</td>
<td>0.27</td>
<td>0.000013 (0.00012)</td>
<td>0.49 (4.3)</td>
<td>1.58 (14)</td>
<td>1.8</td>
<td>6.1</td>
</tr>
<tr>
<td>MPL-B1530U</td>
<td>7000</td>
<td>0.39</td>
<td>0.000023 (0.00020)</td>
<td>0.90 (8.0)</td>
<td>2.82 (25)</td>
<td>2.0</td>
<td>7.2</td>
</tr>
<tr>
<td>MPL-B210V</td>
<td>8000</td>
<td>0.37</td>
<td>0.000015 (0.00013)</td>
<td>0.55 (4.9)</td>
<td>1.52 (13)</td>
<td>1.8</td>
<td>5.8</td>
</tr>
<tr>
<td>MPL-B220T</td>
<td>6000</td>
<td>0.62</td>
<td>0.000039 (0.00035)</td>
<td>1.61 (14)</td>
<td>4.74 (42)</td>
<td>3.3</td>
<td>11.3</td>
</tr>
<tr>
<td>MPL-B230P</td>
<td>5000</td>
<td>0.86</td>
<td>0.000063 (0.00056)</td>
<td>2.10 (19)</td>
<td>8.20 (73)</td>
<td>2.6</td>
<td>11.3</td>
</tr>
<tr>
<td>MPL-B310P</td>
<td>5000</td>
<td>0.77</td>
<td>0.000044 (0.00039)</td>
<td>1.58 (14)</td>
<td>3.61 (32)</td>
<td>2.4</td>
<td>7.1</td>
</tr>
<tr>
<td>MPL-B320P</td>
<td>5000</td>
<td>1.5</td>
<td>0.000078 (0.00069)</td>
<td>3.05 (27)</td>
<td>7.91 (70)</td>
<td>4.5</td>
<td>14.0</td>
</tr>
<tr>
<td>MPL-B330P</td>
<td>5000</td>
<td>1.8</td>
<td>0.00012 (0.0010)</td>
<td>4.18 (37)</td>
<td>11.1 (98)</td>
<td>6.1</td>
<td>19.0</td>
</tr>
<tr>
<td>MPL-B420P</td>
<td>5000</td>
<td>1.9</td>
<td>0.00026 (0.0023)</td>
<td>4.74 (42)</td>
<td>13.5 (120)</td>
<td>6.4</td>
<td>22.0</td>
</tr>
<tr>
<td>MPL-B430P</td>
<td>5000</td>
<td>2.2</td>
<td>0.00038 (0.0033)</td>
<td>6.55 (58)</td>
<td>19.8 (175)</td>
<td>9.2</td>
<td>32.0</td>
</tr>
<tr>
<td>MPL-B4530F</td>
<td>3000</td>
<td>2.1</td>
<td>0.00040 (0.0036)</td>
<td>8.25 (73)</td>
<td>20.3 (180)</td>
<td>7.0</td>
<td>21.0</td>
</tr>
<tr>
<td>MPL-B4530K</td>
<td>4000</td>
<td>2.6</td>
<td>0.00040 (0.0036)</td>
<td>8.25 (73)</td>
<td>20.3 (180)</td>
<td>11.0</td>
<td>31.0</td>
</tr>
<tr>
<td>MPL-B4540F</td>
<td>3000</td>
<td>2.6</td>
<td>0.00052 (0.0046)</td>
<td>10.2 (90)</td>
<td>27.1 (240)</td>
<td>9.1</td>
<td>29.0</td>
</tr>
<tr>
<td>MPL-B4560F</td>
<td>3000</td>
<td>3.2</td>
<td>0.00078 (0.0067)</td>
<td>14.1 (125)</td>
<td>34.4 (305)</td>
<td>11.8</td>
<td>36.0</td>
</tr>
<tr>
<td>MPL-B520K</td>
<td>4000</td>
<td>3.5</td>
<td>0.000783 (0.0069)</td>
<td>10.7 (95)</td>
<td>23.2 (205)</td>
<td>11.5</td>
<td>33.0</td>
</tr>
<tr>
<td>MPL-B540D</td>
<td>2000</td>
<td>3.4</td>
<td>0.00147 (0.013)</td>
<td>19.4 (172)</td>
<td>41.0 (362)</td>
<td>10.5</td>
<td>23.0</td>
</tr>
<tr>
<td>MPL-B540K</td>
<td>4000</td>
<td>5.4</td>
<td>0.00147 (0.013)</td>
<td>19.4 (172)</td>
<td>48.6 (430)</td>
<td>20.5</td>
<td>60.0</td>
</tr>
<tr>
<td>MPL-B560F</td>
<td>3000</td>
<td>5.5</td>
<td>0.00213 (0.019)</td>
<td>26.8 (237)</td>
<td>67.8 (600)</td>
<td>20.6</td>
<td>68.0</td>
</tr>
<tr>
<td>MPL-B580F</td>
<td>3000</td>
<td>7.1</td>
<td>0.00289 (0.023)</td>
<td>34.0 (301)</td>
<td>87.0 (770)</td>
<td>26.0</td>
<td>94.0</td>
</tr>
<tr>
<td>MPL-B580U</td>
<td>3800</td>
<td>7.9</td>
<td>0.00289 (0.023)</td>
<td>34.0 (301)</td>
<td>87.0 (770)</td>
<td>32.0</td>
<td>115.0</td>
</tr>
<tr>
<td>MPL-B640F</td>
<td>3000</td>
<td>6.1</td>
<td>0.00400 (0.0354)</td>
<td>36.7 (325)</td>
<td>72.3 (640)</td>
<td>32.1</td>
<td>65.0</td>
</tr>
<tr>
<td>MPL-B660F</td>
<td>3000</td>
<td>6.15</td>
<td>0.00580 (0.051)</td>
<td>48.0 (425)</td>
<td>101.1 (895)</td>
<td>38.5</td>
<td>96.0</td>
</tr>
<tr>
<td>MPL-B680D</td>
<td>2000</td>
<td>9.3</td>
<td>0.00775 (0.0685)</td>
<td>62.8 (556)</td>
<td>154.2 (1365)</td>
<td>34.0</td>
<td>94.0</td>
</tr>
<tr>
<td>MPL-B680F</td>
<td>3000</td>
<td>7.5</td>
<td>0.00775 (0.0685)</td>
<td>60.0 (531)</td>
<td>108.5 (960)</td>
<td>48.0</td>
<td>96.0</td>
</tr>
<tr>
<td>MPL-B680H</td>
<td>3500</td>
<td>7.5</td>
<td>0.00775 (0.0685)</td>
<td>60.0 (531)</td>
<td>146.9 (1300)</td>
<td>51.0</td>
<td>140.0</td>
</tr>
<tr>
<td>MPL-B860D</td>
<td>2000</td>
<td>12.5</td>
<td>0.0169 (0.150)</td>
<td>83.0 (735)</td>
<td>152.5 (1350)</td>
<td>47.5</td>
<td>95.5</td>
</tr>
<tr>
<td>MPL-B880C</td>
<td>1500</td>
<td>12.6</td>
<td>0.0224 (0.198)</td>
<td>110.0 (973)</td>
<td>203.0 (1800)</td>
<td>47.5</td>
<td>97.5</td>
</tr>
<tr>
<td>MPL-B880D</td>
<td>2000</td>
<td>12.6</td>
<td>0.0224 (0.198)</td>
<td>110.0 (973)</td>
<td>147.0 (1300)</td>
<td>67.0</td>
<td>96.0</td>
</tr>
<tr>
<td>MPL-B960B</td>
<td>1200</td>
<td>12.7</td>
<td>0.0273 (0.242)</td>
<td>130.0 (1150)</td>
<td>231.0 (2050)</td>
<td>42.5</td>
<td>94.0</td>
</tr>
<tr>
<td>MPL-B960C</td>
<td>1500</td>
<td>14.8</td>
<td>0.0273 (0.242)</td>
<td>124.3 (1100)</td>
<td>226.0 (2000)</td>
<td>55.0</td>
<td>125.0</td>
</tr>
<tr>
<td>MPL-B960D</td>
<td>2000</td>
<td>15.0</td>
<td>0.0273 (0.242)</td>
<td>124.3 (1100)</td>
<td>226.0 (2000)</td>
<td>70.0</td>
<td>125.0</td>
</tr>
<tr>
<td>MPL-B980C</td>
<td>1500</td>
<td>16.8</td>
<td>0.0354 (0.313)</td>
<td>158.2 (1400)</td>
<td>271.0 (2400)</td>
<td>68.0</td>
<td>140.0</td>
</tr>
<tr>
<td>MPL-B980D</td>
<td>2000</td>
<td>18.6</td>
<td>0.0354 (0.313)</td>
<td>158.2 (1400)</td>
<td>260.0 (2300)</td>
<td>79.0</td>
<td>140.0</td>
</tr>
<tr>
<td>MPL-B980E</td>
<td>2750</td>
<td>13.0</td>
<td>0.0354 (0.313)</td>
<td>141.0 (1250)</td>
<td>237.0 (2100)</td>
<td>105.0</td>
<td>230.0</td>
</tr>
</tbody>
</table>

Rotor inertia values shown are for non-brake encoder motors. Inertias are higher for brake and resolver versions of the motors. The incremental encoder and resolver versions are available in limited sizes.
Connectors and Cables

New SpeedTEC DIN connector versions of MP-Series Low-Inertia Motors allow flexible orientation of connectors and use of a single cable family with all MP-Series motors.

The SpeedTEC DIN connectors are designed to provide a quick, one-quarter turn connection. This provides an easy, yet secure servo connection.

The connectors meet a wide range of codes and standard requirements:
- UL-Listed
- NFPA 79 compliant
- DESINA cable jacket coloring
- Tray cable rating
- RoHS and REACH
- 600V insulation rating

Motor Cables

Rockwell Automation offers a comprehensive selection of power, feedback, and brake cables for your MP-Series motors. Offerings include standard and continuously flexing cables, in lengths ranging from 1 meter to 90 meters.

The continuously flexing power and brake cables comply with RoHS and NFPA-79 tray ratings, and are composed of UL-listed bulk cable. Jacket coloring is compliant with DESINA specifications.

Motor Accessories

Shaft seal kits are available for all frame sizes of the MP-Series Low Inertia motors. When installed correctly, the seals yield an IP66 rating at the shaft. Note that shaft seals are wearing parts that will need to be replaced periodically. Refer to the Motion Control Selection Guide to select the shaft seal kit for your specific motor.

Motor-end connector kits are available for most MP-Series motors. They are used by customers who choose to build their own cables. The kits utilize metallic backshells, compression-style sealing to the cable jacket, and are solder-style or crimp-style connector sockets depending on the kit. Crimping tools are offered by Rockwell Automation for crimp-style sockets.

For more information refer to our website: www.ab.com/motion, or the Kinetix selection guide, GMC-56001x.

