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Mathematical Questions concerningZonohedral Space-Filling

by Henry Crapo

Structural Topology #2,1979

Abstract

An exposition of the basic mathematical pro-
perties of zonohedra and their diagrams, ar-
ranged so as to bring into focus the many
challenging unsolved problems involved in
implementing the procedures for synthesizing
space-fillings which were described in the
article “Polyhedral Habitat”.

Note aux lecteurs francophones:

Une traduction frangaise de cet article est
disponible sur demande. Un bon de com-
mande est inclus.

Introduction

In his article “Polyhedral Habitat”, Janos Baracs
introduces a technique for synthesizing zonohedral
space fillings. It is an effective drafting technique,
since it enables the user quickly to arrive at a single
correct plane projection of a spatial framework, from
which the required spatial information may then be
surmised, either by intuition, or by calculation based
upon a very few free choices. The technique pro-
ceeds in three stages:

A) successive splittings of a plane tessellation, to
produce tessellations by concave clusters of convex
zonagons.

B) staggering (relative parallel transport) of two
copies of the resulting tessellation, to arrive at a
projection of a space-filling.

C) lifting the projection into space, to arrive at a
space-filling by concave clusters of convex zonohe-
dra.

Associated with this technique, but not analyzed in
as much detail in the abovementioned article, is the
method of

D) beginning with a known space-filling by a convex
parallelohedron, to arrive, by successive spatial
splittings, at space-fillings using more general con-
cave parallelohedra.

Each of these procedures raises a number of inte-
resting and challenging problems, with which we
hope to tempt some of our mathematically-minded
readers. Certain lines of inquiry, primarily those
closest to the domain of intended architectural

application, have already been pursued during the
years since “Polyhedral Habitat” was written, by
Nabil Macarios, Yves Dumas, Pierre Granche, Vahe
Emmian, and other members and associates of the
Structural Topology research group. The problems
outlined in the present article are those which arise
when one begins to piece together a certain mathe-
matical theory of space-filling, a theory designed to
shed some light on space-filling polyhedra which are
formed as concave clusters of zonohedra. Recent
work in this direction was carried forward during
meetings of the research group, mainly through the
efforts of Janos Baracs, Walter Whiteley, Marc
Pelletier, and the present author. As we outline the
problems which we see arising, we will point out
those areas where we have been able to make some
progress, and will give some references to what we
feel is relevant mathematical literature, chiefly to the
papers of Coxeter, Grunbaum, Shephard and
McMullen.

Zonohedra

A zonohedron is a convex polyhedron expressible as
the convex sum of a finite set of line segments (see
Grunbaum 1967). This construction is as follows.
Given n vectors at the origin in three-dimensional
space, vectors not lying in a single plane through the
origin, their convex sum is the set of points whose
position vectors may be written as linear combina-
tions of the given vectors, using scalars chosen
between 0 and 1, inclusive. The boundary of this



convex sum is a convex polyhedron, the zonohe-
dron, and the original array of vectors we call the
star of that zonohedron. See Figure 1.

Given a 3-dimensional model of the star, it is easy to
generate a set of parallelograms and other 2n-gons,
using in turn all possible pairs of vectors, or other
larger coplanar sets of vectors, in the star. These
zonogons, cut from cardboard, are precisely the
faces needed for a model of the zonohedron.But this
is not the way we would proceed in practice, be-
cause there is really no need to construct a spatial
model of the star. Say instead we have a bit more
information in a plane diagram: not only a plane
projection of the star, but also the intersection points
of the lines of the star with the plane of projection, as
in Figure 2. We may assume that the projection is an
orthogonal projection, and that the actual centre of
the star is at distance 1 above its image in the plane.
Then standard constructions in descriptive geome-
try provide correct plane drawings of the real lengths
and angles of the faces. We see this construction for
a typical parallelogram face in Figure 3. Here the
lines of the vectors 0A and 0B meet the plane of
projection on points M and N respectively. The point
L is the foot of the perpendicular through 0 to the line
MN, the line OK is parallel to MN, the segment OK has
length 1, and the line L0’ is equal in length to LK (a

compass construction). This line L0’ gives the true
length of the line LO, because LK is the hypotenuse
of a right triangle with altitude 1, and base LO. By
dropping a perpendicular to MN through the point A
until it meets the line O’'M, we find the location A’ of
the point A as the face OAB is rotated about the line
MN until it lies in the plane of projection. Doing the
same construction at B, we find B’, and completing
the parallelogram, we find a picture of the face 0AB
with its true edge lengths and angles.

