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Abstract

Because this journal has as one of its main con-
cerns the subject of structural rigidity, the
question of the instantaneous deformability of a
structure has been considered in statical terms
rather than kinematic ones. This article is inten-
ded to put forward the kinematician’s treatment
of linkage mobility and to relate it to the internal
motion cabability of a structure. We consider the
topics of frames (bar-and-joint structures), hinged
panel systems and spatial polygons from a kine-
matic standpoint in such a way that a ready com-
parison may be made with the statical approach.
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Résumé

Parce que cette revue propose parmi ses thémes
privilégiés celui de la rigidité des structures,
la question de la déformabilité d’une structure
a été considérée en des termes statiques plutdt
que cinématiques. Cet article a pour but de
montrer la mobilit¢ du chainon mécanique,
vue par le cinématicien, et de lapparenter
aux possibilités de mouvement relatif d’une
structure. Nous analysons les sujets de structures
(structures a barres et noeuds), systémes de
panneaux a charniéres et polygones spatiaux,
d’un point de vue cinématique de maniére a ce
que on puisse faire une simple comparaison
avec I’approche statique.

Introduction

One of the three stated principal concerns of this jour-
nal is that of structural rigidity, which concept may be
reinterpreted as the lack of instantaneous mobility of a
jointed system of rigid bodies. The common ground
between this area of study and that of linkage
kinematics is thereby immediately established, since
the latter field is concerned with full-cycle, or gross,
mobility of a linkage, and full-cycle mobility can be
regarded as instantaneous mobility in every con-
figuration of the articulated assemblage of rigid bodies.
The civil engineer or architect requires rigidity of a
structure, the mechanical engineer normally works with
1 degree of gross mobility of a linkage, but a
structure and a linkage, or mechanism, are composed
in similar ways.

Because of the fashion in which this journal was set up,
the approach to the matter of rigidity / mobility has
been taken from the structural viewpoint, rather than
the kinematic one. The purpose of this article is to put
forward some of the basic tools used by the
kinematician in this topic, and to illustrate their ap-
plicability in a manner which will allow some com-
parison with alternative techniques.

Linkages

Although a linkage is composed physically of rigid
bodies, the kinematician’s attention is focused primarily
on the articulations, or kinematic joints, which con-
strain one member relative to another. The members
themselves are replaced by common normals between



successive joint axes. The elements of a kinematic
chain are illustrated by Figure 1, which also includes a
representation of the joint variables and linkage
parameters. We define these quantities as follows.

a.+1 is the constant length of the common perpen-
dicular between the axes of successive joints
iandi+1.

r; is the variable distance, measured along joint
axis i, between successive common perpendic-
ulars; this symbol applies particularly to
prismatic and cylindric joints.

R is a quantity similar to r, but constant,
applying especially to revolutes and screws;
for a revolute, it is the so-called offset.

h; is the pitch of screw pair i.

a1 is the angle of skew between the directions
of consecutive jointaxes iand i+ 1.

o; is the joint angle between the two common
normals relating to joint i.

In a single-loop chain, the last link counted coincides
with the first.

Joint axis
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O(i it

Joint
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Figure 1

There are six distinct joints, or kinematic pairs, which
function by virtue of surface contact between adjacent
members. They are known as lower pairs, and are
described below.

R revolute, or turning pair — 1 degree of freedom,
prismatic or sliding pair — 1 degree of freedom,
helical or screw joint — 1 degree of freedom,
cylindric joint — 2 degrees of freedom

spherical or global pair — 3 degrees of freedom,
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planar pair — 3 degrees of freedom

There are also higher pairs, in which the contacting
elements have only a line or a point in common.
In general kinematic studies, all lower pairs are usually
considered, but, in the present context, only two of
them are relevant, namely: the spherical, or universal,
or global joint and the revolute, or turning pair,
or hinge.

Frames

In the investigation of mobility (or rigidity) of frames,
such as the spatial bar-and-joint systems treated briefly
by (Crapo 1979) and at greater length in Calladine’s
excellent paper (Calladine 1978), the joint in question,
which coincides multiply with each node, must be a
spherical one. Let us see how a kinematician would
determine the expected degree of mobility of such a
frame, in contrast to the approach explicit or implicit in
the just-mentioned references, which relies on relative
freedom between nodes. Our method, instead, is
based on relative freedom between rigid bodies.