Allen-Bradley and Kinetix are registered trademarks of Rockwell Automation. SERCOS interface is a trademark of Interests Group SERCOS interface e.V of Stuttgart, Germany.

www.rockwellautomation.com
Auto industrial Shock Absorber

Auto industrial shock absorbers is
Self-compensating, industrial shock absorbers are maintenance free, self-contained hydraulic devices. Auto industrial shock absorbers can reduce the vibration and noise in the automatic mechanical movement and stop object balance effectively in the action. It can increase capacity and prolong the life of the machine to reduce the repair cost, also improve the mechanical efficiency. Industrial shock absorber include miniature shock absorbers and heavy duty industrial Shock Absorber; miniature shock absorber have the model AC0806, AC1008, AC1210.

Description

Data Sheet

Picture

Comments
<table>
<thead>
<tr>
<th>Model</th>
<th>Thread</th>
<th>Stroke(mm)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC0806</td>
<td>M8x1.0</td>
<td>0</td>
<td>50.5</td>
<td>38</td>
<td>33</td>
<td>3</td>
<td>0</td>
<td>6.0</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>AC1005</td>
<td>M10x1</td>
<td>0</td>
<td>38.7</td>
<td>27.7</td>
<td>22.9</td>
<td>3</td>
<td>0</td>
<td>8.0</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>AC1008</td>
<td>M10x1</td>
<td>3</td>
<td>57.5</td>
<td>43</td>
<td>38</td>
<td>3</td>
<td>0</td>
<td>8.0</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>AC1210</td>
<td>M12x1</td>
<td>10</td>
<td>70</td>
<td>50</td>
<td>45.5</td>
<td>9</td>
<td>5.5</td>
<td>10.3</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>AC1412</td>
<td>M14x2.5</td>
<td>12</td>
<td>103</td>
<td>70</td>
<td>67</td>
<td>4</td>
<td>14.6</td>
<td>12</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>AC1415</td>
<td>M14x1.5</td>
<td>16</td>
<td>128</td>
<td>95</td>
<td>88</td>
<td>4</td>
<td>14.6</td>
<td>12</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>AC1420</td>
<td>M14x1.5</td>
<td>20</td>
<td>129.3</td>
<td>95</td>
<td>88</td>
<td>4</td>
<td>14.3</td>
<td>12</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>AC2016</td>
<td>M20x1.5</td>
<td>10</td>
<td>129.5</td>
<td>110</td>
<td>100</td>
<td>5</td>
<td>18</td>
<td>18</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>AC2020</td>
<td>M20x1.5</td>
<td>20</td>
<td>148.5</td>
<td>110</td>
<td>100</td>
<td>5</td>
<td>18</td>
<td>18</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>AC2030</td>
<td>M20x1.5</td>
<td>30</td>
<td>168.5</td>
<td>110</td>
<td>100</td>
<td>5</td>
<td>18</td>
<td>18</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>AC2050</td>
<td>M20x1.5</td>
<td>50</td>
<td>210.3</td>
<td>142.3</td>
<td>131.3</td>
<td>5</td>
<td>18</td>
<td>18</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>AC2525</td>
<td>M25x1.5</td>
<td>25</td>
<td>156</td>
<td>111</td>
<td>101</td>
<td>8</td>
<td>19.5</td>
<td>22</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>AC2540</td>
<td>M25x1.5</td>
<td>50</td>
<td>240.5</td>
<td>170.5</td>
<td>160</td>
<td>8</td>
<td>19.5</td>
<td>22</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>AC2560</td>
<td>M25x1.5</td>
<td>80</td>
<td>337</td>
<td>237</td>
<td>100</td>
<td>8</td>
<td>19.5</td>
<td>22</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>AC0808</td>
<td>M8x1.0</td>
<td>0</td>
<td>50.5</td>
<td>38</td>
<td>33</td>
<td>3</td>
<td>0</td>
<td>6.0</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Model</td>
<td>Thread</td>
<td>Stroke (mm)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>AC2540</td>
<td>M25x1.5</td>
<td>40</td>
<td>2127</td>
<td>127.3</td>
<td>116</td>
<td>8</td>
<td>35.6</td>
<td>22</td>
<td>9.4</td>
<td>32</td>
</tr>
<tr>
<td>AC3600</td>
<td>M35x1.5</td>
<td>60</td>
<td>248.5</td>
<td>162</td>
<td>134</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>17</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Stroke (mm)</th>
<th>Energy absorption Nm(Elic)</th>
<th>Hours of energy absorption Nm(Elic)</th>
<th>Max effective maxd(l)</th>
<th>Max impact Speed (m/s)</th>
<th>Operating Temperature (°C)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC3805</td>
<td>0</td>
<td>2</td>
<td>1200</td>
<td>0.5 2 6 2 1 0.5</td>
<td>-10 to 80</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>AC1000</td>
<td>5</td>
<td>3</td>
<td>3600</td>
<td>1 3 7 3 1.5 0.8</td>
<td>-10 to 80</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>AC1008</td>
<td>8</td>
<td>4</td>
<td>5000</td>
<td>2 4 9 3 1.5 0.8</td>
<td>-10 to 80</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>AC1210</td>
<td>10</td>
<td>5</td>
<td>10000</td>
<td>5 10 30 2 1.5 0.8</td>
<td>-10 to 80</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>AC1412</td>
<td>12</td>
<td>15</td>
<td>30000</td>
<td>8 50 100 3 1.5 0.8</td>
<td>-10 to 80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>AC1415</td>
<td>18</td>
<td>20</td>
<td>35000</td>
<td>10 70 150 3 1.5 0.8</td>
<td>-10 to 80</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>AC1420</td>
<td>20</td>
<td>20</td>
<td>36000</td>
<td>10 70 150 3 1.5 0.8</td>
<td>-10 to 80</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>AC2020</td>
<td>20</td>
<td>40</td>
<td>40000</td>
<td>30 200 700 3.5 1.5</td>
<td>-10 to 80</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>AC2050</td>
<td>50</td>
<td>60</td>
<td>60000</td>
<td>50 400 1200 3.5 2</td>
<td>-10 to 80</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>AC2525</td>
<td>25</td>
<td>80</td>
<td>70000</td>
<td>200 500 1500 4 2.5 1</td>
<td>-10 to 80</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>AC2540</td>
<td>40</td>
<td>120</td>
<td>75000</td>
<td>300 1200 2000 4 2.5 1</td>
<td>-10 to 80</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>AC2550</td>
<td>50</td>
<td>150</td>
<td>120000</td>
<td>350 1350 2000 4 2.5 1</td>
<td>-10 to 80</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>AC3500</td>
<td>60</td>
<td>200</td>
<td>120000</td>
<td>400 1500 2400 4 2.5 1</td>
<td>-10 to 80</td>
<td>1030</td>
<td></td>
</tr>
</tbody>
</table>
Kinetix Linear Motion Specifications
MP-Series, TL-Series, LDAT-Series, LDC-Series, LDL-Series

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAT-Series Integrated Linear Thrusters</td>
<td>2</td>
</tr>
<tr>
<td>MP-Series Integrated Linear Stages</td>
<td>37</td>
</tr>
<tr>
<td>MP-Series Integrated Multi-axis Linear Stages</td>
<td>57</td>
</tr>
<tr>
<td>MP-Series and TL-Series Electric Cylinders</td>
<td>81</td>
</tr>
<tr>
<td>MP-Series Heavy Duty Electric Cylinders</td>
<td>129</td>
</tr>
<tr>
<td>LDC-Series Iron Core Linear Servo Motors</td>
<td>157</td>
</tr>
<tr>
<td>LDL-Series Ironless Linear Servo Motors</td>
<td>176</td>
</tr>
<tr>
<td>Common Linear Motion Specifications</td>
<td>189</td>
</tr>
<tr>
<td>Motor Brake Application Guidelines</td>
<td>190</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>191</td>
</tr>
</tbody>
</table>

This document provides catalog numbers and product specifications, including performance, environmental, certifications, and dimension drawings for Allen-Bradley® linear motors and actuators.

Use this publication in conjunction with the Kinetix® Motion Control Selection Guide, publication GetC-SG001, to help make decisions on the motion control product families best suited for your system requirements.

Servo Drive Compatibility

<table>
<thead>
<tr>
<th>Servo Drive Family</th>
<th>Integrated Linear Thrusters</th>
<th>Integrated Linear Stages</th>
<th>Electric Cylinders</th>
<th>Linear Motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetix 5700 and 5500</td>
<td>X</td>
<td>X (ballscREW)</td>
<td>X (ballscREW)</td>
<td>X</td>
</tr>
<tr>
<td>Kinetix 6200/6500</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kinetix 6000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kinetix 300</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kinetix 350</td>
<td>—</td>
<td>X (ballscREW)</td>
<td>X (ballscREW)</td>
<td>X</td>
</tr>
<tr>
<td>Kinetix 3</td>
<td>X</td>
<td>X (direct drive)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kinetix 2000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ultra™ 3000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
</tbody>
</table>
LDL-Series Ironless Linear Servo Motors

The LDL-Series® ironless linear motors address a growing interest in linear motor technology as it becomes more affordable and is increasingly recognized as a practical means of improving machine performance. With the ironless product design, you now have cost-effective options to help you improve machine throughput while reducing maintenance and downtime.

LDL-Series Ironless Linear Motor Features

- No magnetic attraction between the coil and magnet channel allows for the use of smaller, less expensive linear bearings.
- No external magnetic field to have to shield in magnetic sensitive applications.
- Non-cogging technology for super smooth motion.
- Very high acceleration and speeds up to 10 m/s (32.8 ft/s) greatly increase the throughput of your machine.
- No limits to travel distance. Ability to achieve high speeds over short and long travels.
- Direct drive technology for extreme servo responsiveness.
- No-wear, high reliability parts increase productivity.
- Peak forces to 1977 N (444 lb).
- Ability to size and optimize LDL-Series ironless linear motors and corresponding servo drives by using fotion Analyzer software reduces product selection time and minimizes cost.
- Full set-up and programming support with the Studio 5000 Logix Designer application reduces set-up time.

Motor Connector/Cable Compatibility

LDL-Series ironless linear motors are equipped with SpeedTec-ready DIN connectors. However, these motors have incremental encoders and must use threaded DIN (M4) feedback cables in non-flex applications. This is due to the number of conductors required for incremental encoder connections.

LDL-Series Ironless Linear Motors

![Image of LDL-Series Ironless Linear Servo Motors]

SpeedTec DIN (M7) Cable Plug

- 2090-CFBM7DF-CDAxx (continuous-flex) feedback cables
- 2090-CPWM7DF-xAAxx (standard, non-flex) power-only cables
- 2090-CPWM7DF-xxAFxx (continuous-flex) power-only cables

Threaded DIN (M4) Cable Plug

- 2090-XXNMF-Sxx (standard, non-flex) feedback cables
Catalog Numbers - LDL-Series Ironless Linear Motors

Catalog numbers consist of various characters, each of which identifies a specific option for that component. Use the catalog numbering table chart below to understand the configuration of your actuator. For questions regarding product availability, contact your Allen-Bradley distributor.

