Qtesttié - V. 9, n.°o 1 (marg 1985) pp. 7-34

THE ECOGEN LANGUAGE FOR GENETIC SIMULATION

JORDI OCANA

UNIVERSITAT DE BARCELONA

This paper tries to show, in a condensed form, the main features of ECOGEN, an event—
schedulling simulation language oriented to the Population Genetics. It is based on the

Pascal Language.

Keywords: GENETIC SIMULATION, PASCAL, EVENT-SCHEDULLING, POPULATION

GENETICS, EVOLUTIONARY ECOLOGY.

ODUCTION AND MAIN CONCEPTS.

The ECOGEN Language is an extension of the
Pascal Language oriented to facilitate dis-
crete event digital simulation in Evolution-
ary Ecology and Population Genetics. Inte-
rested readers, unfamiliar with these topics

may see /7/ for a good introductory text.

ECOGEN is simply the Pascal Language with
some additional features, basically:

1) A standard, event schedulling oriented,
simulation control program like in GASP-
II. Although ECOGEN is in this "dynamical"
aspect similar to other event-oriented
simulation languages, it is perhaps worth 2)
pointing out that it may be quite distinct
under a "conceptual" or "organizative"
view: while in some event-schedulling
oriented languages emphasis is on events
(for example, there is specifically a ge- 3)
neral events list) the "main characters"
of ECOGEN are entities (that in a given
model can represent, for example, gametes,
individuals, ecosystems or parts of the
environment) . As , in general, a given
event will affect directly a given con-
crete entity (for example "death", event,
of a given "individual", entity) in ECO-
GEN there is a strong association bet-

ween events and entities. Roughly speaking,
they are taken as something like "atributes"
of entities, their value being the scheduled
time (real value) of occurrence. Every con-
crete entity may be viewed as having an asso-
ciated events list, the list of its own asso-
ciated events, with its own more immediate
event. Concrete entities can be grouped in

a wide variety of lists, among them there

is even an increasing-time-of-its-most-imme-
diate—event list, managed by the control pro-
gram. See /6/ for a more complete discussion
of the ECOGEN "world view".

Some additional standard constants, types,
variables, procedures and functions try to
give an adequate framework to define and to
handle concepts like "genotype" or "kinship".

An additional declarative part, labelled
entity to be placed between main program
type and var parts, allows the simulated
kinds of entities (populations, indivu-
duals ...) "profile" definition, i.e. asso-
ciated attributes, taking the attribute
concept in a very wide sense including as-
sociated events, metric (real valued) attri-
butes, lists of references to other concrete
entities, the genotype, etc.

- Jordi Ocafia - Universitat de Barcelona - Facultat de Biologia - Dep. Biocestadistica - Av. Diagonal, 637

Barcelona.

- Article rebut el marg de 1985.

Qtiesttié -V. 9, n.c 1 (marg 1985)

4) Some additional syntax (simulating clause)
to specify that a given event is simulat-
ed by a given procedure. This procedure/
event association is a common trait of
every event-schedulling oriented simula-

tion language.

5) A set of twelve basic entity handling seh-
tences, associated to correspondingly ad-
ditional reserved words, namely cancel,
create, delete, identify, forget, choosei

link,

schedule. Although it was perfectly pos-
sible to substitute them by standard

(more than eleven) procedures, we ulti-

assign, join, separ, unlink, and

mately favoured the first possibility,
mainly for two reasons:

a) some of them are syntactically compleX;
more than eleven standard procedures
would be necessary, some of them with

many parameters without obvious order-

ing and meaning.

b) it is desirable to avoid possible user-

redefinition of such "delicate" sen-

tences.

If ECOGEN were based on a more elaborated

language (at least in protection and proce-
like Ada,
possibility might be preferred (to define a

dure calling aspects) the second

specific "package" and no additional language
syntax) .

Use of simulation techniques in Biology, par-

= e e e e mm

==> PROGRAM --> jdentifier

where

ticularly in Population Genetics, is not a

recent subject. Interested readers may see

/Y/. /2/, /3/, for a review on the subject.

Genetic simulation is not a specially dis-

tinct kind of simulation. It is simply sys-
tems simulation devoted to a special kind

of systems and problems, "genetical" in the

sense that their component entities (for
example "individuals") are characterized by
other)

with the possibility of "transfering" their

some genetical attributes (among

value to other entities (descendants) by

processes associated to specific mechanisms
like sexual reproduction. These and other
features, all associated to the fact that

we are simulating living systems, give some

It is
perfectly suitable to use a general purpose

particularities to genetic simulation.

or a general simulation language like SIMP-

SCRIPT to perform genetic simulation. The

only purpose of ECOGEN is to do it more easily

and more clearly,

mers.

2. STRUCTURE OF AN ECOGEN PROGRAM

at least for Pascal program-

A program written in ECOGEN is structured in a
similar way to a Pascal program. The following
syntax diagram defines de general structure of

an ECOGEN program. A more detailed syntatical
description is found in section 5 and in the
appendix A.

>==> ;3 =-=> block --> .

"block " is defined as

|
!
!
!
!
!
!

e e 2 b r e e e - e o v e e e

Qitestté -V. 9, no 1 (marg 1985)

“~==3 LABEL ===} unsigned integer ———)

.
i 1
Lo (|
o R R < !
: {==> CONST -~-) identifier ===-) = —=<) constant ~-=) ; ===} :
| | |
I K € e e e < !
; |==) TYPE ===} identifiey ~=-) = ===} type ~==) ; ===} ;
| i |
R S o e ¢ !
: [==> ENTITY -~~) standard reference ---) ; ——=) :
i | |
E [{mmmmmm e {mmom ¢ !
P ==Y VAR =~--=) identifier --=) : ===) type ===} ; ===} !
b H | | !
b f (e) m——— < I !
I K € o e < !
| | |
N P m——— ecogen subblock (——m—mmm—= i ¢
' |=~)PROCEDURE ---> identifier ---) parameter List ———eme—————o > :
o | |
o o e o < (]
b | I
Yo y===) SIMULATING -~——— > simulated events —----mmme—-— i
: |==> FUNCTION ---) identifier ---) parameter list ---) !
vy ' I P!
b L (e < |1
b | | !
Yo Y=Y type identifier —————— > :
b
" »=--) BEGIN -——~—= > statement ————- > END —mm—m—m e » !
3
: | | !
! (= m i {m——— 4 |
! |
L e e e e w8 s = e o R b o o o e = 1 . e e e e o e e 7 J
All the Pascal parts are defined as is usual. 1) Quotation marks " are used to delimit the
As is explained in section 5, the profile - constant values of the standard types --
of the main elements of the model is esta- chromatid, homologs and genotype (see --
blished in the entity declarative part. This next section) appearing in the text of a
means things like to establish the attributes program.
associated to every class of entity or the
admissible classes of entities in every list. 2) Word-delimiters or reserved words:
The construct procedure <identifier> simulat- as identify
ing <simulated events> associates a procedure assign Join
with an events list. Every time one of the at kind
specified events is going to happen (it is branch_ link
scheduled for the most inmediate time) the by mode
control program will activate this procedure. cancel own
choose relating
"ecogen sublock" is defined as Jensen & Wirth containing schedule
/4/ "block", that is, lacking entity part create separ
and simulating clauses. delete simulating
entity unlink
Executive statements in main program and sub- forget value
locks are all Pascal statements plus the ad- from

ditional ECOGEN statements.

