ON D1AGONALLY PRECONDITIONING THE 2-STEPS BFGS METHOD
WITH A CCUMULATED STEPS FOR SUPRA-SCALE LINEARLY CONSTRAINED
NONLINEAR PROGRAMMING
L. F. ESCUDERO

We present an algorithm for supra-scale linearly constrained nonlinear programming (LCNP) ba-
sed on the Limited-Storage Quasi-Newton's method. In large-scale programming solving the redu
ced Newton equation at each iteration can be expensive and may not be justified when far from
a local solution; besides, the amount of storage required by the veduced Hessian matrixz, and

even the computing time for its Quasi-Newton approxzimation, may be prohibitive. An altermati-
ve based on the reduced Truncated-Newton methodology, that has been proved to be satisfactory
for super-scale problems, is not recommended for supra-scale problems since it requires an

additional gradient evaluation and the solving of two systems of linear equations per each mi
nor iteration. It is recommended a 2-steps BFGS approximation of the inverse of the reduced -
Hessian matrixz such that it does not require to store any matriz since the product matric--
vector Zs the vector to be approzimated; it uses the reduced gradient and solution related to
the two previous iterations and the so-termed restart iteration. A diagonal direct BFGS pre--

conditioning is used.

1. INTRODUCTION.

Consider the unconstrained nonlinear program
ming (UNP) problem

minimize {F(X) X<R"} (1.1)

where F(X) is a nonlinear function with the
following properties: F(X) is, at least, --
2-continuously differentiable; for all X'eR"
the level sets L(X')A{X:F(X)<F(X')} are bound
ed.

Let ¥ denote a weak local minimum in (1.1) ;-
that is, % is a point for which
that F(X) <F(X)  X:

§>0 such --
[| x-%1| <. (Point X will
be a strong local minimum if the above rela-
tion is a strict inequality for X#§). A first
order necessary condition for ﬁ is that —-==---
g(§)=0, where g(ﬁ)zé

of F(X) evaluated at X. A sufficient condi--

is the gradient vector

tion for X be a weak local minimum is that -
§=O and G(ﬁ) is positive definite (pd), whe-
re G(ﬁ)Eé is the Hessian matrix of F(X) eva-
luated at ﬁ; note that a second-order neces-
sary condition for X is that & be a positive

semi-definite.
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One of the most traditional methods for obtain
ning % is the Newton method; given an initial

(0)

estimation X it computes a sequence of ---

stepdirections {d(k)} such that at iteration k
it solves the linear system

G(k-l)d(k) _ _g(k-l) (1.2)
and iterates X(k) as follows

x ko=l ) g (k) (1.3)
where a(k) is the steplength at iteration k,

such that F(X) is minimized along direction -
d(k)
’

(k)

o =arg min{F(X(k_L

+ad(k)): a>0} (1.4)
We will refer to (1.3) as the Newton equation

and d(k)

as the Newton direction.

Problem (1.4) is termed exact linesearch; sol

ving (1.4) is as difficult as solving (1.1);

alternatively, the so-termed approximate line

search methods are used such that for a direc-

tion descent enough, that is
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where € is a positive small tolerance that -
avoids the quasi-orthogonality between the -
gradient and the direction, the algorithm is

(X

globally convergent if o produces a strong
enough reduction in F(X) and, specifically, -
if the conditions GPW /16/, /24/ are satisfi-

ed:

(i) |g(x(k‘1)+-a(k)d(k))td(k)| <

< -ng(x(k‘l))td(k) (1.6)

or, alternatively /15/, if the calculation of

the gradient is expensive,
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(k)

o -V

¢ —np(x(k=1) 4t 4 (K) (1.7)

where v is a scalar such that O£v<u(k), and -
0<n<l. Note that satisfying (1.6) for n=0, --
also satisfies (1.4).

(ii) Fx(-1), Fx( Dy G g (k)

> a0 g (g (k=1)E 4 ()

(1.8)

for 0<u<0.5. Typically, n=0.9 and u=10E-04 =--
such that i1f ps<n 3Jo that satisfies condi----
tions GPW. Conditions (1.6) y (1.7) avoid ---
a(k) be excessively small; condition (1.8) --

avoids it be excessively large.

Newton method is important because if provi--
des a standard with which to compare alterna-
te methods for solving (1.1). Its positive --
and negative aspects are very well known. —---
Briefly, its advantage is that the algorithm
is locally and quadratically convergent; note
k)

that a sequence {X( }is said to converge to

i with a rate r if
[xCR+1) g |
r

0 < lim———m——— =g«

) g ||T

The rate of convergence is linear if r=1 (for
0<B<1) and quadratic if r=2. The convergence
is Q-superlinear if B=0 and r=1; the type r -
for which B8>0 is finite defines the order of
this convergence (see e.g. /12/ for most of

the concepts used in this work).

The inconveniences of the Newton method are -

significant; they are as follows:
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(1) The method is not globally convergent -

(k)

for a =1; that is, g(k)#o for koo if

X(O) is not close enough to %.

(ii) There is not solution in (1.2) if g™

is singular.

(iii) For convex problems, G(k_l)is not neces-

k)

sarily pd and, then, d( is not guaran-

teed to be descent.
(k-1)

(iv) In any case, the Hessian G must be

evaluated and a n-dimensional linear --

system (1.2) must be solved at each ite-
ration k.

In sec. 2 we review the main alternate me---

thods for solving the Newton equation and mo-
tivate the 2-steps BFGS method. In sec. 3 we

describe the skeletal algorithm for this me-

thod. Sec. 4 briefly reviews the LCNP problem.
Sec. 5 describes the framework of a given al-
gorithm where the Preconditioned Reduced 2---
steps BFGS method with accumulated step is --
been used. Sec. 6 is devoted to some algorith
mic refinements. And, finally, sec. 7 reports

some numerical results.

2.MOTIVATION FOR THE 2-STEPS BFGS METHOD WITH
ACCUMULATED STEP.

The main alternates to Newton method are as -

follows.

2 UASI- oN (QN)_METHODS /4/,

They are the most reliable methods such that,

by calculating the symmetric positive-defini~

te (spd) approximation, say gk~

G(k—l)

of matrix

and using conditions GPW, the Newton -
difficulties may all be overcome with the ex-
ception of (iv); their rate of convergence is
Q-superlinear. For non-small problems, their

using is prohibitive, at least, with today --
computer capabilities.

It is well known that the Broyden QN methods

and, specifically, the BFGS approximation =~--
B(k_l), have been proved to be the QN methods

with the best performance. It is also well -

(k-1) of -

is more unstable than
(k-1) of glk-1)

known that the BFGS apgroximation T
. \ (k-1)~
inverse matrix G
the BFGS approximation B

(xk-1)"1

. (Note

that B is not necessarily T(k—l)).
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p (1) | (k=2)

t _ - - _1zt
plk=Dy (-1)p (k=2) | g (k=2) (k1) (k-1)

p (k=D k-1)
y(k-l)tT(k-z)y<k-1)\p<k-1>p(k—l)t

+ (1 +
t t
‘ pGeDEy G [y GeD)y el
(2.1)
where p(k_l)Ea(k_l)d(k_l)EX(k_l)-X(k_z) and
k-1)_ (k-1 k-2).
g (D) oy (k1) (k=2)
t - ~1)t
y (1) (k) g (1) gli-1)
p(0) o plk-1) 4 +
t t
pIOF L) 4T (k-1)
(2.2)
Note that T(k) and B(k) are, at least theore
tically, pd provided that T(k_l) a%d B(k—l)—
are also pd, respectively and p(k) v (K >0;-

then, d(m

is descent. The BFGS updates are
also symmetric pd (spd); satisfy the Quasi--
Newton condition; and under mild conditions
it can be proved that the path {X(k)}+ﬁ, k>0
is globally convergent with a Q-superlinear -
rate provided that T(O) is spd and conditions

GPW are satisfied.