LDL-Series Ironless Linear Motors

<table>
<thead>
<tr>
<th>LDL - x xxx x x T x</th>
<th>Cable Termination</th>
<th>Cable Length</th>
<th>Thermal Protection</th>
<th>Feedback</th>
<th>Winding Code</th>
<th>Coil Length (1)</th>
<th>Frame Size (1)</th>
<th>Coil Designation</th>
<th>Motor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 = Flying leads</td>
<td>0 = 300 mm (12.45 in.)</td>
<td>T = PTC Thermal sensor and switch</td>
<td>H = Hall effect (trapezoidal)</td>
<td>D = D winding</td>
<td>120 = 120 mm (4.72 in.)</td>
<td>030</td>
<td>NM = Standard coil</td>
<td>LDL = LDL-Series</td>
</tr>
<tr>
<td></td>
<td>1 = Circular DIN connector</td>
<td>1 = 600 mm (23.62 in.)</td>
<td></td>
<td>N = No feedback</td>
<td>E = E winding</td>
<td>240 = 240 mm (9.45 in.)</td>
<td>050</td>
<td>TM = Thick coil</td>
<td>LDL = LDL-Series</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = 1000 mm (39.37 in.)</td>
<td></td>
<td></td>
<td></td>
<td>360 = 360 mm (14.17 in.)</td>
<td>075</td>
<td></td>
<td>LDL = LDL-Series</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>480 = 480 mm (18.90 in.)</td>
<td></td>
<td></td>
<td>LDL = LDL-Series</td>
</tr>
</tbody>
</table>

(1) Not all combinations are available. Only the configurations as listed in Technical Specifications - LDL-Series Ironless Linear Motors on page 179 are available.

LDL-Series Ironless Linear Motor Magnet Channels

<table>
<thead>
<tr>
<th>LDL - x xxx xxx</th>
<th>Magnet Track Length</th>
<th>Frame Size</th>
<th>Coil Designation</th>
<th>Motor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 = 120 mm (4.72 in.)</td>
<td>030</td>
<td>NM = Standard coil</td>
<td>LDL = LDL-Series</td>
</tr>
<tr>
<td></td>
<td>480 = 480 mm (18.90 in.)</td>
<td>050</td>
<td>TM = Thick coil</td>
<td>LDL = LDL-Series</td>
</tr>
<tr>
<td></td>
<td></td>
<td>075</td>
<td></td>
<td>LDL = LDL-Series</td>
</tr>
</tbody>
</table>
Accessories - LDL-Series Ironless Linear Motors

- Bulkhead connector kit
- Encoder connector kit
- Hall effect replacement module for connectorized coil
- Hall effect replacement module for flying-lead coil

Accessories for LDL-Series Ironless Linear Motors

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Accessory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDC-BULK-HD</td>
<td>Bulk head connector kit</td>
<td>For easy mounting of flex cable to non-flex cables. Kit includes flange for feedback and power connectors, o-rings, and nut.</td>
</tr>
<tr>
<td>LDC-ENC-CNCT</td>
<td>Encoder connector kit</td>
<td>Adapts your encoder to the feedback cable on the Hall effect module.</td>
</tr>
<tr>
<td>LDL-HALL-C</td>
<td>Hall effect module</td>
<td>Replacement module for use with connectorized coil.</td>
</tr>
<tr>
<td>LDL-HALL-F</td>
<td>Hall effect module</td>
<td>Replacement module for use with flying-lead coil.</td>
</tr>
</tbody>
</table>

Bulk Head Connector Flange Dimensions

![Bulk Head Connector Flange Dimensions Diagram]
Technical Specifications - LDL-Series Ironless Linear Motors

These performance specifications apply to all LDL-Series ironless linear motors.

Common Performance Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor type</td>
<td>3 phase, wye winding, synchronous permanent magnet stator, non-ventilated linear motor.</td>
</tr>
<tr>
<td>Operating speed, max</td>
<td>13 m/s (38.8 ft/s)</td>
</tr>
<tr>
<td>Operating voltage, (not for direct connection to AC line)</td>
<td>230V AC rms</td>
</tr>
<tr>
<td>Dielectric rating of motor power connections (U,V,W), to ground for 1.0 s (^{(1)})</td>
<td>1500V AC rms, 50/60 Hz</td>
</tr>
<tr>
<td>Cogging torque</td>
<td>Zero</td>
</tr>
<tr>
<td>Applied bus voltage, max (^{(2)})</td>
<td>625V DC</td>
</tr>
<tr>
<td>Electrical cycle length</td>
<td>60 mm (2.36 in.)</td>
</tr>
<tr>
<td>Coil temperature, max</td>
<td>130 °C (266 °F)</td>
</tr>
<tr>
<td>Insulation class</td>
<td>130 °C (266 °F) Class B</td>
</tr>
<tr>
<td>Thermal time constant, Ref, winding to ambient</td>
<td>35 min</td>
</tr>
<tr>
<td>Paint color</td>
<td>Black</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Tested during manufacturing process. Do not re-apply test voltage. Contact Application Engineering (631.344.6600) for advice on testing coils post production.

\(^{(2)}\) Maximum cable length 10 m (32.8 ft). Contact Application Engineering (631.344.6600) for applications requiring longer cables.
LDL-Series Ironless Linear Motor (standard 30 mm frame size)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Symbol</th>
<th>LDL-N030120-DxTx9</th>
<th>LDL-N030240-DxTx9</th>
<th>LDL-N030240-ExTx9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force, continuous</td>
<td>N (lbf)</td>
<td>Fc</td>
<td>63 (14)</td>
<td>1126 (28)</td>
<td></td>
</tr>
<tr>
<td>Force, peak</td>
<td>N (lbf)</td>
<td>Fp</td>
<td>209 (47)</td>
<td>1417 (94)</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>°C/W</td>
<td>Rth</td>
<td>1.73</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Force constant</td>
<td>N/Apk (lbf/Apk)</td>
<td>Ke</td>
<td>21.0 (4.7)</td>
<td>821.0 (4.7)</td>
<td>42.0 (9.4)</td>
</tr>
<tr>
<td>Back EMF constant p-p</td>
<td>Vω/ωm/s (Vωm/ln/s)</td>
<td>Ke</td>
<td>4.2 (0.6)</td>
<td>624.8 (0.6)</td>
<td>49.6 (1.3)</td>
</tr>
<tr>
<td>Current, peak</td>
<td>Apk (A rms)</td>
<td>Ip</td>
<td>9.9 (7.0)</td>
<td>219.9 (14.0)</td>
<td>9.9 (7.0)</td>
</tr>
<tr>
<td>Current, continuous</td>
<td>Apk (A rms)</td>
<td>Ip</td>
<td>3.0 (2.1)</td>
<td>6.0 (4.2)</td>
<td>3.0 (2.1)</td>
</tr>
<tr>
<td>Resistance p-p @ 20 °C (68 °F)</td>
<td>Ohms</td>
<td>R20</td>
<td>5.41</td>
<td>2.70</td>
<td>10.82</td>
</tr>
<tr>
<td>Inductance p-p</td>
<td>mH</td>
<td>L</td>
<td>8.43</td>
<td>4.22</td>
<td>16.86</td>
</tr>
<tr>
<td>Magnetic attraction</td>
<td>N (lbf)</td>
<td>Fa</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LDL-Series Ironless Linear Motor (thick 30 mm frame size)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Symbol</th>
<th>LDL-T030120-DxTx9</th>
<th>LDL-T030240-DxTx9</th>
<th>LDL-T030240-ExTx9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force, continuous</td>
<td>N (lbf)</td>
<td>Fc</td>
<td>72 (16)</td>
<td>144 (32)</td>
<td></td>
</tr>
<tr>
<td>Force, peak</td>
<td>N (lbf)</td>
<td>Fp</td>
<td>239 (54)</td>
<td>479 (108)</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>°C/W</td>
<td>Rth</td>
<td>1.31</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Force constant</td>
<td>N/Apk (lbf/Apk)</td>
<td>Ke</td>
<td>24.1 (5.4)</td>
<td>24.1 (5.4)</td>
<td>48.2 (10.8)</td>
</tr>
<tr>
<td>Back EMF constant p-p</td>
<td>Vω/ωm/s (Vωm/ln/s)</td>
<td>Ke</td>
<td>28.5 (0.7)</td>
<td>28.5 (0.7)</td>
<td>56.9 (1.4)</td>
</tr>
<tr>
<td>Current, peak</td>
<td>Apk (A rms)</td>
<td>Ip</td>
<td>9.9 (7.0)</td>
<td>19.9 (14.0)</td>
<td>9.9 (7.0)</td>
</tr>
<tr>
<td>Current, continuous</td>
<td>Apk (A rms)</td>
<td>Ip</td>
<td>3.0 (2.1)</td>
<td>6.0 (4.2)</td>
<td>3.0 (2.1)</td>
</tr>
<tr>
<td>Resistance p-p @ 20 °C (68 °F)</td>
<td>Ohms</td>
<td>R20</td>
<td>7.15</td>
<td>3.57</td>
<td>14.29</td>
</tr>
<tr>
<td>Inductance p-p</td>
<td>mH</td>
<td>L</td>
<td>13.40</td>
<td>6.70</td>
<td>26.80</td>
</tr>
<tr>
<td>Magnetic attraction</td>
<td>N (lbf)</td>
<td>Fa</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Coils at maximum temperature, 130 °C (266 °F), mounted to an aluminium heatsink whose area is noted in Table 185, and at 40 °C (104 °F) ambient.
(2) Continuous force and current based on coil moving with all phases sharing the same load in sinusoidal commutation.
(3) For standstill conditions, multiply continuous force and continuous current by 0.9.
(4) Coil mountings on either of the two narrow sides reduces continuous force by 10%.
(5) Calculated at 11% duty cycle for 1.0 second, max. Some applications can produce significantly higher peak forces. Call Applications Engineering (631.344.6600) for details.
(6) Winding parameters listed are measured line-to-line (phase-to-phase).
(7) Currents and voltages listed are measured 0-peak of the sine wave unless noted as rms.
(8) Specifications ±10%. Phase-to-phase inductance is ±30%.
LDL-Series Ironless Linear Motor (standard 50 mm frame size)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Symbol</th>
<th>LDL-N050120-DxTxx</th>
<th>LDL-N050240-DxTxx</th>
<th>LDL-N050240-ExTxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force, continuous (^1)(2)(3)(4)</td>
<td>N (lbf)</td>
<td>(F_c)</td>
<td>96 (22)</td>
<td>191 (43)</td>
<td></td>
</tr>
<tr>
<td>Force, peak (^5)</td>
<td>N (lbf)</td>
<td>(F_p)</td>
<td>317 (71)</td>
<td>635 (143)</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>(^\circ)C/W</td>
<td>(R_{th})</td>
<td>1.58</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Force constant (^6)(7)(8)</td>
<td>(N/A_{pk}) (\text{lb}f/\text{A}{pk})</td>
<td>(K_f)</td>
<td>35.0 (7.9)</td>
<td>35.0 (7.9)</td>
<td>70.0 (15.7)</td>
</tr>
<tr>
<td>Back EMF constant p-p (^6)(7)(8)</td>
<td>(V_f/\text{m/s}) (V_{f/m/s})</td>
<td>(K_e)</td>
<td>41.3 (1.1)</td>
<td>41.3 (1.1)</td>
<td>82.7 (2.1)</td>
</tr>
<tr>
<td>Current, peak (^5)(7)</td>
<td>(A_{pk}) (A_{rms})</td>
<td>(I_p)</td>
<td>18.1 (12.8)</td>
<td>9.1 (6.4)</td>
<td>9.1 (6.4)</td>
</tr>
<tr>
<td>Current, continuous (^1)(2)(3)(4)</td>
<td>(A_{pk}) (A_{rms})</td>
<td>(I_c)</td>
<td>5.5 (3.9)</td>
<td>2.7 (1.9)</td>
<td>2.7 (1.9)</td>
</tr>
<tr>
<td>Resistance p-p @ 20 °C (68 , ^\circ)F (^6)(8)</td>
<td>Ohms</td>
<td>(R_{20})</td>
<td>7.11</td>
<td>3.56</td>
<td>14.22</td>
</tr>
<tr>
<td>Inductance p-p (^6)(8)</td>
<td>mH</td>
<td>(L)</td>
<td>11.08</td>
<td>5.54</td>
<td>22.16</td>
</tr>
<tr>
<td>Magnetic attraction</td>
<td>N (lbf)</td>
<td>(F_A)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Symbol</th>
<th>LDL-N050360-DxTxx</th>
<th>LDL-N050360-ExTxx</th>
<th>LDL-N050480-DxTxx</th>
<th>LDL-N050480-ExTxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force, continuous (^1)(2)(3)(4)</td>
<td>N (lbf)</td>
<td>(F_c)</td>
<td>287 (65)</td>
<td>383 (86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force, peak (^5)</td>
<td>N (lbf)</td>
<td>(F_p)</td>
<td>952 (214)</td>
<td>1269 (285)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>(^\circ)C/W</td>
<td>(R_{th})</td>
<td>0.53</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force constant (^6)(7)(8)</td>
<td>(N/A_{pk}) (\text{lb}f/\text{A}{pk})</td>
<td>(K_f)</td>
<td>105.0 (23.6)</td>
<td>35.0 (7.9)</td>
<td>70.0 (15.7)</td>
<td></td>
</tr>
<tr>
<td>Back EMF constant p-p (^6)(7)(8)</td>
<td>(V_f/\text{m/s}) (V_{f/m/s})</td>
<td>(K_e)</td>
<td>124.0 (3.2)</td>
<td>41.3 (1.1)</td>
<td>82.7 (2.1)</td>
<td></td>
</tr>
<tr>
<td>Current, peak (^5)(7)</td>
<td>(A_{pk}) (A_{rms})</td>
<td>(I_p)</td>
<td>9.1 (6.4)</td>
<td>36.3 (25.6)</td>
<td>18.1 (12.8)</td>
<td></td>
</tr>
<tr>
<td>Current, continuous (^1)(2)(3)(4)</td>
<td>(A_{pk}) (A_{rms})</td>
<td>(I_c)</td>
<td>2.7 (1.9)</td>
<td>10.9 (7.7)</td>
<td>5.5 (3.9)</td>
<td></td>
</tr>
<tr>
<td>Resistance p-p @ 20 °C (68 , ^\circ)F (^6)(8)</td>
<td>Ohms</td>
<td>(R_{20})</td>
<td>21.33</td>
<td>1.78</td>
<td>7.11</td>
<td></td>
</tr>
<tr>
<td>Inductance p-p (^6)(8)</td>
<td>mH</td>
<td>(L)</td>
<td>3.69</td>
<td>33.25</td>
<td>2.77</td>
<td>11.08</td>
</tr>
<tr>
<td>Magnetic attraction</td>
<td>N (lbf)</td>
<td>(F_A)</td>
<td>0 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Coils at maximum temperature, \(130 \, ^\circ\)C (266 \, ^\circ\)F, mounted to an aluminum heatsink whose area is noted in table on page 185, and at \(40 \, ^\circ\)C (104 \, ^\circ\)F ambient.
2. Continuous force and current based on coil moving with all phases sharing the same load in sinusoidal commutation.
3. For standstill conditions, multiply continuous force and continuous current by 0.9.
4. Coil mountings on either of the two narrow sides reduces continuous force by 10%.
5. Calculated at 11% duty cycle for 1.0 second, max. Some applications can produce significantly higher peak forces. Call Applications Engineering (631.344.6600) for details.
6. Winding parameters listed are measured line-to-line (phase-to-phase).
7. Currents and voltages listed are measured 0-peak of the sine wave unless noted as rms.
8. Specifications are ±10%. Phase-to-phase inductance is ±30%.
Kinetix Linear Motion Specifications