The lengths of vectors in a star can be changed
freely without affecting the topology of its zonohe-
dron, so the lengths can all be set equal to one
without loss of generality. The number of distinct
faces needed for the construction of a zonohedron
can be reduced by assuring that there are relatively
few different angles between pairs of vectors in the
star. The vectors might be taken as pointing outward
toward the vertices of a regular polyhedron, for
example.

Given a plane through the origin, a plane containing
none of the vectors of the star, we obtain a partition
of the vectors into two subsets: those on one side of
the plane, those on the other. By adding the vectors
in these two subsets, we obtain the position vectors
of a pair of opposite vertices of the zonohedron. The
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Figure 1. Each vertex of the zonohedron is reached by adding some (indicated, in a few cases) subset of the set of vectors in its star.

converse is also true: at any vertex of the zonohe-
dron, find a plane which touches the zonohedron
only at that vertex. The plane parallel to this plane,
and passing through the origin, produces the requi-
red partition of the vectors.

Every edge of the zonohedron, considered as a free
vector, is equal to one of the vectors in the star. If we
fix our attention on all the edges parallel to any one
vector, we find they form a belt, or zone around the
zonohedron. The zonohedron is centrally-
symmetric, about a point whose position vector is
exactly half the sum of all the vectors in the star. This
symmetry is visible in plane projection, by virtue of
the fact that the upper cap and lower cap are
obtained from one another by central reflection
(Figure 4). This will be important when we come to
study staggerings and lifting, below. We have also
used Figure 4 to illustrate how hexagonal faces are
formed when we take three vectors coplanar in the
star, here bdf and ace.

(Coxeter 1962) simplifies the development of zono-
hedra one step further, by studying the figure
obtained by intersecting the lines of the vectors in
the star with a plane not through the origin, such as
in Figure 2, above. He calls this plane figure the
(primal) projective diagram of the zonohedron.

Figure 2. Intersection of all lines of a spatial star with a plane
produces a (primal) projective diagram for its zonohedron.
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Figure 3. From a diagram like Figure 2, it is easy to construct the
true dimensions of each face by “rabattement”, rotating the face
down into the plane of projection, using its intersection with the
plane of projection as hinge for the rotation.

Planes through the origin, in the above procedure
for locating pairs of opposite vertices, become lines
in the plane of the projective diagram, lines which
separate the points into two complementary subsets
(Figure 5).

The topological properties of any given zonohedron
are easily discernable from its projective diagram.
For instance, adjacent vertices of the zonohedron
come from bipartitions which differ only by the
reassignment of one point to the other half, and the
direction of the edge between those two vertices is
that of the vector belonging to that point in the
projective diagram. By this same line of reasoning,
taking any given separating line as the “line at
infinity”, with respect to which we develop a notion of
“convexity”, the convex hull of the set of points of the
diagram is a convex polygon, whose vertices (which
are always points of the diagram) give exactly the
edges incident at the two vertices corresponding to

Figure 4. The projections of upper and lower caps of a zonohedron
differ by a central reflection (by a half turn in the plane). Compari-

that bipartition of the points. For instance, using
Figure 5, we know that from the vertex df we can
reach adjacent vertices by adding the vector c,
adding a, or subtracting f.

If we contract to zero along itself any one vector of a
star, we will contract to zero the width of one zone of
the zonohedron. What remains of the zone will be a
meridian path, which traverses a sequence of edges
and faces of the contracted zonohedron, using each
remaining vector or its negative once (either by
going along an edge in that direction, or diagonally
across a face involving that zone), to reach the vertex
opposite to the starting point, then continuing on the
opposite route (opposite in the sense of central
symmetry) back around to the starting point (Figure
6). The converse is not quite true. Say we define a
meridian path on a zonohedron (or on a plane
projection of a zonohedron) by the above property,
namely that the path uses each vector once, then
returns to the starting point along the same se-
quence of opposite vectors. There are meridian
paths which do not correspond to possible expan-
sions of new zones on (convex) zonohedra. This
difficulty can occur at several different levels. A
plane drawing obtained after several successive
expansions along meridian paths, even though its
faces are convex and it has a convex perimeter,
need not be the projection of a zonohedron in space.
It may for instance be the case that, although the
drawing is topologically equivalent to a zonohedral
skeleton, it may not be possible to view that zonohe-
dron with the given outline as its contour. Even
worse, the drawing need not even be topologically
equivalent to the skeleton of a (convex) zonohedron.
Figure 7A with 9 zones is such a faulty drawing: it is
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~son of Figures 1 and 4 reveals the effect of a different choice of

projective diagram, even given the same projected vectors.