ON methods are used with satisfactory results
in constrained nonlinear programming when the
number BS of superbasic variables (see /18/ -
for the definition) is, say nSSBOO. See /5/,

/19/, /21/ among others for the nonlinear ---
constrained case and /7/, /18/ for the linear

ly constrained (LCNP) case.

2.2, CONJUGATE-GRADIENT {CG) METHODS /13/.

This type of methods does not use the Hessian

G(k_l), nor its approximation B(k_l).

)

The ---
is obtained by using the -
negative of the gradient g(k_l)

stepdirection d(k
and adding --
the 'correction' of a multiple of the previ--
ous stepdirection. The directions are conjuga
te provided that F(X) is quadratic and the --
steplength is obtained with an exact line----
search; it has the quadratic termination pro-
perty, such that the number of iterations to

obtain ¥ is mo<n, where M is the number of -

distinct eigenvalues of Hessian matrix G. It
may be preconditioned with an spd matrix, ---
such that the number of distinct eigenvalues
of the new matrix is reduced. It is based on
the CG method introduced in /17/ for solving

systems of linear equations (i.e., the Newton
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equation (1.2)).The stepdirection can be ex-

pressed
F1CO - _g(r—l) for r=1l,n+l,...,in+l (2.3)
ak) = g1y B(k)d(k-l)

for k=2,...,n,n+2,...,in, ... (2.4)
where
g) =y D g1 /(e g (D) (2.5)

If F(X) is a general nonlinear function, a -
second correction (a multiple of the so-ter-
med restart direction /2/) is usually added

to the formula for d(k); in any case, its ra

te of convergence is guasi linear, but till
very recently there were not other methods -

to cope with supra-scale problems (say,

n>600). The stepdirection can be expressed
an - _g(O) (2.6)
At o (r) 4 gD ()

for r=1,n,2ny-"ain (2'7)
4k o —g(k-1) 4 B(k) d(k-1)+ Y(k) d(r) (2.8)
for k=3,...,n, n+2,...,2n,...,in+2,...,(i+1)n
where B(r+l) and B(k) can be expressed by --

(2.5) and, similarly,
LB =y (® e ka1) ()t (2)
(%) to be --

descent for n>0; it is regquired to add a new

Conditions GPW do not guarantee d

condition to be satisfied while obtaining ---
a(k_l) so that additional gradient evalua----

tions are needed /9/, /13/.

CG methods for LCNP are used in /1/, /18/ ---

among others. Due to the restriction to be im
(k-1) (k—l)d(k—l)

is not only descent, but also feasible, it --

posed on o such that step o

happens very frecuently that conditions GPW -
and the additional mentioned above are not sa

tisfied; in this case, let o'K7%)

be feasible
and descent (although, not descent enough) --
and reset r=k and d(k)=—g(k-l) and hence, the
information obtained from previous iterations
is lost. See in /9/, /13/ critical revisions
of CG-based methods when applied to LCNP pro-
blems.

2,3, INEXACT-NEWTON (IN) METHODS /3/.

Since the benefits of the Newton direction --
are mainly local (i.e., in the vecinity of ﬁ)
there appears to be no justification for ex--
pending the effort required to get an accura-

te solution to equation (1.2) when far from
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*
local optimum X. It makes sense to give an

(k)

inexact solution d to that equation, in-

creasing the accuracy when getting close to
*

X, provided that storage and computation --
are reduced; a scale independent measure of

this accuracy is the relative residual error

(k) = lle(k)Hz /||g(k'1)||2 (2.10)

(k)

where e is the residual error vector when

solving equation (1.2) with the given accura
cy at iteration k, such that it can be writ-

ten

e(®) o pl-1) 4 (k) , ,(k-1) (2.11)

(k-1) (k-1)

where B is the approximation of G .

IN methods solve Newton equation (1.2) at --

each major iteration k, producing a stepdi--

(k) (k)<n(k)

rection 4 such that condition r

(k)

is satisfied, where 1 is the given tole—-

rance in the accuracy. They have the follo--
wing properties:

(i) Global convergence if lim n(k)

(k) satisfies conditions GPW;

=0 for --
k->» and a
the rate of convergence is superlinear

depending on n(k).

(k)

(ii) Stepdirection d is always descent, -
even when the eguation solving is abrup

ly interrupted.

(iii) Then there is always solution to equa-
tion (1.2).

(iv) Hessian matrix G(k—l)

alone is not re--
guired to be evaluated, nor approxima--

ted.

The CG method to solve systems of linear ---
equations introduced in /17/ obtains d(k) by
iteratively solving (1.2); at each iteration,
say i1 a stepdirection d(i) is obtained so --
that ”e(i)H2 < ”e(i'l)Hz , where e(i)is defi
ned in (2.11). A so-termed Truncated-Newton

(TN) method, a IN method, 'truncates' the se

quence of iterations {i} once the given accu
racy is obtained. Let 'major iteration' k de
note the calculation of steplength u(k) along

a given d(k) and the computation of g(k)

50

and
Major iterations are used to modify the
algorithm so as to control its global beha--
vior; they play a significant role in early

stages of the computation. Let 'minor itera-

tion' i at iteration k denote a given itera-

Qitestié - V. 6, n.° 4 (desembre 1982)

tion for an iterative solving of Newton or

Quasi-Newton equation (1.2) so that
(k)

stepdi-
rection d is obtained; they are important
when close to § since, in its vecinity, ----
a(k)=1 satisfies conditions GPW and the algo
rithm possesses the same asymtotic rate of -
convergence as Newton method. Note that for
n(k) large enough, the TN method is the same
CG method since iteration i=1 satisfies ----
(i)sn(k) vk; for n(k)=0 the TN method is --
the same Newton (or QN) method since the ---
It sha--

res the rate of convergence of the Newton --

r
equation solving is not truncated.

methodology, but it does not require to sto

rage the Hessian matrix G(k—l), nor its ap--
proximation B(k—l);
duct G(k_l)ﬁ(l)
(1)

it only needs the pro---
(or its approximation), whe-
re § is the "'minor' stepdirection at ite-
ration i. Therefore, there is a direct trade-
off between the amount of work required to -
compute a stepdirection and the accuracy with
which the Newton equation is solved. This me-
thod, 'intermediate' between CG and Newton -
methodologies, has been used satisfactorily
/11/ for solving super-scale problems (say,
300<n<600 for UNP and 300<ng<600 for LCNP) -

with sparse matrices.

The drawback of the TN method when applied -
to UNP supra-scale problems whose Hessian ma
trix has not a very special structure, con--
sists in that the additional evaluation that
is required for the gradient at each minor -
iteration 1 to approximate G(k_l)d(i) may be
prohibitive. For LCNP prob ems this inconve-
nience is much stronger since, besides this

evaluation (although restricted to the basic-
superbasic set of variables, see sec. 5), --
the solving of two systems of linear equa--—-

tions with the basic matrix is required.

2.4, LIMITED-STORAGE QUASI-NEWTON (LSQN) ---
METHODS /20/.