LDL-Series Ironless Linear Motor (thick 50 mm frame size)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Symbol</th>
<th>LDL-T050120-DxTxx</th>
<th>LDL-T050240-DxTxx</th>
<th>LDL-T050240-ExTxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force, continuous 123(4)</td>
<td>N (lbf)</td>
<td>Fc</td>
<td>110 (25)</td>
<td>220 (49)</td>
<td></td>
</tr>
<tr>
<td>Force, peak 5</td>
<td>N (lbf)</td>
<td>Fp</td>
<td>364 (82)</td>
<td>728 [164]</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>°C/W</td>
<td>Rth</td>
<td>1.19</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Force constant 678(7)</td>
<td>N/Apk</td>
<td>Kf</td>
<td>40.2 (9.0)</td>
<td>40.2 (9.0)</td>
<td>80.4 (18.1)</td>
</tr>
<tr>
<td>Back EMF constant p-p 678(7)</td>
<td>Vs/m/s</td>
<td>Ks</td>
<td>47.4 (1.2)</td>
<td>47.4 (1.2)</td>
<td>94.9 (2.4)</td>
</tr>
<tr>
<td>Current, peak 677</td>
<td>Apk (Arms)</td>
<td>Ip</td>
<td>9.1 (6.4)</td>
<td>18.1 (12.8)</td>
<td>9.1 (6.4)</td>
</tr>
<tr>
<td>Current, continuous 1234</td>
<td>Apk (Arms)</td>
<td>Ic</td>
<td>2.7 (1.9)</td>
<td>5.5 (3.9)</td>
<td>2.7 (1.9)</td>
</tr>
<tr>
<td>Resistance p-p @ 20 °C [68 °F] 68(8)</td>
<td>Ohms</td>
<td>R20</td>
<td>9.42</td>
<td>4.71</td>
<td>18.83</td>
</tr>
<tr>
<td>Inductance p-p 68(8)</td>
<td>mH</td>
<td>L</td>
<td>18</td>
<td>9</td>
<td>35.31</td>
</tr>
<tr>
<td>Magnetic attraction</td>
<td>N (lbf)</td>
<td>Fm</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Symbol</th>
<th>LDL-T050360-DxTxx</th>
<th>LDL-T050360-ExTxx</th>
<th>LDL-T050480-DxTxx</th>
<th>LDL-T050480-ExTxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force, continuous 123(4)</td>
<td>N (lbf)</td>
<td>Fc</td>
<td>329 (74)</td>
<td></td>
<td>439 (99)</td>
<td></td>
</tr>
<tr>
<td>Force, peak 5</td>
<td>N (lbf)</td>
<td>Fp</td>
<td>1093 (246)</td>
<td></td>
<td>1457 (327)</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>°C/W</td>
<td>Rth</td>
<td>0.40</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force constant 678(7)</td>
<td>N/Apk</td>
<td>Kf</td>
<td>40.2 (9.0)</td>
<td>120.5 (27.1)</td>
<td>40.2 (9.0)</td>
<td>80.4 (18.1)</td>
</tr>
<tr>
<td>Back EMF constant p-p 678(7)</td>
<td>Vs/m/s</td>
<td>Ks</td>
<td>47.4 (1.2)</td>
<td>142.3 (3.6)</td>
<td>47.4 (1.2)</td>
<td>94.9 (2.4)</td>
</tr>
<tr>
<td>Current, peak 677</td>
<td>Apk (Arms)</td>
<td>Ip</td>
<td>27.2 (19.2)</td>
<td>9.1 (6.4)</td>
<td>36.3 (25.6)</td>
<td>18.1 (12.8)</td>
</tr>
<tr>
<td>Current, continuous 1234</td>
<td>Apk (Arms)</td>
<td>Ic</td>
<td>8.2 (5.8)</td>
<td>2.7 (1.9)</td>
<td>10.9 (7.7)</td>
<td>5.5 (3.9)</td>
</tr>
<tr>
<td>Resistance p-p @ 20 °C [68 °F] 68(8)</td>
<td>Ohms</td>
<td>R20</td>
<td>3.14</td>
<td>28.25</td>
<td>2.35</td>
<td>9.42</td>
</tr>
<tr>
<td>Inductance p-p 68(8)</td>
<td>mH</td>
<td>L</td>
<td>5.88</td>
<td>52.96</td>
<td>4.41</td>
<td>17.65</td>
</tr>
<tr>
<td>Magnetic attraction</td>
<td>N (lbf)</td>
<td>Fm</td>
<td>0 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Coils at maximum temperature, 130 °C [266 °F], mounted to aluminum heatsink whose area is noted in table on page 185, and at 40 °C [104 °F] ambient.
2. Continuous force and current based on coil moving with all phases sharing the same load in sinusoidal commutation.
3. Inductance is based on two narrow sides reduces continuous force by 10%.
4. Duty cycle for 1.0 second, max. Some applications can produce significantly higher peak forces. Call Applications Engineering (631.344.6600) for details.
5. Winding parameters listed are measured line-to-line (phase-to-phase).
6. Currents and voltages listed are measured 0-peaks of the sine wave unless noted as rms.
7. Specifications are ±10%. Phase-to-phase inductance is ±30%.
LDL-Series Ironless Linear Motor (standard 75 mm frame size)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Symbol</th>
<th>LDL-N075480-DxTxx</th>
<th>LDL-N075480-ExTxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force, continuous {1} {2} {3} {4}</td>
<td>N (lbf)</td>
<td>F_c</td>
<td>519 (117)</td>
<td></td>
</tr>
<tr>
<td>Force, peak {5}</td>
<td>N (lbf)</td>
<td>F_p</td>
<td>1723 (387)</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>°C/W</td>
<td>R_{th}</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Force constant {6} {7} {8}</td>
<td>N/(A_{ph} (lbf/A_{ph}))</td>
<td>K_f</td>
<td>52.5 (11.8)</td>
<td>105.0 (23.6)</td>
</tr>
<tr>
<td>Back EMF constant p-p {6} {7} {8}</td>
<td>$V_p/m/s$ ($V_p/in/s$)</td>
<td>K_e</td>
<td>62.0 (1.6)</td>
<td>124.0 (3.2)</td>
</tr>
<tr>
<td>Current, peak {5} {7}</td>
<td>A_{ph} (A_{rms})</td>
<td>I_p</td>
<td>32.8 (23.2)</td>
<td>16.4 (11.6)</td>
</tr>
<tr>
<td>Current, continuous {1} {2} {3} {4}</td>
<td>A_{ph} (A_{rms})</td>
<td>I_c</td>
<td>9.9 (7.0)</td>
<td>4.9 (3.5)</td>
</tr>
<tr>
<td>Resistance p-p @ 20 °C [68 °F] {6} {8}</td>
<td>Ohms</td>
<td>R_{20}</td>
<td>2.31</td>
<td>9.24</td>
</tr>
<tr>
<td>Inductance p-p {6} {8}</td>
<td>mH</td>
<td>L</td>
<td>3.60</td>
<td>14.40</td>
</tr>
<tr>
<td>Magnetic attraction</td>
<td>N (lbf)</td>
<td>F_a</td>
<td>0 (0)</td>
<td></td>
</tr>
</tbody>
</table>