4, STANDARD IDENTIFIERS IN ECOGEN.
3, SPECIAL SYMBOLS IN ECOGEN

In addition to standard Pascal identifiers,

The basic vocabulary of the ECOGEN language the ECOGEN language provides some standard
is the same as that of Pascal, plus the constants, types, variables, procedures and
following: functions. Some of them are related to its

QtiestH6 -V, 9, n.o 1 (marg 1985)

character of simulation language, the others

try to express biological and genetical con-

cepts.

STAND ECOGEN_TYPES.,

Among ECOGEN standard types,

there are nine

scalar types, all predefined as the integer

subrange 0..15 (except the type allele).

These are

1.

class: expressing all the possible entity

classes. If a given class value repre-
sents an entity class that is going to

really participate in the simulation, it
is necessary to associate it with an ade-
quate profile block in the entity decla-

rative part.

event: expressing all the possible events
changing the state of the system. Every
event that really can "happen" in a model
pro-
cedure by means of a simulating clause

must be associated with a specific

and to one or more classes of entities in
its corresponding profile blocks. Some-
times there are events not associated to
any entity, but ECOGEN view imposes the
definition of "dummy"

entities charac-

terized by, and probably only by, these

events.
name: at every moment during simulation
there are none, one or more "representa-
tives" or "concrete entities", réally -
existing (usually assimilable to " regis-
ters" in main core), of every class of
entity. Access to them is performed by
means of "names". When a concrete entity

is "created", "chosen"

(for example at
random from a group of existing concrete
entities) and in general "accessed", it
(its register) is associated with a name
(that one specified in the corresponding
accessing sentence). Until this associa-

tion is overridden (for example by asso-

ciating this name with another concrete
entity)
affects

In a given moment,

any action specifying this name
its associated concrete entity.
a concrete entity

can be associated to (or designated by)
but

a given name value can designate at most

one or more (or none) name values,

only one concrete entity.

metric: corresponding to the "metric" at-

tributes of entities, those attributes
taking numerical real values, as "size"

or "blood volume".

list: entities may have lists of referen-
ces of other concrete entities as an at-
tribute. This kind of relational attribute
whose value will be changed adding or re-
moving references, is useful in defining
entities like "ecosystems" which (jointly
with other more standard attributes as

"numerical" 'mean time between rainy days'
or 'total food resources') are characte-
rized by the fact that they are "groups"
of other entities (individuals, stones...).
relation corresponding to other possible

relational attributes. Its value in a con-
crete entity is the pattern of other "re-
lated" or "linked" entities.
gene: corresponding to the basic heredi-

tary units. They may in reality correspond
to a wide variety of concepts like a clas-
sical "gene" coding for the 'white' trait,
a specific DNA segment coding for a pro-

tein or only a codon.

allele: corresponding to the possible va-
lues of gene atributes. The standard defi-
nition of this type is

allele=boolean;

assuming that every gene has only two pos-
sible allelic states.

chromosome: gene attributes are logically
linked in high level units, the linkage
groups or chromosomes, usually correspond-
ing to physically observable organules

like the eukariotic chromosomes.

Although all these scalar types have their

standard definitions it will frequently be
convenient to redefine all or some of them,
for example to improve program legibility.
Namely, it would be adequate to specify --
that entity classes are

class=(larva, adult, population, environ-

ment) ;

10

Questiié - V. 9, n.o 1 (marg 1985)

10.

11.

or that names

name= (father, mother, son, sister, bro-

ther, partner, migrantl, migrant2);

Nothing more is altered by these possible
and frequently desirable redefinitions.

There are two additional scalar standard

cus corresponds to the place or rank

or-

der of every concrete gene in every con-

crete chromosome (it is not necessarily

fixed as it is subject "to

change by

"structural mutations").

Finally, there are three structured stan-

dard types:

types:
. 12,
modelist=(decreasing, increasing, first, :
chvomatid= vecord
o e eacked arraylb tacusl af atblele;
Lar: Q. .maxloc
end ;
last, preceding, following, minimum, maxi- As allele correspon to the possible values
mum, atrandom); of single gene attributes, the standard
_ type chromatid correspond to the higher
specifying modes of access to list attri- level chromosome attribute values. As has
butes, with two standard subrange types been stated, chromatid constant values
appearing in a program must be enclosed
modejoin=decreasing..following; in double quotes. A chromatid constant
value is simply a list of constant allele
specifying joining strategies, and values separated by commas or blanks,
diagramatically
modechoose=first..atrandom;
[e o o 3 1 o B B e 2 e 3
! L 4 1
! ! ! |
! < e < < |
! ! !
! m==me==x>===> allele value ==e-cdecccceca > |
[S e m i e 2 e P e e o 1
specifying choosing entities strategies. with repetition factor determining length
See /6/ for a discussion on the meaning (len) of this chromatid and order deter-
of these options. mining the locus of each allele. When the
allele type is a subrange of the char
locus=1..maxloc; where maxloc is a stan- type it may be represented by a string,
dard constant specifying the maximum num- as an admissible alternative to the above
ber of genes in each chromosome or link- syntax.
lomo Log record
chrom arraylf..maxploidyl @f chromatid;
ploidy: O..mazploidy
end;

age unit. Its standard definition is
maxloc=16

redefinable without problem. The type lo-

that (de=

each chro-

in correspondence to the fact
pending on the ploidy number)
mosome is represented by some "homologs"
(one in an haploid, two in a diploid ...)

maxploidy is a standard constant

maxploidy=2;

11

Qtiestié - V. 9, n.° 1 (marg 1985)

also redefinable. It specifies the maxi-
mum ploidy number, i.e. the maximum num-
ber of homolog chromatids for a given
chromosome. An homologs constant value
is a list of chromatid constant values
separated by slash signs and enclosed in
parenthesis (and in double guotes when
appearing in a program), diagrammatical-

ly

FTivstoms, laztons: record
T
cla 1 ;
eve: avent;
met: metvic;
lis: List;
vel: velation;
chy s chromosome ;
Qe
all: allele

end;

7 <

with repetition factor "/" specifying
ploidy.

14.
genotype=arraylchromosome] of homologs;

finally, the standard type genotype ex-
presses the value of the individuals full
pattern of homologs for all chromosomes.
A genotype constant value is a list of
chromosome constant values enclosed
brackets,

in
followed by a corresponding ho-
mologs constant value and separated by

colon signs or by blanks. Diagramatically

giving first and last value of standard sca-
lar ECOGEN types.

Variable proper contains a summary of entity
declarative part (names associated to every

entity clas,...
list...

y, Jjoining strategy to every
It is defined as

———— <

A
]
]
]
]
]
1
]
1

4,2, STANDARD ECOGEN VARIABLES.

They provide helpful values, taken from stan-

dard types definition and entity declarative
part.

First there are firstone and lastone} defined
as

12

QUesté - V. 9, n.o 1 {marg 1985)

pPYOpey
record
¢la:

chy

gen:

lis:

rel:

eve :

met:

end;

Finally, variable

acrraylclass! aof record

vnam: get af name;
eve: get
mat: get
chy: get

chyomasome ;

Lig: get of list
rel: set af]
velation
end
arvavichromosomel of record
gen: gel of
GETIE
end ;
arravlgenel of record
all: gset gf allele
end;
arrayllistl of record
cla: gset of class;
case wicin: nodejoin
af
decreasing,
increasing: (met metvic;
fivst, last:();
preceding,
following: (nam:name)
end;
arrayfrvelationl af record
cla: get aof
class;
branches: inlteger
end;
arraylevent] of record
minim,maxim: real
end ;
arraylmetricl of record
minim,maxia: real

end

cod contains strings repre-

senting the values of scalar standard ECOGEN

types.

cnl:
nam:
cla:
eve:
met:
lisg:
rel:
chy:
gen:
all:
yend;

aaaa

It is defined as

record
arraylnamel
arraylclass]
arrayieventl

af stringident;

Qf stringident;

of stvingident;
arcaylmetvicl qf stringident;
arrayllistl of stringident;
arraylretationl qf stringident;
arraylchromosomel of stringident;
arraylgenel of stringident;
arraylallelel af stringident

(assuming stringident=packed array[l..lident]
of char; end being lident the implementation

dependent maximal

length of identifiers).