The BFGS ON stepdirection with exact line
search may be interpreted as a CG stepdirec-
tion for which the approximation of the ----

- -1
(k-1) , instead of being -

Hessian inverse G
fixed (to the identity matrix in the tradi--
tional CG) is updated at each iteration by -
any member of the Broyden QN methods. This -
interpretation is of value because it motiva
tes techniques for using limited storage to

improve the CG method performance.
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Based on the above remark , a new class of -
such that the Broyden -

(and, speciall{, the BFGS approxi
(k-1)~

methods is proposed,
QN updates
mation)

of matrix G use only the last

m updates of the previous iterations; for --
m=1 the m-steps LSQN stepdirection is a CG -
stepdirection (provided the BFGS formula is

used, the previous inverse matrix is the ---
identity and an exact linesearch is used), -

and for m=k-1 it is a QN stepdirection.

- -1)-1
Note that the QN update T(k 1) of G(k 1 -

is not required to be stored, since the step
(k) =_T(k—1)g(k—1) (1.2)

obtained from a seguence of linear combina--

direction d may be -
tions of vectors that are computed by using
the already available information: point ---
X(J) and gradient g(j) ..k-1,
such that

plem) Gy _

for j=k-m-1,.

= 1efr D D), kem-1) | Gem) | (kem))
plk-mt1) g (k=)

= 1efr(m) (k1) | pleom) o (komtl) 7 (kemt1)y

T(k—l)g(k—l) =

c 1o D e (kD) (1) (D)

}
where T(k_m_1)=I; note that T(j_l)y(j) for -
j=k-1,...,k-m+1 is obtained following the sa

me procedure used for T(J_l)g(k—l). The pro-
cedure does not require a great amount of --
storage for reasonable values of m

2=<ms<4)

(say, ---
(see sec. 3), although it could be ti
me consuming; it is more unstable than using
81 but it is prohibitive with Limited -

Storage.

LSQN methods have some of the properties of

ON methods: matrix T K71

is spd (if condi-=~
tions GPW are satisfied), the Quasi-Newton -
condition is satisfied, and the path {X(k)}+§,
k>~ is globally convergent with a superli--
near rate. For large values of m these me---
thods have a good rate of superlinear conver
gence, but the needs for storage and computa
tion are not meaningless; for m=2 there is a
good balance between storage and computation

to be required and rate of convergence.

A 2-steps LS method has been suggested in --
/22/ for UNP and used in /23/ for LCNP. It -
uses information from the last two iterations

and the restart iteration. It may be viewed
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as an extension of the CG method with restart
direction that has some of the QN properties.
Better results are obtained /13/ with a 2----
steps BFGS method, where the initial matrix I
is diagonally-BFGS preconditioned and the ---

(k-2) _X(r)

accumulated step X is used such --

that r is the restart iteration.

The advantages of LSQN methods over CG me----
thods are basically, as follows: (a) the step
direction is descent provided conditions GPW
then,

evaluations are not required in the approxima

are satisfied and, additional gradient

te linesearch; and (b) the rate of convergen-
ce is much better, even for m=2 where the re-
quired storage is still small. Although the -
convergence 1is slower than when using QN me--
thods, today there are not other methods to -

cope with supra-scale problems (say, n>600).

The additional advantage of LSQN methods over

CG methods in LCNP is that, since they do not

require any additional condition to condi----

tions GPW to guarantee that the superbasic --
(k)
S

that it is not to be restarted as -h

stepdirection, say 4 it results

(k-1)

is descent,
(ne

gative of the reduced gradient, see sec. 4);

the reason is that there is more room for a

steplength u(k_l) that produces a feasible--

descent step, being feasible since it must

be a(k_l)su(k_l) (where u(k_l)
m m

bound that guarantees that the bounds on --

is the upper

variables and constraints are not violated)-
and descent enough
fy conditions GPW. If there is not such a va
%=1) that ve as des

(it will be aék_l)

since it must only satis

lue, obtain a feasible o
cent as possible unless -
the -

LSON matrix if it is not pd; note that condi

for pathological cases), and 'correct'

tions GPW guarantee that the matrix is pd so
that the stepdirection is descent. Today, —-
there are not other methods to be used for -
getting practical results when the number ES
of superbasic variables at each iteration is,

say ﬁs>600 (supra-scale problems) .

3, THE DIAGONALLY-PRECONDITIONED 2-STEPS BFGS
METHOD WITH ACCUMULATED STEP.

3.1, 2-STEPS BFGS.

Based on sec. 2 it is clear that the LSQN me
thods (and, the 2-steps BFGS -

method) are the most practical approaches --

specifically,



for supra-scale problems without special ---
structure. For m=2 and assuming that ------- ‘

o (k=3)

=W, where WEW_l is a given diagonal ma

trix (usually, W=I), the computation of ---
d(k) = —T(k_l)g(k—l) that saves amount of --
storage and computing time, similarly to /22/
is as follows; see (2.1). (Note W is introdu

ced (see sec. 3.3) to be coherent with /11/).
d(k) _ _T(k-l)g(k-l)

t
p(k-D g(k-l)

- T(k-Z)y(k—l)
p(k-l) y(k-l)
y<k-1)tT(k—Z)y(k—l)\f(k-l)tggk—l)

o q(eD (e D)

- 1+

ple=1)F y(k-1) /;<k—1)t y (k=1)
yle=DE (k=2) (k1)

- pk-1)
p(e=1) 5y (k-1) (3.1)
where T(k_z)g(k_l) and T(k_z)y(k_l) can be -
written
T(k_z)a
1__)ta ?’t\i= ;ta yt g
S r— —_ ;
'y L 'y /3% 3%
(3.2)
where EEX(k_z)—X(k—3), ;Eg(k—Z)_ (k—3); vec-
tor a may represent g(k_l) and y(k—l), alter
natively. Assuming that matrix W is diagonal,
storage must be provided for d(k), X(j) and
g9 for y=x-1, k-2, k-3, Wy, wg &), —cen
T(k—2)g(k—l), wy(k—l) and T(k-2)y(k—1)_ If -
intermediate computations are performed as

it is described in algorithm Al (see below),
only the intermediate vector UO, the six —---
imput vectors (X's and g's), vector W and --
the output vector d(k)

since §=g(k—2)—g(k_3)

are required; but, --
will not be required -
after step (3) is executed, vector UO can be

stored (temporarily) in g(k—3)

and, then, --
only seven vectors will be needed besides --

vector W.
SKELETAL ALGORITHM Al
(1) Al:= 35
A2:= FLu§
A3:= Ety(k"l)

abi= y(-Dfy5
A5:= prglk-1)
A6:= g(k‘l)tﬂ;
A7:= p(k-DEg(k-1)
Ag:ie p(k=DEy (ko)
(2) All:= (1+A2/A1)A3/A1 - A4/AL
Al2:= (1+A2/A1)A5/A1l - A6/Al
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(3) v0:= wy(k-1 _ (A3/A1)Wy + Allp
d®) o we(k-D) L as/al)uS + Al25

(4) A9:= y(k=Dyq
AlO:= g(k‘DtUO

(5) Al3:= (1+A9/A8)A7/A8 - ALO/AS

(6) a9 1= a0 4 (a7/a8)v0 - A13p(k-1)

3,2, ACCUMULATED STEP,

See in /9/, /13/ critical revisions on the -
CG method with restart direction; see sec. -
2.2. The major contribution of this methodo-

logy could be the expression of the stepdi--
(k)

rection d as a linear combination of the

gradient (whose weight is -1) of the last --

iteration and the stepdirection of previous

iterations such that the weights are B(k)

(k)

for
the last iteration, ¥y for the so-termed -
restart iteration, and zero for the rest; see

(2.8).