LDL-Series Ironless Linear Motor (thick 75 mm frame size)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Symbol</th>
<th>LDL-T075480-DxTxx</th>
<th>LDL-T075480-ExTxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force, continuous {1} {2} {3} {4}</td>
<td>N (lbf)</td>
<td>F_c</td>
<td>596 (134)</td>
<td></td>
</tr>
<tr>
<td>Force, peak {5}</td>
<td>N (lbf)</td>
<td>F_p</td>
<td>1977 (444)</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>°C/W</td>
<td>R_{th}</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Force constant {6} {7} {8}</td>
<td>N/(A_{ph} (lbf/A_{ph}))</td>
<td>K_f</td>
<td>60.3 (13.5)</td>
<td>120.5 (27.1)</td>
</tr>
<tr>
<td>Back EMF constant p-p {6} {7} {8}</td>
<td>$V_p/m/s$ ($V_p/in/s$)</td>
<td>K_e</td>
<td>71.2 (1.8)</td>
<td>142.3 (3.6)</td>
</tr>
<tr>
<td>Current, peak {5} {7}</td>
<td>A_{ph} (A_{rms})</td>
<td>I_p</td>
<td>32.8 (23.2)</td>
<td>16.4 (11.6)</td>
</tr>
<tr>
<td>Current, continuous {1} {2} {3} {4}</td>
<td>A_{ph} (A_{rms})</td>
<td>I_c</td>
<td>9.9 (7.0)</td>
<td>4.9 (3.5)</td>
</tr>
<tr>
<td>Resistance p-p @ 20 °C [68 °F] {6} {8}</td>
<td>Ohms</td>
<td>R_{20}</td>
<td>2.31</td>
<td>9.24</td>
</tr>
<tr>
<td>Inductance p-p {6} {8}</td>
<td>mH</td>
<td>L</td>
<td>3.60</td>
<td>14.40</td>
</tr>
<tr>
<td>Magnetic attraction</td>
<td>N (lbf)</td>
<td>F_a</td>
<td>0 (0)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Coils at maximum temperature, 130°C[266 °F], mounted to an aluminium heatsink whose area is noted in table on page 185, and at 40°C[104 °F] ambient.

(2) Continuous force and current based on coil moving with all phases sharing the same load in sinusoidal commutation.

(3) For standstill conditions, multiply continuous force and continuous current by 0.9.

(4) Coil mountings on either of the two narrow sides reduces continuous force by 10%.

(5) Calculated at 11% duty cycle for 1.0 second, max. Some applications can produce significantly higher peak forces. Call Applications Engineering (631.344.6600) for details.

(6) Winding parameters listed are measured line-to-line (phase-to-phase).

(7) Currents and voltages listed are measured 0-peak of the sine wave unless noted as rms.

(8) Specifications ±10%. Phase-to-phase inductance is ±30%.
Weight Specifications

Motor Coil with Flying Leads

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Weight, approx kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-N030120-DHT20</td>
<td>0.63 (1.38)</td>
</tr>
<tr>
<td>LDL-T030120-DHT20</td>
<td>0.74 (1.64)</td>
</tr>
<tr>
<td>LDL-N030240-xHT20</td>
<td>1.14 (2.51)</td>
</tr>
<tr>
<td>LDL-T030240-xHT20</td>
<td>1.37 (3.02)</td>
</tr>
<tr>
<td>LDL-N050120-DHT20</td>
<td>0.75 (1.66)</td>
</tr>
<tr>
<td>LDL-T050120-DHT20</td>
<td>0.91 (2.01)</td>
</tr>
<tr>
<td>LDL-N050240-xHT20</td>
<td>1.39 (3.07)</td>
</tr>
</tbody>
</table>

Motor Coil with Connectors

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Weight, approx kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-N030120-DHT11</td>
<td>0.83 (1.83)</td>
</tr>
<tr>
<td>LDL-T030120-DHT11</td>
<td>0.94 (2.07)</td>
</tr>
<tr>
<td>LDL-N030240-xHT11</td>
<td>1.34 (2.95)</td>
</tr>
<tr>
<td>LDL-T030240-xHT11</td>
<td>1.57 (3.46)</td>
</tr>
<tr>
<td>LDL-N050120-DHT11</td>
<td>0.95 (2.09)</td>
</tr>
<tr>
<td>LDL-T050120-DHT11</td>
<td>1.01 (2.22)</td>
</tr>
<tr>
<td>LDL-N050240-xHT11</td>
<td>1.41 (3.11)</td>
</tr>
</tbody>
</table>

Motor Magnet Channel

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Weight, approx kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-NM030120</td>
<td>1.37 (3.02)</td>
</tr>
<tr>
<td>LDL-NM030480</td>
<td>5.51 (12.15)</td>
</tr>
<tr>
<td>LDL-TM030120</td>
<td>1.40 (3.08)</td>
</tr>
<tr>
<td>LDL-TM030480</td>
<td>5.60 (12.35)</td>
</tr>
<tr>
<td>LDL-NM050120</td>
<td>1.87 (4.12)</td>
</tr>
<tr>
<td>LDL-NM050480</td>
<td>7.48 (16.49)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Weight, approx kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-TM050120</td>
<td>1.89 (4.17)</td>
</tr>
<tr>
<td>LDL-TM050480</td>
<td>7.57 (16.69)</td>
</tr>
<tr>
<td>LDL-NM075120</td>
<td>2.91 (6.42)</td>
</tr>
<tr>
<td>LDL-NM075480</td>
<td>11.64 (25.66)</td>
</tr>
<tr>
<td>LDL-TM075120</td>
<td>2.94 (6.48)</td>
</tr>
<tr>
<td>LDL-TM075480</td>
<td>11.76 (25.93)</td>
</tr>
</tbody>
</table>
Carriage Weight and Heat Sink Area Requirements

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Required Heat Sink Area cm² (in.²)</th>
<th>Required Carriage Plate Weight kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-x030120-DHTxx</td>
<td>774 (120)</td>
<td>1.4 (3)</td>
</tr>
<tr>
<td>LDL-x030240-xHTxx</td>
<td>1160 (180)</td>
<td>2.0 (4.5)</td>
</tr>
<tr>
<td>LDL-x050120-DHTxx</td>
<td>774 (120)</td>
<td>2.7 (6)</td>
</tr>
<tr>
<td>LDL-x050240-DHTxx</td>
<td>1160 (180)</td>
<td>4.0 (9)</td>
</tr>
<tr>
<td>LDL-x050360-DHTxx</td>
<td>1680 (260)</td>
<td>5.9 (13)</td>
</tr>
<tr>
<td>LDL-x050480-DHTxx</td>
<td>2060 (320)</td>
<td>7.3 (16)</td>
</tr>
<tr>
<td>LDL-x075480-xHTxx</td>
<td>2060 (320)</td>
<td>7.3 (16)</td>
</tr>
</tbody>
</table>

Dimensions - LDL-Series Ironless Linear Motor Components

LDL-Series ironless linear motor components are designed to metric dimensions. Inch dimensions are conversions from millimeters. Untoleranced dimensions are for reference.
LDL-xxxxxx-xHT20 Motor Coil Dimensions (flying leads)

Dimensions are in mm (in.)

- Thermistor Cable Flying Leads
 1000 mm (39.37 in.)
- Power Cable Flying Leads
 1000 mm (39.37 in.)
- Hall Effect Module Flying Leads
 1000 mm (39.37 in.)
- Magnet Channel shown for reference.

Mounting holes
M4 x 0.7 \(\varnothing \) 8.5 (0.33), quantity A1.

Refer to table on page 187 for coil mounting surface flatness requirement.

Dimensions for side view of linear motor coil with connectors is identical to this view with flying leads.

LDL-xxxxxx-xHT11 Motor Coil Dimensions (connectors)

Mounting holes
M4 x 0.7 \(\varnothing \) 8.5 (0.33), quantity A1.
Motor Coil Dimensions

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>L (mm)</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
<th>F (mm)</th>
<th>G (mm)</th>
<th>H (mm)</th>
<th>I (mm)</th>
<th>J (1) mm</th>
<th>T (mm)</th>
<th>A1 Qty</th>
<th>A2 Qty</th>
<th>Power Cable Gauge mm² (AWG)</th>
<th>Flatness mm/300 x 300 (in./12 x 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-N030120-DHTxx</td>
<td>136.0 (5.35)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60.00 (2.362)</td>
<td>126.00 (4.961)</td>
<td>70.50 (2.776)</td>
<td>80.00 (3.149)</td>
<td>8.30 (0.33)</td>
<td>10.80 (0.43)</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LDL-T030120-DHTxx</td>
<td>256.0 (10.08)</td>
<td>120.00 (4.724)</td>
<td>200.00 (7.874)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>180.00 (7.087)</td>
<td>246.00 (9.685)</td>
<td>8.30 (0.33)</td>
<td>10.80 (0.43)</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-N050120-DHTxx</td>
<td>136.0 (5.35)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60.00 (2.362)</td>
<td>126.00 (4.961)</td>
<td>90.50 (3.563)</td>
<td>100.00 (3.937)</td>
<td>8.30 (0.33)</td>
<td>10.80 (0.43)</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LDL-T050120-DHTxx</td>
<td>120.0 (4.724)</td>
<td>200.00 (7.874)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>180.00 (7.087)</td>
<td>246.00 (9.685)</td>
<td>8.30 (0.33)</td>
<td>10.80 (0.43)</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-N050360-DHTxx</td>
<td>376.0 (14.80)</td>
<td>120.00 (4.724)</td>
<td>200.00 (7.874)</td>
<td>240.00 (9.449)</td>
<td>320.00 (12.598)</td>
<td>-</td>
<td>-</td>
<td>300.00 (11.811)</td>
<td>366.00 (14.409)</td>
<td>90.50 (3.563)</td>
<td>100.00 (3.937)</td>
<td>8.30 (0.33)</td>
<td>10.80 (0.43)</td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LDL-N050480-DHTxx</td>
<td>496.0 (19.53)</td>
<td>120.00 (4.724)</td>
<td>200.00 (7.874)</td>
<td>240.00 (9.449)</td>
<td>320.00 (12.598)</td>
<td>360.00 (14.173)</td>
<td>440.00 (17.323)</td>
<td>420.00 (16.535)</td>
<td>486.00 (19.134)</td>
<td>115.50 (4.547)</td>
<td>130.00 (5.118)</td>
<td>8.30 (0.33)</td>
<td>10.80 (0.43)</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>LDL-N075480-DHTxx</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.30 (0.33)</td>
<td>10.80 (0.43)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

(1) Tolerance for J dimension is ±0.26 mm (0.010 in.).

