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Abstract. When numerical methods are applied to the computation of stationary waves,
it 1s observed that 'numerical waves’ are dispersive for high wave numbers. The numerical
wave shows a phase velocity which depends on the wave number ’k’ of the Helmholtz
equation. Recent works on goal-oriented error estimation techniques with respect to so-
called quantities of interest or output functionals are developing. Thus, taken into account
such aspects, the main purpose of this paper is a posteriori error estimation through of
a assessment of the numerical wave number in finite element solution for the simulation
of acoustic wave propagation problems addressed by the Helmholtz equation. A method to
measure the dispersion on classical Galerkin FEM is presented. In this analysis, the phase
difference between the exact and numerical solutions is researched. Fundamental results
from a priori error estimation for one-dimensional are presented and issues dealing with
pollution error at high wave numbers also are discussed.

1 Introduction

A mathematical theory for estimating discretization error has become of paramount
importance to the computational sciences. The main reason is that, all the computational
results obtained by using mathematical models of an event involve numerical errors. The
knowledge of such errors permits to asses the reliability of the computation, as well as to
be a basis for adaptive control of the numerical process.

More recently, techniques for computing local estimates and estimates of errors in
” quantities of interest” began to appear, were presented by Oden and Prudhomme (2001,
2002) and Becker and Rannacher (2001). Mathematically, such quantities are presented
as functionals on the solutions of boundary- and initial-value problems. These estimates
provide the basis of the so-called ”goal-oriented adaptivity” where in adaptive meshing
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procedures are devised to control error in quantities such as point values of the solution,
average of the solution over a sub-domain, or average gradients, but could also be defined
as any linear or nonlinear functionals of the solution. A variety of applications of these
ideas have appeared since 2000 (e.g. Oden and Vemaganti, 2000; Vemaganti and Oden,
2001; Romkes and Oden, 2004; Pardo et al., 2005).

The simulation of the acoustic wave propagation, addressed by the Helmholtz equation
is today a field of intense development, because the acoustic performance of a product
is required either by some legal rules or by sales argument. Numerical methods have
been developed in order to compute approximate solutions for coupled (vibro-acoustics)
or uncoupled problems, on finite or infinite domains. The most popular method is the
standard Galerkin Finite Element Method (FEM).

Today it is well known that the standard FEM presents the pollution effect when is
applied, to compute solutions of the Helmholtz equation for high wave numbers. That
effect consists mainly on dispersion phenomena, i.e. the numerical wave length is longer
than the exact one. The pollution effect is related to the loss of stability of the Helmholtz
operator at large wave numbers. Thus, the pollution error is related to the phase lag
between the computed and the exact wave, growing with the wave number, arises from
a numerical pollution related to the dispersive character of the discrete medium. The
pollution effect has been studied in more detail in Thlenburg and Babuska (1995a) and
Deraemaeker et al. (1999).

In this paper we present results which allow to identify and distinguish discretization
error and pollution error. We see that pollution effects usually degrade the quality of
a posteriori error estimators for high wave numbers and that, in estimation of error in
quantities of interest, the wave number can be defined as a possible linear quantity of
interest.

2 Modeling acoustic wave propagation

Although wave propagation phenomena are manifested in a broad range of applications,
we delimit the present worked to acoustic wave propagation problems.

2.1 Strong form

Consider the domain ) with boundary I', and let ¢ be the speed of sound inside this
medium. The equation of wave propagation derived from the fundamental equations of
continuum mechanics is

. 10*P

where P’ denotes the field of acoustic pressure. If the phenomenon is assumed steady
harmonic, P’ can be described as:

P = et (2)
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where w is the angular frequency and u the spatial distribution of the acoustic complex
pressure inside €. Substituting (2) into (1), we have to solve the Helmholtz equation:

Au+k*u = 0 (3)

The equation (3), with appropriate boundary conditions is the strong form of the
problem, where k := w/c denotes the wave number and is defined as the ratio between
the angular frequency and the speed of sound.

The physical pressure is the real part of u, and the gradient of pressure is linked to the
velocity (v) through the equation of motion which can be written as

ipwv+Vu = 0 (4)

where p the specific mass of the fluid.
For interior problems, three sets of boundary conditions are possible:
e Dirichlet (the acoustic pressure is prescribed)

u = u at TI'p (5)

e Neumann (the normal component of the velocity is prescribed)

0

% = —ipwv, or v,=1v, at Iy (6)
e Robin

0

g —ipwA,u  or v, =Au at Tp (7)

on

where v,, is the normal component of the velocity for the excitation by the vibrating
panels, n is the exterior unit normal vector, and A, is the admittance coefficient modelling
the structural damping. Neumann boundary conditions correspond to vibrating panels
while Robin boundary conditions correspond to absorbant panels.

