LESSONS IN GROUPS (LIG)
An original active way to study lessons

Patrick Stuyck, Christophe Robert
1. Université de Technology (UMA)
Pierre-Aude Cifuentes
2. Université de Technology (UMA, DIET, DMT)
Christopher Robert@univ-umontdieu.fr

ABSTRACT
The present paper outlines for dealing a collaborative learning situation when a given teaching problem is tackled. The teacher acts as a facilitator, providing some initial feedback to the students in small groups of 5 or 6 students, or in order to define a given situation which has been previously studied individually or by more than two students. Contact is made with a motivational part by a clinic or a job in terms of "Less learning", and the grade obtained is different from what we would have found by the student's individual work. The students are then divided into teams, and each team is assigned a topic which has not been previously studied by the teacher.

I. INTRODUCTION
The starting point of the proposal method is to take the benefit of active learning study, getting a chance to the global work of the students. The work to be done is divided, or we can consider that all the important parts are gathered together. In this way, the teacher can then present a detailed syllabus, with instructions, and the teacher does not have to do the work for the students. The work of the groups that we call here "session" (from 10 to 15 students), as we do not want group teaching techniques. Currently, we are only concerned with the problem of the student who is more active in each student.

For practical problems or by a practical work, the students learn about what they have to do, how to do the work, and then how to give the results. The group plays a key role in the success of the students. Thus, given a problem-solving technique to the work in the way, the discussion of the work which will not often be each student individually.
II. METHODOLOGY

Four important (nov.) data show a global consistency of this active process:

1. Working on learning in a team, consisting of 4-6 people, the teacher can be included. The students can be divided into groups of a certain number of people, which can lead to more effective learning. This approach is usually done in a two-stage process. First, the students discuss their learning goals in small groups, and then they share their findings with the whole class. This approach helps to foster critical thinking and encourages collaboration.

The second stage involves the students working on collaborative projects. These projects can be based on real-world problems or case studies. The students are encouraged to work together, share their ideas, and come up with solutions. This approach helps to develop problem-solving skills and teamwork.

2. Formulating and solving a problem. We need to put special attention to the fact that the students should be able to work together with real-world situations. The teacher can be included in the process as well. The problem can be formulated in a way that is relevant to the students' lives. This can help to increase their motivation and engagement.

The second stage involves the students working on collaborative projects. These projects can be based on real-world problems or case studies. The students are encouraged to work together, share their ideas, and come up with solutions. This approach helps to develop problem-solving skills and teamwork.

The third stage involves the students working on collaborative projects. These projects can be based on real-world problems or case studies. The students are encouraged to work together, share their ideas, and come up with solutions. This approach helps to develop problem-solving skills and teamwork.

The fourth stage involves the students working on collaborative projects. These projects can be based on real-world problems or case studies. The students are encouraged to work together, share their ideas, and come up with solutions. This approach helps to develop problem-solving skills and teamwork.

In conclusion, the students' engagement in the learning process can be greatly enhanced by fostering a collaborative environment. This can be achieved through the use of group work, problem-solving activities, and real-world case studies.

References:


3. Restructuring lectures: The well-structured lecture/tutorials are survey lectures given by the instructor to give an overview to the general sense of the course. They are delivered in large groups, the teacher should subject them to the general sense of the course, the specific objectives of the course, and the learning outcomes. The lecture should start with a brief introduction of the topic, followed by a detailed discussion of the key concepts, and end with a summary of the main points. The lecture should be interactive, allowing students to ask questions and participate in discussions. The lecture should be structured to ensure that students understand the material and can apply it to practical situations.

4. Exercises and problems should be assigned: As a result, some exercises or problems are given to the students to test their understanding of the subject and to get them familiar with the real-world application of the concepts. The instructor should provide clear instructions and guidance on how to approach the problems. The instructor should also be available to answer any questions or provide additional support. The instructor should also provide feedback on the students' work, highlighting areas of strength and areas where improvement is needed. The feedback should be constructive and helpful, providing students with the knowledge and skills to improve their performance.

5. Homework and practical work: Home-works and practical work should also be assigned to the students to reinforce the concepts and to provide them with hands-on experience. The homework should be designed to test the students' understanding of the concepts and to help them apply the concepts to real-world situations. The practical work should be designed to provide students with practical experience and to help them develop their problem-solving skills. The practical work should be challenging, but not overwhelming, and should be designed to build on the concepts taught in the lectures.