Cable Specifications

<table>
<thead>
<tr>
<th>Cable (1)</th>
<th>Conductors</th>
<th>Gauge mm² (AWG)</th>
<th>Shield Type</th>
<th>Cable Dia. mm (in.)</th>
<th>Static Bend Radius mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>4</td>
<td>0.82 (18)</td>
<td>Braid</td>
<td>7.0 (0.28)</td>
<td>18.0 (0.70)</td>
</tr>
<tr>
<td>Power</td>
<td>4</td>
<td>0.52 (20)</td>
<td>Braid</td>
<td>6.4 (0.25)</td>
<td>17.0 (0.67)</td>
</tr>
<tr>
<td>Thermistor</td>
<td>2</td>
<td>0.20 (26)</td>
<td>None</td>
<td>4.0 (0.16)</td>
<td>10.0 (0.40)</td>
</tr>
<tr>
<td>Hall Module</td>
<td>6</td>
<td>0.13 (24)</td>
<td>Foil</td>
<td>5.0 (0.20)</td>
<td>15.0 (0.59)</td>
</tr>
</tbody>
</table>

(1) All cables are non-flex.
LDL-Series Ironless Linear Motor Magnet Channel Dimensions

Dimensions are in mm (in.)

Channel Dimensions

- \(L \) = 25.00 (0.984)
- \(Y \) = 9.50 (0.374)
- \(G \) = 25.00 (0.984)
- \(M \) = 17.50 (0.689)
- \(T \) = 29.5 (1.16)
- \(N \) places

Set-up Dimension

- \(M \) = 14.00 (0.551)
- \(H \) = 29.5 (1.16)
- \(W \) = 60.00 (2.362)
- \(D \) = 60.00 (2.362)

Mounting Hole Dimensions

- \(6.35 (0.25) \) DP Both Sides

Refer to table for hole quantity.

Gap results from setting the plates to set up dimension shown.

Mounting Hole Dimensions

- \(6.35 (0.25) \) DP Both Sides

Refer to table for hole quantity.

M6 x 1.0-6H thru

See table for hole quantity.

Flatness

- mm/300 x 300 (in./12 x 12)

Cat. No.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>W (mm/ in.)</th>
<th>H (mm/ in.)</th>
<th>T (mm/ in.)</th>
<th>G (mm/ in.)</th>
<th>D (mm/ in.)</th>
<th>L (mm/ in.)</th>
<th>M (mm/ in.)</th>
<th>N</th>
<th>Hole Qty</th>
<th>Y (mm/ in.)</th>
<th>Flatness (mm/300 x 300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-NM030120</td>
<td>37.80 (1.488)</td>
<td>56.00 (2.205)</td>
<td>6.35 (0.250)</td>
<td>9.86 (0.388)</td>
<td>18.90 (0.744)</td>
<td>119.00 (4.685)</td>
<td>14.00 (0.551)</td>
<td>1</td>
<td>2</td>
<td>95.00 (3.740)</td>
<td>0.13 (0.005)</td>
</tr>
<tr>
<td>LDL-NM030480</td>
<td>37.80 (1.488)</td>
<td>76.00 (2.992)</td>
<td>6.35 (0.250)</td>
<td>9.86 (0.388)</td>
<td>18.90 (0.744)</td>
<td>119.00 (4.685)</td>
<td>14.00 (0.551)</td>
<td>1</td>
<td>2</td>
<td>95.00 (3.740)</td>
<td>0.13 (0.005)</td>
</tr>
<tr>
<td>LDL-TM030120</td>
<td>40.65 (1.600)</td>
<td>56.00 (2.205)</td>
<td>6.35 (0.250)</td>
<td>12.57 (0.494)</td>
<td>20.33 (0.800)</td>
<td>119.00 (4.685)</td>
<td>14.00 (0.551)</td>
<td>1</td>
<td>2</td>
<td>95.00 (3.740)</td>
<td>0.13 (0.005)</td>
</tr>
<tr>
<td>LDL-TM030480</td>
<td>40.65 (1.600)</td>
<td>76.00 (2.992)</td>
<td>6.35 (0.250)</td>
<td>12.57 (0.494)</td>
<td>20.33 (0.800)</td>
<td>119.00 (4.685)</td>
<td>14.00 (0.551)</td>
<td>1</td>
<td>2</td>
<td>95.00 (3.740)</td>
<td>0.13 (0.005)</td>
</tr>
<tr>
<td>LDL-NM050120</td>
<td>37.80 (1.488)</td>
<td>106.0 (4.173)</td>
<td>8.00 (0.315)</td>
<td>9.86 (0.388)</td>
<td>20.55 (0.809)</td>
<td>119.00 (4.685)</td>
<td>19.00 (0.748)</td>
<td>1</td>
<td>2</td>
<td>95.00 (3.740)</td>
<td>0.13 (0.005)</td>
</tr>
<tr>
<td>LDL-NM050480</td>
<td>41.1 (1.62)</td>
<td>106.0 (4.173)</td>
<td>8.00 (0.315)</td>
<td>9.86 (0.388)</td>
<td>20.55 (0.809)</td>
<td>119.00 (4.685)</td>
<td>19.00 (0.748)</td>
<td>1</td>
<td>2</td>
<td>95.00 (3.740)</td>
<td>0.13 (0.005)</td>
</tr>
<tr>
<td>LDL-TM050120</td>
<td>40.65 (1.600)</td>
<td>106.0 (4.173)</td>
<td>8.00 (0.315)</td>
<td>12.57 (0.494)</td>
<td>21.85 (0.860)</td>
<td>119.00 (4.685)</td>
<td>19.00 (0.748)</td>
<td>1</td>
<td>2</td>
<td>95.00 (3.740)</td>
<td>0.13 (0.005)</td>
</tr>
<tr>
<td>LDL-TM050480</td>
<td>43.7 (1.72)</td>
<td>106.0 (4.173)</td>
<td>8.00 (0.315)</td>
<td>12.57 (0.494)</td>
<td>21.85 (0.860)</td>
<td>119.00 (4.685)</td>
<td>19.00 (0.748)</td>
<td>1</td>
<td>2</td>
<td>95.00 (3.740)</td>
<td>0.13 (0.005)</td>
</tr>
</tbody>
</table>

Notes:

1. Tolerance for \(G \) dimension is \(+0.35 \text{ mm} (+0.012 \text{ in.}) - 0.12 \text{ mm} (-0.004 \text{ in.}).\)
2. Tolerance for \(L \) dimension is \(+0.25 \text{ mm} (+0.010 \text{ in.}).\)
3. Tolerance for \(Y \) dimension is \(+0.05 \text{ mm} (+0.002 \text{ in.}).\)
Common Linear Motion Specifications

These specifications are common to all Kinetix ftotion Control linear motor/actuator families.

Environmental Specifications - Kinetix Linear Motion

<table>
<thead>
<tr>
<th>Attribute</th>
<th>MP-Series Integrated Linear Stages</th>
<th>LDAT-Series Integrated Linear Thrusters</th>
<th>MP-Series and TL-Series Electric Cylinders</th>
<th>LDC-Series and LDL-Series Linear Motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, ambient</td>
<td></td>
<td></td>
<td>-30...70 °C (-22...158 °F)</td>
<td></td>
</tr>
<tr>
<td>Temperature, storage</td>
<td>-30...70 °C (-22...158 °F)</td>
<td>-25...60 °C (-13...140 °F)</td>
<td>-30...70 °C (-22...158 °F)</td>
<td></td>
</tr>
<tr>
<td>Relative humidity (noncondensing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td></td>
<td></td>
<td>5...95%</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>0.1 grms @ 30...2000 Hz</td>
<td></td>
<td>2.5 g peak @ 30...2000 Hz</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Ratings - Kinetix Linear Motion

<table>
<thead>
<tr>
<th>IP Rating</th>
<th>Dust Protection</th>
<th>Liquid Protection</th>
<th>Actuator/Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP30</td>
<td>Objects larger than 2.5 mm (0.098 in.)</td>
<td>No protection from liquids.</td>
<td>Bulletin MPAS and MPMA</td>
</tr>
<tr>
<td>IP40</td>
<td>Objects larger than 1.0 mm (0.039 in.)</td>
<td>No protection from liquids.</td>
<td>Bulletin MPAR, Bulletin TLAR</td>
</tr>
<tr>
<td>IP65</td>
<td>Total protection from dust</td>
<td>Protected against low-pressure jets of water from all directions.</td>
<td>LDC-Series, LDL-Series</td>
</tr>
<tr>
<td>IP66</td>
<td>Protetected against strong jets of water.</td>
<td></td>
<td>Bulletin MPAR</td>
</tr>
<tr>
<td>IP67</td>
<td>Protected against the effects of temporary liquid immersion.</td>
<td></td>
<td>Bulletin MPAR</td>
</tr>
</tbody>
</table>

(1) Applies to only covered units.
(2) Applies to complete unit, including rod-end seal and breather port.
(3) Applies to electronic components.
(4) Requires the use of Bulletin 2090 environmentally sealed cable connectors in stationary applications. Maintain the front bearing and wiper seal at the prescribed interval. Wipe rods dry before motion occurs or liquid could be drawn inside the actuator.

Certifications - Kinetix Linear Motion

<table>
<thead>
<tr>
<th>Linear Motor/Actuator Family</th>
<th>Bulletin Number</th>
<th>c-UL-us (1)</th>
<th>CE (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-Series linear stages and electric cylinders</td>
<td>Bulletin MPAR, MPMA</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>TL-Series electric cylinders</td>
<td>Bulletin TLAR</td>
<td>~</td>
<td>√</td>
</tr>
<tr>
<td>LDAT-Series linear thrusters</td>
<td>N/A</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>LDC-Series linear motors</td>
<td>N/A</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>LDL-Series linear motors</td>
<td>N/A</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

(1) UL recognized components to applicable UL and CSA standards.
(2) When product is marked, see the Product Certification link at http://www.ab.com for Declarations of Conformity, certificates, and other certification details.
Motor Brake Application Guidelines

The brakes offered as options on the ballscrew driven linear stages and electric cylinders are holding brakes designed to hold the carriage/rod cylinder in position up to the rated brake holding torque. The brakes release when voltage is applied to the brake coil. Voltage and polarity supplied to the brake must be as specified to be sure of proper brake performance.

The brakes are not designed for stopping an actuator in motion. Use servo drive inputs to stop carriage/rod cylinder motion before the brake is activated. The recommended method of stopping motion is to command the servo drive to decelerate the carriage/rod cylinder to a complete stop and engage the brake only after the carriage/rod cylinder has stopped.

If system main power fails, the brakes can withstand use as stopping brakes. However, use of the brakes as stopping brakes can create mechanical backlash that is potentially damaging to the system, increases brake pad wear and reduces brake life. The brakes are not designed nor are they intended to be used as a safety device.

A separate power source is required to disengage the brake. This power source can be controlled by the linear stage controls, in addition to manual operator controls. Electrical arcing can occur at the relay contacts until the brake power dissipates. A customer supplied diode or metal oxide varistor (ftOV) is recommended to prevent arcing. Use of an ftOV can also reduce the time to mechanically engage the brake.