not even topologically a zonohedron. By contracting
any one zone in Figure 7A, and moving the resulting
meridian to the perimeter, we obtain a subdivision
into parallelograms of the zonogon with eight pairs
of sides, a subdivision which cannot be the top cap
of a (convex) zonohedron (Figure 7C). By putting the
word “convex” in parentheses we wish merely to
underline that strict convexity is part of the definition
of zonohedra. There are, as it is easy to show, many
concave polyhedra having Figures 7 as their parallel
projections, concave polyhedra which resemble zo-
nohedra in most respects.

These facts derive from a dual projective diagram
also invented by Coxeter, and from the theory of
arrangements of lines and pseudo-lines (Grunbaum
1972). To obtain the dual diagram from a star in
space, take the planes through the origin, one
normal to each vector of the star, and intersect that
configuration of planes with a single plane not
through the origin. Both the primal and dual dia-
grams are plane diagrams, and are related to one
another via a polarity, a mapping which interchan-
ges points with lines, lines with points, but maintains
incidence of points with lines.* Figure 8 shows the
dual diagram for the zonohedron in Figure 4, and
shows how the dual diagram is the topological dual
of the top cap of the zonohedron. By topological
dual we mean the figure whose vertices are the faces
of the zonohedron, whose edges cross the edges of

*Note: The construction of the dual diagram need
not be that stated in terms of the metric concept of
“normal plane”, as above. Any projectively defined
polarity will do.

ob

Figure 5. The projective triangle acf is the projective convex hull of
the points of the diagram, relative to the separating line L. So the
vertex df has neighbors adf, cdf, and d, in Figure 1.
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Figure 8. The dual diagram of a zonohedron, as an affine configuration, is the topological dual of its top cap.

the zonohedron (forming lines corresponding to the
zones), and whose faces are the vertices of the
zonohedron.

Now the process of expanding a meridian path in a
plane drawing, to produce a new zone, corresponds
to the process of introducing into the dual diagram a
curve which crosses each line exactly once (possibly
at points where two or more lines meet) and extend

to infinity in both directions. Such a curve is called a
pseudo-line. The question as to whether the resul-
ting expanded figure is topologically equivalent to a
zonohedron is equivalent to the question as to
whether the arrangement of pseudo-lines can be
stretched straight, to form an arrangement of
straight lines, without changing the order of any
sequence of crossings of lines. (Grunbaum 1972)
gives a variety of examples of unstretchable arran-
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Figure 9. The top caps of the four different 6-zone rhombic zonohedra (those with only parallelogram faces).

gements of pseudo-lines, each of which yields a
non-realizable zonohedral drawing. We give this
warning here to prevent undue optimism regarding
the universality of the three basic steps for synthesi-
zing space-fillings, discussed below. Figure 7B
shows a non-stretchable arrangement of nine lines
for the incorrect zonohedral drawing Figure 7A, and
also shows how the arrangement can be derived by
systematically distorting a diagram of nine straight
lines.

The number of topologically distinct zonohedra with
a given number of zones is known for up to six
zones. Considering only those zonohedra all of
whose faces are parallelograms, there are only one
each with 3, 4, and 5 zones, four with 6 zones, and 11
with 7 zones (Grunbaum 1967, p 394). With more
general zonagons permitted as faces, there is still a
unique example with 3 zones, two with 4 zones, four
with 5 zones, and 17 with 6 zones (Grunbaum 1972, p
4). These numbers were obtained by counting arran-
gements of lines in the projective plane. In Figure 9
we show top caps for the four different zonohedra
with six zones, and only parallelograms for faces.
For purposes of comparison, we have placed one of
the highest valency vertices near the centre of the
drawing. Even from these drawings it is evident that
the four zonohedra are topologically distinct. Exam-
ple A has a pair of 6-valent vertices. Examples B, C,
D have two, three, and six pairs of 5-valent vertices,
respectively.

