PROBLEMES PROPOSATS

PROBLEMA N° 44

Dado el modelo lineal
Yi=a+8X;,

con las observaciones

se sabe que la matriz de varianzas-covarianzas de las perturbaciones es

1 06 02
Q=c¢*| 06 08 0.6
02 06 09

(a) Si e;,es y e3 son las componentes del vector de errores, ;son estocastica-
mente independientes?

(b) Estimar los parametros o y # por MCO (minimos cuadrados ordinarios).

(c) Estimar el pardametro ¢ y la matriz de varianzas-covarianzas de Byco =
(e, B) bajo las hipétesis del modelo lineal basico.

(d) Obtener una estimacion insesgada de ¢ utilizando los residuos MCO.

(e) Obtener una estimacion insesgada de la matriz de varianzas-covarianzas
de los estimadores obtenidos en el apartado (b).

(f) Estimar e y # por MCG (minimos cuadrados generalizados).

(g9) Estimar ¢? y la matriz de varianzas-covarianzas de los estimadores obte-
nidos en el apartado (f) utilizando los resultados de dicho apartado.

Pedro Sanchez

Universitat de Barcelona
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PROBLEMA N° 45

Considerar el siguiente esquema de muestreo llamado “muestreo sistematico
circular”: £

a) Se selecciona una unidad “i” de la poblacion U = {1,2,...,7,...,N} con
probabilidad comin 1/N.

b) La muestra consta de las unidades (i + jk) mod(N) para j=0,1,2,...,
n—1.
Usualmente k es [N/n] 6 [N/n]+ 1, pero tomemos k = 1. Comprobar que
la varianza de este esquema puede ser menor que la del muestreo aleatorio
simple sin reemplazamiento con la media muestral como estimador comiin
a ambos disefios, reordenando las unidades en la poblacién U.

M. Ruiz Espejo

Universidad Complutense de Madrid

PROBLEMA N° 46

Es bien sabido que con muestreo sistematico ordinario no se puede esti-
mar insesgadamente la varianza del estimador media muestral. Gautschi (1957,
Ann. Math. Statist.) fue quien generalizé el muestreo sistematico a muestreo
sistematico de miiltiple arranque; en el muestreo de doble arranque

a) Se seleccionan dos unidades de arranque por muestreo aleatorio simple
sin reemplazamiento entre las primeras 2k unidades de la poblacién UV =
{1,2,...,N}. Sean estas unidades de arranque “i” y “j”, 1 <1< j <2k,
siendo N = nk.

b) La muestra sistematica de doble arranque s;; esta compuesta por las uni-
dades 1,i+ 2k, i+ 4k,... y J,j+ 2k, 7+ 4k, ... hasta N en ambos casos,
y por tanto su tamano muestral efectivo es n.

Proponer un estimador insesgado de la varianza de la media muestral ¥ij que
es insesgada para la media poblacional ¥ (como caso particular de muestreo por
conglomerados).

M. Ruiz Espejo

Universidad Complutense de Madrid
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A MATHEMATICAL MODEL FOR THE
LOTTERY

M. S. NIKULIN"

(Italian lotteria, from Hlot — meaning lot or destiny)

According to the Great Soviet Encyclopaedia (II edition, &~ 60° years)

“A lottery 1s a financial transaction which consists of the issue, with
the permission of the corresponding state department, free sale of
the lotlery’s winning ticketls, followed by the drawing and delivery
of the winnings (in money or in valuable items) to the holders of
the winning tickets. In the USSR, the arrangement of lotteries by
social institutions is permilted only if authorized by The Council of
Maunsters of USSR.

In capitalistic countries lotieries are organized by private persons or
privale organizations and serve as a source of financial gain for adroit
business-men —organizers of the lolteries, appropriating a bigger
share of the recewed funds by various machinations and abuses”.

According to the American Encyclopaedia:

“Lotteries are generally schemes for distributing prizes by lot or chance.
In their ssmplest form lotteries consist of the sale of tickels bearing
different numbers, duplicale numbers being placed in a receplacle,
such as a hat or a drum, from which numbers are drawn to establish
the prize winners, being those holding the lickets with those corres-
ponding numbers.”

