ON DIAGONALLY-PRECONDITIONING THE TRUNCATED-NEWTON METHOD
FOR SUPER-SCALE LINEARLY CONSTRAINED NONLINFAR PROGRAMMING
L. F. ESCUDERO

We present an algorithm for super-scale linearly constrained nonlinear programming (LCNP) ba
sed on Newton's method. In large scale programming solving the Newton equation at each iterg
tion can be expensive and may not be justified when far from a local solution; we briefly —-
review the current existing methodologies, cuch that by classifying the problems in small-——
scale, super-scale and supra-scale problems we suggest the methods that, based on our own ——
computational experience, are more suitable in each case for coping with the problem of sol-
ving the Newton's equation. For super-scale problems, the Trunmcated-Newtonm method (where an
inaccurate solution is computed by using the conjugate-gradient method) is recommended; a —-
diagonal BFGS preconditioning of the gradient is used, so that the number of iterations to —
solve the equation is reduced. The procedure for updating that preconditioning is described
for LCNP when the set of active constraints or the partition of basic, superbasic and non--

basic (structural) variables have been changed.

. INTRODUCTION

Consider the unconstrained nonlinear program
ming (UNP) problem

min{F(x)ex R"} (1.1)
where F(X) is a nonlinear function with the

following properties: F(X) is, at least, ---
2-continuously differentiable; for all X'an
the level sets L(X')A{X:F(X)<F(X"')} are boun
ded.

Let ; dengte a weak local minimum in (1.1);
that is, X is a point for which 316>0 such --
that P(X)<F(X) v x: ||X-K|[< 6. (Point ¥ will -
be a strong local minimum if the above rela-
tion is a strict ineguality for X#%). A —===
first-order necessary condition for § is ---
that q(§)=0, where a(§)5§ isvthe agradient =--
vector of F(X)'evaluated at §. A sufficient
conditign for §'be a weak local minimum is
that g=6'an§ G(;) is positive definite (pd),
where G(;)Eé'is the Hessian matrix of F(X)
evaluated a ;; note that a second-order ne--
cessary condition for § is that é be positi

ve semi-definite.

One of the most traditional methods for ob--

taining X is the Newton method; given an ini

(0)

tial estimation X it computes a sequence
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of stepdirections {a™)y such that at itera

tion k it solves the linear system

G(k—l)d(k) = —g(k_l) (1.2)

and iterates X(k) as follows

X(k) - X(k—l) N a(k)d(k) (1.3)

where a(k) is the steplength at iteration k,
s?;? that F(X) is minimized along direction
d ’

o (k) =arg min{F(X(k_l)'FOLd(k)): a>0} (1.4)

We will refer to (1.2) as the Newton equa---

(k)

tion and d as the Newton direction.

Problem (1.4) is termed exact linesearch; -

solving (1.4) is as difficult as solving --
(1.1); alternatively, the so-termed approxi-

mate linesearch methods are used such that -

for a direction descent enough, that is

(-g (k=D alkdy /¢ {[glh=1) a1, 0>e (1.s)

where € is a positive small tolerance that
avoids the quasi-orthogonality between the
gradient and the direction, the algorithm is

globally convergent if a(k)

produces a ----
strong enough reduction in F(X) and, specifi

cally, if conditions GPW/18,31/ are satis-—--
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fied:
(1) fgat D)4 00 g(k) g0 <

< -ng (K7Dt g(k) (.6

or, alternatively /6/, if the calculation of

the gradient is expensive,

iF(X(k_1)+ Jk)d(k)) _ F(X(k—l)+ \)d(k))|
<
G<k) -V
< —ng(x(k_l))td(k) (1.7)
where v is a scalar such that Osv<u(k), and

0<n<l. Note that satisfying (1.6) for n=0, -

also satisfies (1.4).

(i) Py o op oD 4 0600 2

> -y Jk)g(x(k-l))td(k) (1.8)
for 0<u<0.5. Typically, n=0.9 and u=10E-4 --
such that if u<n, Jda that satisfies condi---
tions GPW. Conditions (1.6) y (1.7) avoid --
a(k)be excessively small; condition (1.8) --

avoids it be excessively large.