2.2 Weak form

To formulate the problem in the weak form, the spaces corresponding the kinematically
admissible trial functions u and the homogeneous test functions v are introduced U =
{u e HY(Q),ulp, =@} and V = {v € H(Q),v|r, = 0}, where H'() is the Hilbert space,
that is a Sobolev space of square integrable functions and first derivatives.

Applying the integral formulation, the divergence theorem and some mathematics re-
lations, the problem can be rewritten as:

Find u € U such that

a(u,v) = l(v), YweV (8)

3
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where

a(u,v) = /VutVf)dQ/k?uf)dQ—l—/ ipuv A, dl’
Q Q

Tr

l(v) = / ipwv, vdl
I'n

where ~ denotes the complex conjugate. Note that, the bilinear form a(.,.) is symmetric,
but not Hermitian.

2.3 Finite Element Method

Spaces of finite dimension Uy C U and Vg C V, can be defined in order to approach
the spaces of infinite dimension U and V', respectively. The superscript H denotes that
these spaces are relative to the mesh discretization of €2, where H is so the size of the
characteristic element. Using these spaces of finite dimension, the classic method of
Galerkin consists in:

Find ug € Ugy such that for all vg € Vg

a(ug,veg) = l(vy) (9)

When a standard Galerkin procedure is used, and the test functions is restricted to the
discrete subspace corresponding to

ug = ZNJ"U,J'ZNUH (10)
j=1

where u; € C, for j = 1,2,...,n are the nodal values the pressure field, and N; are the
shape functions.
Therefore, the discrete acoustic problem resulting in a linear system of equations

(Kg +ipwCx — E*Mp)uy = —ipwfy (11)
where K is the stiffness matrix:
Ky = /Q(VN)t(VN)dQ
Cpy is the damping matrix, modeling Robin boundary conditions:

Cyp = /AnNtNdF
I'r
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and My is the mass matrix:
My = / N'NdQ
Q

The right-hand side contains the prescribed normal velocities of the Neumann boundary
condition

fH == Ntv_ndf‘
I'n

3 Dispersion and Pollution effect

We will see in this Section that the pollution effect is directly related to the dispersion,
thus we develop here a tool in order to measure the dispersion and so are able to measure
the pollution on Galerkin FEM. Moreover, we explain the concepts of pollution, dispersion
and their effect on the error estimation explaining for a one-dimensional problem mainly.

When solving the Helmholtz equation with the classical Galerkin FEM, it is well known
that the accuracy of the numerical solution deteriorates with increasing non-dimensional
wave number k (IThlenburg and Babaska, 1997). This effect is the so-called ’pollution
effect’. The main effect of the 'pollution’ is that the wave number of the FEM solution is
different from the wave number of the exact solution, and this is what is called ’dispersion’
(Ihlenburg and Babuska, 1995a).

In one dimension, the 'pollution’ effect has been largely studied ( Babuska and Sauter,
2000; Thlenburg and Babuska, 1995a and 1995b). This leads to uneconomical meshes and
non-accurate error estimation for high wave numbers and gives the motivation to look for
a pollution-free method. In one dimension, different approaches have been proposed and
lead to solutions that do not suffer the pollution effect (Babuska et al., 1995; Babuska and
Melenk, 1997). In two and three dimensions however, it has been proved (Babuska and
Sauter, 2000) that the pollution cannot be avoided. Many attempts have been made in
order to reduce the pollution effect by adapting the methods developed in one dimension.

3.1 A priori estimate of the dispersion error

In case one-dimensional, for uniform meshes, the dispersion error can be predicted
(Ihlenburg and Babuska, 1995a). Consider the patch of elements surrounding node in a
one-dimensional mesh, as it is shown in Figure 1.
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Figure 1: Element patch in uniform FEM mesh for dispersion analysis.

Modified exact problem
Let the modified problem defined by

Ay, + K, = 0 (12)

and in simple case one-dimensional the numerical solution of this equation is represented
by propagation wave

Up(z) = ePn® (13)

with the numerical wave number kg.
By applying standard Galerkin FEM approach, the discrete system of equations is
obtained to the Helmholtz problem

(KH + prCH - ]{52MH)11H = fH (14)

where i results of the boundary conditions.