It is clear that it is useful to compute a -
stepdirection incorporating information from
past iterations, provided that the storage -
is not strongly increased. It is suggested -
/13/ the following procedure; after a sequen
ce (so-termed a cycle) of iterations it ma--
kes sense to consider that a given point has
been reached taking only one step along the

direction represented by the difference bet-
ween the point and the solution reached at -
the completion of the so-termed restart ite-
ration, say r of the current cycle; a ratio-
nale for this hypothesis :on:ists in avoid--
ing the very frequent case of very small su-
@3a3 1 when a3 is obtai-
ned by using CG methods. It is assumed that,

cessive steps

once point X(k_l) is reached, the stepdirec-
tion d(k) will not suffer of the zigzagging

phenomenon due to using information from ---
iterations k-1 and k-2 (X's and g's), provi-
ded that formula (2.4) is substituted by a -
2-steps BFGS-based formula (3.1)-(3.2), ----
where ; and ; accumulate information from --

jterations r,r+l,...,k-2 such that

r+l1
= x(k=-2) _ x(r) = Z

il

p(j) (3.3)
jok-2

r+l
B e DI €O B I € D

j=k-2

(3.4)

<l
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Formulation (3.1)-(3.4) will be termed
2BFGSA.

Better results could be obtained by using a
m-steps BFGS formula where m=k-1l-r; note —--
that the same information is used: X(j) and
g(j) for j=r,...,k-1; but it is time consum

ing. It could be expected that step
X(k—2)_x(r) could be a good direction of --
descent since a substantial reduction in --
F(X) must have already occurred; otherwise,
a new cycle starts with iteration k-1 as --

the restart iteration.

Let 93 be a positive tolerance to determine
when a new cycle must begin. At iteration -
k=0, 93:=6l where 91 is a given tolerance.
It makes sense to consider that a new cycle
starts if the reduction in F(X) during itera
tion k (i.e., F(k_l)-F(k)) is not greater -
than the fraction 63 of the reduction achie
ved during the current cycle, say
F(r+l)—F(k)).In that case, the va-

lue of 93 for the new cycle c+1 will be lar

c (i.e.,

ger or smaller than the value of the pre---
vious one, depending on the reduction in -=-
F(X) achieved in the last iteration, say --
r+l of the previous cycle, say c-1 (i.e., -
pFl_p(r*D)y hen it is compared with the -
reduction achieved during the first itera--
tion of the current cycle ¢ (i.e., ———~=——-
F(r*l)—F(r+2)). If the difference is signi-
ficantly large (resp. small) then the new -
value of 93 will be smaller (resp.larger) -
since it is assumed that future reductions

will be smaller (resp. larger); otherwise -

93 is unchanged. The procedure is as follows.

SKE ALGORITHM

(0) Data: x(0)

(1) k:=1
d(l):=—g(0)
obtain (1), x(1),2x(0) 4 (1) 4(1)

F(l) and g(l).

(2) k:=k+l

g(0) | % i=9,, r=k=0.

(3) Obtain a(k) ,
Use method 1-BFGS, formula (3.1) for k=2.
Use method 2BFGSA for k>2; note that for
k=3 it is the usual 2-BFGS,
Obtain &k), x(k), F) 4n4 g(k) |
If k=2+r, go to (2)
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() 1£ plk-D —F(k)>83 (FHD g0y - oh o (2)

(3.5)
(5) If F(r) 'F(r+1)>62(F(r+l)-F(r+2)), 63 :=1/92

(3.6)
1¢ p(0) -F(r+l)ﬁl/62 (F(r+l)_F(r+2)) , 8

3176
(3.7)
(6) r:=k-1, go to (2)

Note that F(j)is the value of the objective
function on completion of iteration j; when
the conditions for the restart procedure --
are satisfied, the restart iteration r of -
the new cycle c+1 is the previous iteration
(k-1) to the last iteration (k) of cycle c.
Typical values /13/, 91=0.Ol and 62=2. Note
that algorithm Al could be used in step (3)
of algorithm A2 to obtain d(k) for k»>2, pro
vided that E and ; are expressed by (3.3) -
and (3.4), respectively. In that case, sin-

(k=2)

ce g is not required after the step (3)

of algorithm Al is executed, vector U0 can be

stored (temporarily) in g(k—2)

and, then, -
only seven vectors are required besides vec

tor W.

3.3, PRECONDITIONING.

We have stated that the number of iterations
to obtain ¥ is m.sn if F(X) is quadratic, G
is pd, the directions are conjugate and the

steplength satisfies (1.4). So, the number

of iterations will be reduced if the origi--
nal problem is substituted by other equiva--
lent problem where Mp<Ms s being R the new -

Hessian matrix.

Let W be an spd matrix. The solution d to --
system (1.2): §d=—§ (and, then, the solution
to the related unconstrained guadratic pro--

blem) can be obtained by solving system

-

w12 Ew_l/zdw (3.8)

-1/2 -1/2

such that a=w_l/23 . Let R=W GW and,
-1/2=1/2_ %1

then, W RW =W "G. It can be shown /14/

1&. So,

a target could be to precondition G with a -

that R has the same eigenvalues as W

matrix W_l, such that matrix W—lG has a great
number of eigenvalues close to unity. Since -
the condition number « of a matrix can be ex-
pressed as |

where A and ---
max

maxl/|xminl’
Amin are the largest and smallest eigenvalues
respectively, it results that smaller K, ===

greater probability of more (normalized) ---
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eigenvalues close to unity.

Once a suitable matrix W is identified, the

CG formula (2.4) could be used to obtain the
solution aw, where g =W_1/2§ and, then, ----
§W=W_l/2§; such that §=W_l/2§w. Matrix W_l/2
is unstable; it is not required to be used,

but W 'g whose computation is more stable if
W is diagonal or, at least, W is LU-factori-
zed. Matrix W may be identified in several -
ways /11/; usually, it is updated at each --
iteration k.

A simple preconditioning that is given good
results consists in assigning W:=§(k‘l),
5 (k-1)

where B is the diagonal of the BFGS ma-

trix (2.2) B(k-l) such that E(0)=I and

5(k)
BZ =
1 ) 1 ,
=(k-
B% no, - yék) ¥ glk=1)
y ()7 00 gk-1 T (k) 7 (3.9)
for £=1,..

.,n and k»1. Note that EK is the -
(£,£2)-th element of matrix B. The new matrix
W requires small storage; it is very stable

since:

It _
(a) 1f y(k D p(k_l) 582 or HBék_l)SEQ,

E(k-l) is not guarantee to be pd; in this

case, the matrix is not updated. g, is a
small positive tolerance; typically, ----
€2=10E—04. Note that the previous update
is always pd.
(b) If the condition number k of E(k—l) is -
large, e.g., K>Km where Km=l/(100nl/2eM),
€M is the machine precision (in our case,
10E-15) and
K = maxﬁ(k—l)/minﬁ(k—l)
&) &)
5 (k=1)
By

(3.10)

is substituted/14/ b = (k-1)"
Yy B, ve,
where w=1ogKm /logk.

4. LINEARLY COMSTRAINED NONLINEAR PROGRAMMING
(LCNP)

4,1, INTRODUCTION.