From “Educated Guessing” Samuel Kotz (1983, Marcel Dekker):

“A lottery 1s a game of chance with low stakes and potentially high
winnings, which account for the widespread appeal of this type of
gambling. In its simplests form, a player bels on a number and wins
if the state also selects that number. While we usually view a lottery
as a game, many applications exist in the real world. For example,
msurance 1s a lottery with the premium of a policy playing the role
of the value of a lottery ticket”.

*Pr. Mikhail Nikulin. Université Bordeaux 2. Mathématiques Stochastiques. BP26. F-33076
Bordeaux Cedex.
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Gambling in the form of lotteries, dates from the earliest times. The Roman
emperors, Nero and Augustus, used them to distribute the slaves. In Europe, one
of the first lotteries was apparently in Florence in 1530, although little historical
information remains. One of the most famous lotteries is one in Genoa which
has continued since its inception at the beginning of the 17th Century, if not
somewhat earlier.

The heyday of Genoa was in the 11th Century —the epoch of the Crusades.
During the 11th and 12th Centuries Genoa was a powerful seafaring city-state.
The power in Genoa of the 13th Century rested with the great merchants and
the land owners, involved in international commerce.

But in the early 14th Century Venice already dominated the trade of the
Adriatic and possessed many colonies throughout the Near East. Genoa, being
at that time at the height of her power, challenged the position of Venice in
eastern trade. Between 1378 and 1381 the War of Chioggia was fought bet-
ween Venice and Genoa. Genoa was defeated and never regained a dominant
trading position.

In the latter 15th Century Genoa was a bone of contention between France
and Milan. Genoa, itself, had colonies in the Crimea (Feodossia, Sudak, Ba-
laclava) from which it extracted its due. However, Genoa’s “right” to govern
Feodossia was received from Mangu Khan, one of the chiefs of the Golden
Horde. There were other colonies Genoa conquered solely by itself. Since
Genoa was dependent it had been obliged to take part in the battle of Russia
against the Tatars (the Battle of Kulikovo) on the side of the Tatars. Russia had
been under the sovereignty of the Tatars for a long time when Dmitri Donskot,
who reigned in Moscow, began the conflict with the Tatars. On September 8,
1380, Dmitri defeated the Tatar armies. This victory was in no sense decisive,
but Kulikovo broke the prestige of the Tatar armies and thus it marked the tur-
ning point. Genoa was in contact with Byzantium which guaranteed it access
to the straits of the Black Sea. This was very important for Genoa. In 1453
Byzantium (the Eastern Empire) fell as a consequence of the siege and cap-
ture of Constantinople by Mohammed the Conqueror: this ended a thousand
year rule by the Byzantine Empire. The colonies of Genoa on the Black Sea
were usurped and smashed. Genoa never recovered its previous position as a
seafaring city-state after this, although the Genoese merchants tried to transfer
their trade to the Atlantic Ocean. The decline of sea trade had as a consequence
the decline of shipbuilding. Genoa began to develop the production of a silk,
but soon resorted to another type of business activity; that of banking transac-
tions. Somewhere between the fifteenth and sixteenth centuries Genoa became
an international financial center.
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In 1528, however, the great Genoese admiral, Andrea Doria, re-established
the republic, with a pronounced aristocratic constitution. The republic was
governed by The Great Council. The five members of the Council were to be
elected each year from 90 candidates. Naturally, the people of Genoa were
interested in the results of this election. They forecasted and bet. It is possible
to suppose that the financiers of Genoa saw in this interest a source of possible
gain and received with the help of their banks the varied stakes from all who
were willing, in exchange for a promise to pay the fortunate forecaster a very
large sum of money. Of course, an unfortunate forecaster did not receive his
money back. However, the financiers soon understood that it wasn’t convenient
to link together their new source of funds solely to the election in the Great
Council. Profits were limited as the elections were held but once a year and the
well informed populace could accurately predict the results. Prediction could
be accurate because the forecasters were closely connected with the voters and
therefore might act assuredly, knowing beforehand all, or certain of the names,
of the future members of the Great Council.

The financiers did not need the election itself, but only the model of the
election, which might then be repeated often enough (for example, monthly) to
guarantee a defense for the banks against the excessively well informed forecas-
ters. It is precisely this model that was used to establish the famous Genoese
Lottery, which was expanded, little by little, in many countries of Europe and
existed in Austria and Italy until 1914.

The returns from the lotteries were so large, that the governments were inter-
ested and began to take them under their control (a form of “nationalization”).
The Genoese Republic itself took control of the Lottery as early as 1620.