The goal of this analysis is to find kg such that uy = u,, solution of modified problem
(equation 12). Thus, if linear elements with basis functions N; 1, N; and N;,; are used,
the one-dimensional homogeneous Helmholtz equation can be written in algebraic form
for node ¢ as

Rui,l + 25Ui + Rui,l =0 (15)
with
1 2
1
= 1— —(kH)?
- (kH)

6
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where u; represent the nodal pressure at position x; = 1H.
The substitution of the solution (13) in the differential equation (15) leads to:

[Re™™uH 425 4 Rettufl] ethuri = 0 (16)
thus, it is derived that

S 1—3(kH)?
cos(kgyH) = —5= W (17)

Applying Taylor expansion and some further mathematical derivations result in the
following explicit dispersion relation

kyH ~ kH — i(k’Hﬁ + O((kH)?) (18)

Thus, the phase difference between exact and numerical solutions can be predicted as

k3 H?
k— kg ~ 1
om0 (19)
and therefore, the dispersion error can be defined as
- k3H?
EP = ~k—k 20
ol H (20)

3.2 Relation between the dispersion, pollution, wave number and mesh size

The dispersion error produces pollution effect that modify the standard a priori esti-
mates in energy norm and the dispersion increases with the wave number £ and the mesh
size H.

In order to illustrate the fact that the pollution also increases with these factors, we
will see an error estimate given by Ihlenburg and Babuska (1995a)

< C10 4 Cokt? (21)

being = (kH/p)? (p-order of polynomial, H-mesh size) the scale of the finite element
mesh and the constants C; and (5 independent of £ and H.
Thus, for particular case of p =1

le=unh o4 oot m (22)

|ulq

The first term in equation represents the local error and the second term represents
the pollution error. In order to keep the local error constant, it is sufficient to keep

7
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kEH constant. That is the so-called ’rule of the thumb’ which corresponds to taking a
certain number of elements per wavelength. As we can see, this is not sufficient to keep
the pollution error under control. The pollution error increases with k. To obtain the
accurate finite element solution, the second term has to be controlled. This leads to the
necessity to use fine meshes for high wave numbers. For well-refined meshes, the exact
error is close to the interpolation error, which means that there is not much pollution. As
the mesh becomes less and less refined, we see the influence of the pollution error on the
accuracy of the finite element solution.

3.3 Measure of the Dispersion - a posteriori error

We have seen that the error on the FE solution for the Helmholtz equation is made of
two parts, the local error and the pollution error which is directly related to the dispersion.
Because the pollution effect leads to uneconomical meshes for high wave numbers, there
have been many attempts to find new numerical methods which control the pollution. In
this section, we develop a tool in order to measure the dispersion for FEM as a measure
of the pollution.

In this work, in this examples of application the problem of Helmholtz is solved for
several meshes. The more refinate of all the mesh is defined as reference mesh. Thus, we
have the FE solution uy such that

Ky +ipwCy — K*Mpluy = fy (23)
and for reference mesh
Ky, + ipwC), — k*My]uy, = f, (24)
thus, the error
e=uy, — [ugly (25)

where [ug];, is solution in the coarse mesh evaluate in the reference mesh.
For compute the global error in norm 2 (|| e ||;2) is necessary compute e that requires
global computation of u,. However, not requires for compute dispersion error in k.

3.3.1 Global version

The main objective is the assessment of the wave number k& as quantity of interest in
order to measure the dispersion.

Modified reference problem

Analogous applied procedure a priori, the goal of this analysis is to find ky that better
accommodates uy such that ug ~ u,, is the best solution of the modified reference
problem defined as:

(K, + ipwC), — k3 M]u,, = £, (26)

8



Steffens L. M., Diez P.

rewriting
[L, — aM,]u,, = £, (27)

with L, = K}, 4+ 1pwCy, fh = —ipwf), and a = k.

Here we are not in the simple case and not has previous knowledge of u,,. Thus,
replace uy (in fact [ugl,) FE solution in modified reference problem and compute a
residual defined as

r(a) = £, — (Ly — aMy)[ugls (28)
where r depends of o = k%.
Now, denoting
a = f,—Lyugl, (29)
b = Mh[uH]h (30)

the residual transforms into
rla) = a+ab (31)

The goal is to find a®? to a physical, such that ||r|| is minimal, that is,
Find a®? such that

real(c) o imag(c;) (32)

af? ;= arg(min(fr)) = —
g(uminir) =~ &

where ¢; = ab and ¢y, = bb
Therefore,

ki = vV (33)
Thus, finally we can define a measure of the dispersion as a error estimate in £ by
EP*® =k — k3] (34)
Remarks:

e explicit computation, requires assembling of matrices K, M, C, and fh, but no
solving reference problem h.

e possible localization (local version, next section)



Steffens L. M., Diez P.