The LCNP problem is

minimize {F(X) XeFc<R"} (4.1)
where
F 4 {X|b2AX2b, U2X21} (4.2)
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where A is an m.n matrix, m<n, and F(X) is a
general nonlinear twice continuously diffe--—
rentiable function, at least, for feasible -

points such that for all Xe¢F the level sets

L(X)A{XeF, F(X)<F(X)} {4.3)

are bounded. Let M be the set of constraints,E
the set of equality constraints (such that -
i€E if Bi:éi); and J the set of variables. -
Let A be the t.n matrix of active constraints
at a local optimal point, say b and b the —-—-
t-vector of right-hand-side corresponding to
A (i.e., iﬁ=ﬁ), such that §=IWI where W is --
the set of active constraints and §i=5iv§i -
for ieW. Let ¥ be the set of active variables
at X, such that je¥ if £.=u.vi. ang £=I¥]. --
Let I be the ¥.n matrix gf gctive bounds at X
such that it is the n.n identity matrix I ---
from where the row related to variable jé§ --
has been deleted.

Note that AX-Y=b, b-bzY20+«+b2AX>b; then ielW -
for §,=0v5,—bi. The X-variables are termed --
i i =

structural; the Y-variables are termed slack.

Because the constraints are a linear system,

the properties of linear subspaces make it --
possible to state a simple characterization

of all feasible moves from a feasible point.

Consider the move between two feasible points
% anda X along the manifold defined by sets W

and ¥; by linearity A(%-X)=0 anda 1 (¥-%)=0 ---
since £§=E, ﬁi=ﬁ and §j=ij vje§ and, then,

Ra=0, fa=0 (4.4)

where d is the stepdirection from % to X such
which (4.4) --
holds is a feasible stepdirection from X with

respect to the above manifold; it is also ter

that X=X+ad. Any vector 4 for

med active stepdirection; it will be descent

if F(X)<F(X). Steplength o is required to be
0<asam, where on defines the maximum allowed

steplength such that X is still feasible.

Let us define a non-active stepdirection 4 -

as the feasible stepdirection such that some
constraint or bound is removed from sets W --
and 6, respectively; a feasible stepdirection
d is non-active if 3ieM-EnW for which A;d>0 -
N * - . * - _ . X e
if Yi—O, Aid<0 if Yi—bi gi, or 3jeV for
which d.>0 if %.=1., d4.<0 if ¥.=u..

3 3 3 J J 3

4,2, OPTIMALITY CONDITIONS.

The necessary optimality conditions /10/, /14/
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for ¥ being a weak local minimum, as stated

below, help to assess the LCNP algorithm.

(i) ﬁeF (feasible) .

(ii) The reduced gradient vector, say A of

F(ﬁ) vanishes, such that
h=8%5=0

where 2 is a n.(n-%—?) full column rank

(4.5)

matrix, whose columns form the null ba-
sis of the range of matrix (ﬁt,ft)t and,
then,

A=0, 1Z=0 (4.6)
Based on (4.4) and (4.5), we may note -
that any linear combination of the co--
lumns of 2 give an active stepdirection
4,

a=tag (4.7)
where dS is a (n-t-T¥)-vector termed re-

duced stepdirection (or superbasic ---

stepdirection).

The result (4.5) implies that 5 must be
a linear combination of the rows of £
and f,

& = K . 1Y

for some vectors ﬁ and ¥; they are ter-

(4.8)

med the Lagrange multipliers of the ac-

tive constraints and bounds, respective

ly; viceversa, (4.8) implies (4.5).
(iii) Uniqueness of the Lagrange multipliers.

Let us partition matrix X and gradient
g such that A=(8%,8) and §=(§ES,§§)t,

where N is a t.% matrix defined by sets
W and §, and éN is the gradient of set

¥. Based in (4.8), ¥ can be written,
£= gy -t
such that ﬁ satisfies the linear system
= (B8t

Point ¥ does not require A to be a full

(4.9)

*

Ipg (4.10)
row rank matrix, but the uniqueness of
vectors ﬁ and X requires ﬁé to have --
that property. In any case, computatio
nal stability in the algorithm that =--
(k)}

obtain the sequence {X +% requires
{a;} to be linearly independent for --

ieM.
(iv) The sign of the Lagrange multipliers -

must be as follows.

>
iZO for i¢E (equality constraint).

i=0 for i¢éW (non-active inequality --

T ok
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constraint) .

het 3
v
(=]

for ieM-EnW such that §i=0 (active
inequality constraint whose -
associated slack variable has

the value zero).

=%
N
o

for ieM-EnW such that §i=5i—pi (ac
tive inequality constraint --
whose associated slack varia-

ble takes its upper bound).
$.=0 for ¢V (non-active variable).

X.20 for je§ such that ﬁj=lj (active va

riable at its lower bound).

$.<0 for je¥ such that §j=uj (active va

riable at its upper bound).
The set DluD2, where Dlé{isM-Enﬁ for --

fi,=0} and Dzé{je§ for Xj=o} is termed -

degenerate
and bounds.

set of active constraints -

(v) Positive semi-definiteness of the -----
Hessian matrix.
The reduced Hessian matrix fi must be po

sitive semi-definite, where
EER A

If the degenerate set DluD2 is not empty

(4.11)

then the positive semi-definiteness pro-
perty of & must be extended to the non-

active stepdirection d for which it ---

holds A,;a>0A¥ =0rieD , or A d<0r¥, =

- % .
= b,~b,rleD,,0r dj>0AXj—1jA]cD or -~

2[

a.<0a%.=u_rqeD,.
35T

Conditions (i)-(ii) and (iv)-(v) are necessa
ry conditions for local optimality; if Hes--
sian matrix is required in (v) to be positive

definite then they are sufficient conditions.

5. SKELETAL ALGORITHM FOR SUPRA-SCALE LCNP
PROBLEMS.

Following a traditional approach /18/, let -
the active constraints matrix, say A be par-

titioned as

(5.1)

where the basic stepdirection dB is used to
satisfy the constraints set, the superbasic
stepdirection dS is allowed to vary to mini-

mize F(X) (4.1) and the nonbasic stepdirec--
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tion dN is zero, such that set V is tempo--
rally fixed at any of their bounds. Here ---

§§E(§,§) and B is a t.t nonsingular matrix.
At each iteration, the problem then becomes
determining vector d=(dg,d§,d§)t so that it

is feasible-descent. Let P, O and V denote -

the sets of structural basic, superbasic and
nonbasic

variables, respectively; and Es -=

and VS the sets of slack basic and nonbasic

variables, respectively. Let EElﬁsl, vzlvsl—

and n.z|Q| where n_=n-t-r; recall

—S—
and rz|V|

< t=|p| ---
Since dN=0 and dS is allowed to
be free, it results

4, = -B "8d (5.2)

such that the variable~reduction characteri-

zation of matrix Z can be written

zZ =l 1 (5.3)

so that (4.7) holds.

The unconstrained reduced problem of minimi-
zing F(X) in the manifold defined by W and V
can be expressed as a function of the super-
basic set of variables; its quadratic appro-

ximation can be written
minimize {Etd + l/Zdtﬁd } (5.4
s sfds -4)

where h and H are given by (4.5) and (4.11),

respectively. Note that h can also be written

pu— - _t_
h Ig S My (5.5)
where EB solves the linear system

- _ gt
9y = B up (5.6)

Note that QBSE(ég,éé)t where 53 and §S are -
the basic and superbasic gradients, respecti
vely. Theoretically, the algorithm continues
till |]ﬁ|[=0 or the superbasic set is empty
and, then, the de-activating process is exe-
cuted; the Lagrange multipliers if the solu-
tion is 'optimal' or their estimates if the
solution is 'quasi-optimal'’ are used for se-
lecting the set of nonbasic variables to be

de-activated.

