OPERATION GOALS IN MAINTENANCE SCHEDULING FOR
POWER GENERATORS

L. F. ESCUDERO

The Generator Maintenance and Openrnation Scheduling problem is presented as a

Lange-scale mixed Lnteger nonlinear phogramming case.
the conditions of variables and constraints are discussed.

Several nelaxations of
The optimal solu-

tion of the models based on these nelaxations is viewed as the Lower bound 04

the optimal solution in the onrdginal problem.
and branch-and-bound algorithm is used.

A combined impliclt enumeration
Typical dimension of the problLems for

which computational expenience is neported ane 25 generator in the system, 19
0f These are to be maintained and a planning horizon of 52 weeks; the corres-
ponding dimensions o4 the model are about 2300 constraints, 700 binary varia-
bles and 1300 bounded nonlinear separable variables.

1. INTRODUCTION

The increased cost of fossil fuels used in -
the production of electricity has prompted -
the utility industry to seek more efficient
operating procedures. One of the most promi
sing of these requires new methods for the -
automated scheduling of generator maintenan-
ce. These refined technigues will help mini

mize the cost of power generation.

It is expected that better generator mainte-
nance schedule planning will result in two ~
areas of savings. First, such planning would
allow more efficient generators to be avai--
lable more often during the yearly produc—-~
tion cycle. Lessened fuel usage can amount

to several million dollars a year in reduced
cost of power generation. Second, better --
maintenance planning may postpone generation
expansion. This results in postponed capital
construction ceosts. In addition to-reduced

cost saving, the maintenance crews and ope--
rating plants can be utilized more efficient

ly.

The purpose of this work is to find fast qua
si-optimal solutions to the generators main-
tenance and operation scheduling, so that --
(a) an ample variety of maintenance schedu--
ling constraints are satisfied, (b) the esti
mated power demand level at different types

of hours in each period (usually, a week) is

satisfied, and (c¢) the nonlinear power gene-
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ration cost function is minimized over the -
planning horizon (usually, one year) or, at -
least, the difference between the best feasi
ble solution that is found and the optimal -

solution is not greater than a given value.

The paper is organized.as follows. Sec. 2 --
describes the problem. Sec. 3 discusses the
production cost function. Sec. 4 presents se
veral relaxations. A general description of
the algorithm is presented in Sec. 5. Sec.
6 describes the extensions of the model in--
cluding the derating of the power generation
capacity and the hourly distribution of the
weekly power demand level. Some pomputatio--
nal experience is reported in Sec. 7.

2, PROBLEM FORMULATION

See in Escudero et al./15/ a full discussion
of the application area, maintenance schedu-
ling constraints and types of the objective
functions to be optimized. In this paper we
present an extension to the model described
in /15/ so that the generators maintenance -
scheduling must allow a power generation le-
vel at each period. Briefly, the problem is
as follows. 1In power generation system the
new goal consists in obtaining the power ge-
nerators maintenance and operationsmem1ﬁ@
to minimize the cost of satisfying an -
hourly distribution of the prescribed demand

for power level in each period over the plan
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ning horizon, such that the maintenance sche
duling constraints are also satisfied. 1In -
the next secs, we will only consider the peak
hour; see sec. 6.2 for the extension to the

general case.

Let T denote the set of periods over the ---
planning horizon, J denote the set of gene--
rators in the system and I denote the ser of
generators jEJ to be maintained over the ---
Let /T/, /3/, /I/ denote,
respectively, the cardinals of T, J, and I.

planning horizon.

Suppose that at periods (usually, weeks) ---
£=1,2,...,/T/ in the planning horizon, it -
is known that the power demand levels on the
system are El' E2""’E/T/'

The problem is to determine appropiate out--

<0 /3/

at each of these weeks so as to minimize the

puts from the power generators j=1,2,..

Recall that
we only consider here the output, cost and -

demand of the peak load hour
over the planning horizon; see in Sec.6.2 a

cost of satisfying the demands.

for each week

better representation of the problem since -

more than one hour is considered in each =---

week. Note that it is not necessary that all
generators j in the power system have to be

maintained, but at least ICJ.

At each week £ a generator may be available
for the production system, in which case po-
wer generation level, say Qj@ must be either
mijjﬂf_Mjr (where m and Mj are the given
lower and upper bounds for j€J), or the gene
rator may be unavailable for the production
system (it is the case when it is in mainte-
nance, and then sz =0). Let th be a bina-
ry variable such as th =1 if generator j€I
begins maintenance in week £, and th=0 if
the maintenance 1is not beginning in this --—-
week. Generator j will be unavailable for -
the production system in week £ if th=l and
t§C§t+Dj—l, where Dj is the maintenance du--
ration in integral and consecutive weeks. --
Let E; and Lj

Ef
available weeks for beginning maintenance --

denote the earliest and latest

in generator j. Usually, generators are —---

maintened once and only (if any) over the --

planning horizon (see other variant in /13 /).
Then for the generators to be maintained,
ztxjt:l for t=Ej,...,Lj is the classical ~--
special ordered set of type 1 or S1 /3-6,10,
16/.
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Usually, there are many exclusivity cons-—---
traints along the periods in which the gene-
rators are to be maintained. The most typi-
cal constraints are (see in /15/ the details

and mathematical formulation):

(1) For a particular week, the total rating
of generators in maintenance cannot be
greater than a given amount (termed ---

gross reserve).

(2) Maintenance crews are assigned to power
plants, or set of generators, and are -
not available to simultaneously work on
different generators. No more than one

generator belonging to the same physi--

cal plant set may be in maintenance in

the same week.

(3) It is forbidden that more than a given
number of generators belonging to the -
same special class may be out of the --

production system in the same week.

(4) It is frequent that there are constraints
such as the elapsed time between the be
ginning of the maintenance in generators,
say 1 and j, must be greater than a gi-

ven number of weeks (termed frozen time);

other type of constraints, termed prece-

dence relations, require that generator

j cannot begin maintenance before a ~-~--
given number of weeks following the en-

ding of maintenance in generator ij;etc.

These types of restrictions may amount to se
veral hundreds of mathematical constraints.
The corresponding constraints matrix is very
sparse; consider that in each constraint there are
involved only a few generators per each week
and that weeks produce different mathematical va--
riables and constraints for the same restric
tion. Let AXSb denote these constraints sys
tem, where A is the constraints matrix, X is
the column vector of binary variables {XLI}’
and b is the restriction vector (with many
1's in its nonzero elements). In a typical
problem the number of rows varies from 52 --
(since /T/=52 and, then, number of gross re-
serve constraints) to several hundreds. 1In
the case for which computational experience
is reported in Sec. 7, there are 19 genera--
tors to be maintained with a total of 670 pos
sible weeks to begin maintenance, and the -
number of rows in matrix A is 749 (so that -

its dimensions are 749x670 with a density of



1.02% of nonzero elements). The system AXSh

is linear with X€{0;1}.