Newton method is important because if provi-
des a standard with which to compare alterna
te methods for solving (1.1). Its positive -
and negative aspects are very well known. --
Briefly, its advantage is that the algorithm
is locally and quadratically convergent; no-
te that a sequence {X(k)} is said to conver-

ge to X with a rate r if

)

0 < lim

X(k+1)_§|
r

15 . Y

Il

r
The rate of.convergence is linear if r=1 ---
(for 0<B<1) and cuadratic if r=2. The conver
gence is Q-superlinear if B=0 and r=1; the -
type r for which B>0 is finite defines the -
order of this convergence (see e.g. /13/ for

most of the concepts used in this work).

The inconveniences of the Newton method are

significant; they are as follows:

(i) The method is not globally convergent —-
(k)=l; that is, g(k)fo for k+w if -
is not close enough to %.

. . . . . (k-1)
(ii) There is not solution in (1.2) if G

is singular.
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(iii) For nonconvex problems, G(k_l) is not
necessarily pd and, then, d(k) is not
guaranteed to be descent.

(k-1)

(iv) In any case, the Hessian G must -

be evaluated and a n-dimensional linear

system (1.2) must be solved at each ite

ration k.

In sec. 2 we review the main alternate me---
thods for éolvinq the Newton equation and mo-
tivate the Truncated-Newton method. In sec.3
we describe the algorithm model for this me-
thod. Sec. 4 describes the diagonal BFGS pre
conditioning of the gradient that we suggest
for the Truncated-Newton method in UNP pro--
blems. Sec. 5 briefly reviews the LCNP pro--
blem and describes the procedure for using -
the Preconditioned Reduced Truncated Newton
method. Sec. 6 describes the procedure for -
obtaining the BFGS preconditioning in LCNP;
the procedures for updating it are also des-
cribed for the cases where (1) a basic varia

ble changes its status, (2) a superbasic va-

.riable becomes nonbasic, (3) a nonbasic va--

riable becomes superbasic, (4) a nonactive -
constraint becomes active, and (5) an active
constraint becomes nonactive; a multiple de-
activating strategy is also described. Sec.7
describes the procedure for 'solving' the —-
Newton equation after the de-activating pro-
cess is performed. And, finally, sec. 8 re--

ports some computational experience.

2, MOTIVATION FOR THE TRUNCATED-NEWTON METHOD

The main alternates to Newton method are as

follows:

1) Quasi-Newton (QN) methods /6/.

They are the most reliable methods such -
that, by calculating the pd approximation, -

(k-1) k-1

say B of matrix

and using condi-
tions GPW, the Newton difficulties may all -
be overcome with the exception of (iv); ----
their rate of convergence is superlinear. --
For non-small problems, their using is prohi
bitive.

It is well known that the Broyden QN methods
and, specifically, the BFGS approximation ~--
B(k—l), have been proved to be the ON me----
thods with the best performance; note that -

conditions GPW guarantee 851 6 pe pd and
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then, d(k) is descent.

QN methods are used with satisfactory results
in constrained nonlinear programming when the
number BS of superbasic variables (see /21/ -
for the definition) is, say nss300. See /7/,
/22/, /26/ among others for the nonlinear ---
constrained case and /9/, /21/ for the linear
ly constrained (LCNP) case.

2) Conjugate—gradient (CG) methods /11/.

This type of methods does not use the ----

Hessian G(k_l),nor its approximation pke-1)

The stepdirection d (k)

is obtained by using
(k-1) and add-
ing the 'correction' of a multiple of the pre

vious iteration, such that the directions are
(k)

the negative of the gradient g

conjugate if F(X) is gquadratic and a is ob
tained with an exact linesearch; it has the -

quadratic termination proverty, such that --

the number of iterations to obtain ¥ is mGSn,
where me is the number of distinct eigenva---
lues of Hessian matrix G. It may be precondi-
tioned with a symmetric pd (sod) matrix, such
that the number of distinct eigenvalues of =--
the new matrix is reduced. It is based on the
CG method introduced in /19/ for solving sis-
tems of linear equations (i.e., the Newton --

equation (1.2)).

If F(X) is a general nonlinear function, a -
second correction (a multiple of the so-ter-
med restart direction) is usually added to --

the formula for d(k); in any case, its rate

of convergence is linear, but till very re---
cently there were not other methods to cope -
with supra-scale problems (say, n>600).

Conditions GPW do not guarantee d(k)

to be --
descent for n>0; it is required to add a new
condition to be satisfied while obtaining ---
a1 56 that additional gradient evalua----

tions are needed.