The active constraints Lagrange multipliers
estimates may be obtained by solving system

(5.6), basic estimation or by minimizing the
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residual error on solving system (4.10), ba-
sic-superbasic estimation by using the QR --
factorization /6/; see in /8/, /10/ an exten
sive discussion on the subject. The Lagrange
multipliers estimates of the structural non-
basic variables are obtained by using formu-~
la (4.9).

While minimizing in a given manifold, it is

possible that either a basic or a superbasic
variable strikes a bound during the search.

If a superbasic variable strikes a bound it

becomes nonbasic, the cardinality of the ba-
sic-superbasic set (the manifold) is reduced
by one, and the search continues. If a basic
variable strikes a bound then it 1s exchan--
ged with an appropiate superbasic variable,

and the resulting new superbasic variable is
made nonbasic. It is out of the scope of ---
this work to describe the different treat---
ment to be given to slack and structural va-
riables, structural unbounded and bounded va
riables, and structural bounded pure linear,
linear with variable coefficient and nonli--
near variables. In any case, note that slack
variables will only be superbasic while chan
ging the status from basic to nonbasic and ~
viceversa. A structural variable is defined

to be pure linear if its coefficient in the
objective function is constant; it is linear

with variable-coefficient if, for a given va

lue of the other variables that are used in

the same objective function terms, these are
a linear function of the given variable; it

is nonlinear if, at leas., there is an ob--
jective function term that is a nonlinear --
function of the given variable if the rest -
of the variables are fixed. An example is as
follows: F(X)=4X1+X210gx3; variable X, is pu
re linear, variable X2 is linear with varia-

ble~-coefficient, and variable X3 is nonlinear.

GORITHM A3.

SKE AL
Let ﬁEH(k—l) (it is never computed, not appro
ximated) and fizn 871 | et A=(B,5,§) also in-
clude the submatrix related to slack varia---
bles (i.e., sets ﬁs and ﬁs); B is related to
sets P and PS, being an m.m nonsingular ma--
trix; and N is related to sets V and VS, —_—

being an m. (r+v) matrix.

(0) Data.

0y 4

k=r=0, vy=0 (it takes the type of solution

(0) 5(0) _

0
X(O), g( ), F ' 61,62,63:=61,BS =I,
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currently obtained, such that vy=1 if it is -
'quasi-optimal', y=2 if it is 'optimal', and
Y=0 otherwise, see below), and k'=0 (where -
k' is the current iteration of the subpro---
blem that optimizes the manifold defined by

current sets V and W).

Obtain the initial partition (5.1); note that
only structural variables are superbasic. --
Obtain 1 ; since we are dealing with supra-~-
scale problems, only basic estimation ﬁB(S.G)

is used.
If 0={g} go to (10).

The rough procedure for iteration k»l1 is as -
follows. See /7/, /11/ for the procedures ---
that are referenced here, but not described -
in this work; in any case, the algorithm is -

within the framework proposed in /18/.

.LINEAR BASIC-NONBASIC (FEASIBLE-DESCENT)

Test if set P is linear and either there is

some linear variable in set V or there is --
some variable in set Vs whose associated ---
constraint, say i in set M—EnW has favorable
Lagrange multiplier ﬁi' If the test is not -
satisfied, go to (2). Otherwise, analyze if -
the LP subproblem defined by the basic and -
linear and slack nonbasic set of variables -
(by fixing the superbasic and nonlinear non-
basic set to its current value) gives, as --
its optimal solution, a feasible reduction -
in F(X). If it is not, go to (2). Otherwise,
reset k:=kt+1l; update solution data; set o=2

if a basic-nonbasic exchange has been perfor
med and o=1, otherwise; let p be one of the

active basic variables; if p#0 and |0|=1, go
to (9); obtain reduced aradient h( ); reset

Bs :=I; if o=1 (i.e., the step is feasible-
descent without variables exchange), reset -
k':=1; if 0=2, reset k':=0; if o=1 and p=0,
reset 6,:=8, and r:=k-1; if p#0, go to (9).

(2)_STOPPING CRITERIA,

Analyze stopping criteria on optimizing the
current reduced unconstrained UNP problem on
the given manifold. If they are satisfied --
then a 'quasi-optimal' or 'optimal' solution
to this problem is found, go to (12). The --
stopping tests (with values true or false) -
are as follows, provided that the solution -
is feasible.
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tl: ”ﬁ|h5€3VHElh/(l+”i+aa|L)S€uV6={¢}
t2: ]F(i)-F(§+aE)|/11+F(i+&a)[ses in the --

last T consecutive iterations.

e3: |7l < <
An 'optimal' solution is assumed to be found
(and, then, y=2) in the current manifold if
tl; the current solution is 'quasi-optimal’
(and, then, vy=1) if [tl1A(t2vt3).
lues, e3=5 =€5=lOE-O4, T

4
“6="101l 8 1L, ana ¢

Typical va--

3=3, initial =—-=-=~-=--

10=O.2.
(3) STEPDIRECTION.

k:=k+l and k':=k'+1

Obtain a (descent) superbasic stepdirection
aszdék) on the current UNP and, by using ---
(5.2), obtain a feasible basic stepdirection
aB. Note that as is obtained by using pro---
blem (5.4) and, then, by 'solving' linear --

system

In our case, the method to be used is termed

Preconditioned Reduced 2-steps BFGS with ---

accumulated step (PR2SA); see sec. 6.1.

(4) STEPLENGTH.

Obtain the steplength azu(k) such that, by -

using an approximate linesearch, conditions

GPW are satisfied in problem

nin (P (X+ad): O<asq,} (5.8)

where iEX(K_l) is the feasible solution ob--

tained at the previous iteration, and ------
= _ (k)
o_Za

m- m

current iteration, for o such that ad is ---

is the maximum allowed value, at the

still feasible. If there is not any value --
O<as&m that satisfies conditions GPW, obtain
a feasible a that be as descent as possible =
(it will be &m’ unless for pathological ca--

ses) .

The approximate linesearch that is been used
is the Gill-Murray linesearch (routine GETPTC
version 1982) used in /18/; n=0.9 and ------
u=10E-04; note that, instead of using &m as -
a feasible test for the descent enough a, the

bound is used within the linesearch.

(5) SOLUTION DATA.

In any case, a new point X(k)=i+&a is obtain
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xt _whHt

ed and its gradient (gB 19g is evalua
ted or approximated; h and F(k) are also
obtained.

(6) PRECONDITIONING MATRIX.

The diagonal BFGS update Eék) (see sec. 3.3)
related to the current reduced UNP is obtain
ed as a function of BKD) , 55555, §Eh(k)—ﬁ

(k)

and h , where h(k)

is the reduced gradient
(5.5) related to the current iteration; the

procedure 6.1 described elsewhere /11/ is -

used. Reset §:=X(k), §:=g(k), E:=h(k).

If &=&m, go to (8)

(7 W CYCLE.

Note a<&m, i.e., there is not any active ---

(basic or superbasic variable). For k'>0, --
analyze if a restart iteration mus be forced;
update 93, r and k' if needed. See sec. 6.2.

In any case, go to (2).