Since if generator j for j€I is in maintenance
in week £, it is unavailable for the produc-
tion system (then, Qj£=0) and otherwise, ---
the model with
the formulation shown in table 1.

m;<0;p<M;, we may represent

Eg. (3) guarantees that the power demand level
E, for LET is satisfied. Note that in this
paper we do not consider the transmission --
losses in the power network. See in /11/ a
formulation that includes this restriction;

in other context see also /22/ along others.

Egq. (4) guarantees that sz is a semi-conti-
nuous variable: either Qj£=0 or it is bounded
by m; and Ny, depending on the 0-1 variable

Y;p for JjE€I.

Eg. (5) assures that Yj£=0 if generator j --
for jEI is in maintenance in week £; other--
wise Y p=1. Eqg. (6) takes the bounds on Qj¢
for the generators that are not to be main--
tained over the planning horizon (that is, -
Jj€I); it takes also the bounds on Q¢ for --
j€I when £<Ej or £>Lj+ Dj—l.

If the sign = in constraint (5) is substi---
tuted by the sign <, and if constraint (6) -
is substituted by ijjlinﬂiMijzbeing —————
¥ ¢€{0;1} for the same set {f} and (£) of --
constraint (6), it results that generator j-
is allowed to be unavailable for the produc-
tion system in week £ (then, Qj£=0) without

necessarily being in maintenance. This formu
lation is more general*, but it is not consi
dered by the algorithms that support this --
work; in any case, the extension to treat --

this case does not present much difficulty.

The power generation cost function to be mi-

nimized can be written

(7) min.C = j%J EQZT CiplQyp)

Function (7) represents the power generation
cost of the /J/ generators while they are in
production; it has separable components in -
the sense that at week £, the cost of gene---
rating the power Qj[ by generator j is inde-
pendent of the other generators output.

*
It has been suggested by a referee.
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Table 1

L
J
(1) 2;E. Xip = 1 (special ordered set of type

1 1) for jEI.
(2) axb (maintenance conflict cons-
traints matrix) See /15/.
(3) J§J Q¢ >F  for LET
4 Y. < Q.,5M.Y. nd Y. 0; for j€Iand
(4) m; ¥ S sz— 1j 0 : ggei I j€
E. <f<L, +D.~1.
te e

(5) Yj£+ el th=l for jEI and Ejiﬂij+Dj—l,

with t5=max{Ej,£—Dj+l} and
t6=min{£,Lj}

(6) minﬁjﬁM'

5 for j@€I and £LE€T, and for —-

J€I and (£<Ej or Z>Lj'+Dj'—1)

Let Pl denote problem (1)-(7); it is a mixed

integer nonlinear programming problem. There
are some approaches /7/,/11/ in which the --
problem is relaxed by using non-linear cons-
traints instead of the binary Y-variables --
and constraints (4)-(5). The new problem is
only an approximation and its solution still
requires much CPU time. We choose the alter
native outlined in Sec.5 that does not re---
quire nonlinear constraints, nor increasing

the problem's dimensions.

3. PRODUCTION COST FUNCTION

For the calculation of function le we use -
the procedure described in /13/,/26/.
case, let the following notation.

In any

NK(3). Number of capacity states in the --

power generation level of generator
j; being k=1,2,...,NK(j) a given ca
pacity state.

RK(j,k). Maximum power generation level of -

generator j while operating at capa
city state k. The minimum level in
k is the maximum level in k-1, that
is RK(j,k-1). 1If k=1, RK(j,1) is -

maximum and minimum generation level.

PC(j,£,k)Power generation cost in generator

j while operating at the maximum po-
wer generation level RK(j,k) of ca-
Note -
that some periods (usually, the weeks -

pacity state k in period £.
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that belong to the same month) have the same

power generator cost function; see /26/

There are basically four types of production
cost functions: continuous nonlinear function,
bloks function, convex piecewise linear ----
function and nonconvex piecewice linear ----
function. The first function is not usual,
but in anycase it may be approximated by the
third function.

The second function considers that the pro--
duction variable Qj[ is discrete in the since
that the only possible 'states' are 0,RK(f,1)
RK(j,2),..., RK{(j,NK(j))for j€J. See /13/.

The third type of cost function is very usual
in the utility industry; the forth function

is a special nonconvex piecewise function --
(see /13/).

generation level Qjp can be expressed as fo-

In these two cases, the power -
llows.
Case a
Consider that the situation jf£ -"is not to be
Then variable Q'Z is bounded

by RK(j,l)isziRK(j,NK(j)) for j€I, and z<Ef
or £>Lj+Df—l for jEI.

in maintenance.

NK(3J)
Q., = RK (7 k)xY(k) (8a)
i k=1 ! it
such as
NK(])
(k) _
= Yj[ = 1 (8Db)

where the set jK:{Ygz)

for k=1,2,...,NK(j)}
is a Special Ordered Set of type 2 or 52 ---
/3/4/5/4/10/7.

continuous variables must be one and, at most,

In a S2 the sum of the 0-1 --

two variables may be different from zero and

consecutive.
In this case, constraint (6) is substituted
by constraint (B8b) and expresion (8a) substi

tutes variables sz in constraint (3).

Case b

Variable sz is semi-continuous. That is —--

sz is either zero (there is not power gene-
ration or RK(j,l)ﬁsziRK(j,NK(j)). It is the
case for Ejjliﬁj+Dj—l and j€I; so that if --
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tiﬂit+Dj—1 such as X't=l’ generator j is in

maintenance in period £ and then sz=0.

NK(J)
_ . (k)
sz Sl ] RK(j,k)+ sz (9a)
such as
NK ()
Y(k) + X.,= 1 (9b)
k=1 iz t=£—Dj+l it

k
where the set j&: (sz) for k=1,2,...,NK(j)}

is a S2, but with the additional condition --
that the term ZY&E) may be zero (it is the -
case for which th=l and t§£5t+D,—l). Then
ZY§§) is zero or one; let this set be called
modified S2. In this case, constraints (4) -
and (5) are substituted by constraint (9b) -
and expression (%9a) substitutes variable sz
in constraint (3).

Based on Egs.(8) and (§), objective function
(7) can be written

(k)

min.C = PC(j,L,k) x sz (10)

j€J Z€r k=1

subject to constraints (1)-(3),(8) and (9).
Let P2 denote this problem.

4, | OWER BOUND ON THE OPTIMAL SOLUTION

The goodness of a feasible solution (X,Y)may
be measured by the difference between its --
objective function value and a lower bound -
on the optimal solution value. This lower -
bound is the optimal solution value of a re-
laxation on problem P2, From a practical --
point of view, four conditions are required -
in any relaxation: (a) any solution that is

feasible in the original problem it must be

also feasible in the relaxed problem, (b) --
the objective function value of the optimal
solution of the relaxed problem is better --
(less in our case) or equal than the optimal
solution value of the original problem, (c)

the relaxed problem is simpler than the ori-
ginal problem in terms of the CPU time re-—-
quired to obtain the optimal solution, and -~
(d) both problems are very similar so that

more similarity, stronger lower bound is ob-
tained on the optimal solution of the origi-
nal problem. If the optimal solution of the

relaxed problem is feasible in the original
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problem, it is also optimal in this problem.
We have obtained good results (see Sec. 7 --
and /14/) with the two following relaxations
of problem P2.