Before we restrict our attention to questions of
space-filling, let us pose two general problems about
zonohedra. First, for purposes of dome design, it is
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convenient to be able to use polyhedra with inscri-
bed spheres.

Problem 1. Which zonohedra can have inscribed
spheres? The answer should be formulated as a
combinatorial criterion to be satisfied by the vector
star or by the projective diagram.

All zonohedra with only parallelogram faces and with
up to 5 zones, and one (for sure) of the 6-zone
zonohedra, can be built with all faces congruent. The

zonohedron whose star is formed along the space
diagonals of a regular icosahedron has only two
distinct congruence classes of faces (Baer 1970). We
wonder how the number of required congruence
classes depends on the number of zones. In particu-
lar,

Problem 2. Using only k congruence classes of
parallelogram faces, up to what value of n can some
n-zone zonohedra be built? Construct the required
faces, at least for n equal to 2.

Figure 10G shows how the five-zone zonohedra meet when the
concave parallelohedron of Figure 10 fills space. This example was
found by Marc Pelletier.

Concave Parallelohedra

A polyhedron (topologically a sphere, realized wi-
thout self-intersection) is called a concave parallelo-
hedron if and only if copies of it fill space by parallel
displacement, the polyhedra meeting each other
face-to-face.* We are mainly interested in those
concave parallelohedra which are divisible into
convex zonohedra. By a theorem of (Shephard
1974a), every zonohedron is further divisible into
cubes(zonohedra with 3 zones), so a concave paral-
lelohedron is divisible if and only if it is expressible
as a juxtaposition of cubes. The concave parallelo-
hedron in Fligure 10 is divisible into 14 cubes, or into
a 5-zone zonohedron (the rhombicosihedron) and
four cubes. That in Figure 11 is divisible into 13
cubes, but is not divisible into a 5-zone zonohedron
plus cubes. It does, however, have many desirable
properties as a fundamental region for space-filling.
Removing the 5-zone zonohedron which this funda-
mental region contains, we find the residue consists
of a concave 4-zone rhombidodecahedron and a
cube. In the space-fillings generated by the funda-
mental regions of Figures 10 and 11, the 5 zone
zonohedra contact each other in essentially different
ways. Later in this article, we shall return to study
these two space-fillings and their fundamental re-
gions in greater detail.

Given a zonohedron and its star, every subset of the
set of vectors in the star is itself a star, and produces
a zonohedron which we call a relative of the original
zonohedron. The main question to be posed in the
context of the article “Polyhedral Habitat”is

Problem 3.For an arbitrary (convex) zonohedron,
can it be juxtaposed with some of its relatives, to
produce a concave parallelohedron?

This is true for zonohedra with up to five zones, butis
not known to be true for any zonohedron with six
zones. However, a simple inductive argument esta-
blishes the analogous result in the plane. By con-
cave parallelogon we mean a polygon (topologically
a simple closed curve in the plane) which fills the
plane by parallel displacement, polygons meeting
each other edge-to-edge.

*Note: Adjacent concave parallelohedra may have
several faces in common, but each such face of one
parallelohedron meets exactly one entire face of the
other parallelohedron.



Theorem.Every zonagon may be juxtaposed with
some of its relatives, to form a concave parallelogon.

Figure 12 illustrates the method, each step of which
involves the reduction by one of the number of
elements of the star, the elements of the reduced
stars being formed as sequences of vectors from the
original star. The basic step is to replace three
elements a, b, ¢ in cyclic order by two elements: a +
b and ¢ + b. This step is applicable even if the
elements a, b, ¢ were already vector sequences
formed at some earlier stage of the construction.
The process continues until the number of elements
is equal to three, and an underlying hexagonal
tessellation appears.

D

Divisible concave parallelohedra are fundamental
regions for tilings of space by related (convex)
zonohedra. We should note that one such tiling may
have a number of quite different fundamental re-
gions. Figure 12 indicates what sort of choice is
available for a fundamental region in one tiling of the
plane. From our point of view, distinct tilings are far
more interesting objects of study than are distinct
fundamental regions.

Problem 4. For any set of related zonohedra (or
zonagons) which can be juxtaposed in at least one
way to form a concave parallelohedron (resp. paral-
lelogon), enumerate the distinct tilings to which they
can give rise.