The passionate desire for wealth associated with the Genoese lottery was a
constant source of misfortune, ruin and crime. In the beginning of 19th century
Laplace spoke out against the organization of the lotteries. He underlined the
immoral side of Genoese lotteries as the means of robbing the poorest stratum
of society, those not able through lack of education and absence of probability
intuition, to understand that adroit business-men used this gambling for the
robbery of poor men. Because the stake being lost by a poor man is equal in
form only to the stake being lost by a rich man! These protests were supported
in several countries and so in the 19¢th Century the organization of Genoese
lotteries were prohibited in England and in France.

How was the Genoese lottery organized? First at all, it is necessary to
underline that it was the model of the election in the GGreat Council, which was
mentioned earlier. Instead of 90 candidates for five vacant places there were 90
numbers from 1 to 90. Each drawing imitated the election of the five members
of the Great Council. Namely, from 90 numbers were extracted at random
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(without replacement) five numbers. According to the rules of the Lottery one
can bet a stake on any one of the numbers from 1 to 90, or on any set of two,
three, four of five numbers. In each of these five possible cases a player has a gain
if and only if all beforehand called numbers belong to the set of five numbers
which were extracted at random under the corresponding drawing. For example,
if you bet on two numbers 1 and 90, you win only if 1 and 90 belong to the set
of five numbers extracted by .chance. Otherwise you lose and the stake passes
to the organizers of the lottery. A winning player receives a lot more than his
stake. In addition the gain increases abruptly with the number of numbers on
which on bets.

The table below shows how the gains depend on quantity of numbers on
which stakes were made.

quantity of numbers | gain obtained by player
on which player in case of winning
bets (stake is taken equal to 1)
1 15
2 270
3 5 500
4 75 000
5 1 000 000

The reasoning about the possible issues for players in The Genoese lottery
and the rules of constructions of this reasoning were of interest to many people.
The majority wanted “a gambling system to win for sure”. For example, the
Soviet newspaper “Soviet Sport” in February 1974 published a report with ex-
tracts from letters of the contemporary “exploiters of the system” in the Soviet
“Sport-lottery” game (the Russian version of the famous Lotto 6/49). The re-
port quotes the management of “Sport-Lottery” as confirming that this system
exists and apparently consists of three points:

1) the regular purchase of lottery lickets;
2) careful filling out of the ticket,
3) to have enough patience to wait for your winnings.

It is clear that the organizers of the Genoese lottery wanted their system to ma-
ximize profits. Thus, there was “the requirements of the practice” which com-
prised not only the needs of the lottery but generally all mass games of chance.
It was necessary to construct a mathematical model describing the rules and
situations arising in the game and permitting planning through calculation of
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returns, losses etc. The search for this model continued up to 18th century. At
the beginning much effort was expended on the search for deterministic models.
The failures of this approach stimulated a revision of all mathematical models
used in the financial transactions and business of organizing lotteries. The most
promising approach was connected with “calculating the possible chances”. In
the contemporary language of probability we could call this approach the mo-
deling of the game in terms of the probability space of equally likely elementary
events.

Thus, for the satisfaction of requirements of the gaming practice, it was
necesary to have a new mathematical mechanism. The search for this model
resulted in the creation of the theory of probability in 17th and 18th centuries.

A probability model of the Genoese lottery can be expressed in terms of
drawing balls from an urn. Here is one Model.

An urn contains n balls (n = 90), of which m are white (m = 5) and n —m
are black (n — m = 85). From the urn k balls (k < m) are drawn “at random”
(k is the quantity of numbers on which one bets, k = 1, 2, 3, 4, 5). If all k¥ drawn
balls are white, then a gambler is a winner, otherwise he loses. It is assumed that

each individual ball is equally likely to be drawn, and hence there are :
different ways to choose k balls from the urn. The term “to draw at random”
means that all possible ways to draw & balls from the urn are equally likely; it

means that the probability that k specified balls will be chosen is
1

It is evident that the number of favorable cases is ( r: ) . Thus the required

probability of winning when one bets on k& white balls will be

( m )
k _m(m—=1)(m—=2)---(m—k+1)

( n ) T oam=1)n-=-2)--(n—k+1)
k

(2) P.= . k=12,....m.