3.4 Local version

Now, we intent to evaluate the equivalent wave number in local patches of elements
(Figure 2).

Figure 2: Example of detached patch.

The geometric support of the elements for a given mesh are open subdomains denoted
by Q,,n = 1,...,n,, where = U, Q,. Let p/,j = 1,...,n,, denoted as the nodes of
the elements in the computational mesh of FE and N’ the corresponding linear shape
functions. The support of N/ is denoted by 7/ and it is called of patch associated with
node p’, that is, 7/ = suppN’.

For each node p’ of the coarse mesh is generated a patch of elements, that is one finite
mesh Q7 n = 1, ...,nil over 2, where Q) is refined the same number of times that the
global problem was refined. Finishing the refine process, obtains one patch reference mesh
and also the coarse solution interpolated in the patch reference mesh. Analogous global
problem, assembling the matrices and vectors to solve the Helmholtz problem in the new
local domain (reference patch), but not is necessary to compute the solution. Then, the
residual r/(-) correspondent to patch j is defined as following

vla) = f - (L — o M)[ugl] (35)

where 1/ depends of a = kJ,.
Analogous the global version, solving the minimization problem we obtain the equiva-
lent wave number k5’ = vae? | where o’ is defined as
real(c) N imag(cy)

Qi = arg(min(rir’)) = . i (36)
o 2 Co

where ¢; and ¢y is defined over the patch as global problem.

4 Examples of application

Numerical tests are performed on two problems. The first example is the problem
one-dimensional of a rectangular tube. In this case, we solve the problem in uniform

10
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meshes to compare the a priori estimate (equation 20) with estimates a posteriori of the
dispersion error.

The second example is a real-life problem, where the noise inside of an car is analyzed,
in order to show that is really efficient measure the dispersion effect.

In the presented examples, we observe mainly related aspects with the numeric error
in the solutions of FEM, such as: dispersion, asymptotic behavior, convergence, etc.

The examples are filled with air (p, = 1.225[K g/m3]) and sound speed (¢ = 340[m/s]).

4.1 Band
The model problem is a tube of length L, = 1[m], such that

Puiku = 0 eQO0<z<1)

w(0) = 1 (37)
(1) = iku(1)

where Dirichlet boundary conditions are prescribed on one end of the tube, while Robin
conditions are submitted to the other end.

This problem has analytical solution (equation 13). Thus, for each mesh we can mea-
sure a posteriori the numerical wave number. Let u =real(u(z)) = cos(kx) and ug, the
analytical and numerical solution, respectively, such that

u(zy —AN) = ug(zy) (38)
with

UH(SUf) = m

where uy, are all the coarse solutions evaluated in the final point z; and A\ is the
difference between the numerical and the analytical wavelength.

Assuming
cos(k(xy —AN) = p (40)
then
AN = —mko 61 s, (41)
On the other hand, we have
AN = nA—nly (42)

where A := 27 /k is the wavelength and n is period number.

11
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Consequently,
k
ki U (43)
(1-3)
Therefore, is possible to measure a posteriori the dispersion as
E™ =k —ky (44)

where the numerical wave number is given by equation (43).

4.1.1 Numeric Results

The problem is solved in uniform meshes of triangular elements. Some results of
solutions, error and convergence are shown in different frequencies (340Hz, 680 Hz and
1020 Hz).

1. Dispersion

For frequency f = 340 Hz, k = 27 the wavelength is A\ = 27/k = 1. Then by ’rule
of the thumb’ (kh < 1),h < 0.1591 captures the wavelength and the presented error is
predominantly due to interpolation. We start with a mesh A = 0.125 and can be clearly
that same satisfied the 'rule of the thumb’ the solution presents dispersion. However, for
frequency f = 680 Hz (k = 4w, A = 0.5), from h < 0.0795 satisfy the 'rule of thumb’.
But, as we start with a mesh h = 0.125 notice that the dispersion in the solution coarse
mesh is greater (Figure 3).

= & =FEM
exact

Figure 3: FEM solution vs. exact wave for h = 0.125, f = 340 Hz and f = 680 Hz.

2. Error Analysis

Error in norm L?

