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1. Introduction
On this work we present a procedure to classify materials using im-
pacts between rigid bodies as the source of information. This proce-
dure is based on the coin-tap test [1], which is mainly used to detect 
cracks on structures or composite materials [2-3] by hearing the sound 
of an impact and detecting diff erences between defective zones to 
normal ones [4]. Material’s classifi cation is performed by comparing 
responses of diverse materials in the frequency domain; this is found-
ed on the concept that under similar impact conditions each material 
has its own vibrating response [5]. Diffi  culties arise when two bodies 
with similar properties are tested; in these cases, further analysis is 
required to detect diff erences. To achieve this, we apply the coin-tap 
test method in a systematic procedure using repeatable mechani-
cal impacts, measuring the acceleration of the impact instead of the 
sound, performing a data compression on the frequency domain, 
and using an Artifi cial Neural Network (ANN) for classifi cation. 

2. Results and Discussion
To test the method, we compare responses from four cylinders, on 
two sizes made from steel and aluminum, impacted by four small 
bearing-balls of diff erent diameter. The purpose of this is to inves-
tigate which bearing-ball diameter produces “the best” impact for 
classifi cation.

Cylinders 1 (steel) and 2 (aluminum) are considered the small ones, 
with dimensions of Ø=30mm (diameter) and L=30mm (length); and 
cylinders 3 (steel) and 4 (aluminum) are the larger ones: Ø=30mm 
and L=50mm. The four impacting balls are made from steel with di-
ameters of: b1=6mm, b2=3.2mm, b3=2mm, and b4=0.7mm.

Figure 1. Experimental system.

Each cylinder has been sesorized with one piezoelectric accelerom-
eter, at one of the fl ats 
sections in-line with the impacts axis, as shown in Figure 1. Signals 
are conditioned with a diff erential charge amplifi er, and digitized at a 
sampling rate of 2.5MHz and 12 bits of resolution.

A total of 80 impacts are recorded; 20 per cylinder –fi ve impacts per 
ball per cylinder. All signals are windowed with a Nuttall window, to 
smooth the end of the time record and reduce leakage at the spec-
trum. Then, a Discrete Fourier Transform (DFT) is applied. To compress 
data the DFT is evaluated over 2048 points on the frequency domain 
and the fi rst 64 coeffi  cients are selected to be processed by the ANN. 
On them is concentrated the maximum energy of the signal, and the 
signifi cant vibrating information used to classify the materials. Figure 
2, shows the average spectrum of all impacts for each cylinder. The 
top graphic shows short cylinder’s responses; diff erences between 
them are appreciated. The bottom graphic shows large cylinder’s re-
sponses, which exhibit more similarities between them than respons-
es of the other cylinders.

Figure 2. Impacts mean-values. Showing 64 points of the frequency 
response. Top, short cylinders. Bottom, large cylinders.

Figure 3 Spectrum response of the large cylinders when impacted 
by the largest (b1=6mm) and the smallest (b4=0.7mm) bearing 
balls.

Figure 3, shows the case of two very similar signals from the large cyl-
inders when impacted by the largest and the smallest bearing-balls. 
To analyze and classify these responses a backpropagation ANN has 
been used. The proposed network has an input-layer with 64 inputs, 
one hidden-layer with three neurons, and two neurons at the output-
layer. The learning is based on the Levenberg-Marquardt algorithm, 
and two set of signals are selected; one for training, with 48 signals 
composed by 3 signals per type of ball per cylinder. The second set 
has the remaining 32 signals, which are used for validation.

The output of the ANN has been setup to show results in a binary 
code, as shown on Table I. On the fi rst colon appears the random in-
put validation sequence introduced to test the ANN. The output ap-
pears on the next two colons, where “Size” and “Type” are the ANN 
output code. S=0 means small, and S=1 means large cylinder. T=0 
means aluminum, and T=1 means steel. Last colon shows the trans-
lated code meaning.

M
9



IN
ST

R
U

M
EN

TA
TI

O
N

 V
IE

W
P

O
IN

T
Se

ss
io

ns

92

Results show that the method can be used to classify two materials 
with similar responses, as is the case with steel and aluminum. In the 
case of the small bearing-balls, it has been found that for the large 
cylinders there is no signifi cant diff erence among diameters, due all 
responses present similar characteristics. In the case of the small cyl-
inders, it has been found that the large ball (b1) impacts are better, in 
order to observe diff erence among materials.
 Table I. Validation test and ANN output. Size=0, 1 means short, and 
long.  Type=0, 1 means aluminum, and steel.

3. Conclusions
We have presented a method which allows classifying materials using 
impacts and neural networks. The main problem on material’s classi-
fi cation arises when responses are similar, in this case the method has 
been tested with steel and aluminum, and the ANN has proven to be 
a robust solution to detect diff erences. Further analysis will involve 
other materials as well.
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1. Introduction
The purpose of this paper is to test the feasibility of using a Kalman 
fi lter and a simple mechanical model to analyze the velocity and 
the acceleration of an impact generated from the collision between 
two rigid bodies. To achieve this, the Kalman fi lter and a mechanical 
model are compared with experimental signals that have been ob-
tained from real impacts, between a sensorized hammer and a steel 
cylinder. 
The cylinder has been modeled as a fi rst order dynamic system, as 
shown in Figure 1, with the impact signal, f(t), applied on its surface. 
The mechanical model is shown on equation (1).

Figure 1.  Metallic cylinder 
model.
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         (1)

Where meff  : eff ective mass [kg] 
 kd   : damping constant [N•s/m]
 ks   : spring constant [N/m]
 f(t)=u(t) : input force [N]
 x1 , x2 : displacement and speed.

According to [1], the eff ective mass is the joint masses of the hammer 
and the cylinder, and this is given by equation (2).
 

where mh : hammer mass
 mc : cylinder mass
And constants kd and ks are for steel.
 

1.1 Kalman Algorithm
Figure 2, shows the block diagram of the Kalman estimator.
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