We conjecture, for instance, that one decagon and
four quadrilaterals, all of them being related zona-
gons, can form only one topological type of tiling of
the plane, that shown in Figure 12. But there must be
many distinct ways of tiling the plane with one 16-
gon, an octagon, a hexagon, and 26 quadrilaterals. A
fundamental region for one such tiling is shown in
Figure 13. Note in this example how the 16-gons are
separated from one another by ribbons of parallelo-
grams and other small zonagons. It cannot be
otherwise. Even for fairly small 2n-gons, it becomes
impossible for them to contact one another in more
than one lattice direction. (Contact in one lattice
direction is always possible, no matter how many
edges a zonagon has.) The same sort of separation
will occur in space, once the number of zones on a

Figure 11. A divisible concave parallelohedron, with drawings to indicate how it is not divisible into a 5-zone zonohedron plus cubes, but is obtained by twisting a truncated octahedron.
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basic zonohedron reaches a certain minimum value.
The reader may wish to investigate this matter, and
to determine certain optimal-proximity tilings with a
given zonohedron and its relatives.

It is tempting to regard the vector sequences, which
appear in Figure 12 and 13 as broken edges of an
underlying hexagonal tessellation, as the basic ele-
ments of a star (more generally defined) for a
concave parallelogon (the fundamental region). Ma-
thematically, such a star may be defined as an
assignment (not necessarily one-to-one) of vectors
to the elements of a partially-ordered set. By the
convex sum of such a generalized star, we would
mean the set of points expressible as linear combi-
nations, using scalars between 0 and 1, but using a
non-zero scalar at any location only when the scalar

1 is used at all locations earlier in the partial order.
Thus, the fundamental region developed for Figure
12 is the convex sum over a partially ordered set
consisting of three chains, two of length two and one

of length three, assigned the vectors (a,b), (d,e) and

(-c,-b,d) respectively.

Problem 5. Sort out the relationships between gene-
ralized vector stars and concave parallelohedra.
Show how concave parallelohedra are created by
modifying the vector stars of the five paralielohedra.

We have some experimental evidence to indicate
that concave parallelohedra may be formed from
convex parallelohedra in this way. The regions of
contact between- adjacent fundamental regions in a
space-filling are topological discs consisting of cer-

O

Figure 11G shows how the five-zone zonohedra meet each other
when the concave parallelohedron of Figure 11 fills space. (The

voids are not divisible into cubes.) This example was found by
Janos Baracs.

tain faces of the concave parallelohedron. First off,
the number of such regions always seem to be 6, 8,
12 or 14, which are the numbers of faces of the
parallelohedra. The lattice of adjacencies between
fundamental regions within the space-filling seems
to be the same as for one of the paralielohedral
space-fillings. The topological polyhedron whose
faces are these regions of contact need not be
exactly a parallelohedron (see Figure 10, the heavy
lines indicating the regions of contact), but seem
always to be nearly so. Furthermore, there seems to
be a way of merely “bending” the vectors in the star
of one of the five parallelohedra, breaking some
edge vectors into sequences of vectors, or skewing
certain originally coplanar sets of vectors, so as to
arrive at a generalized star for the resulting paralle-
lohedron. The transformation required in Figure 10
can be accomplished by bending the vectors of the
star for a 4-zone zonohedron, the rhombidodecahe-
dron. In Figure 11 we skew sets of vectors coplanar
in the star of the truncated octahedron, meanwhile
bringing two vectors into alignment. In this case the
topological polyhedron formed by regions of contact
is just the truncated octahedron.

The above line of thought is intended to lead to a
simple procedure for manipulating vector stars on
the drawing board, with the aim of arriving at space-
fillers suitable for any given application.