12
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The total error is calculated in norm L? as the difference between the solution in the
coarse meshes and the solution in the refined reference mesh. The Figure 4 show the error
convergence for the three frequencies.

The error satisfy the order of convergence p + 1 for FEM in norm L2, keeping the
asymptotic behavior. However, it can be noticed that for high frequencies (i.e, the order
of convergence is 1.8 for 1020 Hz) there is a pre-asymptotic behavior for the coarse meshes,
what is consequence of the pollution increment.

0.5

>— 340 Hz |
880 Hz ||
1020 Hz

-0.5;

logle)
o

15 2 25 3 35 4
log(dof)

Figure 4: Global error convergence in norm L2.

Error in k

The analysis of the error through of the wave number k, that show a phase shift between
the exact and the finite element waves. This analysis can be estimate a priori (equation
20), "measured” (equation 44) and a posteriori as proposed in Section 3.4 (equation 34).
The results obtained these estimates are:

i) f =340 Hz P=1

dof [ I [m] 2K Ermeas Epos

45 | 0.1250 | 2.5702e-02 | -2.7116e-02 | 4.1963e-02 + 4.1055e-03i
153 | 0.0625 | 6.4255¢-03 | -6.7046¢-03 | 2.1494e-02 + 1.0171e-03i
561 | 0.0312 | 1.6063e-03 | -1.6697¢-03 | 1.0131e-02 + 2.2696e-04i
2145 | 0.0156 | 4.0159e-04 | -4.1751e-04 | 4.1996e-03 + 4.1296e-05i
8385 | 0.0078 | 1.0039e-04 | -1.0456e-04 | 1.1877e-03 + 3.9608¢-08;

ii)f = 680 Hz P=2

13
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dof | 1 [m] 2K Ermeas EPos

45 | 0.1250 | 1.0280e-01 | -9.6394e-02 | 4.8792e-02 + 7.0552e-03
153 | 0.0625 | 2.5702e-02 | -2.6239¢-02 | 2.2637e-02 + 1.7330e-03i
561 | 0.0312 | 6.42556-03 | -6.5309e-03 | 1.0973-02 + 4.2350e-04i
2145 | 0.0156 | 1.6063-03 | -1.6305¢-03 | 4.6218e-03 + 7.9988¢-05i
8385 | 0.0078 | 4.0159e-04 | -4.0765e-04 | 1.3355e-04 - 7.8596¢-08i
iii)f = 1020 Hz P=3

dof | I [m] 22K Ermeas Fpos

45 | 0.1250 | 2.3131e-01 | -1.3426e-01 | 3.4790e-02 + 5.2772e-03i
153 | 0.0625 | 5.7829¢-02 | -5.5414e-02 | 2.5150e-02 + 2.5900e-03i
561 | 0.0312 | 1.4457e-02 | -1.4535e-02 | 1.2291e-02 + 6.3000e-04
2145 | 0.0156 | 3.6143e-03 | -3.6299¢-03 | 5.3120e-03 + 1.1983e-04i
8385 | 0.0078 | 9.0358e-04 | -9.0704e-04 | 1.5806e-03 - 8.2880e-08i

The Figure 5 show the convergence of the error assessment in k a priori, measure and
a posteriori for the frequencies f = 340 Hz, f = 680 Hz and f = 1020 Hz.

05 = 0 measured
[#]
[ o —— proposed
L & (s
0 A ~ .
880 Hz e 1020 H:
0.5 ,,_) e Tlg ‘
— - Raas Ny
@ s =
- -1 T Tl A
0 -~ G o P
— ~ g -
g, a \Hm =T
_'-5 2 | e
- 30 HL - -
L& T 8
2t G \‘m
- g
-25 e
-3f
~0
_as . . . L
1.5 2 25 3 35 4
leg(dof)

Figure 5: Convergence estimates of the error relative a priori, measured and proposed for the three
frequencies: 340 Hz (black), 680 Hz (red) and 1020 Hz (blue).

Note that the results of a posteriori estimate error does not correspond with the values
of a priori and "measured” estimates error.

4.2 Car cavity

We consider now a real-life problem, a practical example, of the analysis of noise inside
of an car (Figure 6). In this case the solution is no more plane wave.

14
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Figure 6: Two-dimensional section of a car.

The problem (Figure 7) is a 2D-section in the bodywork of a car. The air inside the
cabin is excited by the vibrations due to the engine through the front panel (Neumann
boundary conditions). The roof is covered with an absorbent material (Robin boundary
conditions).

Absorbant panels

Figure 7: Two-dimensional section of a car.