Relaxation R1

If the maintenance scheduling constraints --
(1) and (2) are relaxed in problem P2 then -
it results in /T/ knapsack problems. These
problems may be continuous or semicontinuous,
and convex or nonconvex; for each period £--
the formulation can be written

2 Zc (k) 5 (k)
El

mln.Clﬂ

3, k7
subject to ;;; j;: k)a k)iEt (11)

where each set j:{ 6j(k) for k=1,2,...} for
jEJl forms an Special Ordered Set (see Sec.3)
and Jl denotes the set of generators inclu--
ded in the problem corresponding to period £
for £ET. For obtaining the lower bound Cy

Z£ Cyp for LET to the optimal solution of --
problem P2, we will consider that Jl—J, but

for obtaining the lower bound C, to the opti
mal solution of problem P2 in a given node -
of the combined implicit enumeration and ---
branch-and-bound algorithm outlined in Sec.

5, J,=0-{i} , where {i} are the generators -

that must be in maintenance in period L€T.

Let J2 denote the set of generators thatmust
be in production in period £; then J,CT, . --
For obtaining the lower bound C, to the opti

mal solution of problem P2, we will consider
that J,={jgI}J{j€I if &<E or K>Lj+Dj—l}

See in Sec. 5 the characterization of the --
set J2 at a given node.
For j€J2 coefficient cj(k)represents the pro
duction cost PC (j,£,k)and coefficient W-(k)re
presents RK(j,k) for k=1,2,...,NK(j). But -
for jEJ2 (that is, generators that may be in

maintenance in period £) c;1)=W}1)=O,c.(ki

§
PCUJklhmdw(mﬂm(Lkl)fmrk2ﬂ,.
NK(j}+ 1, and if 5(1)>O it must be G(l) 1 --

J
and the others 6f(m=0.

In function (11) the set j in case (8) (then,
j€J2) is an S2 and the set j in case (9) ---
(then, j@JZ) In /12/ we -
describe the algorithms dealing with relaxa-
tion Rl.

is a modified S2.
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Relaxation R2

This relaxation is simply the linear program
ming problem associated with the original --
problem P2; that is, the integrality condi--
tion of X-variables and the special charac--
ter of Y-variables are relaxed. Then problem
R2 is the same problem P2 with 0<X,¥<l and -
continuous. Let C2 denote the optimal solu-

tion of relaxation R2,.

5, GENERATORS_MAINTENANCE ALGORITHMS

Three methods are basically used in the sys-
tem: an implicit enumeration, a branch-and--
bound and a combination of both methods.

Previously to executing any algorithm, two -

a prefiltering phase ---
that eliminates all redundant constraints and

task are performed:

infeasible periods to begin maintenance /13
Sec.8/ and the optimization of the two re---
laxations of problem P2 (Sec. 4). These ---
tasks are also performed at each node of the
tree (see e.g. in /17/ the framework on this
methodology) obtained while executing the al

gorithms.

Let G denote the set of generators j€I that
have already been branched at given node or
its predecessors by explicitly or implicitly
fixing their period t to begin maintenance;
then T; is the set of periods in which gene
rator jEG is in the production system. Let
us now be more precise in the definition of
the sets J, and J, corresponding to the knap
sack problem (l11) associated with period LET

in relaxation Rl at a given node; J, repre--

sents the set of generators that ma; or must
be in production in period £, and J, repre--
sents the set of generators jEJl that in.this
Then J,={j¢I}
U{ j€c if Z€T1}U{j€G if relation t§£<¢¢Dj—1 -
does not hold for any tEFj}(where F;
set of feasible periods to begin maintenance
for j€I; see /13/), and Jy= JZU{j€G if rela-
tion t<f<t +D;-1 holds for some t€Fj}. Any

generator HEJI

period must be in production.

is the

must be in maintenance, any -

generator j€J, must be in production, and --

any generator j€Jl—J2 may be in maintenance

in period £ at the given node.

Quasi-optimal solutions

The system may find a feasible schedule (if
any), the optimal solution and the desired -

number of quasi-optimal solutions. A feasible
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solution is guasi-optimal if its power gene-

(4)

ration cost C is such that

(12)

)

where g(o max {Cl,CZ} where C, is

timum value of relaxation Ri; then C

the strongest lower bound on the opt

(o)

lution C of problem P2. The cua

mality tolerance is represented by g

Let Z denote the incumbent solution,
z=ninfc (¥}

relaxed problem is also feasible in

(4

the solution C

(8

cumbent if C <Z.

ginal one,

Diagram 1 :

If the optimal solution of a -

A node is fathomed if the

best solution of any of its relaxations,
I, is such that I>F,

say
where F=(1l-g)Z is the --

fathoming bound. ©Note that it is not always

necessary for a node to solve the

/T/ independent problems of relaxation R1;

the op- e.g. if the total power generation cost co--
(o) is — rresponding to periods, say 1 to k in the gi
imal so- ven node plus the total power cenerationcost
si-opti- in periods k+1 to /T/ in the predecessor node
. is greater than the bound F, the node is ---

fathomed. The reason is that the problem --
that is associated with a node is tighter than the -

problem associated with its predecessor; see

the ori- other cases in /14/.

is the new in--

See in /13/ the description of the algorithms

General organization

Read data

Prefiltering

phase : delete redundant constrainits

logical cuts degrees O and 1
gsearch for new Sl sets

Select generators periods
ordering rules

Solve relaxation Rl : Solve |T| independent S2 and modified
S2 kmapseck problems (obtain lower bound to optimal solution)

Operation sche

ule (solution of R1l) 1s Yes
aintenance scheduling _
feasible
Execute élgorithm aigw
est feg-
sible solution Yes
is quasi- * Stop

optimal

No

Execute

-User’s interruption

algorithm g2 till

~Allowed CPU time bound is reached
-Quasi-optimality proof
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Diggram 2 : algorithm al

(Obtain n feasible solutions)

[ 8
'I-lbll
o

Lﬁflect non-yet

branched generators iw

Lgﬁelect next non-yet branched period teiﬁ

Unfreeze
generators
and periods
frozen at
levels > 1

s

No Yes
t
Yes
Unfeasible Incumbent
Problem is the
optimal
solution

—

Prefiltering phase:
Freeze temporary
generators and periods
for th =1

x}g =1

for any leF:’,Vj.eI
is complete mainte=
nance feasible
scheduld

Infeasibi-
Yes

Freeze definitively
for i and t,genera-
tors and periods
frozen by prefilte-~
ring phase

]
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Solve restricted
relaxation R1

Optimum
operation sche=
dule (solution of Rl
is fegsible

No




First
feasible
solution
is found

Is 1
maintenance
scheduling

No

No

n better feasible
solutions are found

and strategies used in this problem; in /14/
we report the computational experience cbtained
in their comparison. But we obtain our best
results when the initial feasible solution -
is obtained with algorithm al and the algo--
rithm a2 is used to improve it.
1.