It would be useful, for exemple, on input/

output.

QUesttsé - V. 9, n.o 1 (marg 1985)

4,3, STANDARD ECOGEN PROCEDURES AND FUNC-
TIONS,

Boolean functions informing on the state

of concrete entities

All these functions return a boolean value,
true if the expressed condition is valid
and false if not.

1. function exists(na: name): boolean;

if name na is associated tO a really exist-

ing concrete entity.

2, function has(na: name; ge: genotype):
boolean;

if na has 'genotype ge.

3. function includes(na: name, lst: list;

ele: name): boolean;

if na includes the concrete entity ele
in its list attribute 1lst.

4. function top(na: name, lst: list; ele:

name) : boolean;

if ele is the first element of the list
1st in owner entity na.

5. function bottom(na: name; lst: list;

ele: name): boolean;
if it is the last.

6. function related(nal: name, rel: relation;
na2: name; brl, br2: integer):
boolean;

if nal and na2 are related by relation

rel by its respective "branches" brl and
br2.

Value of entity attributes and other cha-

racteristics of entities.

1. function valmetric(na: name; me: metric):
real;

value of attribute me in concrete entity
designated by na.

2. function card(na: name; lst: list):integer;

number of elements in list lst of concrete

entity na.

3. procedure valchrom(na: name; chr:

chromosomne; var ho: homolocs) ;

returns, in variable ho, all the homolog

chromatids for chromosome chr in entity na.

4. procedure valown(na: name; attribute, des-
tination) ;

returns the value of a user defined attri-
bute in variable destination of the ade-
quate type (see section 5 for a brief dis-

cussion on user defined attributes).
5. function valclass(na: name): class;

returns the entity class of concrete en-

tity na.

6. function time(na: name; ev: event): real;
returns the internal time value at which
event ev is tabulated (remember that in

ECOGEN language there is a strong associa-

tion between events and entities).

Chromatid, homolegs and genotype data handling

Given its standard definition, handling of
these genetical types is very easy. But care-
less performing operations like inserting a
new chromatid value into a homologs may be
"dangerous" if programmers do not take care

of things like attribute ploidy. It is prefer-
able to use the following standard:

1. procedure joinchtd(ct: chromatid; i: inte-
ger; var ho: homologs) ;

joins a new homolog chromatid ct in place i

of homologs ho.

2. procedure delechtd(i: integer; var ho: ho-
mologs) ;

deletes chromatid i in homologs ho.

14

Qtiesttié - V. 9, n.o 1 (marg 1985)

3. procedure copychtd(ctl: chromatid;
11, 12: locus, var ct2:

chromatid) ;

a fragment of ctl, from locus 11 to 12
(both included), is assigned on ct2.

4. procedure concchtd(ctl,ct2: chromatid;

var c¢t: chromatid);
concatenation of c¢tl and ct2 in ct.

5. procedure codechtd(s: string; 1ls: integer;

var ct: chromatid);

string s of length ls is codified as a
chromatid value. It is useful on input.

6. procedure codehmlg(s: string; ls:
var ho: homologs) ;

integer,

idem for homologs.

7. procedure codegeno(s: string: ls: integer;
var ge: genotype);)

idem for genotype.

8. procedure bgamete(ge: genotype; var gam:
genotype) ;

9. procedure gamete (ge: genotype; var gam:
genotype) ;

both simulating gametogenesis i.e. genera-
tion of a new gamete (assimilable to a geno-
type with ploidy=1) from genotype ge, by
random segregation an possibly recombination.
bgamete is a more restrictive (and more effi-
cient) version of gamete, specially designed
for the case where ploidy of ge equals 2,

the standard definition of type allele is on
(allele=boolean) and locus value of every
gene in all the chromatid is constant - that
is, there is no possibility of chromosome
structural changes.

Random number generation.

These are the basic resources for random
variate generation. Specific functions for
some discrete and continuous distributions
are described in /6/.

1. function uniform(a,b: real): real;

generating uniformly distributed real
numpbers between a and b, a<b.

2. function rand(il,i2: integer): integer;
generaﬁing a randomly choosen integer

number between il and 12, i11<=i2, both
included.

Simulation control and output

Except tnow and control they are activated
from the control program and from other
standard subprograms, not directly from the

user program.
1. function tnow: real;

internal time value.
2. function tmax: real;

maximum time for current replicate.
3. function numrepli: integer;

current replicate number.
4. function maxrepli: integer;

maximum number of replicates.
5. function advance: boolean:
control program advances time while all the
following conditions hold: tnow is less than
tmax, there are available next scheduled e-
vents and function advance returns true va-
lue. Its standard definition (redefinable
for simulating more complicated conditions)
is

function advance: boolean;

begin

advance := true
end;

6. function replicate: boolean;
control program initiates new replicates

while numrepli is less than or equal to max-

repli and this function returns true value.

15

Qtiestdé -V. 9, n.o 1 (marg 1985)

Its standard definition (redefinable) is

function replicate: boolean;
begin
replicate: = true

end;

recomb(11,12:

chromosome)) : real;

7. function integer;

returns the genetic distance, in recombina-

tion units, between loci 11 and 12 in chro-

mosome ch. When 21 equals zero it corres-
ponds to the segregation probabilities
corresponding to chromosome ch. It is used
from procedure gamete and bgamete. In its
standard form it always returns the value
0.5 that is, no linkage. Redefine it for
simulating other linkage patterns.

The following three procedures have a "null"
standard definition. The user must provide
his own version (if needed)

in every con-

crete application.

8. procedure report;

control program periodically activates
this procedure to give a "report" of
the simulation state.

9. procedure summary;

activated by the control program upon
ending every replicate.

10. procedure initialize;

activated by the control program at the be-
ginning of every replicate for initializa-
tion. Input in different models will proba-
bly be different as well.

11. procedure control (maxre: integer; initim,
maxtim,increport: real; namjob: string) ;

It is the control program, usually activat-
ed in the executive part of main block,

after initialization of general simulation
parameters =-initialize does it for every
specific replicate. The control activation
properly starts simulation. Its parameters
are: maxre {(maximum number of replicates,

it is the value constantly returned by func-
tion maxrepli), initim (internal initial
time value of every replicate), maxtim (maxi
mum time length of every replicate),
increport (internal time increment between
report activations) and namjob (a string

identifymng the job).

5. ECOGEN SYNTAX AND SENTENCES.

5.1 ENTITY DECLARATIVE PART

The profile of the entity classes and other
model components is defined in part entity

of main program declarative part by means

of <standard specification> constructs. The
general syntactical diagram of (standard spe-

cification) is

At a semantic level, the tipe identifier may
be any of the following,
ECOGEN: class, name,

lation,

standard scalar --
event, metric, list, re-

chromosome, gene and allele.

