PROBLEMES PROPOSATS

PROBLEMA Nº 15

Sigui X un vector aleatori, amb vector de mitjanes
$$\mu_X = E(X),$$
matrìu de variàncies i covariàncies
$$\sum_{XX} = E((X - \mu_X)(X - \mu_X)'),$$
i matrìu de moments de quart ordre
$$\sum_{XXX} = E[((X - \mu_X) \otimes (X - \mu_X))((X - \mu_X) \otimes (X - \mu_X))'].$$

Finites. Considerem el vector de mitjanes mostrals
$$\bar{X} = n^{-1} \sum X_i$$
i matrìu de variàncies i covariàncies mostral
$$S_{XX} = (n - 1)^{-1} \sum (X_i - \bar{X})(X_i - \bar{X})'.$$

Corresponen a una mostra $X_1, X_2, \ldots, X_n$ d’observacions independents de $X$. Demostrar
$$n^{1/2}(\text{vec} S_{XX} - \text{vec} \sum_{XX}) \rightarrow N(0, \sum_{XXX}),$$
en distribució. (Utilitzar el teorema central del límit.)

Albert Satorra

PROBLEMA Nº 16

Sean $X_1, \ldots, X_n$ les variables aleatories muestrales correspondientes a una muestra aleatoria simple de tamaño $n$, todas ellas estocásticamente independientes e idénticamente distribuidas según una distribución de Poisson de parámetro $\lambda$, $P(\lambda)$. Hallar, aplicando los teoremas de Rao–Blackwell y Lehmann–Scheffé, un estimator insesgado y de varianza mínima de la probabilidad de que $X$ tome el valor cero, $\psi(\lambda) = e^{-\lambda}$. ¿Alcanza dicho estimator la cota de Cramer–Rao? ¿Podríamos construir un estimator, no insesgado, con error cuadrático medio menor?

C.M. Cuadras
Josep M. Oller

137
PROBLEMA N° 17

Sean $X_1, \ldots, X_n$ las variables aleatorias muestrales correspondientes a una muestra aleatoria simple de tamaño $n$, todas ellas estocásticamente independientes e idénticamente distribuidas según una uniforme en el intervalo $(\alpha, \beta)$, $\alpha < \beta$. Teniendo en cuenta que $X_n$, la media muestral, es un estimador insesgado de la media poblacional $\frac{\alpha + \beta}{2}$, hallar otro estimador de la misma más eficiente que el citado, considerando el error cuadrático medio como medida de eficiencia.

Jordi Ocaña