A general rigid body requires 6 coordinates for its
specification, 2 more than for a straight line in space.
But a rigid bar requires no specification for rotation
about its own axis, since it is regarded as having no
lateral dimension — as a mechanical component, it
can only be stressed in direct tension or compression,
not by flexure. Thus, a rigid bar unconstrained in space
has 5 degrees of freedom.

Of the ten degrees of freedom of two such rods,
four are relative degrees of freedom. A spherical joint
between the two bars reduces the number of relative
degrees of freedom by 3. The remaining relative
motion of the bars can be prevented by adding a

single bar. Fastening the prame to some spatial
reference system reduces the total number of degrees
of freedom of the assembly by 6.

At a node n where B, bars meet, the number of
spherical joints J, coinciding with the node is given by
J. = B, - 1, since each of these joints can be
considered as connecting only 2 bars at that node.
If the total number of nodes is N, bars B and joints J,
we may write

From the preceding paragraph, if the total number of
degrees of freedom (mobility) of the frame is M, we
have that, in the absence of special geometrical proper-
ties,

M = 5B-6-3) = 3N-6-B.

For the case of simple rigidity, M = 0. We then have
the result B = 3N-6, in accordance with that given by
(Calladine 1978). For a standard mobility-1 linkage,
we should have instead that B = 3N-7.

For a planar frame, instead of the above equations,
we can put

M = 3B-3-2) = 3B-3-2(2B-N) = 2N-3-B.

In the case of simple rigidity, we find, again in accor-
dance with the result stated by Calladine, that
B = 2N-3.

In fact, however, the kinematician should be aware of
the probable importance of metrical properties in what
he sees as a multiloop linkage / structure, and so, rather
than the simplistic tally carried out above, he should
proceed by means of an appropriate algorithm, such as
that outlined in (Baker 1980b, 1981). A multiloop
linkage, as the name implies, is one the graph of which
has a cyclomatic number (the number of independent
circuits) in excess of 1. (In graphing a linkage, the nodes
represent the links and the edges depict the joints.)
The addition of independent loops to a linkage / struc-
ture increases the possibility of special geometrical
properties which may give rise to unexpected mobility.

A word of warning is sounded here to model-builders
to ensure that the joint freedoms assumed in analysis
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comply with the actual motion capabilities of the
articulations. Care is required especially in the case of a
frame / linkage, because of the manner in which flexible
junctions are commonly provided.

Panel systems

We now turn to hinged panel structures, given some
attention by (Crapo 1979), and looked at in more detail
by (Baracs 1975). The type of joint used for such
systems is, of course, the revolute. A panel, or plate,
is a true rigid body and requires 6 coordinates for its
specification. A hinge allows only 1 degree of relative
freedom between two adjacent panels. For a hinged
panel system, then, without regard to possible special
dimensional properties, we may write

M= 6P-6-5J,

where P is the number of panels. In the case of one
continuous loop, or ring, of plates, for 1 degree of
mobility, since P = ), we must have that P = 7.
For such a ring to be a simple structure, P = 6. These
results are given in (Crapo 1979).

Again, special geometrical properties are very impor-
tant, and there are many more singularities than is
suggested by Crapo’s summary. Probably, the best
contemporary general list of the various sets of singular
conditions is given by (Hunt 1978). It is not necessary
to be aware of the geometrical significance of such a
speciality, however. The algebraic approach of (Baker
1980b, 1981) is capable of taking into account any
special dimensional conditions. It should also be men-
tioned that, despite the qualitative value of (Baracs
1975), some quantitative conclusions therein we find
difficult to reconcile with the kinematic approach. We
direct the reader to (Calladine 1978) and to the linkage
literature for a rigorous approach.

Skew polygons

Now, there is a close relationship (often an equiva-
lence) between hinged polyhedra and what have been
called in the classical literature skew polygons. (Bricard
1879) was possibly the first to recognize this fact; his
discovery of deformable octahedra led him to establish
the concomitant existence of certain six-revolute
linkages of a very special type. Bricard himself seems

to have been somewhat confused over skew polygons,
however, as is reported at length in (Baker 1980a).
The apparent reason for this misunderstanding is that
he was involved both with some polygons which have
zero offsets (Bricard 1927), namely, his basic plane-
symmetric and line-symmetric loops, as well as his
trihedral linkage, and other, derived from his octahedra,
which have zero link-lengths. This misapprehension
and others have continued to be promulgated over the
years, by researchers who do not fully understand
the criteria for linkage mobility.