<reference list> defines a set of values of
the previously specified type.The forthcoming
<reference specification> constructs refer
to all elements in that set and characterize
them (names associated to entity classes,
genes associated to chromosomes, range of
real values for metric attributes, etc.).
They must be absent for the name and allele
types.

The syntatical diagram of <reference list >

is

16

Qtiestté - V. 9, n.° 1 (marg 1985)

--------- > refarence —==----===>
(ewemmanaa g $m======<
© et it o e e e i v o e b e e

reference) being defined as:

Forer e et m e e memm e ma AT omesam e em e m ST e s e e ha e

The first two possibilities correspond to
the usual Pascal set constructors. The third
one will be discussed later. It allows using

previously given definitions.

The syntatical diagram of <reference speci-

fication> is

[= e e T mee e et e e L o £ s e £ 8 S 0 e e e ¢ T s e e e)

: ----------- > profile block =--c-==ececcccca > :
: : ------ > list mode ---------->:
: |===-=> relation branches ---->|
: ;--—---> metric ranges —------- l |

(profile block?> is defined as

-

-
! . !
! -==-=> profile start -----> standard vart -----> |
' 1 !
! == < |
! |
! |
! !

1

Se===> OWwn part ——--=- > profile end -===- >

<profile start> may be either (they are equi-
valent) the reserved word profile or a left
parenthesis. <profile end> may be the reserv-

one or more lists. The semantically admissi-
ble possibilities are summarized in the
fields of the record variable proper (see

ed word end or a right parenthesis. section 4). In the own part (only for pro-
file blocks defining classes of entities)
The lists of constant values of other types the user can define entity attributes of any
associated to every element of <reference type, not necessarily standard ECOGEN.
list> are specified in the <standard part>
and in the <own parts>. It would mean things The syntax of <standard part> is
like events, names or chromosomes associated
to given (in <reference lists) entity clas-
ses, admissible allelic states for a given

set of genes or admissible entity classes in

17

Questiié -V. 9, n.o 1 (marg 1985)

. - . e e o < o e m o 3 o s e ey
! !
1) __) f
' | 1 !
b e ———— > standard specification ————==—r——————— >

! I | !
! (oo o e e e ;o i e e e 4]
! !
L - . U U VPSSP |

where <standard specification> has been pre-

viously defined.

When specifying references of a given type,
say T, the construct as

< type identifier s(<constants,{<constant>})
states that all references of tipe T pre-
viously associated to the constants (of the
tipe after as) will be included too.

The syntax of <own part> is:

1
!
H
H
'
i
i
i
i
'
H
H
i

e e e e et e e ey

- ——— = = - =4
- —— —

)
¢

{own gpecificationy id defined as:

e U O
! 1
| =—==) type identifier ——--) type value reference ———==) : —w==) {
| |
' o e e e e e 2 !
! | !
: ym—==3 reference lList —-—-) !

|
Lo nvom e eramenenn -

e e e e et e o e e e en e e e s e ,
| !
e S Q—) type identifier —-—-- S P > !
e oo e e e e e et e e e e ;

associating a specific type of value to the
type of attribute.

The syntax of {list moder is:

:,u_””"“,.m“”~“.nw.m__«___m”um,___u__Mh_m___---_m__,__-m__-__“_-__m"_,
! t
vt me—— > MODE ——wrm- Y CoNStaANt o o o >
{ i [
1 j==) BY ==me— Yy constant —--)|
B I |
t Yo TOQ —mm— > constant ~——->
! |
L. . — et e e At e m i m—aa e e e o 11 e o a4 b« ot e o e 3

18

Qtestié - V. 9, n° 1 (marg 1985)

It only applies to type list standard speci-
fication. The constant following mode may
have any of the possible modejoin type va-
lues. It establishes how concrete entities
will join the list or lists. If its value is
"preceding” or "following" it is necessary
to specify to what other concrete entity,
formerly in the list, by means of the cons-
truct to <constant>, this last constant ha-

ving a type name value. If its value is "in-
creasing" or "decreasing" it is necessary to
specify the corresponding metric attribute,

by means of the construct by <constant>, this

constant having a type metric value.

The syntax of {relation byenches’ is:

class=(larva,pupa,adult);
name={father,mother,partner,son) ;
list=(family) ;
chromosome=(autosome, X} ;
gene=(yellow,white,purple,vestigial);
allele=(wildyellow,mutantyellow,wildwhite,
mutantwhite,Wwildpurple,mutantpurple,
wildvestigial,mutantvesticial);
event=(birth,reproduction,death);

metric=(size,weight);

To specify that:

1. all entity classes share the specified

chromosomes.

e im e mer imemr e e v e e e e W e e o e e e T T T A Y Gy T e e M = e s e s T

-~ = ==
|
1
1
|
|
'
1
'
v
e}
bl
»
2
0
a
|
)
|
[}
|
|
|
v
Q
9
3
2]
o
Y
9
\"

It only applies to type relation standard
specifications, defining how many "branches"
they have, that is, the maximum number of
concrete entities that can be related to a
given concrete entity. The constant mnust

have a non negative integer value.

The syntactic diagram of <metric ranges> is:

Both constants must have a real value. They
respectively specify, for type event or type
metric standard specifications, the range of

possible occurrence times or the range of ad-

missible values.

All the preceding specifications will be
usually made once. If repeated, they must
be equivalent. No assumptions are made by
defect, except for the range values for time
of events (zero to an implementation depen-
dent maximum value) and for the real range
values of metric attributes.

The remainder of this section is an illus-
trative example. Assume the following defi-
nitions:

|

------- > 1

|

[RN |

2. admissible genes in chromosome "autosome"
are "purple" and "vestigial", admissible
genes in chromosome "X" are "white" and
"yellow".

3. "wildyellow" and "mutantyellow" are the
admissible allelic states of gene "yellow"
and so on.

o e i e okt e e et e
[

-===>[--=-> constant ---> , ---> constant --=>] ---> !
: !

N e et b e e e o R e B £ e Y b e o o s e o

4. names "father" to "partner" apply to
"adult" class (that is, are used to de-
signate concrete entities of that class)

n

and "son" to classes "larva" and "pupa"

5. class "adult" has the list
"family".

attribute

6. the admissible "family" elements are of
all classes.

7. they join "family" following the concrete
entity named "mother" (in the moment of
effectivelly joining)

8. "birth" event refers to "larva" and "pupa"
"reproduction to "adult" and "death" to
all classes

9. all entity classes share all metric at-~
tributes

10. their admissible values range from 0 to
1000

19

Qtesttié -V. 9, n.° 1 {(marg 1985)

the following specifications should be made:

entily
clags: Larva,pupa profile
chromosome: autosowne, X;
Yia e AT
@vent Cobhivih,death;
matvic Cosiee,weight [, 1E3]
end; .

class: adult prefile

chromosome: a§ class{larval;
NETLE] o fat Jprarvitn

avent odeath,veproduction;
metyvic : ag classdlarval;
List L Fami by
end ;

Lisgt: family mode following to nother

prafile

class: larva..adult
end;

chromosome: autosome profile
GeEvie s furp b, Ve

end ;

stigial

chromasoms: X pI

ofile
Copurple,vestigial
end ;
gene: vellow prefile
allele: wildyvellow,nutantyellow
end;
{ uging (,) instead of prefile end
gene: white (allele: wildwhite, mutantwhiter;
gene: purple {(allele: wildpurple,mutantpurple)d;
gene: vestigial (allele: wildvestigial,mutantvestigialld;