If n = 90, m = 5 we obtain the probability distribution:

11 2 3 3 5
(3) plll 2t 1 4 1
*| 18 | 801 | 11748 | 511038 | 43949268
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(see, for example, Faddeev, Nikulin, Sokolovsky, 1989).
Let X, be a random variable such that

@) X, = { 1, if a player wins (all £ drawn balls are white),

0, if a player loses.

Taking the basic bet per trial as the unit and denoting by g the gain of the
player received in the case of his winning, the “returns” of the player is the
random variable Yj:

—1, in the case of losing,

(5) =nky 1= { gr — 1, in the case of winning.

It is evident that the expectation and the variance of K} are
(6) EXy=P{Xy=1}=P and VarX; = P(l - P),

and hence the expectation and the variance of the returns are

(7) mp=EY, =g P — 1
and
(8) ve =VarYy = giP(1-P), k=12,...,m

In particular, if n = 90 and m = 5, then m; and v; have the values given in the
table:

[ 2 3 1 5
- 29 1562 | 72673 | 10737317
9) 176 89 2937 | 85173 | ~ 10987317
.. | 425 | 1438200
#1736 | 7921

It is interesting to note that all m; are negative!

Suppose that Nj players take part in the lottery independently of each other,
and they bet same stake (equal to 1) on k balls; let X; be the random variable,

_J 1, ifi—th player wins (all £ drawn balls are white),

(36 = { 0, ifi— th player loses, 1 <i < Nj.

Let Yi; be the random variable representing the return of the i—the player. Then
the statistic
(11) G =Y+ Yo+ + Yin,
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represents the total return of all N players in one trial, bet on k balls. It is
evident that

(12) Gk = gippe — N,
where the statistic :
(13) pe = Xg1 + Xz + -+ -+ Xiew,

has the Binomial distribution B (N, P;) with the parameters N and P;. Hence,
if N — oo then according to the Theorem of Bernouilli about the law of large
numbers, the mean return

Gr _ kb
(14) Ne ~ Ne !

converges in probability to
(15) mep = grPr — 1< 0.

Moreover, since the event {G; < z} can occur if and only if the event

N
(16) {in < 2R
Gk
occurs, then if N — oo, from the de Moivre-Laplace theorem, it follows that
z + N — NPy
(17) P{Gr<z}=0 | 22— | +o(1),

VNePe(1 = Pi)

i.e., if we choose x such that (z + Ni)/gs is an integer, we obtain one approxi-
mation according to which (with the correction on the continuity)

:c+%—Nkmk
18 P{Gy < =2¢ | —=——
(18) { k__z} m

where my and v; are given by (8). In particular, if # = 0 and Ni /i is an
integer, then (18) implies that

(19) Pﬂu50}5¢(“‘2Nw”

_—— ), k=12,...,m
2\/N;-‘Uk ) "

For example,

(20) PthME@(

45+N1)
5V1TN: /-~
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(see, for example, Faddeev, Nikulin, Sokolovsky, 1989).

Let X; be a random variable such that

(4)

x.={ b if a player wins (all k drawn balls are white),
=1 0, ifa player loses.

Taking the basic bet per trial as the unit and denoting by g the gain of the
player received in the case of his winning, the “returns” of the player is the
random variable Yj:

—1, in the case of losing,

(5) Yi=qaXe—-1= { gr — 1, in the case of winning.

It is evident that the expectation and the variance of K are
(6) EX;,:P{Xk:l}:Pk and Varxksz(l—Pk).

and hence the expectation and the variance of the returns are

(7) mg = Eyk = ngk -1
and
(8) v = Var Y =ngk(l—Pk), k=1,2,....m.

In particular, if n = 90 and m = 5, then m;. and v; have the values given in the
table:

F 1 2 3 1 5
ol 1| o_20 | _1se2| 72673 | 10737317
(9) 176 89 | 2937 | 85173 | 10987317
425 | 1438200
Vi | — | ———
36 | 7921

It is interesting to note that all m; are negative!

Suppose that Ny players take part in the lottery independently of each other,
and they bet same stake (equal to 1) on k balls; let Xi; be the random variable,

(10)  Xi = 1, ifi—th player wins (all £ drawn balls are white),
k=000, if i — th player loses, 1 <i < Ni.