See diagram

Algorithm al (diagram 2)

Tt is an implicit enumeration algorithm of -
the type described in /2/,/23/. See in /8/,

Qiiestié - V. 4, n.° 4 (Desembre 1980)

Stop

/24/ another algorithm of this type designed
for dealing specifically with the maintenance
scheduling constraints. Algorithm al obtains
the maintenance schedule by chosing gene---

rator j€I and maintenance beginning period -
tEFj to be branched first, according to the

selected ordering rules; this selection de--

pends on the problem's condition; see in /13/
the available strategies and the criteria in
which they are based. The basic principle -
is: select the next generator to be scheduled
and its period so that (1) the estimation of

its optimum operation schedule produces the
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minimum cost, and (2) it allows the succesor
branches to produce a complete feasible main

tenance schedule.

The partial schedule obtained at each node -

is tested to analyze if the complete sche---
dule to be obtained in its successor nodes -
could be feasible and better than the incum-
bent solution. The future feasibility is --
analized by using the prefiltering phase. --
If the optimum value of relaxation Rl is not
better than the functional value of the in--

cumbent solution, the node is fathomed.

Once the maintenance beginning period on a -
generator is fixed, an entire string of ----
periods for this and for the not-yet-sche---
duled generators in this node are prohibited.
The implicit enumeration algorithm produces

very fast solutions, although semetimes it -
does not guarantee the optimality of the in

cumbent solution; typical case: 40 genera---
tors, 52 periods, small maintenance duration,
large L-E ranges and very unconstrained pro-
blem. In this case, the number of quasi-op-

timal solutions is very high.

Algorithm a2 (diagram 3)

It is in principle a branch-and-bound algo--
rithm that (a) exploits the structure of the
Special Ordered Sets 81 in eq.(l) /6/, (b) -

uses the implicit enumeration strategy for -

finding feasible solutions, and (c) uses the
branch-and-bound method for obtaining the --
branching and fathomed nodes. The strategy

is as follows. Each generator is considered

The branching S1
according to the generators ordering rule —-
described in /13/.

as a Sl. is selected ----
The reference row is —---
created according to the periods ordering --
rule described in /13/. The estimation of a
of a S1/6/

The branching node is the node with

node is based on the pseudo-cost
/16/.
the best estimation between the two candi---
dates nodes just created if any, or among --
all the candidates. If a given node is not
fathomed by relaxation R2, relaxation R1,

is used for

analizing if the optimal -

power generation cost in the successor
nodes will be greater than the fathoming ---

bound.
The relaxation R2 (that is, the LP problem)
associated with. a given node of the branch-

and-bound phase is solved by using, as the -
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initial basis, the optimal solution of its -
predecessor. But at node 1, it is obtained
by using the feasible solution obtained by -

algorithm al.

The relaxation R2 in algorithm a2 does not -
include all logical constraints (2); in the
current version the frozen time and precedence
relations constraints /15/ are not explicitly

included in the model; these constraints may
amount to several hundreds of mathematical -
constraints. Relaxation R2 requires small -
CPU time when these constraints are not in--
cluded and, on the other hand, they do not -
strongly deteriorate the (LP) relaxation R2

optimal value; then, it is better to check -

separately their feasibility.

Algorithm a2 uses the implicit enumeration -
strategy of algorithm al at each node (inte-
ger or not) of the branch-and-bound; so that
the partial schedule in the implicit enumera
tion phase is included by the variables {th}
that implicitly or explicitly have been ----
already branched by the given node or its --
predecessors. At a given node the general -
procedure is a follows. Once problem R2 is
solved and the node is not fathomed, the fea
sibility of the constraints not explicitly -
included in the model is checked. If the --
node is not fathomed, the implicit enumera--
tion search begins, and relaxation Rl is used.
If no better feasible solution can be found,
the node is fathomed. Once it finds a fea—-—
sible solution or proves that there is not -
any better feasible solution, the strategy -
updates the incumbent solution parameters --

and returns to the branch-and-bound phase.

See en e.g. /1 ,p.60/:/25/ the main differences
between branch-and-bound (jumptracking tactic)
and implicit enumeration (backtracking tactic)
methods. Algorithm al uses a backtracking =--
tactic, and algorithm a2 a combination of ---
both tactics and usually produces better re--
sults.

The prefiltering phase is used: (a) previouss
ly to executing any algorithm (b) at the be--
ginning of the implicit enumeration search --
with the partial maintenance schedule obtained
by the branch-and-bound node, and (c) at each
branch of the implicit enumeration search in
algorithms al and a2. The prefiltering phase
eliminates redundant constraints and infea---

sible periods to begin maintenance, but it —-

235



Diegraem 3 : algorithm a2

(Quasi-optimality proof of the best solution).

Create model for the (LP) relaxation R2,without
including some (logical) maintenance scheduling

constraints,
algorit Yeos
el found any -2
Initial solution °1“ti}‘/ It is the initial
for relaxation gsolution for
R2 : Scratch relaxation R2

l ]

Solve (IP) relexation R2 : obtain a lawer
bound to the optimal solution

]

Test the optimality of the best feasible solution
found by algorithm & .If it is not quasi-optimal,
continue.

Begin the branch-and-bound (BAB) phase by

branching only on the X_variables:select branching

S1 (generator) and fix X-branching variables,

such that two BAB successor nodes to node O are
created.

Select candidate node,given priority to nodes
included in the list by the BAB algorithm al
over the nodes included by the algorithm a
(see below),The lest type of nodes are called
IE (Implicit Enumeration) nodes.

Yes

No feasible
olution
Yes Execute
algorithm gl
Quasi-optimelity No with this
of the incumbent partial
has been proved maintenance
schedule

Unfeasible
gsolution

easible solu= No
%ion is quasi-
optimal—

Yes
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|
Solve restricted (LP)
relaxation R2,whose
initial solution is
the solution of the
predecessor node.

Infea-

sibility Tes
detected
Functional

///ngﬁe is better No

Prefiltering phase with the partial
maintenance schedule (included by
the X-variables already fixed in the
node or its predecessors)

nodes.

Test C : Test if the logical (maintenance scheduling)
congtraints not explicitly included in the model for
relaxation R2 may be satisfied by any feasible main-
tenance scheduling to be obtained from its successor

Infea~

sibility Yes

Yes

Solve the restriected
relaxation R1 with
the complete mainte-
nance schedule of

the BAB node

nfea-
sibility
detected

Yes

No
better then the %
incumbent
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Solve the restricted
relaxation R1 with
the partial
(X-variaebles alrea-
dy fixed) maintenan-
ce schedule

Infea~

sibility Tes

detected
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@i @®

Update incumbent

paraneters

X-~variables
ave been fixe
in the BAB

o Update incumbent
paremetera

<

—
Execute algorithm &l with the
partial meintenence schedule
for finding a feasible solu-
tion in the CPU time ellowed

Yes

update incumbent
parameters

The
searching was

Yes

complete

Yes
quasi-optimal

Select branching Label the node
S1 (generator)and as an IE node
fix X-branching
variables,s0
that two BAB
successor nodes Include the
are created IE node in
the candida-
te list
Include these

two BAB nodes
in the candidate
list

—3
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also detects the infeasibility of partial --
schedules; this last task is very important
in the fathoming process of the branch-and-

bound nodes.