As an alternative possibility, the "family"

definition can be nested in that or "adult"

entity

A aa
“aa

class: adult profile

List: family
mode following tQ mother
erefile
clasg: larva..adult
end
end;

assume finally the definitions:

tvee
onelabel=packed arrayli..20]
Qf char;
position=record
X,y: real
end;
marking=(marki,mark2);
recollection=(lastvrecollection);

to specify that entities of class adult have
the non standard attributes "markl" and
"mark2 of "marking" type, taking "onelabel"
type values, and the attribute "lastrecol-
lection" of "recollection" type, with "posi-
tion" type values, we should specify at the
end of the class adult profile clock:

20

Qiiesttié - V. 9, n.° 1 (marg 1985)

class: adult profile
Ligt: family
QWD
marking{label): marki,mavrk?;
recollection{position): lastrecollection
gnd;

« ECOG CUTIV TEM

Concrete entity creation and deletion

Tou%manwcmu%ewﬂw,mmm
provides the create statement, with syntax

. e e e et 2 e e e e iy

: ————— > CREATE ---) expression —~--) KIND ---) expression —-——-- b

The first expression must have a name tipe

result. It is the name that will be asso- both expressions must give a name type result.
ciated to the new created entity (until a First expression must designate a concrete en-
forget or delete statement is reached or tity. The second operand gives a new name va-

until this name value being associated to lue to be associated to this preceding con-

another concrete entity, see next sectiéns). crete entity. The first name still remains as

The second expression must have a class a possibility for designating this entity. If

type result. It is the class of the newly . first operand is omitted, name value after by

created concrete entity. : is associated to the last accessed concrete

entity, that one most recently created (cre-
To delete an existing concrete entity, ate) ., chosen (choose) -see next- or that
ECOGEN provides the delete statement, with
very simple syntax

> DELETE -—-~) EeXPression ————ea-. by

e e e e - ———— e e e e i e]

The expression result must be of type name,

the name value designing the concrete entity one associated to the event now activated by
to be eliminated. the control program.
Control of access to concrete entities 2. choose, "chooses" a concrete entity, asso-

ciating it with a name. Its syntax is:
Run time changing of name association to con-
crete entities is possible using the follow-
ing ECOGEN sentences

1. identitx, with syntax

- e e b e e e e e
!

! |
I | I [
! |
! !
L R |

21

Qtiestté - V. 9, n.o 1 (marg 1985)

!
| e » CHOOSE ——mrmreee Y expressign —meme—e- > |
| [
I e e e e e o 1 [4 |
[' . !
I {=> FROM ---) expression —--) IN --=-) expression w—=) modality ~—):
1 | |
1 =% KIND ~=~) expression === -) : :
Lo
| |=> CONTAINING ~--) expression —--=-)> BY =~—-} eXPTession-———-—===- Xt
! [
I y=) RELATING --~) expression —-=) BY —-—-=) expression ---) [
) i [
' ¢ - ——— { {
! l | 1
! y===) BRANCH =--) expression —-——--mm===mmmmess >
! |
! madality ;
1
1 —mwm) MODE -=-) expression —-“~—~~——————————————-—————————;————) 1
| |
: |==—% BRY —--) expression ——=>| |
| I |
: Yyum=3 TO ~=-) expression —=—==) {
|
1

First operand, after choose, must have a name

result. It is the name that will be associated
to the chosen concrete entity -until this name
is used to designate another concrete entity,
for example by means of a posterior identify
sentence.

Reserved words from, kind,
relating specify the choosing modality.

containing and

Using from a concrete entity is chosen from
all belonging to a list (list value resulting
from operand after from) that is an attribute

of another concrete entity, designated by
the name value resulting from expression
after in. How to choose it in the list is

specified by a modechoose type value result-
ing from expression after mode. If this va-
lue is first,

last or atrandom, nothing more

is needed. If this value es maximum or mini-
mum it is necessary to specify a metric at-
tribute (metric value resulting from expres-
sion after EX)' The concrete entity showing
the maximum or minimum value for this attri-
bute will be chosen from the list. If the
corresponding modechoose type value is pre-
ceding or following, it is necessary to spe-
cify to what other concrete entity (also in
the list) the chosen entity is inmediately
preceeding or following. This is specified
by the name value resulting from expression
after to.

Using kind option, a concrete entity is

chosen among all the concrete entities of

[P |

the class specified by the class values re-
sulting from expression after kind. As all
concrete entities of the same class are li-
neraly ordered (in an order strictly deter-

mined by its creation time) forming some-
thing like a list, mode of choosing is spe-

cified as before.

When using option

containing an entity is
chosen that has a list attribute (specified

by the list value returning expression after
by) in which the concrete entity specified
by the name resulting from expression after
containing is contained as an element.
Finally, if option relating is used, the con-
crete entity related to the concrete entity
specified by the name expression after rela-
ting is chosen. The relation is specified by
the relation type resulting expression after
by.
teger expression after branch.

"Branch" number is specified by the in-

3. forget, with syntax

w
N

Questtié -V. 9, no 1 (marg 1985)

e mimua mer e em s ee e e e e b b - o s £ 7o T o o v 9 e O & oy

!

.
I
' meemee- > FORGRET ~==-= > exprassion —----===> |
! !
L

e e s s e ———— s e o i e e o > o 8 o 1o o 1 T am 1om o o o s s]

The association between the name value re-
sulting from the expression and a concrete
entity is overridden. The concrete entity

Still exists but can't be designated by
this name.

Thanging entity attribute values

1. agsian, with syntax

oo m T e ehe e s o = it A £ o 3 e o 22 o 72 e 2 e e e e e e 5 e e 2
! 1
| ====> ASSIGN =--=>TN ----)> expression ----> type identifier ---->|
! 1
| N e D D T T TP P <
t | . |
! >---> expression ----> VALUE ----> expression =----- >

! |
L e ce e e e e e e

- o e e e i = R v - . = - 0 £ - m m e i ot e e o

Assigns value resulting from expression
after keyword value to the attribute of
type (type identifier) (metric, chromosome
or an own defined attribute) designated by
second expression in concrete entity desig-
nated by name value resulting from first
expression. The last expression must give

a real, homologs or an own defined type at-
tribute value corresponding, respectively,
to the result of second expression which
must be a metric, chromosome or an own de-
fined type attribute.

Changing relational attributes

t. iQin, with syntax

WA L e s e e W R e B 4R S L o o S o M AL 7 D S B e e = om o e e ey

=====> JOIN ~~-<> expression -=---> TN --«-> expression =--->

<-=-= -— -<

><===> IR ====)> expression ------>

Adds a new concrete entity designated by
the name value resulting from the first ex-
pression, to the list attribute designated
by the list type resulting second expression,
that was defined as a list attribute for the
concrete entity designated by name expres-
sion after in. Mode of joining is that pre-
viously specified in entity part.

23

Qtiestté -V. 9, n.o 1 (marg 1985)

2, gepar, with syntax

£ m e e e e e e e e s i 4m o s e o e
’ !
F e > SEFAR ----) expression ——--) FROM ----) expression ——-—- >

! [
! o e e 8 <
! | |
! y=www) IN ==-=) expression —-—-—-—-- > 1
! [
L. . e e e m e e = s it s o £ e e e e e 1 o s 1 i o o e o o]

Separates a concrete entity from a given
list. All operands have the same meaning

as before.