Let Yi; be the random variable representing the return of the i—the player. Then
the statistic
(11) Gy =Y+ Yo+ -+ Yan,
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represents the total return of all Ni players in one trial, bet on k balls. It is
evident that

(12) Gk = gepi — N,
where the statistic y
(13) pe = X1+ Xz + - - + X,

has the Binomial distribution B (N, Pi) with the parameters N and Pi. Hence,
if N — oc then according to the Theorem of Bernouilli about the law of large
numbers, the mean return

Ge _ grp
e Ny~ N :

converges in probability to
(15) me=gePr—1<0.

Moreover, since the event {G < z} can occur if and only if the event

(16) {mcS “N*}
9k
occurs, then if N — oo, from the de Moivre-Laplace theorem, it follows that
z + N — Ni P
(17) P{Gr<z}=0| 22— | +0(1),

VN Pe(l = P)

i.e., if we choose z such that (z + Ni)/gr is an integer, we obtain one approxi-
mation according to which (with the correction on the continuity)

.r+?.-2£—Nkmk)

(18) P{Gkgx}':wp( Niven

where my; and v are given by (8). In particular, if z = 0 and Ny /g is an
integer, then (18) implies that

. yk—'ZNkmk)
19 PG <0}z —m 2——), k=12,...,m.
( ) { k= } ( zm m
For example,
45 + N,
20 P{G, <0}=2d | — ) .
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From (19) if follows immediately, that the organizers of the lottery will have “a
guaranteed return” only if there are many players!

Let us consider now the question of a possible “gambling system to win”
with certainty. Let us suppose that one player at times ¢t = 1,2,..., where ¢
is a number of trial of the lottery, bets per trial with the number k the stake
Skt on k balls and he wants to win the sum h and to cover his expenses Ej ,,
accumulated to the t—th trial. It is clear that he will achieve his goal, if in the
t—th trial he bets a stake Si ;, which satisfies the equation

(21) 9kSkt = Skt + Exe + h,
i.e., if '
Evri+h
(22) Ska= =,
gk — 1

and if the player wins (!) in this trial. If he loses then it is natural to put

Er 141 = Bt + Skt
(23) { Er1=0,

and to determine the value of the new stake Sy ¢4; in the next trial by

/
(24) Skt41 = EL‘t""_‘
gr — 1
It is easily to verify that
-1
5 9
25 Spt=h———
(25) o= b

and

-1
(26) E,,,;h[(gg"l) ] t=1,2 ...
g

For example, if k = 1, then from (25) and (26) it follows that

. k {15\ 15\*"! )
(27) S"‘—ﬁ(ﬁ) y El.t—h[(ﬁ) =12 ...

and one can remark that the variables S| ; and E| ; increase very quickly. Under
these tactics the player will receive his return h in the trial with the number
T = t(T is a random variable) with the probability

(28) P{T=t}=P(1-P)"!, t=12,...

where Pj is the probability of winning in an individual trial.
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Hence, as t — oo, then

(29) P{T 2 t} == iPk(l _..Pk)l.—l - (1 . Pk)!—] p— 0‘

i=t

from which it follows that
(30) P{T < o0} =1,

i.e., with the probability 1 the player will achieve his goal for the finite number
of trials (1), moreover

1

31 ET=— ,
(31) B <
since P, > 0, and
(32) VarT = 1=

=—p7r
In particular, if we put £ =1, n = 90 and m = 5, then in this case we obtain

1 1\!

. — = — > = [ —
(33) Po= P=g Pr20=(1-3)
(34) ET = 18 and VarT = 306.

We give a table (35) of some values of the probability P {7" > t} and the function
E) 1 (FEy ¢ is the accumulated loss of the player to the trial with the number ¢,
ee (23), (26) and (27)).

t 10 20 30 40 50 60

P(T >t)|0.598 | 0.337 | 0.191 | 0.107 | 0.061 | 0.034
(35)

Ey 4
h

0.9 2.7 6.4 13.8 | 28.4

en
=1
(=2

Let us change the rules of the game a little. We suppose that
(36) 51.1 = 1 E1|1=0, hi=il)

On the one hand it is clear that if h = 0, it is not interesting to play. But we
consider the situation when a player was talked into buying a ticket, and let

151t =S1a+FEy.
(37) {El,!+l =FE 1+ S t
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i.e., we consider the tactics when the player wish to recover his expenses. In this
case £y 5 =1 and

(38) E) 141 -'_-El,tg%, T

Therefore -

(39) me=(29) . =23 (Ba=0),
g1—1 £

and g:—z

(40) Sl,t=W. t=2,3,... (Sri=1).