Relaxation Rl is used (a) at each partial --
branch of the implicit enumeration search in
algorithm al, and (b) at each branch-and----
bound node in algorithm a2, once the prefil-
tering phase has eliminated infeasible pe~--
Recall that if
C1 >F the partial maintenance solution is fa
thomed.

riods to begin maintenance.

Note that if relaxation Rl corres--

ponds to a complete feasible maintenance ---

schedule, Cy is the cost of its optimum po--
wer generation schedule; so that if CfiZ it
will be the new incumbent solution.

The algorithms was written in ECL /20/ and -

Fortran and they use the MPSX-MIP/370 system.

An interactive graphics interface is used -
and it is allowed the optimization interrup-
tion at a given number of iterations, at a -
given CPU time, or when it is considered ---
that the incumbent solution, compared with -
the lower bound of the optimal solution, is

good enough.

6. EXTENSIONS
Problem P2 as formulated by egs.(1)-(3) and
(8)-(10) can be extended by adding the follo

wing data and constraints.

6.1 Derating of generators capacity

The maximum power generation level RK(j,NK--
(§)) for 3€J is only a theoretical capacity.

The real available capacity is smaller; in -

fact, it is different,over the planning horizon

zon. Let qu denote the estimated derating
corresponding to generator j in period €.
Then RK(j,NK(j)) for jE€J may be sustituted -
by (1-d;p) RK(j,NK(3)) for e, Note'that it
could be possible that NK(j) must be reduced
as a result of the value of the new maximum

power generation level.
This extension of problem P2 affects the —--
maintenance and operation scheduling, but --

the algorithm requires small modifications.

6.2 Estimate hourly distribution for the ---

weekly power demand level

Qiiestt 6 - V. 4, n.° 4 {Desembre 1980)

In problem P2, egs.(3),(8) and (9) ensure --
that the power generation level Q'K satisfies
for the

peak load hour at week £ for LET. The exten-~

the weighted power demand level EE

sion described below allows to include a ---
better representation of the power demand --
level to be satisfied, since it includes the

level of more than one hour per week.

Let Hy denote the set of 'typical' hours h=
1,2,..., /H@/ whose demand Ep, must be consi
dered in week £ ; Hy, denotes the weight of
hour h in the empirical distribution of the

power demand level in week £ .

In the new problem, eq. (3) is substituted -
by

L Qo > Epp for he€H,,l&T (13)
where the variable %Kh corresponding to the
power generation level in hour hel-&Z substi-
tutes to variable sz. The equivalence of -
variable Qjﬂh’ in a similar way to the expre

ssion in eq.(9a) for variable Qfﬂ’ can be --

written
NK(3)
= . (k)
e Fm1 RKOMxE L
for h€H£ ,EfiziLj+Df—l, jer (14a)

where Y}fﬁﬁ {0;1} gives the same representa-
tion for hour h than variable Y}%) does for
week £ in problem P2. Eq.(9b) must be substi

tuted by

NK{(3) £
vk 477————x =1 (14b)
= jth =T=D,¥1%jt ~

for the same h,f,j. Note that egs.(14) re--
present the case for which Qjﬂh is semiconti
nuous; for the continuous case, egs.(8) must
be substituted in an analogous way. Finally,
the power generation cost function (10) must

be substituted by

NK(?')
. _ . (k)
min.C = €5 £er hGHZ Hyp {31 PC(j,£,k)x leh

(15)
Considering that in the above formulation va
riable Yffg has the same special character
than variable Yff) in the original problem

P2, let extended problem P2 denote the new -

problem. Note that if in the original pro--

blem P2, E; 1is obtained such that Ep= max--

(h)
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{Eﬂh} it results that any of its feasible --
solutions is also feasible in the extended -

problem P2. The only reason for this exten-

sion is to take account of the hourly distri

bution of the power demand level when optimi

zing the power generation cost function.

Relaxation R2

We may see that the dimensions of the exten-
ded problem P2 are very large; the CPU time

required for obtaining the optimal solution

of its relaxation R2 makes it impractical; -
recall that the relaxation R2 of a problem -
is its LP relaxation. Then we need to modi-
fy the extended problem P2 but only for the

optimization of its relaxation R2, so that -
the new formulation is still a good lower --
bound to the optimal solution of the exten--
ded problem P2 and, at the same time, its di

mensions are smaller.

This goal may be acomplished by substituting

constraints (13)-(14) (and in a similar way

for the constraints related to the continuous

variables Qj{h) by certain type of surrogate
(see e.g./18/), so that the new
relaxation is as follows.

constraints

(16a)

§Kij) § (k)
RK(j, k) H b'e > E
—_ hew, "en Yith 2 e

NK () £
e W e
k=T fem, fen Y}z% toaEs -Dj+1sz‘ ay

(16b)
for jcI; for EjiﬁiLf+Dj—l, where

3p = feg Hep 3nd By = g;;z Hpp Bpp  (17)

and E;, and ay represent, respectively, the -~
total power demand level and the number of hours in
week £. We may see that egs.(16) are weaker
than egs.(13)-(14) because S§(H)DS, where ---
S(H) and S are the sets of binary solutions,

respectively to egs.(16) and (13)-(14).

Since the special character of binary varia-
bles Yjﬂh is relaxed in relaxation R2 (in a
similar way to binary variables YQE) descri-
bed in Sec. 3) so that OiY}EL < ljand conti-

nuous, egs. (16) are equivalent to
0<Y(k)< 1 and i
ALY A nd continuous

(18a)
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NK(3)

. (k) 18b
fo1 =1 RK(j,k)x Yj[ > E,/a, ( )
NK (3)

) (k) z -
=71 sz + —Dj+l th =1 (18c)

The following remarks on formulation (18) --

are in order:

k)
sz aK
that generator j will be working at ca--

represents the number of hours
pacity state k in week .

(b) The right-hand-side of eq.(18b) is the -
average hourly demand level Eﬂ/az in ---
week £; then E, is also satisfied.

(c) Aésuming that ap is the same for VL€T,
the objective function (15) is substitu-
ted by a function that has the mathema--
tical expression of function (10) times

is different for €T, then

the power generation cost function can -

ap . If ap

be written

NK ()

k
min.C = PC(5.L,K) x y§£) (19)

€7 T k=1

(d) The average hourly modification of the -
extended problem P2 is a relaxation of -
this problem, because it satisfies EK -
but it is not guaranteed that EUL for —--
VheHK is also satisfied.

(e) The optimal value of the new relaxation
R2 is a lower bound to the optimal value
of the extended problem P2.

(£) In anycase, relaxation R2 cannot be used
alone in the algorithms described in ---
Sec.5.