Example Suppression Device for Brake Relay Contacts

![Image of suppression device diagram]

(1) Kinetic 2000, Kinetic 6000, Kinetic 6200, Kinetic 6500, and Kinetic 7000 servo drives provide motor/actuator brake relay outputs and supply an MOV arc suppressor, so customer-supplied arc suppressor is not required unless the coil current of the brake is greater than the maximum brake current rating of the drive relay output.
Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetix Motion Control Selection Guide, publication GMC-SG001</td>
<td>Provides an overview of Kinetix servo drives, motors, actuators, and motion accessories designed to help make initial decisions for the motion control products best suited for your system requirements.</td>
</tr>
<tr>
<td>Kinetix Rotary Motion Specifications, publication GMC-TD001</td>
<td>Provides product specifications for MP-Series (Bulletin MPL, MPM, MF, MPS), Kinetix 6000M (Bulletin MDF), TL-Series, RDD-Series™, and HPK-Series™ rotary motors.</td>
</tr>
<tr>
<td>Kinetix Servo Drives Specifications, publication GMC-TD003</td>
<td>Provides product specifications for Kinetix Integrated Motion over the EtherNet/IP network, Integrated Motion over sercos interface, EtherNet/IP networking, and component servo drive families.</td>
</tr>
<tr>
<td>Kinetix Motion Accessories Specifications, publication GMC-TD004</td>
<td>Provides product specifications for Bulletin 2090 motor and interface cables, low-profile connector kits, drive power components, and other servo drive accessory items.</td>
</tr>
<tr>
<td>Kinetix 6000 and Kinetix 6200/6500 Drive Systems, publication GMC-RM003</td>
<td>Provides information to determine and select the required (drive specific) drive module, power accessory, connector kit, motor cable, and interface cable catalog numbers for your drive and motor/actuator motion control system. Includes system performance specifications and torque/speed curves (rotary motion) and force/velocity curves (linear motion) for your motion application.</td>
</tr>
<tr>
<td>MP-Series Integrated Linear Stages User Manual, publication MP-UM001</td>
<td>Provides information for installing, configuring, startup, and troubleshooting your Bulletin MP linear stage or Bulletin MPMA multi-axis linear stage.</td>
</tr>
<tr>
<td>MP-Series Integrated Multi-axis Linear Stages User Manual, publication MPMA-UM001</td>
<td>Provides information for installing, configuring, startup, and troubleshooting your Bulletin MPAS linear stage or Bulletin MPMAI heavy-duty electric cylinders.</td>
</tr>
<tr>
<td>MP-Series Electric Cylinders Installation Instructions, publication MPAR-IN001</td>
<td>Provides information for installing, configuring, startup, and troubleshooting your Bulletin MP or TLAR electric cylinders, or Bulletin MPMAI heavy-duty electric cylinders.</td>
</tr>
<tr>
<td>TL-Series Electric Cylinders Installation Instructions, publication TLAR-IN001</td>
<td>Provides information for installing, configuring, startup, and troubleshooting your Bulletin MP or TLAR electric cylinders, or Bulletin MPMAI heavy-duty electric cylinders.</td>
</tr>
<tr>
<td>MP-Series Heavy Duty Electric Cylinders Installation Instructions, publication MPAR-IN001</td>
<td>Provides information for installing, configuring, startup, and troubleshooting your Bulletin MP or TLAR electric cylinders, or Bulletin MPMAI heavy-duty electric cylinders.</td>
</tr>
<tr>
<td>System Design for Control of Electrical Noise Reference Manual, publication GMC-RM001</td>
<td>Provides information, examples, and techniques designed to minimize system failures caused by electrical noise.</td>
</tr>
<tr>
<td>EMC Noise Management DVD, publication GMC-SP004</td>
<td>Provides information to determine which ControlLogix® controller fits your application and the product specifications to help design a ControlLogix system and select the appropriate components.</td>
</tr>
<tr>
<td>ControlLogix Selection Guide, publication 1756-SG001</td>
<td>Provides information to determine which ControlLogix™ controller fits your application and the product specifications to help design a ControlLogix system and select the appropriate components.</td>
</tr>
<tr>
<td>CompactLogix Selection Guide, publication 1769-SG001</td>
<td>Provides information to determine which CompactLogix™ controller fits your application and the product specifications to help design a CompactLogix system and select the appropriate components.</td>
</tr>
<tr>
<td>Integrated Architecture Recommended Literature Reference Manual, publication IASIMP-RM001</td>
<td>Provides lists of technical publications for Integrated Architecture controllers. These lists are not all-inclusive, but they do include the most-commonly accessed publications for the related products.</td>
</tr>
<tr>
<td>Industrial Ethernet Media Brochure, publication 1585-BR001</td>
<td>Provides information to determine which Bulletin 1585 Ethernet cable fits your application and the product specifics to help select the appropriate components.</td>
</tr>
<tr>
<td>Motion Analyzer software, access online at https://motionanalyzer.rockwellautomation.com/</td>
<td>Comprehensive motion application used for sizing, analysis, optimization, selection, and validation of your Kinetix motion control system.</td>
</tr>
<tr>
<td>Rockwell Automation Configuration and Selection Tools, website http://www.ab.com</td>
<td>Provides online product selection and system configuration tools, including AutoCad (DXF) drawings.</td>
</tr>
</tbody>
</table>

You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.
Important Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/East Asia/Africa: Rockwell Automation NV, Pegasus Park, De Kleeflaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication GMC-TD002D-EN-P - September 2015
Supersedes Publication GMC-TD002C-EN-P - September 2013

Copyright © 2015 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.
LDC-Series™ and LDL-Series™
Linear ServoMotors
Cost-Effective, High Performance Linear Motion

Linear Motors have long been established as a reliable means of achieving precise linear positioning at very high speeds. In fact, you’re probably already familiar with their successful implementation in applications involving semiconductor manufacturing equipment and electronic packaging machines.

However, you may not realize that advances in technology and reduction in costs have made linear motors a practical, cost-effective choice for an increasingly wide range of machine applications, including: packaging; on-the-fly inspection, shape cutting, dispensing machines; material handling machines; flat and solar panel scribing machines; pick and place machines, and many more applications.

Practical and Cost-Effective
The new Allen-Bradley® LDC-Series and LDL-Series Linear Servo Motors address growing interest in linear motor technology as it becomes more affordable and is increasingly recognized as a practical means of improving machine performance. Designers are now looking to linear motors to help:

- minimize waste by increasing precision
- increase machine capabilities by expanding the range of motion while improving efficiency
- enhance machine productivity by improving reliability

And, with a choice of iron core or ironless models, you now have new cost-effective options to help you improve your machine design.

Improved Reliability
One of the big advantages of using Allen-Bradley® linear motors instead of other linear actuation methods centers on reliability. The LDC-Series and LDL-Series Servo Motors have no “wear” parts. As a result, they are very reliable from a mechanical standpoint. The alternatives typically contain "wear items" that routinely need to be maintained or replaced, such as bearings, gears, belts, etc.

Servo Responsiveness
Linear motors are also known as direct drive linear motors because they are connected directly to the payload that needs to be moved. Consequently, there is no mechanical power transmission chain to add "spring" to the servo system.

LDL-Series Linear Motors provide excellent servo responsiveness, resulting in faster settling time for any move, which in turn can provide improved system productivity.

Precision
The high degree of servo responsiveness also allows these linear motors to be extremely precise. Precision is further enhanced by incorporating linear encoders with resolutions measured in sub-microns that can be mounted in close proximity to your point of interest.

Flexibility
Unlike pneumatic or hydraulic solutions, Allen-Bradley linear motors have the flexibility to maintain quick movement while handling multiple motion profiles.

Additional benefits:
- Ability to size and optimize Allen-Bradley linear motors and corresponding servo drives using Motion Analyzer software reduces product selection time and minimizes cost.
- Full setup and programming support through RSLogix 5000 software reduces set up time by making commissioning fast and easy.
- Linear motors simplify assembly since clearance between coil and magnet channel can be designed into the machine. Alternatives require careful, time-consuming alignment during assembly.
- The LDC-Series and LDL-Series Motors are capable of very high speeds and acceleration which can help greatly increase the throughput of your machine.
LDL-Series Ironless Core Linear Servo Motors

- **Amplifier Input Voltage**: 230V and 480V AC rms
- **Maximum Applied Bus Voltage**: 725V DC
- **Maximum Operating Speed**: 14 m/s on 600mm
- **Continuous Force Rating**\(^{(1)}\): 63 to 996N or 14 to 134lbf
- **Peak Force Rating**\(^{(2)}\): 209 to 1977N or 47 to 444lbf
- **Windings**: High and Low Speed
- **Drive Compatibility**: Kinetix® 2000, Kinetix® 6000 and Ultra™3000

* Maximum cable length of 10m. If longer cable is required, contact your Allen-Bradley distributor or Rockwell Automation sales office.

(1) Based upon: coils at max temperature, 130°C, mounted to an aluminum heat sink of specified area and in an ambient temperature of 40°C. All phases sharing equal load. A moving coil and load mounted to the wide surface of the coil.

(2) Based upon an 11% duty cycle for 1s max. For higher peak forces, contact Application Engineering.

LDC-Series Iron Core Linear Servo Motors

- **Amplifier Input Voltage**: 230V rms
- **Maximum Applied Bus Voltage**: 650V DC
- **Maximum Operating Speed**: 13 m/s on 900mm
- **Continuous Force Rating**\(^{(1)}\): 74 to 522N or 17 to 432lbf
- **Peak Force Rating**\(^{(2)}\): 188 to 5246N or 42 to 1179lbf
- **Windings**: High and Low Speed
- **Drive Compatibility**: Kinetix® 2000, Kinetix® 6000, Kinetix® 7000 and Ultra™3000

* Maximum cable length of 10m. If longer cable is required, contact your Allen-Bradley distributor or Rockwell Automation sales office.

(1) Based upon: coils at max temperature, 130°C, mounted to an aluminum heat sink of specified area and in an ambient temperature of 40°C. All phases sharing equal load. A moving coil and load mounted to the wide surface of the coil. Higher forces are achievable with water cooling option.

(2) Based upon a 20% duty cycle for 1s max. For higher peak forces, contact Application Engineering.

Motor Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Iron Core</th>
<th>Ironless</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Cogging</td>
<td>No</td>
<td>Yes</td>
<td>Ironless motors were developed for applications that require extremely smooth motion such as scanning or printing/scribing</td>
</tr>
<tr>
<td>High Force Density</td>
<td>Yes</td>
<td>No</td>
<td>Iron Core allows for the use of smaller, less expensive motors. Also allows for higher available force motors.</td>
</tr>
<tr>
<td>No Magnetic Attraction</td>
<td>No</td>
<td>Yes</td>
<td>Ironless allows you to use smaller, less expensive linear bearings to guide the coil.</td>
</tr>
<tr>
<td>Between Coil and Magnet Track</td>
<td>No</td>
<td>Yes</td>
<td>Ironless eliminates the need for shielding in cases where the application is sensitive to magnetic fields.</td>
</tr>
<tr>
<td>Max Amplifier Input Voltage</td>
<td>230V AC</td>
<td>480V AC</td>
<td></td>
</tr>
</tbody>
</table>

Allen-Bradley, Kinetix, LDC-Series, LDL-Series, RSLogix and Ultra™ are trademarks of Rockwell Automation.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard de Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2.663.0600, Fax: (32) 2.663.0640
Asia Pacific: Rockwell Automation, Level 14, Core 1, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887.4788, Fax: (852) 2508.1846

Publication: MOTION-PP003A-EN-P—March 2009

Copyright © 2009 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.
Installation Instructions
PHOTOSWITCH® Bulletin 45FSL General Purpose Fiber Optic Sensors

Product Description

The 45FSL is a DIN rail mountable fiber optic photoelectric sensor with sophisticated part detection capabilities. Possible modes of sensing include transmitted beam, diffuse and retroreflective, allowing the 45FSL to be used in a variety of complex applications.