Now we consider the lottery Lotto 6/49. There are n = 49 numbers, m = 6
and k = 0,1,2,3,4,5,6. In this case

(6 )( » )

k 6—k

41 = k=09,1,2,3,4,5,8.
6

One can verify that

pa = 0.0176904039; ps = 0.0009686197; ps = 0.0000184499; pe = 0.0000000715,
and hence the probability of wining is equal to

(42) P = p3 + pa + ps + ps = 0.018637545

and the probability of losing is

(43) Q=1-P=0.981,

From (42) and (43) it follows that

1 1000
(44) ET = F’“Tg_“53’
S g'~* t—1
45 Esr = ——P(1-P) ' =
(45) T P+§(y_”,_1 (1-P)

1 —Pon ol = P12
(46) = Pll+ [ ;

g-—1 ,g,: g-—1
This series is divergent, since its general term is greater than 1, as it was in
the case of the Genoese lottery 134 > 1, i.e., the mathematical expectation of
expenses is infinite, i.e., the “duration of the game” is finite, but one needs to
have infinite capital to win. This is the paradox.
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NOTE

This is a version of lecture given by L. Bol’shev, in 1974, in Moscow and by
me in the former Leningrad, in 1974-1976. This text was prepared by me in
Russian in 1978 to the memory of L. N. Bolshev, who died in september of 1978.
The translation in English was done in Kingston in 1991.
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SOLUCIONS ALS PROBLEMES PROPOSATS
AL VOLUM 15. N° 3

PROBLEMA N° 42

Sea X, una variable aleatoria con distribucién de Poisson de parametro

A = na. Entonces
[na]

P(Xn < [na]) = Ze_"“ﬂ
- et k!

que es también igual a

b (x:/;;a & [nc:]/n—_a nu)

Como X, se puede entender como la suma de n variables Poisson de parametro
a independientes, por el Teorema Central del Limite, se cumple la convergencia

en ley
Vo= XnZt® £ No1)
. S na ]

es decir, Y, estd asintéticamente distribuida segiin la normal tipificada.

Es obvio que
[na] — na| <1

luego
. [na] = na
lim (2] —ne _
.t - aaal
Asi pues

. e (na)
nllrgDP(X,. < [na])= lime z o= P(Y £0)=1/2
k=0 '

donde Y es la distribucién N(0, 1), que deja probabilidad 1/2 a la izquierda del

Cero.

C.M. Cuadras
Universitat de Barcelona

189



PROBLEMA N° 43

1) El cociente de las densidades es

Jm(2) _ (" mt )”2 I(n/2) T{(m+1)/2] [1+2%/(m=2)] ™"
falz) ~ \m-—2 F(m/2) T{(n+1)/2] [1422/(n- 2)]—(n+1)j2

cuyo minimo es también el minimo de la funcién
g(z) = (m+ 1)log [1 + 2%/(m = 2)] = (n+ 1)log [1 + z%/(n - 2)]
Igualando la derivada a cero

2z /(m — 2)

2z/(n—2) _ 0
1+ 2z2/(m—2)

14+ 22/(n—-2)

se anula para el valor z = 0, que corresponde a un maximo. Suponiendo
r # 0, eliminando el término 2z y operando

g'(z)=(m+1) —(n+1)

m+ 1 _ n+l 1
21+1:2/(m 2) T n-=-21+4+z2/(n-2)
2
m+1 ( _ n+1 ¥ T
m— n—2 (m-2)
(m+1)(n—2) (m— l):r _ (n+1)(m-2) (n+1)z?
(m=2)(n=2) (m=2)n=2) = (n=-2)(m-=2) (n-=2)(m-2)
(m=-1z=(n-1z> = (n+1)(m=2)—(m+1)(n—-2)
(m=n)z? = 3(m-n)
r = +V/3
que corresponde a un minimo. Finalmente, como z® =3 y
3 m+ 1 3 n+1
1+(m—'2)_m—?. l+n—‘2—n—2

sustituyendo en (1) obtenemos el minimo de f,,(z)/fa(z), es decir,

_ (n=2)" DO/ [(m + 1)/2) (m =2\
pmn) = (m—?) L(m/2)T [(n +1)/2] (m-i—l) |
i1 (n41)/2
(n—?)
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2)