There exist in the literature a number of fascinating
papers concerning space-filling by parallelotopes in
spaces of arbitrary finite dimension. Coxeter conjec-
tured that a zonotope in d-space is a space-filler by
parallel transport if and only if all its natural plane
projections (projections parallel to the edges of the
zonotope) are tessellations (square or hexagonal) of
the plane. Figure 14 shows how the natural projec-
tion of a truncated octahedron is a hexagonal
tessellation of the plane. (Shephard 1974b) verified
Coxeter's conjecture for 3- and 4-dimensional
space, and (McMullen 1975) completed the proof for
arbitrary dimension. Their result may be stated as
follows. Subsets of the set of vectors in a given
vector star of rank n span various subspaces of
lower rank. A set of vectors which are all those in
some given subspace is called a closed set of
vectors. Those closed sets of vectors which span
subspaces of rank n-1 are called copoints’ and those
which span subspaces of rank n-2 are called colines.
A zonotope with a star of rank n is a space-filler in (n-
1)-dimensional projective space if and only if, in the



geometry of its star, each coline is contained in at
most 3 copoints. That is, the vector geometry of its
star is binary (see Tutte 1958), being representable
over a field with only two elements, 0 and 1.

For any facet of a zonotope, there is a translation
vector which carries the facet onto the opposite
facet. This translation vector is expressible as a
linear combination of those vectors of the star which
do not lie in the facet, using only the scalars, 1, -1.
The rank of the matrix of these coefficients is always
greater than or equal to the rank of the star. The
crucial step in McMullen's proof is to realize that the
rank is equal to the rank of the star if and only if the
zonotope is a space-filler. In our opinion, these same
methods are directly applicable to the questions at

cd e

hand, concerning concave parallelohedra, and
should yield immediate results.

The columns of the matrix displayed in Figure 14
give the directions in which the edges are traveled in
going from a face to its opposite, and this for each
pair of faces on the truncated octahedron. The
calcuilation is illustrated for two such pairs of faces.
Each pair of faces comes from a line in the primal
projective diagram. The split between positive and
negative sign for vectors not on a pair of faces is that
between points or one side or the other of the
corresponding line in the projective diagram. The
definition of “sides” of a line is relative to a choice of
line at infinity, which must be appropriate to the
given drawing. The truncated octahedron is a space-

c+b+d e+d

Figure 12. How a 10-sided zonagon fills the plane in combination with four paralielogons.

filler, a parallelohedron, so the rows of the matrix will
give a natural coordinatization of the vectors of the
star, in a 3-dimenslonal subspace of 7 dimensional
space. To verify the dimension, take abc as a basis,
and check that d = c-b, e = ¢c-a, f = b-a.

The vector star for the truncated octahedron reveals
a further essential feature of proper plane drawings
of zonohedra. As we said before, we may freely
choose lengths for each parallel family of edges in
such a drawing, ar.d may also choose the directions
of these edges within certain projective limits. What
becomes clear from this example is that these
projective limits may be very restrictive indeed. The
six directions of the edges for the truncated octahe-
dron must intersect a plane in the correct primal
diagram, a diagram formed by all points of intersec-
tion of four (unrestricted) lines abf, ace, becd, def.
The six directions must thus be the six directions of
the edges of a tetrahedron whose faces intersect the
plane in those four lines, such as the tetrahedron
shown in projection with vertices acde. (Think of abf
as the line at infinity, so the six points of intersection
along that line are the six “directions” of the vectors
in the star. The six points form a “quadrilateral set”,
as it is called in projective geometry.) Any five of
these six directions may be freely selected, but the
sixth is then completely determined. If the six
directions in a plane drawing of a truncated octahe-
dron do not satisfy this condition, the drawing will
have no proper spatial realization as a polyhedron,
let alone a zonohedron! This has a bearing on what
follows.
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Figure 13. A 16-gon needs many relatives, in order to tile the plane.
f
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a 000-1-1 11
b 0110011
c -1010-101
d -1-100-1-10
e -10110-10
f 0111100

Figure 14. Each natural projection of a paralielohedron is always a
. square or hexagonal t llation. Paths bet 1 opposite faces
yield a natural coordinatization matrix of rank 3.




Splitting

Given a tessellation of the plane by a concave
parallelogon divisible into (convex) zonagons, we
wish to determine all possible splittings which will
result in further such tessellations. The method is
suggested by Plates 6 and 7 in the paper “Polyhedral
Habitat”, but is not spelled out in complete detail.

Some necessary conditions on the cuts(there indica-
ted by broken lines along polygonal arcs) are evi-
dent. Each cut is itself periodic, and is determined by
a segment cut from a vertex A to some other vertex
A’ to which A is carried by some translational
symmetry of the tessellation. Thus the vector from
one end point of the segment to the other is one of
the lattice vectors of the tessellation. The cut goes

along certain edges of the tessellation, and goes
diagonally across certain of its faces. Secondly, all
the other cuts in the splitting are obtained by
translation of the first cut by all multiples of some
single lattice vector, a lattice vector independent of
that used to translate from A to A’. See Figure 15.