(8) Identify the active (structural or slack)

variable, say p. | INEAR BASIC-SUPERBASIC ---
(FEASIBLE-DESCENT) STEP,

If p is a nonlinear variable, test if set --
PuQ/{p}
Otherwise, analyze if the LP subproblem defi

is linear; if it is not, go to (9).

ned by linear and slack set of variables (by
fixing the nonlinear (nonbasic) set at its -
current value) gives, as its optimal solu---
tion, a feasible reduction in F(X). If it is
found, obtain the active basic variable p, -
if any, reset k':=0, k:=k+1l, and go to (10)
(note that now Q={@g}).

(9) ACTIVE BASIC-SUPERBASIC VARIABLE. STATUS
CHANGE ,

If psﬁuﬁs and |5|=1, execute an special pro
cedure for pivoting and variables exchange;

note that after the pivoting and status upda
ting have been performed, Q={0}. Go to (10).

if pgﬁuﬁs (i.e., it is basic) obtain the re-
lated row in matrix ﬁ_lg and select the su-
perbasic (structural) variable, say g more -
suitable (where linear variables have some -
priority over nonlinear variables) for per--
forming the pivoting (p,q): update diagonal
matrix Eszﬁék) with the procedures 6.2 and -
6.5 described in /11/; perform the pivoting

(p:q); update Lagrange multipliers vector u
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and reduced gradients h(k), h(k_l) and h(r);
update sets ﬁs’ P and Q such that §S+§S/{p}
if p is slack, P+«P/{p} if p is structural --
and, in any case, P<Pu{g} and Q<«Quf{p}/{q};
update matrices B (note that it is LUu-facto
rized) and S. Note that h(k—l; and h(r) are
(r

not updated for k'=0, nor h for k'=1, sin

ce they will not be required.

If peQ (i.e., active variable is superbasic)
reduce matrix ﬁék) h(k), h(k_l)
and h(r); update sets 0, V and VS such that
0«<0/{p}, V<Vu{p}
vs+§su{p}
trix A.

and gradients

if p is structural and ---
if p is slack; and rearrange ma--
If there are more active variables, select

one of them and go to (8).

(10) SUPERBASIC SET EMPTY.

If 0={¢} , reset y=2 and go to (12).

(11) FORCING A NEW CYCLE.

For k'>0, analyze, as in step (7), if a re--
start iteration must be forced; update 93, -
k' and r if needed. See sec. 6.2. If the ac-
tive variable was basic, go to (1); otherwi-

se, go to (2).

(12) DE-ACTIVATING STRATEGY.

Recall that an 'optimal' solution is assum--
med to be found in the current manifold if -
tl; the current solution is 'quasi-optimal'
if Tt1Aa(t2vt3). See step (2).

Let the following tests.

t&:HE]Imse7|A.|

jEVUVS
tS:lXj!>€8 jevVul

s

t6: There is not any nonbasic variable with
favorable tendency in its zero or near-
to-zero Lagrarnge multiplier estimate, if
any.

When the solution on the current manifold is
'quasi optimal', the main features of the --

anti-zigzagging strategy are as follows. --

Let D be the set of candidate variables; it
is included by the priced non-unsafe varia-
bles with favorable Lagrange multipliers es-
timates such that t4st5. The set of unsafe

variables is included by those nonbasic va--
riables that were made basic-superbasic and,

again, become nonbasic in the process of ---
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obtaining the next 'optimal' solution. For
selecting the candidate variables we use the
procedures described elsewhere /11/ sec. 16.

for multiple and partial pricing if -------

(}+§)>T5(n+m—|E|), where 1; is a positive -
tolerance; the Lagrange multipliers are par-

tially (exact) normalized /11/; typical va-

lues, T5=0.1, T6=5 and 17-.=0 (multiple pri--

7
cing factors), T8=0.l and T9=30 (partial --

=0.1

pricing factors), and Tlo

(partial nor-

malization factor).

After the de-activating process (even if --
D={g}), tolerance €6 is reset to ~——————-=—-
56:=m1n{s3,€6(1—69)}; the unsafe set is de-

clared empty if Eg=c3; see step (2).

When the solution on the current manifold -
is 'optimal', the unsafe set is declared --
empty and set D is built with the priced --
nonbasic variables with favorable Lagrange

multipliers such that t5. If D={@} and t6 -
/10/, stop since the optimal solution of --
the problem is found; if [t6 then the rela-
ted nonbasic variable is de-activated. Tole
rance €. is reset to 86:=510|l2|b; where Z

is the vector
ted to set D.

of Lagrange multipliers rela

Typical values are ¢
=0.3.

=0.9, €,=10E-04 and --

7 8

g

Note that it is possible |D|>1; it is the -

case for which a multiple de-activating stra

tegy is allowed such that as many as possi--
ble nonbasic variables are de-activated up a
given bound, say min{T4,12(}+§)}. Although -
more computational experience is required, -
it seems that allowing |D|>1 has better per-
formance /11/, /23/ than the single de-acti-
vating strategy, provided that T, is not too

large: typically, t,=0.05 and T1,=20.

2 4

(13) NEW SOLUTION_AFTER DE-ACTIVATING.

Note that |D|>0. Update k:=k+l. If p#0 (i.e.
0 ={¢} and there is, at least, one bounding
basic variable), select a variable from set
D such that its move in the negative direc-
tion of its Lagrange multiplier may de-acti

vate the bounding basic variables; go to (4).
If p=0 obtain the new superbasic stepdirec--

tion dg (see sec. 6.3) by adding set D to --
the old superbasic set Q; update A and h; --
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ES is also updated by using the procedures -
6.4 and 6.6 described elsewhere /11/; obtain
the new basic stepdirection dB, steplength o
and the new solution data; reset k':=0 (a --
stepeest descent superbasic stepdirection -
will be forced). If there is any slack varia
ble just de-activated, change its status so
that it becomes basic and, then, set ﬁs is -
increased and a similar procedure to step --

(9) is executed. In any case, go to (8).

6. ALGORITHM REFINEMENTS.

6.1, PRECONDITIONED REDUCED 2-STEPS BFGS
WITH AccuMULATED sTEP (PR2SA)

Step (3) of algorithm A3 uses method PR2SA -
for obtaining the superbaéic stepdirection.-
For k'=1 a stepeest descent superbasic step-
direction is forced and, then, aS:=—E.

For k'=2 formula 1-BFGS (3.1) is used, where

- —(k-1)"1 -
T(k 2) is assumed to be WEB%k b , (k=1)
is substituted by h(k_l), y k-l)=h(k_l)—h(k_2)
and p(k_l)=a(k_l)dék_l). In a similar way to

algorithm Al, and using its same notation, --

the procedure is as follows.

SKELETAL ALGORITHM Al

(1) A7:= pk=DF pk-1)
ag:= p-DE (kD)
(3) vo:= yyl=D
@ 1= wnleD
(4) a9:= y(&DEyq
AlQ:= ﬁk'ntuo
(5) Al3:= (14+A9/A8)A7/A8 - A10/AS8
) ¢ 1= -¢{ + (a7/28)v0 - A13p0D)

For k'>2 method 2BFGSA is used (see sec. 3.2)

and, then

Wzﬁék_l) , g is substituted by h, and ; and

algorithm Al is applied, where =---

; can be expressed as follows; see (3.3) and
(3.4).

= _ (k=2)_ (r)

P = Xg Xg (6.1)

where Xéj) is the superbasic solution obtain-

ed at iteration j.

7 = h(k—2)_h(r) (6.2)
2, FO k'>0.

At a given iteration k, steps (7) and (11) of
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algorithm A3 test if a new cycle must begin.
If k'=1 (i.e., a new cycle has been previous
ly forced), reset 63:=61.
(3.5) is performed; if it is not satisfied,

reset k':=1

For k'>2, test ---

(i.e., a new cycle is been for—--
ced) and use (3.6)-(3.7) to update restart -
tolerance 63 if needed. In any case, reset

r:=k-1 for k'=1l; recall that r is the re----

start iteration.