(2)

(3)

Si F,, es la funcién de distribucién de X y F,, es la de Y, entonces
U= Fal(X) ¥ = FuY)

siguen la distribucién uniforme en (0,1). Luego podemos establecer la
igualdad
Fn(X) = Fu(Y)

es decir
Y = 71 (Fm(X))
donde F7' es la funcién inversa. Sea H*(z,y) la distribucién conjunta

de (X,Y) ligados funcionalmente a través de (2). Como X,Y tienen media
0 y varianza 1, la correlacion es

pXY) = [zydii*(ey)
pero al verificarse (2), podemos poner y como funcién de z
pXY) = 2P (Fnla)) dFn()

pues ademas dH*(z,y) = dFyu(z). Estableciendo el cambio
u= Fp(z) du = dFp,(z) z= F ;Y (u)

obtenemos

1
pmom) = p(X.Y) = [ B3P () du
0

que por lo tanto se puede interpretar como un coeficiente de correlacion
entre X e Y, estando ambas variables ligadas por la relacién funcional (2).

Sea H*(z,y) la funcién de distribucién bivariante de XY sujetos a la
relacion funcional (2). Entonces

H¥(z,y) = P(X <2,Y <y) = P(X <z, F] ' (Fm(X)) S9) =

= P(X <2, X < F;Y(Fa(w))

P(X < z) = F(z) siz < Fn'(Faly))
{ P (X € FR'(Fa(v) = Fu (Fr' (Fa(y))
= Fa(y) siz > F'(Fa(y))



(4)

(5)

(6)

es decir, encontramos que la distribucidn es
H*(z,y) = min{Fn(z), Fa(y)}
Como para dos sucesos cualqui;ra se verifica
P(AN B) < min{P(A), P(B)}

deducimos que cualquier otra posible funcién de distribucién bivariante
H(z,y) para X,Y verifica

H(z,y) < H*(z,y)

Luego, como resultado ya demostrado por W. Hoeffding, se puede ver que
[avae <ot mm = [eyar*zy

es decir, (3) es la expresion del maximo coeficiente de correlacién posible
entre X e Y.

Consideremos ahora la siguiente funcion de distribucién definida por la
mixtura

H,(z,y) = pFy (min{z, y}) + (1 = p) Fa(y) - G(z)
siendo 0 < p < 1, y suponiendo ademas que

G(z) = —Fm(z)li!:)Fn(I)

es una funcion de distribucién univariante.

En otras palabras, H, es F,, (min{z, y}) con probabilidad p 6 F,(y)-G(z)
con probabilidad (1 — p).

Se cumple que

Hp(oo,y) = pFa(y)+ Fa(y) - (1 = p) = Fu(y)
Hﬂ(""oo) = pFa(z) + Fn(z) — pFa(z) = Fu(z)

luego las distribuciones marginales son F,, y F,,. Ademas
P(Y <z,Y <y) = F, (min{z,y})

es decir, F, (min{z,y}) es la funcién de distribucién de (Y,Y). Por lo
tanto el coeficiente de correlacion es
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pa) = [udty(e) = p 1+ (1= p) [ ydFaly) [ 2dG )
y como E(Y) = fde,,(y) = 0 obtenemos la correlacion
p(X,Y) = p < p*(m,n)
pues p*(m,n) es la maxima correlacién posible (ver (4)).

Busquemos el maximo valor para p. Debera cumplirse que G(z) (ver (6))
sea una funcion de distribucién, es decir,

_ Jml(z) = pfal(z)

O
fm(z) - an(x) >0 Vz
Sm(z)

fn(l) 3 e

Luego p debe cumplir

Jm(z)
falz)

y como p es una correlacién, tenemos que su maximo valor p(m, n) verifi-
card

p{m,n):inf{ }Zp)O

p(m,n) < p*(m,n)

Finalmente, si m = n la relacion (2) es X =Y, luego
p(m,n) = pt(m,n) = 1.

Pero si m < n, como p(m,n) # p(n,m) y sin embargo p*(m,n) =
pt(n,m) deducimos que

p(m,n) < p*(m,n) < 1.

C.M. Cuadras
Universitat de Barcelona
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