When we try to split a tessellation along such a
system of cuts, we may find there is no direction in
which the cuts may be opened so that the resulting
faces are convex and the resulting tessellation is free
of self-intersection. Figure 15 shows the computa-
tion of permissible directions of opening a split,
along a segment of a cut. For each edge of the
tessellation traversed by the cut, there is a half-
space of permissible directions. For each zonagon
crossed by the cut, there is an acute angle of

Figure 15. A split which will open, and one which will not.

permissible directions, namely the exterior angle
between the two edges of the zonagon incident at the
vertex where the cut enters the zonagon. For a
segment of a cut to permit some direction of ope-
ning, all these (open) half spaces and (open) acute
angles must have some direction in common. Thus
in Figure 15A there remains an acute angle of
permissible directions. In Figure 15B there are none.
Figure 15B shows what happens if you try to open a
cut in an impermissible direction. In this case we find
one polygonal face S of the new tessellation is
concave. There is no choice of direction of opening
which will make both S and T into proper convex
polygons.

The choice of a cut for splitting a tessellation is
important for reasons which will become apparent
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when we try to stagger the resuiting tessellation, and
when we try to lift the resulting double tessellation to
a space-filling. That is, the simpler tessellations have
a number of essentially different staggerings which
lift to space-fillings with convex regions. We should
choose cuts which do not eliminate too many of
these possible staggerings, or which perhaps even
introduce a new parameter of choice of staggering.
This is not an easy matter, as we shall see in the next
section. Finally, for simplicity of design and fabrica-
tion, a cut should be chosen so as to keep the
number of different convex polygons small.

Figure 16. A tessellation with only one non-trivial staggering.

Staggering

Even for such simple tessellations as shown in Plates
6 and 7 of “Polyhedral Habitat”, the number of
possible staggerings of a plane tessellation can be
quite small. For instance, the tessellation in Plate 7
(section 4D) has only one non-trivial staggering, that
shown in Figure 16. And here we are only trying to
satisfy the condition that all residual regions of the
staggered pair be (convex) zonagons.

Problem 6.Given a tessellation, find all possible
staggerings. If possible, reduce this search to a
consideration of the star of its fundamental region.
(This will have to be a generalized star, because the
fundamental region may be concave.)

Figure 17. To suggest local valency conditions for the existence of
one-parameter families of staggerings.

Some staggerings, such as that in Flgure 16, are
discrete. Others fall into continuous one-parameter
families which contain the zero staggering. For this
latter type of staggering to exist, certain local valency
conditions must be satisfied, as suggested by Figure
17.

Lifting

In much of the practical work to date on space filling
by concave parallelohedra, work leading to model
building and design projects, the step of lifting a
staggered pair to a space-filling has been carried out
by inspection of the plane drawing, and spatial
intuition. A mathematical treatment will hopefully
reveal how many free choices are involved in this
spatial construction over the given projection, and
may establish that spatial realizations exist whose
regions are convex. Let's see.

Since each of the residual regions in the staggered
pair is a zonagon, we have merely to establish a
change in altitude for each family of related seg-
ments (pieces of edges of one tessellation, cut off by
edges of the other tessellation). This relation of
segments, a partition of the segments into parallel
families, is generated by the pairing of segments as
opposites across the various residual zonagons of
the staggered pair. Any closed path along the
segments is a symmetric difference of zonagonal
face cycles. Since altitude changes are chosen to be
the same on related segments, the total change of



altitude around any zonagonal face is zero, and
consequently the total change of altitude around any
closed path is zero. Thus if there is some way to
choose the altitude changes for each class so that
not all the resulting spatial vectors are coplanar, we
will always arrive at a consistent assignment of
heights for a non-trivial space-filling.

Thus: Most staggered pairs of plane tessellation
have a consistent spatial realization as a space-
filling, but the regions of the space-filling are not
necessarily convex.

The only way we can be prevented from making the
spatial vectors noncoplanar is if too many vectors
are forced to be coplanar by being together as edges
of a hexagonal or higher 2n-gonal face of the
staggered pair.