3., link, with syntax

T MR e Tn i s e e Arae e e WE T e S v T A 8 15 e T S . .t - T e 1 = o — N L T T

]
! !
1 =====> LINK ~~-=> expression ----> TN ~---> expression ----- > |
1 | '
L e ——————— e e L TP e < !
t | f
! d>====> BY ----> expression ---->
! | !
' L i L e < !
! | |
! >====> BRANCR -=--> expression ---> , ---> expression -~---- > !
1 i
o e o ot rm e e cm e e 1 e - € 8 0 4 0 0 B e e T e . e 0 et e e e o e -d

The first two expressions must give a name
result. They designate two concrete entities
to be related by relation resulting from
third expression. The numbers of relation
"branches" "coming" respectively from
first and second concrete entities are de-
signated by the last two integer expressions.

4. unliok, with gsyntax

[T e ememem e et et e e - ———

< ——— ———

|

|

!

!

] . ’ |
>====> BY ----> expression ---->

|

!

!

!

|

1
|
|
1
i
!
| !
I
!
!
L

>====> BRANCB ---->expresssion ----> , =---> axpression ----->

Performs the inverse operation to that of
link. All operands have the same meaning.

Event control

i. gchedule, with syntax

!
i

mm— m e — = o
A

24

Questsé - V. 9, n° 1 (marg 1985)

First expression must have an event type
result. It is scheduled, that is, it is go-
ing to "happen", at time value specified
that

must evaluate to a real type or compatible

after at by the second expression,

result, in the concrete entity designated
by the name value resulting from the expres-

sion after in.

To try to schedule a still scheduled event
will cause a run time error. Previously use
the following statement:

2. cancel, with syntax

First operand must have an event tyﬁe value
result. Second operand must specify a con-
crete entity name. If the event was schedul-
that

Can-

ed in the events list associated to
concrete entity, it will be removed.
celling non-scheduled events has no effect.

6. AN EXAMPLE

This is a rather artificial example designed
to present a wide variety of ECOGEN elements
without being too complex.

We are interested in simulating a random mat-
dif-
ferentiation. Only one autosomic locus with
two possible alleles (false and true, but

ing, diploid population with no sexual

now we call them A and a for clarity) is stu-
died.

To represent the life cycle of individuals
we assume that population is composed of two
classes of living entities "adult" and "lar-
va", with a chromosome attribute carrying
only one gene with the alleles before men-—
tioned.

Adult entities have a random life time, ge-
nerated from an exponential distribution
with constant mean 4. Once (or never) during
its life time, they enter in a reproductive
state. Time until entering this state is ex-
ponentially distributed with constant mean 2.

If there are not other waiting, reproduc-
tively active adults, the new active adult
joints a group of reproductively active ones,
waiting for sexual reproduction, until it
succeeds in mating or until its associated
event "endofsex" happens. "endofsex" isSche-
duled on entering the reproductively active-
waiting group, with a time increase exponen-
tially distributed with mean 2. When an a-
dult begins its active period, if there are
available active partners (adults that have
previously joined the "active group") mating
can really happen or not, depending on the

boolean function "mating”. In case of suc-
cessful mating, a partner is chosen at ran-
dom from the active‘group, sexual reproduc-
tion occurs and the partner leaves the ac-
tive group. In case of no mating the new ac-
tive adult enters in the active group, as
before. ’
When two adults mate they produce a fixed
number of five new genotypes by sexual re-
production. These genotypes, assimilable to
"eggs" experience some kind of natural se-
lection, a differential viability defined

by the probabilities of survival to "larva":

0.7 for genotype AA
0.9 for genotype Aa or aA
0.6 for genotype aa.

If a newly produced genotype "survives" (a
"success" in the random decision with these
associate probabilities) it produces a new
larva.

Larvae entities can experience only the

event "birth" implying its transformation
in an adult. Time until birth is exponen-
tially distributed with mean 0.5. To
perly simulate the existence of the waiting-

pro-

for-reproduction group of adults, we define
an additional entity class named "group"
with only one representative or concrete
entity, named "reproducers", the concrete

group of all active adults. If for example

25

Questiié -V. 9, n° 1 (marg 1985)

there were differentiated males and females,
perhaps it would be convenient to create
two concrete representatives of this class,
the group of all active males and the group
of all active females. The only attribute
associated to class "group" is the list
"members" .

The initial population is composed of five

larvae all with heterozygotic genotype Aa.

Relevant output is made only at the end of
every replicate, giving a complete in-
ventory of final genotype frequencies. This
is made by an appropiate redefinition of
standard procedure summary. '

- The text of the ECOGEN program corresponding
to this-example can be found in appendix B.
Output from this program is: '

T

! ECOGEN example

[Beginming veplicate 1 at time 9.0

1 ECOGEN example/Replicate: §/Time 2.00
! ECOGEN example

| End of veplicate {1 at time 4.3370

t Genotype frequencies are

t larva:
[

|

|

|

[

1

1

!

homozygotes A/A: O
heterozvgotes Q
homozygotes asa: ©
adult:

homozygotes A/A: 2
heterozygotes : 4

homozygotes a/a: 4

This final output can be reproduced by hand
from:

1. Successive values generated by function
exponential were:

a. For betabirth=0.5 parameter:

0.0136 1.1359 2.0166 0.1246
0.1102 0.1028 1.0150 0.1058
0.4346 0.0645 0.4993 1.0468

b. For betaacti=2 parameter:
2.5451 0.3574 4.3148 0.4083
4.1815 0.0376 4.1043 0.0372
0.6726 0.5702 4.7934 0.3123

0.2972 0.2411 0.0202 0.3015
0.0833 0.0862 0.02621 0.6582

1.1128 0.2332 1.7018 7.5712
0.6941 0.0306 0.4588 2.4794

26

Qtiest#6 - V. 9, n.o 1 (marg 1985)

c. For betadeath=4 parameter:

1.5600 2.6358 2.1229 1.1250 3.3851 6.4905 1.2325 3.9991
3.6652 3.9228 5.4852 8.1943 1.8070 0.1796 2.7943 2.9226

1.2436 1.5714 6.8012 0.9791

d. For betaend=2 parameter:

3.4810 0.9102 1.9619 0.4159 4.7994 1.3462 0.4843 1.5107

2, For the possible crosses, descendant ge-
notypes were

a. Crossing AaxAa (or
AA AA aa Aa aa

b. Crossing AaxAA (or
Aa Aa AA AA Aa

c. Crossing Aaxaa (or
Aa Aa Aa aa aa

AaxaA, aAxaA, aAxAa)
aa AR aa AA Aa Aa Aa Aa Aa

aAxAA, AAxaA, AAxAa)
Aa AA AA Aa AA AA Aa AA AA

aAxaa, aaxaA, aaxAa)

aa aa aa Aa aa Aa aa aa aa

Aa

(obviously, in absence of mutation, AAXAA
always gives AA, aaxaa always gives aa and

Aaxaa always gives Aa)

3. Condition

UNIFORM(0,1) <=fitness[genotzygol[l].CHROM[1J].GEN[1]

gam[1].CHROM[1].GEN[11]]

were (f=false, t=true)

a. for fitness[A,A]=0.7: £t t ftt ftff

b. for fitness[a,Al=fitness[A,al=0.9: t t t t tt t t t f

c. for fitnessfa,al=0.6: f t t f f ftttt

FINAL COMEN

As this paper is only an overview of ECOGEN
language, many questions will still remain
unclear. Interested readers may see /6/ for
a more comprehensive description of ECOGEN.
We are now going to point out some possibly

important questions.

The present version of ECOGEN is an evolu-
tionary product of a first, much more baro-
que and ill-defined ECOGEN project /5/. This

fact has been important in théhpresengrstate
of implementation, as we point out later.
Clearly it still can not be considered a de-
finitive version as it needs some improve-
nments.