Summary of 45FSL Features

- **High-speed response**—30μs
- **High-intensity LEDs**—penetrate dusty environments for reliable detection of targets
- **Dual LED indicators**
- **Output (orange), stability (green)**
- **Red or white source LEDs**
- **Selectable 40ms off delay output timer**—“Pulse stretcher” useful in high speed applications when the output pulse must be lengthened to allow time for the machine logic to respond.
- **DIN rail mountable**—for installation convenience, a steel bracket is supplied for specific mounting requirements
- **“Power-Bus” option**—interface which allows user to jumper power on several DIN rail mounted units to reduce unnecessary wiring
- **Cross-talk protection**—prevents cross-talk between 4 or 8 sensors
- **Short circuit, reverse polarity, false pulse and transient noise protection**

45FSL photoelectric sensors are designed for use with glass or plastic fiber optic cables up to 2.2mm diameter. An adaptor is supplied with the sensor for use with 1.25mm diameter plastic fiber optic cables. No tools are required to attach or remove fiber optic cables.

Accessories

- Mounting bracket: Quantity 1
- Instruction manual: Quantity 1
- Fiber adaptor: Quantity 1

General Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>NPN Type</th>
<th>45FSL-2LGE</th>
<th>45FSL-5LGE</th>
<th>45FSL-2LVE</th>
<th>45FSL-5LVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Source</td>
<td></td>
<td>Red LED</td>
<td>White LED</td>
<td>Red LED</td>
<td>White LED</td>
</tr>
<tr>
<td>(Wave Length)</td>
<td></td>
<td>(660nm)</td>
<td></td>
<td>(660nm)</td>
<td></td>
</tr>
<tr>
<td>Response Time</td>
<td></td>
<td>250μs or 500μs</td>
<td></td>
<td>30μs</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
<td>NPN: 35mA/PNP: 40mA</td>
<td>35mA max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td>12 to 24V DC ±10% Ripple 10% or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td>Depends on Fiber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Mode</td>
<td></td>
<td>Open Collector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NPN Rated: 100mA @ 30V DC Max, <1V Residual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNP Rated: 100mA @ 30V DC Max, <1V Residual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td></td>
<td>Open Collector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td>NPN Rated: 100mA @ 30V DC Max, <1V Residual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNP Rated: 100mA @ 30V DC Max, <1V Residual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation Mode</td>
<td></td>
<td>Light on/dark on selectable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Timer</td>
<td></td>
<td>Off delay/On delay selectable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delay time: 40ms fixed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicators</td>
<td></td>
<td>Orange LED = Output, Green LED = Stability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interference</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td></td>
<td>Power bus for easy wireless power distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td>Polycarbonate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring</td>
<td></td>
<td>Cable 2m (6.5ft) or pin pico QD connector or PB QD connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td></td>
<td>NEMA 1, IP 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>-25°C to +55°C (-13°F to 131°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
<td>35% to 85% RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>10-55Hz, 1mm amplitude, meets or exceeds IEC 60947-5-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>10g, 3 directions, 3 times</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approvals</td>
<td></td>
<td>CE marked for all applicable directives</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User Interface
The user interface contains a light/dark operate switch, output timer selector switch, interference protection switch, 8-turn sensitivity adjustment knob with indication, and output LED indicators for configuring and viewing the sensor’s operation and status. A more complete description of each item is described below.

Sensor Selection

<table>
<thead>
<tr>
<th>Operating Voltage</th>
<th>Current Consumption</th>
<th>Output Characteristics</th>
<th>Response Time</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–24 VDC +/- 10%</td>
<td>40mA or Less</td>
<td>PNP</td>
<td>Max Load</td>
<td>Cable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current</td>
<td>LED</td>
</tr>
<tr>
<td></td>
<td>35mA or Less</td>
<td>NPN</td>
<td>Max Leakage</td>
<td>OFF D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Current</td>
<td>ON D</td>
</tr>
<tr>
<td></td>
<td>40mA or Less</td>
<td>PNP</td>
<td>100mA</td>
<td>OFF D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stability: 50mA</td>
<td>Provides output on delay (40ms)</td>
</tr>
<tr>
<td></td>
<td>35mA or Less</td>
<td>NPN</td>
<td>0.5mA</td>
<td>Provides output off delay (40ms)</td>
</tr>
</tbody>
</table>

Output and Stability Indicators
Two LEDs (green and orange) indicate a variety of conditions to facilitate set-up and troubleshooting. The function of each is described in the table below. Relevant output and stability data are also shown.

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>OFF ON</td>
<td>Unstable light signal</td>
</tr>
<tr>
<td></td>
<td>OFF Flashing</td>
<td>4 consecutive unstable light levels</td>
</tr>
<tr>
<td>Orange</td>
<td>ON</td>
<td>Output OFF</td>
</tr>
</tbody>
</table>

Stability Output is an output feature provided by the 45FSL sensor which monitors any changes or reduction of reflected light levels during operation. Reflected light levels must reach 120% of the threshold required for normal operation to achieve a “Stability Output.” If the sensor detects light levels less than 120% of threshold 4 consecutive times then the green LED starts flashing and remains flashing until a stable light level is achieved (120%) (see illustration below).

Output Timer Selector Switch

8-Turn Sensitivity Adjustment
An 8-turn sensitivity adjustment (potentiometer) is built into the sensor’s user interface for accuracy in detecting very small objects or differentiating between colors.

Diffuse Set Up—Light Operate Mode
With target in position, turn sensitivity adjustment clockwise until orange LED turns on (point A).

With no target in position the green and orange LEDs should be off. Otherwise turn the sensitivity adjustment clockwise to max or until orange LED turns on. If orange LED turns on, then turn sensitivity adjustment counterclockwise until orange LED turns off (point B).

Set sensitivity adjustment midway between points A and B. Confirm sensor operation.

Transmitted Beam Set Up—Dark Operate Mode
With no target present, turn the sensitivity adjustment clockwise to max until the orange and green LEDs turn on (point A).

Green/orange LEDs should turn off. Otherwise turn sensitivity adjustment counterclockwise until the green/orange LEDs turn off. Turn sensitivity adjustment counterclockwise additional one quarter turn and confirm sensor operation.
Light/Dark Operate Switch
LIGHT or DARK operation modes may be chosen by changing mode switch.

4/8 Channel Cross-Talk Protection
The 45FSL is equipped to prevent cross-talk to up to 4 ganged sensors providing a 250µs response time or up to 8 ganged sensors maintaining a 500µs response time. Each sensor communicates through 2 small optic windows that transmit and receive coded signals (see below).

Ganging up to 4 Sensors on DIN Rail
- Mount and align up to 4 sensors on DIN rail
- Move cross-talk selector switch to “4” on all sensors. (Sensors will not function if cross-talk selector switch is set to “8” on any sensor.)
- Install fiber optic cables
- Power up sensor

Ganging 4 to 8 Sensors on DIN Rail
- Mount and align up to 8 sensors on DIN rail.
- Move cross-talk selector switch to “8” on all sensors. (Sensors will not function if cross-talk selector switch is set to “4” on any sensor.)
- Install fiber optic cables
- Power up sensor

Mounting the Sensor

How to Attach Sensor to DIN Rail
Attach front hook of the photoelectric sensor onto rail (or mounting bracket) and press rear end of sensor down until unit snaps into place.

How to Detach Sensor from DIN Rail
Pushing the sensor unit forward, pull up on the front of the sensor until the front hook is detached. Remove sensor.

Side Mounting Sensor with Bracket
Fasten mounting bracket assembly using M3 screws. Tightening torque is 0.8Nm max. Attach front hook of the photoelectric sensor onto mounting bracket and press rear end of sensor down until unit snaps into place.

Wiring the Sensor
Choice of Power Bus, 2m (6.5ft) cable, or 4 pin QD connector are provided for wiring the 45FSL Series sensors. On the pico QD models Rockwell Automation/Allen-Bradley recommends the use of the 889 Series cordsets and patchcords (i.e., 889P–F4AB–2). Standard 2m (6.5ft) cable lengths are provided with flying leads for hard wiring. Hard wiring color coding and pin assignment for QD connectors are as specified below.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Lead Color</th>
<th>Pin Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V+</td>
<td>Brown</td>
<td>1</td>
</tr>
<tr>
<td>0V</td>
<td>Blue</td>
<td>3</td>
</tr>
<tr>
<td>Output</td>
<td>Black</td>
<td>4</td>
</tr>
<tr>
<td>Stability Output</td>
<td>Orange</td>
<td>2</td>
</tr>
</tbody>
</table>

The **Power Bus** option utilizes quick disconnect cordsets which are prewired with up to four conductors. When ganging sensors (up to 16 units maximum) using the Power Bus connection system, select either a 4-wire cable (plus/minus power output and stability output) or a 3-wire cable (plus/minus power output) for the first control. For the additional controls in a system, select either a 2-wire cable (output and stability output) or a 1-wire cable (output only) to complete the system.

Wiring Diagram/Power Bus Option

<table>
<thead>
<tr>
<th>Female End Cap</th>
<th>Male End Cap</th>
<th>Brown</th>
<th>Orange Stability</th>
<th>Black Output</th>
<th>Black Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum number of units paralleled: 16
Wiring Diagrams

Cable

NPN Output

<table>
<thead>
<tr>
<th>Cable</th>
<th>Brown: 12V-24V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black: Output</td>
</tr>
<tr>
<td></td>
<td>Blue: -DC</td>
</tr>
<tr>
<td></td>
<td>Orange: Stability</td>
</tr>
</tbody>
</table>

PNP Output

<table>
<thead>
<tr>
<th>Cable</th>
<th>Brown: 12V-24V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black: Output</td>
</tr>
<tr>
<td></td>
<td>Blue: -DC</td>
</tr>
<tr>
<td></td>
<td>Orange: Stability</td>
</tr>
</tbody>
</table>

Quick Disconnect

NPN Output

<table>
<thead>
<tr>
<th>1</th>
<th>Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
</tr>
</tbody>
</table>

PNP Output

<table>
<thead>
<tr>
<th>1</th>
<th>Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
</tr>
</tbody>
</table>

Dimensions

- Receiver
- Transmitter
- Cord Bushing
- Mounting Bracket

Replacement Parts

- Plastic Sensor Cover : PSC1
- Fiber Optic Cable (Diffuse) : 99–94
- Fiber Optic Cable (Transmitted Beam) : 99–90
- Pico QD Cordset : 889P–F4AB–2
- Power Bus QD Connectors:
 - 2 Conductor = 45F–A2C–A2
 - 4 Conductor = 45F–A4C–A2
- Power Bus End Caps:
 - Male Cap = 45F–AMC
 - Female Cap = 45F–AFC