Relaxation R1

The algorithms dealing with the relaxation -
Rl of the extended problem P2 as formulated

in egs.(13)-(14) have not strong modifica---
In the
new relaxation, the knapsack problem (11) -

tions in comparison with problem P2.

corresponding to a given week £ is substitu-
ted by /Hz/ knapsack problems. These pro---
blems only differ among them and from pro---
blem (11) for week £ in the original problem
P2, in the right-hand-side Eih (then, they -
Have identical objective function, knapsack

constraint and special ordered sets). Then
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if the knapsack problems corresponding to --
each hour h€H,
der of E;, in week £ , it is not difficult -

are ordered in increasing or
to solve the other problems hQHK while sol-
ving the problem with max{EZh} in each week
K. Let le_h
ration cost of knapsack problem h in week £

denote the minimum power gene-

then the lower bound Cl of the optimal solu-
tion of the extended problem P2 can be writ-

ten

) . (20)
€1 7 fer nem, Hep Cren

Recall that Cl(20) is the power generation -
cost of a feasible solution in the extended
problem P2, if this operation schedule co---

rresponds to a feasible maintenance schedule.

/. SOME COMPUTATIONAL EXPERIENCE

See in /14/ an extensive validation of the -
algorithm. Here we report the computational
experience obtained with one real-life pro--
blem. Data parameters: /J/= 25, /I/= 22, --
/T/= 52, quasi-optimality tolerance g=1%, 21
pairs of generators with in-between frozen -
time constraints, no precedence relations --

constraints, no special classes, 4 plants, -
weighted power demand level of the peak load
hour of each period and piecewise linear po-—
wer generation cost function with 2 genera--

tors with semicontinuous power generation.

Table 2 gives the maintenance scheduling ---
data for the 22 generators to be maintened;

where for each generator R is. the rating for
the gross reserve constraint, D is the maint
enance outage duration, E and L are the earl
iest and latest available periods to begin -
Pl is the plant to which it be-
see /15/ --
for additional details on the maintenance --
(2).

of capacity states and the maximum power oe-

maintenance,
longs, and U is the frozen time;

constraints Table 3 gives the number -
neration level, in each capacity state for --
each of the 25 generators in the system. --
Table 4 gives the cost related data: energy
class, fuel cost and incremental heat rate -
for each capacity state for each generator ;
see /13/.

power demand level at the peak load hour and

Table 5 gives the gross reserve,

periods's group for each of the 52 periods -
of the planning horizon;
2{0il),

the energy classes

are c¢=1 (nuclear), 3(coal) and 4 (na-

Qiiestfd - V. 4, n.° 4 {(Desembre 1980)

tural gas); the yearly increase rate of power
generation cost in each class is Y(1)=0%, =--
Y(2)=9%, Y(3)=10% and Y(4)=7%; see in /13/ -
the meaning of these data (they are used for

obtaining the cost function).

The 21 pairs of generators with in-between -~

maintenance frozen time (see table 2) are the

following: (4,5), (4,6),(4,7),(4,8),(4,9),--
(5,6), (5,7), (5,8, (5,9), (6,7), (6,8), —-=
(6,9), (7,8), (7,9), (8,9), (11,12),(11,13),

(11,14),(12,13),(12,14), and (13,14).
Generators 3j=1,2 and 3 have in advance fixed
maintenance periods; then Ej=Lj so that Ej
to Ej+Dj_l are the periods for which these -
generators are not available for the produc-
tion system. Note that j=1 and 2 are not to
be maintained by the system (then Rj:O)'

System parameters; relaxations Rl and R2 on -~
problem P2; ordering rules rl and pl as des--~
cribed in /13 8Sec.6/;

ding the first feasible solution and algo——--

algorithm al till fin-
rithm a2 for improving it. The case was run
in an IBM 370/158 with 1.5 megabytes of real
storage and 2 megabytes of virtual storage,

and using the system VM/CMS.
ted is CPU time from the beginning of the --

The time repor

running.

Except for the unusual case in whith the ---

chosen capacity state for all generators in

Table 2

Data of generators to be maintained

I NAME R D E L »1 P2 w
1 GE¥-1 0 4 40 40 0 0 0.
2 GEN-2 0 4 9 9 0 0 0
3 PL3-% f46 ] 1 1 2 0 0
4 rL2-3 230 4 1 49 2 0 2
5 DL2-7 200 5 1 us 2 0 2
5 PL2-3 ) 4 14 u9 2 0 2
7 PL2-6 95 4 1 4o 2 0 2
9 PL2-4 35 4 1 34 2 0 2
9 PL2-5 100 5 1 12 2 0 2
10 PL3-5 850 10 T 26 3 0 0
11 PL3-1 30 5 1 48 3 0 4
12 PL3-u4 100 5 1 48 3 0 4
13 ©7L3-2 35 5 1 g 3 0 4
4 PL3-3 5 Bl 1 36 3 0 4
15 PL1-1 95 4 6 49 1 0 0
1» TL1-2 95 4 14 49 1 0 0
17 pPL1-3 190 7 1 12 1 0 0
13 PL1-4 205 4 24 29 1 0 0
19 TLu-1 100 3 1 50 u 0 0
20 PL4-2 100 3 1 50 4 0 0
21 PLu-3 100 6 1 47 4 0 0
22 TLy-y4 100 3 147 4 0 0
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production is the capacity state 1, the total
power generation level in a given period is
exactly the power generation level at the --
peak hour. The level of each generator will
be the maximum power generation level of the
chosen capacity state, except for, at most,
one generator whose level will be between the
maximum and minimum levels of its chosen ca-
pacity state (if this is not the capacity --
state 1).

The dimensions of problem P2 are; 19 special
ordered sets of type 1 (with 670 0-1 varia--
bles) defined by ea. (1), corresponding to ge
nerators j=4 to 22; 396 special ordered sets
of type 2 defined by egs.(8), corresponding
to generator 23 and the known periods in which ge--
rators j=1 to 22 must be in operation (see -
Table 2); 784 modified S2 defined by eags.(9),
corresponding to generators j=4 to 22; and -
104 modified S2. The last set corresponds-—
to generators j=24 and 25; they are not owned
by the utility and, then, in any period the
power generation level is zero (széo) or,

at least, min,Z where m, is the minimum --
level allowed. TIts.LP relaxation has in to-
tal 2319 constraints and 6806 0-1 continuous
variables; but the relaxation R2 to be used
by algorithm a2 has 1622 constraints and ---~

6806 0-1 continuous variables with 29616 non

zero elements (and a 0.21% matrix density),
since the 697 maintenance frozen time cons--

traints defined in egs.(2) (see /15/)

are —-
not explicitly included.

The initial solution 3039372 (obtained at --

0.36 m. by algorithm al) is only 9.53%
-optimal with Cl=2310674; Cl(ll)

case a week lower bound of the optimal

quasi
is in this

solu~
tion. But C2=3031604 was obtained at 15.21

m. (and at 2210 LP iterations); then the ini
tial solution is 1.23% quasi-optima. Since
q=1% ,

it finds another 4 better feasible solutions

the branch-and-bound phase is requireg;

(although they are very similar), so that at
node 22 (and at 56.11 m. with in total 4560
LP iterations) a feasible solution was found
with C(6)= 3056314; it is 0.80% guasi-optima.
Table 6 gives the maintenance and operation
scheduling of this solution; tables 7 gives
the generators that at each period will have
its power generation level between the bounds
of their chosen capacity state, so that the
total level exactly satisfies the power de--
mand level of the peak hour.