Figure 18. This staggering does not give rise to a space-filling by
related zonohedra, because the two subdivisions of the 10-gons are
not centrally symmetric to one another.

If we insist on convexity of the zonohedral cells of the
lifting, a serious problem arises, a problem which
must be avoided already at the stage of staggering.
Say in one tessellation there is a large 2n-gon, which
under staggering becomes subdivided by certain
faces of the other tessellation. This subdivision will
have to be the top cap of a zonohedron. The
staggered image of the large 2n-gon is also subdivi-
ded by a portion of the original tessellation, and this
subdivision must be a translate of the bottom cap of
the zonohedron. But we know that the plane projec-
tion of the two caps of a zonohedron differ by a
central inversion. See Figure 18 for an example
found by Walter Whiteley. In that example the
staggering is not correct. One subdivision of the
decagon differs from the central-symmetric image of
the other by an incorrect choice of two vertices. This

possibility of error imposes a crucial condition on
staggerings of tessellations, a condition rather more
subtle than those we have considered heretofore.
Furthermore, our demand that each tessellation
admit at least some non-trivial staggering which lifts
with convex cells, carries this condition back to the
stage at which the tessellation itself is produced, by
splitting. That is (and the following will be very rough,
but | believe it points in the right direction), the
central symmetry of any zonagon should extend to at
least some larger region on opposite sides of the
zonagon, so that what lies to the “left” of the zonagon
(that which will subdivide the zonagon, when the
tessellation is staggered to the “right”) is centrally
symmetric with that which lies to the “right” of the
zonagon (that which subdivides the staggered zona-
gon).

A further difficulty with lifting to form tilings by
related zonahedra has to do with the unrealizable
zonahedral drawings (arising from non-stretchable
arrangements of pseudo-lines) discussed above.
This difficulty is not likely to arise at the level of
architectural practice, where a small number of
zones will usually suffice, or where slight concavity of
cells may not be a problem. But it poses a real
obstacle to the mathematically correct formulation of
a general method for synthesis of space-fillings. The
problem is that a plane tessellation developed in a
quite reasonable-looking sequence of splits may, in
some staggering, form a grid no lifting of which has
all its cells convex. And the reasons for which this is
the case need not be evident, even upon close
inspection of the plane drawing.

We emphasize the subtlety of these difficulties by
giving a final example. In Figure 19A we show a
correct plane projection of a layer of interfaces in the
space-filling by truncated octahedra. We know from
the discussion of Figure 14 that the six directions in
this drawing form a quadrilateral set, being the six
directions of the edges of a projected tetrahedron.
So no one direction in the drawing may be altered
without altering some others. In Figures 19B and
19C we change the direction d to d’, and show how
the resulting diagram could easily be obtained by
staggering a reasonable-looking tiling by a decagon,
two hexagons and three parallelograms. Yet it has
no proper spatial interpretation as a surface compo-
sed of plane polygons.
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There are several attitudes toward this situation, but
we think the most positive is seriously to investigate
the process of spatial splitting of the space-fillings
by (convex) parallelohedra. This requires the careful
definition of a grld of meridian paths, the determina-
tion of a possible periodicity of these grids through
the space-filling, and a study of the directions in
which an opening can be made along the system of
grids. In the envelope at the back of (Fejes-Toth
1964) the reader will find a lovely stereoscopic
drawing of such a grid, opened up like a slice
through a honeycomb. The spatial splitting method
has the advantages that we are less likely to arrive at
unrealizable configurations, and that more general
(in fact all) space-fillings by clusters of related
zonohedra become accessible. (Those obtained by
the method of planar splitting and staggering are
singled out by the fact that they are composed of
alternate sheets of interfaces, between which there is
only a single layer of zonohedral cells.) Such an
approach has the disadvantage that the synthesis of
space-fillings must be carried out directly in 3-
space, thus forcing the use of models rather than
drawings.

In closing, we assure our readers that any corres-
pondence, even the most informal, on any of the
many questions here raised concerning space-
filling, will be most gratefully received and conside-
red by the members of the Structural Topology
research group, whose experimentation and study
have provided the basis of this report.

‘ ' \l | ‘ O \
Ny “"’05
RIS

Figure 19. An interface layer of the truncated octahedral space-
filling, and a projectively incorrect drawing C which is easily

obtained by staggering a plane tiling, but which will not lift to a flat-
faced polyhedral surface in space.
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