One obvious necessary improvement, correspond-
ing to the capital importance of continuous
models in Population Genetics and Evolution-

ary Ecology, is to extend it to allow hand-
ling of continuous or mixed discrete/conti-
nuous models, as has been made, for example,

with GASP-IV language.

Some omissions are deliberate. There is, for
example, the case of random variable generat-
ing functions. As they can be more or less
easily programmed (knowing the overlying --
theory) and improved or adapted to every par-
ticular need (jointly with the possibility

of using very good preexisting packages) we
have left them to be defined in auxiliary
libraries.

Another deliberately ignored point is some
software to adjust additive, dominant and
episthatic values. It will be presented in

the future, as a separate library of auxi-

27

Qtiestté - V. 9, n.° 1 (marg 1985)

liar routines

Implementation will be the subject of a fol-
lowing paper. As a first implementation step
we wrote (in Pascal) a translator program,
from ECOGEN into Pascal. This slow and bulky
program (clearly improvable) was fully run-
ning on an Apple II microcomputer, under --
UCSD-Pascal. We had also begun to do some-
thing similar for the IBM 4341 under VS-CMS.
All this work is now for the most part use-
ECOGEN defi-
nition has been greatly changed. We hope to

less because, as we have seen,
have very soon another working translator.
The job of the ECOGEN into Pascal translator
is, mainly, to analyse the const, and type
parts of rain

block, making grow, in a

stack like fashion, a chained list of re-
cords corresponding to all these definitions.
Using this information it analyzes the spe-
cifications in the entity part of main block,
initializing some standard variables (first-
one, lastone, and other "un-

proper, cod,

accessible" to the user). It also creates an
events routine from simulating clauses. Fi-
nally, it analyses and substitutes the ECO-
GEN executive statements (create, choose,..)
by specific (also unaccesible directly by

the user) Pascal procedure callings.

8. REFERENCES.

/1/ BASELGA, M. and NUEZ, F.: "Simulacién.
Su Contribucién a la Genética”. Mdnogra—
fias de la E.T.S. de Ingenieros Agrdno-
mos. Nim. 1. Universidad Polité&cnica de

Valencia (1975).

/2/ CROSBY, J.L.: "Computer Simulation in Ge-
nitics". J. Wiley (1973).

/3/ FRASER, A. and BURNELL, D.: "Computer Mo-
dels in Genetics". McGraw-Hill (1970).

/4/ JENSEN, K. and WIRTH, N.:

"Pascal User
Manual and Report" Springer-Verlag (1974)

/5/ OCANA, J." The SGEN1 package for simula-
tion in Population Genetics. XIth Inter-
national Biometric Conference.
68. (1982).

Abstracts:

/6/ OCANA,

71/

J., ALONSO, G. and RUIZ DE VILLA,

M.C.: "El Lenguaje ECOGEN de simulacién
genética. Documento preliminar". Publica-
ciones de Bioestadistica y Biomatematica,

num. 15. Universitat de Barcelona, (1984).

ROUGHGARDEN, J.: "Theory of Population
Genetics and Evolutionary Ecology" an
introduction". McMillan. (1979).

28

Qilesttié - V. 9, n.o 1 (marg 1985)

J. APPENDIX A. ECOGEN SYNTAX: CHANGES AN AD-
DITIONS T0O SYNTAX.

The following changes must be made to /4/
appendix D to define the ECOGEN Language:

. Replace (block) definition byy s

{block): :=(label declaration pavt?
Ceongtant definition part)
Ctype definition parts
centity definition parts
Cvariable declavation part}
(ecogen sublocks declavation pavty
(statement part?

2. Replace <{constant) definition by:

{comstantd: i=Cunsigned number > | {sign’<{usignead numbey > |
Cconstant tdentifierd | {signd{constant pdentifiery)
(string|
{ge tic values
{genetic valued::="{(chromatid valued " [{howologs valued" |
"“{genotype valuer®
Cchromatid valued: =¢allele valued{,{(allele value)}
Callele valueX{ <allele values?
{string?
{allele value)::m<ideniifier)l'<chavac1@r>'l
Cungigned integer)|
Chomologs valuey: :={({chyomatid valueX{/<chromatid valued)
Cgenotype valued: :={{chromosomne valuerl<homologs valued
{:[{chvomosome vatueri{homotogs wvalued!|
[{chromosome value>l<homologs value)

{ [{chromosomne valuerl<homologs valuer}
Cchromosome valuedy::=(allele value)

!
|

3. Add the following, between (pointer typed and

{variable
declavation pavty definitions:

{entity definition payty: i=Campty)|
entity{{standavd speciTicationy;}
<standard specification)y: :=
{type identifier): ¢reference List>{({reference specifications)
(reference Listd):i=(referenced{,{reference)}
(reference)::=<consfanf)|<subrange>l<a5 specification)
<5ubrange)::m(consfanf}.a<con51anf>
{as reference): :=gg{type id@nfifier)((constant)(,(constan1>})
{(reference specification): :={(profile block [<list mode)|
refation branches) | (metvic ranges >

(profile block): :=<profile start)

(standard pavt)

(own part?

(profite end)
I <

{profile start): =
(profile end): :=
(standard part):

r=lempty)|
{(standard specificationy{;{(standard specifTication)}
Cown party: :=C{empty)|
oun<own specification>{;{own specification))
{own specificationy: =
{type identifier>{type value referenced : (reference lList)
{type value reference): ={enptyt}| ({type identifier))
(list mode)::=.gde<c0nstanf)l
wRdedconstant? by¢constant?
made{constant) tadconstant>
(relation branchesy: :=hranch {(congtant)
(metric ranges): ={{constant), {constant’]

Qiest¥é - V. 9, ne 1 (marg 1985)

4. Replace definitions of (procedure antt Tung!
to {procedure declarationd, both included,

(ecogen sublocks de
(sublock declavation?

Lion parti: {{sublock

t procedure de
procedure ov Tun:
(ovent procedure declavationr::={event proc
{ecogen sublock?

(event procedure heading’: =
procedure {identifier:
simulating <simulated
coimulated events Listy ={constantr{,{c Lant s}
{ecogen sublock?: ={label declaration pay
{eonstant d aration pavt?
{type definition part?
(vaviable declavation part?

declaration

Lavations;:
iony|
aration?
Jure heading’

vty Listy

(procedure and function declavation part?

(statement pavt?
(procedure and function declaration partl::=
{{y v18
(procedure or function declay {pyrocedurs
CFunction de

{(procedure

Er

5. Replace (simple statement) definition by:

(simple statement)::={assignment statement’|
{procedure statement’|
{go to statement’|
{ecogen statement|
{emply statement:’

function de

tions
o

arationy: ={procedure headingr{ecogen sublock’

b, Between <{empty) and {structured statement’ definitions, add

following:

{ecogen statement): :={(cancel statement)|
{create statement)|
Cidentify statement?|
rdule statement)]
g statement |
Cioin statement?|
{separ statement?|
{link statementl|
{unlink statement?|
{chaose statement’|
{forget statement’|
{delete statement’
(cancel statement)::=cancel {event value’
in (concrete entity name?
(eventl value):: ={expression’
(concrete entity name): : ={expression’
(create statement):: =greate (concrete entity name?
kind <entity class?
Centity class): ={expresgsion’
Cidentify statement): :=jdentify
by (concre
identify (¢
by {concrete entilty name?’
{schedule statement:: : =gchedule {event value)
at <real value?
) in {comevete entity vame
(real valued: i={expression’
¢assign statement): =agsian 1o
{concvete entity named
{type identifier? (destination
value {expression?
(destination attribute): :={expression’

evitity name’|

vt e D raremeE it - = JREN CCONCTETE wirun vy e s
ta < vailue?
in < te entity name?
(lList vatuer: i={expression?
{sapar statement): =gepar {(concrefe entity name;
st o waluer

Clink statement?:

te entity named
Fion valuer <Link wode?
RV
numbar , {hranch mun
12

relation valuer: @ =
{link mode): brancgh <&
thranch number Y todexpye

wrete entity name?

part?

ciarations;}

l

the

attvibuter

30

Qtiesté - V. 9, n.o 1 {mar¢ 1985)

Cunlink statement?: r=ypnlink concrete entity namer
from < entity name:
by {cong ntity name?