A crucial algorithm in the system is the spe
cial convex/nonconvex knapsack algorithm that

optimizes relaxation Rl; it does not consider

the maintenance scheduling constraints, but

Table 3

Power generation levels and capacity states for each generator

J  BAME NE (J) PRODBCTINK LEVELS RF (J,K)
1 GER-1 4 45.0 171.0 174.0 176.0

2  GEN-2 4 ¥5.0 171.0 174.0 176.0

3 PL3-6 5 190.0 266.0 380.0 494.0 AU6.0
4 TL2-8 4 90.0 154.0 200.0 205.0

S PL2-7 3 30.0 154.0 195.0

6 PL2-3 5 30.0 45.5 64.0 79.0 82.0
7 PL2-6 5 30.0 44.7 68.0 £5.3 92.0
1 pL2-8 5 30.0 50.0 71.9 8%.5 91.0
9  PL2-5 5 30.0  45.% 67.0 82.5 94.0
10 PL3-S 5 250.0 350.0 500.0 650.0 850.0
11 PL3-1 5 30.0 32.0 56.0 76.0 0.0
12 PL3-4 5 30.0 60.0 72.5 83.5 95.0
13 PL3-2 5 30.0 32.0 %6.0 76.0 80.0
% pL3-3 5 30.0 40.0 63.2 B1.5 85,0
15 PL1-1 5 30.0 45.5 67.0 82.5 91.0
16 PL1-2 5 30,0 45.5 57.0 82.5 91.0
17 PL1-3 4 0.0 88.0 154.0 150.0

18 PL1-4 4 0.0 88.0 154.9 195.0

19 OL4-1 5 45,0 52.5 T72.5 87.5% 97.0
20 PLu-2 5 45.0 52.5 72.% B87.5 97.0
21 PL4-3 5 45.0 52.5 72.5 87.5 Q7.0
22 TL4-4 5 45.0  52.% T2.% ET.5 97.0
23 GEN-3 4 300.0 400.0 S00.0 610.0

24 GEN-Y4 5 0 44,5 89.0 133.5 172.0
25  GEN-5 6 0 21.0 42.0 82.0 126.0 168.0
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it obtains the optimum operation schedule of
a given partial or complete maintenance sche
dule. Then if this schedule is feasible, --
the optimal solution in relaxation Rl is a -
feasible solution of the whole problem. We

may see in Sec. 4 that if the maintenance --
schedule constraints are relaxed, the pro---
blem is converted in /T/=52 independent knap
sack problems. The algorithm /12/ dealing -
with these problems is very fast.

about 0.10 m.

It requires
of CPU time to obtain the so--
lution to the 52 periods problems. Each ---

knapsack problem corresponds to a period; it

has about 23 special ordered sets (each set
correspoﬁds to a generator that must not be
in maintenance in this period) and each set
has about 5 variables (they corrrespond to -
the capacity states); an additional variable
is needed per generator if it is not required
to be in production in the given period. The
knapsack constraint in each period is the --
weighted power demand level to be satisfied
at the peak hour. It is interesting to note
that the whole set of the /T/ problems is --
not usually solved at each node. The two ~--

reasons are the following: (1) By using the

Table 4
Cost-related data

J NAME C F (J) INCKEMENTAL HEAT RATY IHR(J,Y)
k=1 k=2 k=3 k=4 k=5 k=6
1 GEN-1 3 3.10 11.060 8.807 9.470 9.496
2 GEN~-2 3 3.10 11.050 B8.832 9.525 9.554
3 PL3-6 3 4.10 15.130 8.093 8.320 8.554 8.800
g PL2-8 2 1.60 9.260 B8.262 9.354 10.100
5 PL2-7 2 1.60 9.260 B8.262 9.28u4
5 PL2-3 2 1.97 12.210 10.156 10.672 11.430 11.975
7 PL2-6 2 1.97 10.830 8.631 9.000 9.559 10.041
3 PL2-4 2 1.97 11.470 9.274 9.984 10.960 11.739
9 PL2-5 2 1.97 10.680 8.156 8.480 8.929 9.599
10 PL3~5 3 3.50 13.400 8.093 8.320 8.554 8.800
11 PL3-1 3 3.50 11.710 9.629 10.025 11.150 12.242
12 PL3-4 3 3.50 10.780 8.450 8.850 9.375 10.233
13 PL3-2 3 3.50 11.710 9.629 10.025 11.150 12.242
14 PL3-3 3 3.50 9.860 9.188 9.684 10.599 11.234
15 PL1-1 2 1.50 10.680 8.156 B8.480 8.989 9.514
16 PL1-2 2 1.50 10.680 8.15%6 2_.480 B8.989 9.514
17 PL1-3 2 1.50 9.450 7.76% £.289 9.214
18 PL1-4 2 1.50 9.450 7.769 8.249 9.28u4
19 FL4-T 3 3.15 9.620 B8.527 8.791 9.300 9.914
20 PLG-2 3 3.15 9.620 B8.527 8.791 9.300 9.914
21 PLU4~3 3 3.15 9.620 8.527 8.791 9.300 9.914
22 PLU-4 3 3.15 9,620 8.527 8.791 9.300 9.9174
23 GEN-3 1 1.10 10.520 9.515 9.540 9.565
24 GEN~-4 4 2.37 0.000 13.255 13.265 13.275 13.285
25 GEN-5 4 2.37 0.000 15.612 14.617 18.625 14.635 14.645
TABLE 5
GROSS RESERVE,PEAK 10AD AND GEOUP(USUALLY,MCNTH) PER PERIOD
l ¢ | E | g | ¢ G E | 4 3 G | E [ g
I=1 { 1676 | 26C7 1 T=19 2550 | 2297 5 T=36 Z430 | 2415 8
7= 2 1606 | 2677 1 T=20 2620 |- 2225 5 T=37 2280 | 2565 9
T= 3 14€6 Z2€17 1 T=21 23790 2475 5 T=38 z237¢ 2475 9
I= 4 17C6 | 2577 1 T=22 2540 | 2305 5 T=39 2400 | 2445 9
T= 5 1806 477 1 =23 €29 2325 & =49 2200 2465 9
1= 6 2192 2737 2 T=24 2310 28135 I3 T=41 2370 2295 10
T= 7 2222, | 26C7 2 T=25 231G 2835 I3 T=42 22590 2415 10
= 8 2u52 2477 2 T=26 2120 2728 6 T=43 2230 2435 10
7= 9 z2u2 25C7 2 T=27 560 228% 6 T=44 26S7 2231 10
=10 2612 2337 3 T=28 440 2405 7 T=45 2687 2241 "
=11 2322 2427 3 T=29 2169 7685 7 T=U46 2827 2401 "
T=12 2241 zu11 3 T=37 25850 2295 7 =47 2477 2451 11
T=13 631 2301 3 T=31 2460 2385 7 T=48 2327 2591 1
=14 28E1 2381 3 T=32 2240 2605 8 =49 2087 2841 n
=15 26€1 2271 4 T=33 2249 2695 8 T=50 1967 2961 12
T=16 2841 2091 U T=34 2300 2845 8 T=51 1€57 3071 12
=17 27€1 PR 4 T=35 1€60 ZEES 8 T=52 2327 2601 12
T=18 2560 | z287 4 |
A G="GROSS RESFRVE, E= PEAK LOAD, G= GROUP (USUALLY , MONTH), PER PERIOD L ~