6. Demos: Demos are an effective way to teach new concepts. Demos can be used to illustrate concepts, to demonstrate how things work, and to provide practical examples. Demos should be designed to be engaging and interesting, and should be designed to help students understand the concepts.

III. WAY OF WORKING

Course progression and role of the teacher: The teacher's role is to guide students through the course, to explain the concepts, to demonstrate how things work, and to provide practical examples. The teacher should be available to answer questions and provide additional support. The teacher should also be available to provide feedback on the students' work, highlighting areas of strength and areas where improvement is needed. The feedback should be constructive and helpful, providing students with the knowledge and skills to improve their performance.

Working to score: Depending on what is required, exams may work either as a “no help” scenario (such a way to solve the problem or an exam), or as a “helping” way.
Exercise and practicals:
They are more classical and aim to complete the comprehension of the
subject and to develop the know-how of the students. Usually this is done in
the class, which allows the teacher to solve the problem, and they also
encourage close collaboration between students, which is a good way to
develop teamwork skills.

For practicals, the objectives are to define the work to be done precisely
and to make sure every student knows exactly what he is asked to do.
State of the profession

Most students, as well as the profession, are pleased with the method, which is perfectly suited for understanding. But also, especially for short subjects, it is beneficial if applied, useful in the field, and easy to execute.

The students find that the text of learning is more efficient for the quality of learning, and more detailed than traditional, and that the time management of such topics is easier. Furthermore, the students consider that the pedagogical approach is done quickly, and that the time management is more efficient, and gives a good idea of accomplishment. If the choice is made to apply the method in the classroom, the students are more motivated to do the exercises, for which they have difficulties, and to express opinions about their progress.

(Empirical experience)
This method clearly develops both sociability and academic ability among students. Students know that other students have seen the same material. They discuss and are encouraged to ask other students for help. The professor can explain the material in a student-centered manner. One student who is good at explaining to others will be able to help other students, as well as teaching together, to come to better understand the subject matter.

The mutual reading of textbooks helps students to enrich and develop their knowledge to a greater extent, which is impossible by just reading textbooks alone. The professor's role here is to check their understanding and to assign tasks. The reading process is both informal and structured, with a focus on continuous improvement.

The method introduces students to work more regularly, and they are well-organized during the course. Instead of using traditional methods, the students are encouraged to work in teams, which is a great way to develop their teamwork skills.

Since the professor can spend more time with each team, they can get personalized feedback and regular guidance. This helps students to improve their understanding of the subject.

On a team (or some students of a team), have someone evaluated (or assessed and moderated) a piece without being aware of that. Of course, this can happen because the strength of a group lies precisely in the difference of approach of the professor, the subject matter, and the learning experience. Each team can work independently, and their work can be peer-reviewed by a careful observation of the work done by the teams. The work can be peer-reviewed by a careful observation of the work done by the teams. The feedback is given in a constructive manner.

The work to be done by the students (homework, textbook, etc.) is well-defined. This is based on a specific part of some documents. Each student is given a specific part of the document, to be read and studied. They are asked to write a brief report on this part, and this report is discussed in class. The professor reviews each report and provides feedback.

Compared with PBL:

This method or an EFL, the subject matters studied by the students is not based on a problem, but on a project. However, it is a team-based activity, which is based on collaboration between students and on working together.
More details

From additional comments and more detail are given in [1] and in the text page (2). Examples of motivation and positioning problems, mathematics, mechanics are given in (5). Finally, as an aside, no education consultant (1)

REFERENCES

(1) B. Y. Enrico, Active Learning at Utah State University of Technology, Global Journal of Engineering Education, Vol. 8, n° 1, 2018, AACE.

(2) M. J. Lee et al., A study of the effects of computer-based instruction on student learning in a

(3) S. D. Fein et al., Active Learning vs. Per-Course Classroom,

(4) C. J. Hall, A study of the effects of computer-based instruction on student learning in a

(5) C. J. Hall, A study of the effects of computer-based instruction on student learning in a

(6) E. Tan, V. Nave, PBL in Mathematics, proceedings of the AACE 2017 conference

(7) C. J. Hall, A study of the effects of computer-based instruction on student learning in a

(8) E. Tan, V. Nave, PBL in Mathematics, proceedings of the AACE 2017 conference