6,3, "SOLVING' NEWTON EQUATION AFTER DE-
ACTIVATING.,

Step (13) of algorithm A3 uses the following
strategy for obtaining the new dc=(§§,g§)t -

superbasic stepdirection; d, takes the direc

tion related to the old supirbasic set O and
gS is related to set D. The following stepdi
rection ds is suggested such that, although

the Newton equatiocn Hds=—h will not be sol--
ved, it 1s always descent and is not time---

consuming.

0 if Q={d} vnﬁ|hs€3

dg = (6.3)
PR2SA direction in ﬁds=—ﬁ, otherwise

d ={ =

dg ={-hg vaeD} (6.4)

where gs, 5 and h are related to the old su-
perbasic set (such that h is the reduced gra
dient related to the 'optimal' or 'guasi-op-
timal' solution §+&as), thzq and e3>0 is a
positivo tolerance (it is used in the test
tl of step (2}, algorithm A3). Note that ---
ds (6.3)-(6.4) is a mixture of the stepeest
direction and a hopefully accurate Newton di
rection. Note that the PR2SA direction is
obtained by using the algorithms described -
in sec. 6.1 after updating k':=k'+1.

. ERI SULTS. C SIONS.

We present here a brief summary of numerical
results obtained on three real-life problems;
see table 1. Problems I and II involve the ma
nagement of hydroelectric systems with multi-
ple reservoirs; Problem III is a Lagrangian -
approach of a scheduling problem of an elec--
trical power system, where the constraints --
related to the nonlinear transmission losses
function have been incorporated to the objec-
tive function. Problem I is well-conditioned;
Problems II and III are very ill-conditioned.

Problem I is typified as a small-scale pro---
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plem (i.e., 555300), Problem II is a super-

scale problem (i.e., 300<nss600) and Problem
III is a supra-scale problem (i.e., ns>600).
Due to the special structure of these pro---
blems, the gradient is analytically evalua--
ted.

The problems were tested in the framework of
a LCNP algorithm that uses the background of
a LP general-purpose package; see sec. 5 and
/7/. The methods for obtaining the superba--

sic stepdirection as are as follows.

(i) Method RQON. It is based on the update
of the R-factor of the BFGS Quasi~New--
ton approximation (2.2) of the reduced
Hessian matrix ﬁzitéz (4.11), so that -
the Newton equation (1.2) ﬁtﬁds=—ﬁ is -
solved. It has been designed for small-

scale problems /7/.

(1ii) Method PRTN. It is based on the diagona
lly-preconditioning (see sec. 3.3) of -
the Truncated-Newton method (see sec. -
2.3) for solving the Newton equation --
(5.7) Hds=—h.

super-scale problems /11/.

It has been designed for

(iii)Method PR2SA. It is based on the diago-
nally-preconditioning (see sec. 3.3) of
the 2-BFGS Quasi-Newton approximation -
(see secs. 3.1 and 3.2) of the reduced
Hessian matrix H (4.11) with accumulated
step. It has been designed for supra-sca
le problems.

See in /11/ the options used for methods RQN
and PRTN; see in the above sections the op--
tions used for method PR2SA. Tha main diffe-
rences, aside the proper methods, are summa-
rized as follows:

(a) Method RQON uses both basic based and ba-
sic-superbasic based estimations for La-

grange multipliers; the other two methods on

ly use the basic estimation.

(b) Method PR2SA uses multiple and partial -
pricing and partial (exact) normalization

for obtaining the candidate set of nonbasic -

variables to be de-activated.
Single de-activating strategy was not used.

For comparison purposes, the three methods -

are tested in Problem I; method RQN was not
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TABLE 1

RESULTS FOR PROBLEM I

PROBLEM DIMENSIONS
Variables partition % Density 7 % * %
Problem | m IE' % lpure L Non-~pure L | Nonlinear A 1G t g r
I 32 19 88 20 58 22 10§ 45 26| 47 15
i1 583 {241 1479 24 36 40 1120 }502{459 1518
111 702 | 642 ll762 11 25 64 8| 40 [673]8101{ 279
AB 2

(1) It also takes into account the (LP) iters.
first partition (B, S, N) in step (0) and f

Multiple # Major # Accumulative |# Evaluations of
Method | de-activating iters.(l) minor iters. F(}.(), g(X) in
strategy major 1iters.
RQN up 5 vars. 103 (103) 274
PRTN up 20 vars. 90 204 263
PR2SA up 5 vars. 210 (210) 396
ABLE 3
)
RESULTS FOR PROBLEM I1
# Major # Accumulative| # Evaluations of
. . F(X), g(X) in
Method iters(,l) minor iters. ma(szn' ?ters.
PRTN 141 7334 384
PR2SA 4312 (4312) 8431
TABLE 4
(2)

RESULTS FOR PROBLEM III

. (1) # Evaluations of
Method # iters. F(X), g(X)
PR2SA 7862 11137

subproblems in steps (1) and (8).

required for obtaining the
or solving the other LP

(2) Multiple de-activating strategy. Bound: Min{20, 0.05(v+ )}
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used in Problems II and III{ and Problem III
was only run with method PR2SA. Tables 2, 3
and 4 report some computatiocnal experience

on Problem I, II and III, respectively.

The experiment was made in an IBM 370/158 --
with 3MB of real storage and using VM/CMS, -
3MB of virtual storage, the algorithmic ----
tools of MPSX/370 and compiler PL/I OPT(2).

Table 2 shows that when the amount of stora-
ge required to save the R-factor of the re-
duced Hessian matrix is not a great inconve-
nience, the Quasi-Newton approach is still -

the champion.

Problems II and III are very badly scaled --
and, since they are much bigger, we cannot -
afford to use the amount of storage required
by the reduced Hessian update and, then, me-
thod RQN. So, the experiment was only carri-
ed out with the other two methods for Pro---
blem II (it is very sparse) and only with me
thod PR2SA for Problem III (matrix A is spar
se and matrix G is very dense). Method PRTN
is prohibitive in cases as Problem III where
at each minor iteration, two m-dimensional -
linear systems must be solved (although with
the same LU-factorized matrix) and one basic-
superbasic gradient evaluation must be: perfor

med.

Table 3 shows that for super-scale problems,
method PRTN is quite satisfactory; factors L
and U of basic matrix B are very sparse and
G is sparse too; see in /11/ the procedure -
to take advantage of these special structu--

res.

Method PR2SA has the worst performance in --
Problems I and II as it could be expected. -
But, for supra-scale problems (as Problem --
ITI, table 1) where the amount of storage re
quired to save the reduced Hessian (note that
§S=810), the computing time required for gra
dient evaluations (note that ES+§=1483 and -
64% of the structural variables are smooth -
nonlinear) and the computing time required -
for basic equation solving (note that m=702)
are prohibitive, method PR2SA is the only al
ternative that we have at hand. It requires
smaller amount of storage (note that only --
vectors Eék_l), Xéj) and h(j) for j=k-1, --
k-2 and r are required for obtaining the su-

perbasic stepdirection dék) at iteration k)

Qtiestdé - V. 6, ne 4 (desembre 1982)

and, although the other alternatives would

probably require fewer (major) iterations,

the computing time and the amount of stora-
ge, as far as Problem III is concerned, are
still affordable for method PR2SA.
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