=chaose <concrete entity name’
cchoose way)

(choose wayd:t=from {(List value?

in <conore entity namer
wode <modalityi|
kind <entity clags?}
wode <{modality|
containing <concvete entity named
by {ligt value¥]
relating <concrete entity name’
byivelation value’
branch <branch vumber?
Cmodality?y: ={mode choose’|
{(mode choose> hy <{metvic value’|
{mode choose? 1o {(concrete entity name:d

(mode choose’r: ={(gxpression’

Cmetyic valuer: {expression’

{forget statement’ foraet {(concrete entity namer

{delete statement?: =delete <concrete entity name’

{choose statemant’:

APPENDIX B. PROGRAM EXAMPLE .

program exampleloutput);
(M.A........AA..‘..A..¢....A.AA.......AA‘;‘.AA.a....‘.A..‘..‘.,aA.h..‘K’)
(e rnnnasnsc@COgen program example, sinple selection model...oinoasaaa)
(% s ot s s essannassansasssssnmsssncnannasannsnnanassanasnssananisonnssanant]
const
maxloc=1{; (% max. number of loci per chromatid is now 1 %)
hetabirth=0.%; (% omean time until eveat bivih)
betaacti Y (% mean time until event activity #*}
betadeath i (x omean Life time %)
bhetaend ; (# mean time of sexual activity % 3

type class={(adult, lLavva, gvoupl;
name =(newadult, active, pariner, tived, deceased,
inventoried, born, newlarva, rveproducers);
event=(activity, endofsex, death, birth);
list ={membevship);

(K sssnssesnsas defining the profile of nodel elenents ..ooiiacasaas®)
entity class: adult profile

name newadult..inventoried;
event cactivity..death;

chromosome: 1 prafile
aene: 1 prefile
altlele: false,tvye

end
end
end;
class: larva profile
name coinventoried, newlarva;
event obivth;
chromosome: a8 class(adult)
end;

clags: avoup profile
name: veproducers;
List: membership profile
class: adult
end
wode tast
end;
var fitness: arraylalliele, allelel
gf real;

(% i i asnsanssananssanacssnasasanaasasssnnanaaansananansnnsnannnsnas)
function exponentialibetavreal): real;
beain

exponential:
end ;

beta # Induniform(@,i))

QHestd6é -V. 9, n.° 1 (marg 1985)

(it n e aasoaaaaanoaaasaanaaaaanansnanaaasassanasaanassannaaaannansaas I
proacedure initialize;
var i 1..5;
beain
create reproducers kind 9voup;
(% active adults group, init. empty %)
for i:=1 1o % do
beain
create newlarva kind larva;
assign to vnewlavrva chryomesome 1
valug "(i/0)";
(% next bivth of initial Larvae: ¥)
schedule birth
at tnow + exponential(betabirth)
in newlavva
end

end

;s h i nmnn s aaaaaanaaaanasasannsassanaanasanananaaansinananaannass %)

erocedure natal gimulating bivth;
var homol: homologs;
beain
identify by bovrw;
create vewadult kind adult;
(#x genatype of bovn assigned to newadult: =)
assian 1o wewadult chromosome §
value homol;
delete born; (% old larva dessapeavs)
schedule activity
at tnow + exponential(betaacti) in newadult;
schedule death
at tvow + exponential(betadeath) in newadult
end ;

2 2

procedure sexual gimulating activity;

var zygo:t..5;
genonti, agenotl, gawm:genotype;

function mating: boolean;
begin
mating:= not emptyireproducers, membership)
(% all matings succeed if theve ave available partenaives.
write a more restrictive mating function for restricted mating %)
end ;

pracedure succedmat,
beain
chagse partner
from wembevship in reproducevs
gade atrandom
valchraom{active, 1, genotif{il);
valchrom(partner,1, genot2(11);
for zvgo:=1 10 5 do
(% generate 5 offspring %)
begain
(% gamete coming from active initializes genotazygo: *)
hgamete(genoti, genotiyaod;
bygametel(genot?, gam);
if uniformdd, 1)
{
fitnessigenotzygolil.chvomlil.genlil,
gam [il.chvomiil.geniil]
then (% viable %)
beain
(% add gam to genotype of wewlarva to make it diploid %)
joinchtd(gantiil.chvomlil, 2, genotzyqo);
create newlavrva kind larva;
assiagn 1o newlarva chromosome 1
value genotzygolil;
schedule bivth
at tnow + exponential{betabirth) jp newlarva
end
end
end ;

Qtestiié - V. 9, n.o 1 (marg 1985)

beaip (¥ sexual %)
identify by active;
iLf mating then begin
succedmnat;
cancel endo @x in partoer;
separ pavriner from membevship
in rveproducey s

end
glse begin
igin active tg membership
in repvoducers;
schedule endofsex
at tnow + exponentiali{betaend)
in active

end
end;
ki i aa s aataaaanaannaassnsasanaasnssasnasansnanssanaasaanasnaanan ¥
procedure fatigue simulating endofsex;
beain
identify by pariner;
separ paritner from membership in reproducers
end ;
(B i a i amanaaaanaaannanaanssnasaanssssassasansasansasannaaaasnssnnans #7
proceduce funebre simulating death;
beain
identify by deceased;
delete deceased
end;
L N 3

procedure summary;

var allf, all2:allele;
h homologs;

frec arraylalilele,allele]l @f inteqer;
erocedure inifrec;
beain
for alli:=false tg true
do

for all2:= false tg true
do freclalli,all2):=0
end ;

proacedure countfrec;
begin
abli:=h.chvomfil.geniil;
ati2:sh.chroml2l.oeniil;
freclalli,all2) =freclalii,alld] + i
end ;

procedure displayv(clage: class);
begin
inifrec;
writeln(output,cod.clafclasel, ")
choose inventoried kind classe
made first;
while exists(inventoried)
do
heain
valchryom(inventoried, 1, h);
countfrec;
choase inventoried kind classe
wade following ta inventoried

end;
writetn(output, ' homozygotes 1/1: ', frecitrue, truel);
writein(output,’ heterozygotes ', frecltrue, false]
tfreclfalse, tvruel);
writeln{output, " homozygotes 00 ', freclfalse, falsel)
end;
begin

writeln(output, namjob);

writeln(output, 'end of veplicat yrnwmrepli, ' oat time ', tnowd;
writelnl(output, 'genotype frequencies are ');

display(lavva);

displayCadult)
end;

Qtesttié -V. 9, n° 1 (marg 1985)

fitnesslfalse, fal
control (4, Of number
G, (® initial time
4, (% and duvation %)
2, (% partial results peviodicity (re
@ Exanp)

veplicate =)

end.

o

34

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