The cavity has the characteristic dimensions L, & 2.7[m] and L, ~ 1.1{m|. The main
part of domain boundary is rigid (v, = 0[m/s]). An impedance boundary condition is
imposed at the roof with Z = 2000[Pa.s/m], which introduces damping in the acoustic
system. A unit normal velocity distribution (v, = 1[m/s]) at the fire wall excits the 2D
car cavity.

4.2.1 Numerical Results

We consider a FEM discretization of linear elements from of 238 nodes (coarse mesh)
and is used as reference the FEM solution on a highly refined mesh (193616 nodes).

We study the acoustic response inside the car in the frequency of 215, 525 and 955
Hz. Results of the distribution of the acoustic pressure inside the car is presented in the
Figure 8, where can easily observe the wavefronts, especially in the region above the seat.

15
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Figure 8: Distribution of the real part of the acoustic pressure for the frequencies 215 Hz, 525 Hz and
955 Hz, respectively: solution FEM mesh (12404 nodes).

N

1. Dispersion

We also presents results computed along the straight line defined in Figure 9, with goal
of shown the dispersion effect for the numerical wave number as well as for the amplitude
of the wave.

/ HH\-

At

Figure 9: Definition of the line.

The solution FEM wave exhibits an important phase lag, when compared to a reference
solution. This is confirmed in the cut view of Figure 10, where we can also see that the
amplitude of the FEM wave.

16
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Figure 10: FEM solution of the acoustic pressure at line for frequencies of 215 and 525 Hz.

2. Error Analysis
Error in norm L?

Analogous the example 1, the Figure 11 show the convergence error in the norm L? for
three frequencies computed. The error keeps the asymptotic or pre-asymptotic behavior.

[ —e— 215 Hz|
0.5} = 7— 525 Hz
955 Hz|

log(e)
/

25 3 35 4 45 5
log(dof)

Figure 11: Convergence of error in norm L2.

Error in k

17



Steffens L. M., Diez P.

Remember that analysis of the error through of the wave number k show a phase
shift between the exact and FE waves. In this example cannot estimate a priori and nor
estimate "measured” through of analytical solution, but we can be estimate a posteriori
as proposed in the section 3.4. (equation 34). The results of relative error this estimate

are:

dof EPos(f = 215H2) FPos(f = 525H2) EPos(f = 955 Hz)
238 | 1.2268¢-02 - 2.3413e-03i | 2.7423¢-02 - 2.4543¢-03i | 3.5868¢-02 - 1.6004e-03
851 | 9.6892e-03 - 1.7693e-03i | 1.8340e-02 - 1.1183e-03i | 2.9572e-02 - 3.0248¢-03
3202 | 5.1290e-03 - 1.0353e-03i | 1.0218e-02 - 4.2717e-047 | 1.4369e-02 - 7.4387e-04
12404 | 2.2822¢-03 - 5.2165e-04i | 4.6277e-03 - 2.1885e-04i | 6.5754e-03 - 2.2866e-04i
48808 | 7.6776e-04 - 1.9907e-04i | 1.5767e-03 - 8.6208¢-05i | 2.1851e-03 - 7.7177e-05i

&—215Hz
w— 525 Hz
+— 955 Hz

®
=13
< 24 N ™\
~ N
26 X -«
28 ) h
-3
\“{J
a2 . . . .
2 25 3 35 4 45 5
log(dof)

Figure 12: Convergence estimate error proposed.

5 Conclusion

We observed that pollution effects degrade the quality of the posteriori error estimators
for high wave numbers. However, asymptotic behavior is kept in the analyzed cases, by
which the order of convergence p + 1 of the FEM in norm £? is slightly lost.

In the first case analyzed, the results of a posteriori estimate error does not correspond
with the values of a priori and ”measured” estimates error. It can be explained by the
the fact that we have assumed that our a posteriori estimator take only in account the
error of dispersion, but this is not true. Our estimator actually has two contributions,
one becoming from the dispersion and other from the interpolation. It mean that the two
contributions must be separately dealt in order to improve the estimator.

In second case of the car cavity, where study the noise inside a car, we observed the
dispersion effect especially in the region above the seat. Therefore, is important an efficient
measurement of the dispersion effect.
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We can conclude that FEM is applicable to real-life acoustic problems, and in this case,
but leading to a error in terms of wave number and amplitude. Therefore, is necessary
to measure of the dispersion and search a formulation more efficient for reduction yours
effect. Moreover, that this measure and formulation are general and easily applicable to
real-life problems.
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