Qtiesté - V. 4, n.° 4 (Desembre 1980)

243



solution of the knapsack problem correspon--
ding to the same period in the predecessor -
node, a node may be fathomed if the power ge
neration cost of the current solution of ---
some periods plus the cost of the solution -
of the problems corresponding to the rest of
the periods in the predegessor node,

ter than the fathoming bound

is grea
(note that a ~-
problem in a node is not more relaxed than -
the problem corresponding to the same period
(2)
necessary to solve a problem corresponding -
to a

in the predecessor node); and It is not

given period, if the problem correspon-

ding to the same period in the predecessor -

node
blem

is more relaxed than the current pro---
and its optima solution does not violate
the tighter constraints of the current pro--
blem.

8., CONCLUSION

A methodology for solving the Generators Main
tenance and Operation Scheduling has been des

cribed., It allows to include an ample varie-

ty of constraints and a nonlinear power gene-

ration cost function. It contains several

types of branching rules to be used in a com

bined implicit enumeration and branch-and- -

bound method; and several optimizing strate-

gies that may help the user to easily design
the most suitable global strategy for his/her
specific problem,

Four of the most interesting conclusions of -

this work are: (1) Restating that in integer

programs, it is always worthy to formulize -

them so that the LP feasible set be as close

(2)
Introducing ad-hoc implicit enumeration algo

as possible to the integer feasible set;

rithms in the well-tested general purpose LP
branch-and-bound methods seems to be a very
(3)

multiperiod-multicommodities integer problems,

promising area of research; In sparse --

some exclusivity restrictions may amount to
severalhundreds of mathematical constraints;
in these situations it is worthy to not ex--
plicitly introduce these constraints in the

LP system, and at each node check the feasi-

(4)
In sparse multiperiod integer programs an --

adecuate selection of the branching integer

bility of this node and its successors;

variable may produce nodes whose LP subpro--—
blems may be decomposed in as many independent
problems as periods in the original formula-
tion;in this situation it is worthy to solve
separately these problems since their solu--
tion is the optimal solution of the succe---

ssors to the given node. In our case these

independent problems are convex/nonconvex --
knapsack problems with a variety of Special
Ordered Sets.

In the cases that we have run, the strategies

that have better performance are: generators
ordering rule rl and periods beginning main-
tenance ordering rule pl as described in /13
Sec. 6/; relaxations R1 and R2 for obtaining -
an strong lower bound to the optimal solution

of the problem; algorithm al till finding --
the first feasible solution and algorithm a2

to improve it. The special knapsack algo---
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Table 7
Capacity state not fully used in 0.80% gquasi-optima solution

T J NAME
1 20 GE¥-1
2 20 GEN-1
3 21 GEN-2
4 16 PLY-T
5 6 PLZ-4
6 21 GEN-2
7 20 GER-1
3 6 PL2-4
9 6 PL2~4

10 9 PL2-T7
1 a PL2-6
12 16 PLU-1
13 ] PL2-6
13 ] PL2-6
. 15 s PrL2-3
16 5 PL2-3
17 Z0 GEN-1
19 6 PL2-4
20 6 PL2-4
21 5 PL2-3
2 7 PL2-5S
23 2} PL2-6
i 20 GEN-1
25 8 PL2-6
26 20 GEN-1
27 3 PL1-3
79 20 GEF-1
30 10 PL2-8
31 8 PL2-6
32 20 GEN-1
33 6 PL2-4
3y & PL2-6
35 21 GCEN-2
36 9 pPL2-7
27 8 PL2~6
38 10 pPL2-8
39 10 PL2~8
40 7 PL2-5
41 9 PL2-7
a2 7 PL2-5
43 6 PL2-8
48 10 PL2-8
us5 3 PL1-3
a6 7 PL2-5
47 7 PL2-5
48 5 FL2-3
49 15 PL3-5
50 15 PL3-5
51 15 PL3-5
52 21 GEN-2

rithms /12/ for obtaining the optimum opera-
tion schedule of a given maintenance schedule
are quite satisfactory.

We have experimented with the estimate hourly
distribution of the weekly power demand level
(Sec.6.2) in some test problems and the re--

sults are encouraging. It seems to be a pro
mising area of future experimentation.with -

real~life problems,

The system outlined in the previous sections
may find the optimal solution; but more im--
portant is that, by using the lower bound --
strategies on the optimal solution and an --

interactive graphics interface, it is possible

Qtiestié — V. 4, n.° 4 (Desembre 1980)

OTHEES PROD K MAX

2561.0 46.0 2 171.0
2561.0 116 .0 2 171.0
2637.0 130.0 2 171.0
2531.0 46.0 2 52.5%
2426.3 50.7 3 71.5
2687.0 59.0 2 171.0
Z2561.0 46.0 2 171.0
2426.3 50.7 3 71.5
2460.0 47.0 2 50.0
2176.0 161.0 3 195.0
2392.0 35.0 2 48 .7
2362.0 49 .0 2 52.5
2247.0 54.0 3 68.0
2329.5 51.5 3 RELQ
2224.5 46.5 3 68.0
2029.5 61.5 3 64.0
2116 .0 55.0 2 171.0
2212.0 85.0 u 85.5
2171.3 53.7 3 71.5
2814.5 60.5 3 64.0
2247.0 58.0 3 67.0
2284.0 47.0 2 a8.7
2410.0 125.0 2 171.0
2504.0 31.0 2 ny .7
2660.0 65.0 2 171.0
2127.0 155 .0 4 190.0
2526.0 159.0 2 171.0
2097.0 197.0 3 200.0
2324.5 60.% 3 68.0
2526.0 79.0 2 171.0
2557.5 87.5 2 50.0
2889.5 55.5 3 68.0
2795.0 99.0 2 171.0
2251.0 168.0 3 195.0
2494 .5 70.5 4 85.3
2277.0 198.0 3 200.0
2247.0 19e.0 3 200.0
2392.0 73.0 4 B2.5
2131.0 164.0 3 195.0
23u47.0 63.0 4 82.5
2399.5 35.5 2 50.0
2111.0 120.0 2 154.0
2059.5 181.5 4 190.0
2356.0 45.0 2 45 .5
2375.7 75.3 4 82.5
2512.5 73.5 4 79.0
2479.5 361.5 3 500.0
2479.5 481.5 3 500.0
2564.5 506.5 4 650.0
2498.5 102.5 2 171.0

to find in a very small CPU time a variety -
of quasi-optinal solutions with very diffe--
rent schedules in the maintenance of the ge-
nerators.
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