The hinges of a spatial panel system will be the
revolutes of an associated linkage. Whenever they have
non-zero length, the linkage will have non-zero offsets.
Whenever hinges intersect adjacent ones, the link-
lengths of the associated kinematic chain will be zero.
We should therefore have a skew polygon, in which
every edge is a joint axis. Mobility or otherwise of a
linkage of noh-standard type (an overconstrained loop)
is usually established by a lengthy geometrical or
algebraic process, but, for such skew polygons, we may
often proceed much faster because of some well-known
results.
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Mobility / rigidity

Let us consider a question related to that posed by
(Baracs 1975) concerning, in our case, two different
circuits of joint axes about a hinged cube (Figures 2).
In the first instance, we assume that we are dealing only
with skew polygons; that is, the plates are not present,
the polygons being defined solely by the hinges.
In the diagrams, the arrows on the hinges are
conventional, but necessary in order to write down
relationships among joint offsets. The other arrows
indicate selected directions for the link-lengths, which
have zero magnitude. They are required for the
determination of joint angles.

For both a and b of Figures 2, we may write
Ri =R =Ry =Ry =Rs = R¢
Qe = 31/2, foralli
a1 = 0, foralli.
In the case of a, we see that

0,=0,==0,0,=0; =1/2,0; = 0 = 3n/2,
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and so the assemblage is line-symmetric, whence we
can establish mobility — the reader is referred to
(Bricard 1927, Waldron 1969, Baker 1979). On the
other hand, for b, we have

01 = 93 = 05 = 3"/2,02 = 94 = 05 = 1!/2,

which is not line-symmetric, and the polygon is a rigid
structure. We say that a and b are two different
closures of the same loop. In fact, this very chain,
in a different guise, is used in an example in
(Baker 1979).

Now, if the directions of R,, R, Rs are reversed
in both a and b of Figures 2, a certain kind of
plane-symmetry is noted in each case. Although some
varieties of plane-symmetry in a loop can be used
to establish mobility, this is not one of them, and
our conclusions are unchanged.

We now reinstate the plates and look at the
implications. We need consider b no further, as we
have already found it to be rigid. In the case of a,
we see that there are two panels each of which
contains three of the joint axes. Each of the panels
imposes an additional constraint between the two
alternate hinges, effectively locking the central one.
That is, R, and Rs are no longer free to move
relative to each other; nor are R; and Rs. So,
although the polygon is mobile, the polyhedron is not.
It is clear that, in a hinged polyhedron, we cannot have
three consecutive hinges of a loop on the same face
and maintain mobility, because the joint angle of the
middle hinge will be fixed. Bricard’s octahedra were
so assembled that each triangular face had only two
consecutive hinges. Each type of octahedron was a
multiloop linkage, from which he was able to derive
four distinct single-loop chains of six members.

We turn now to the actual matter raised by Baracs,
that of two different circuits of faces. One of the circuits
is the structure shown in b of Figures 2. The other
is illustrated in Figure 3 and has the following
dimensional properties.

Ri=Ri=0,R, =R; =Rs = Rs
Q2 = @3 = s = as6 = 0, @34 = as1
Q12 = Q23 = Q45 = Qse =T[/2,G'34 = Q61 =0

For the configuration depicted, we also see that

el -03=e4=05=0,ez=®5=3ﬂ/2.

We therefore find that the chain is line-symmetric
and, consequently, mobile.

Closing remarks

There is a wealth of classical and contemporary
literature in the separate (or separated) fields of static
and kinematic analysis. They have become over-
specialised to the point where a worker in one area
is quite ignorant of what is known in the other.
We have the opportunity, particularly in the pages of
this journal, to remedy this unfortunate situation.
The matter need not rest with mutual understanding
and cross-fertilisation between these two fields,
however. There is reason to believe that applications
for theoretical results from linkage / polyhedron
research abound in the studies of structural chemistry
and molecular biology, plate tectonics and the theory
of plasticity, kinesiology and robotics, as well as others.
In addition, seemingly unrelated topics in mathematics,
such as graph theory, can be brought to bear on the
joint disciplines. It would be a pity to allow the chance
to pass us by.

R a,
L R,

G5 = /‘

Figure 3
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