CG methods for LCNP are used in /1/, /20/, --
/21/ among others. Due to the restriction to
(k-1)

be imposed on a

such that step
a(k_l)d(k_l)

is not only feasible and des---
cent but also allows d(k) to be descent, it
happens very frecuently that conditions GPW
and the aditional mentioned above are not sa
tisfied; in this case let a'¥71) pe feasible
and descent (although, not descent enough) -

k -
and reset d( )=-g(k 1), and hence, the infor
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mation obtained from previous iterations is
lost. See in /11/, /14/ critical revisions
of CG-based methods when applied to LCNP pro
blems.

3) Limited-Storage Quasi-Newton (LSQN) me---
thods /25/.

The BFGS ON stepdirection with exact line---
search may be interpreted as a CG stepdirec-
tion for which the approximation of the Hes-

-1
sian inverse G(k b , instead of being fi--

xed (to the identityv matrix in the traditio-
nal CG) is updated at each iteration by any
member of the Broyden ON methods /23/. This
interpretation is of value because it motiva
tes techniques for using limited storage to

improve the CG method performance.

Based on the above remark, a new class of me
thods is proposed /25/, such that the Broy--
den ON updates (and, specially)}, the BFGS --

-1
(k-1) use only -

approximation) of matrix G
the last m updates of the previous itera----
tions; for m=1 the m-steps LSON stepdirec---
tion is a CG stepdirection (if the BFGS for-
mula is used, the previous matrix update is

the identityv and an exact linesearch is used)
and for m=k-1 it is a ON stepdirection. Note

-1
that the ON update B F 1 or gkl

required to be stored, since the stepdirec--
k) -H(k_l)q(k_l) (1.2)

is not
tion d may be obtai
ned from a sequence of linear combinations -
of vectors that are computed by using the al
(3 and
,k=1; the need

for storage depends on m and it may be dras-

ready available information: points X
gradients g(]) for j=k-m-1,...
tically reduced. LSQON methods have some of -
the properties of ON methods; conditions GPW

alone guarantee d(k)

to be descent. In summa
rv, for large values of m these methods have
a good rate of superlinear convergence, but
the needs for storage and computation are --
not meaningless; for m=2 there is a good ba-
lance between storage and computation to be

reqguired and rate of convergence.

A 2-steps LS method has been suggested in --
/28/; it uses information from the previous
and the restart iterations. It may be viewed
as an extension of the CG method with restart
direction that has some of the QN properties
(e.g., QO-superlinear convergence); conditions
GPW guarantee that d(k)
results are obtained /14/ with a 2-steps BFGS

is descent. Better --
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method, where the gradient g(k_l)is diagona=-

11y-BFGS preconditioned and the accumulated
(k-2) _, (r)

step X is used where r is the re--

start iteration.

The advantages of LSON methods over CG me—--
thods are, basically, as follows: (a) the --
stepdirection is descent provided conditions
GPW are satisfied and, then, additional gra-
dient evaluations are not required in the =--
approximate linesearch; and (b) the rate of

convergence is much better, even for m=2 whe
re the reguired storage is still small. ----
Although the convergence is slower than when
using QN methods, today there are not other

methods to cope with supra-scale problems --
(say, n>600).

The 2-steps LS method introduced in /28/ for
UNP has been used for LCNP in /29/. The Pre
conditioned 2-steps BGFS Accumulated method
described in /14/ for UNP is to be used for
LCNP in the sequel of this paper so that com
putational comparison with the Truncated-New
ton approach (see below) could be provided.
The additional advantage of LSON methods ---
over CG methods in LCNP is that, since they
do not require any additional condition to con
ditions GPW to guarantee that the superbasic
stepdirection is descent, it results that the

next stepdirection d(k)

k-
_g( l);

is not to be restart-

ed as the reason is that there is

(k-1)

more room for a steplength o that produ

ces a feasible-descent step, being feasibie -

(k—l)<a(k—l) (k-1)
T m

since it must be a (where o

is an upper bound that guarantees that the --
pounds on variables and constraints are not -
violated) and descent enough since it must --

only satisfy conditions GPW.

(k-1)

If there is not
= o (k-1)
= a

m
that the step is feasible and still descent

such a value, reset o (such -=--
since condition (1.8) is satisfied in this ca
se) and 'correct' the LSON matrix if it is --
not pd; note that conditions GPW guarantee --
that the matrix is pd so that the stepdirec--
tion is descent. Today, there are not other -
methods to be used for getting practical re--
sults when the number BS of superbasic varia-
bles at each iteration is, say ns>600 (supra-
scale problems).

4) Inexact-Newton (IN) methods /5/.

Since the benefits of the Newton and Quasi

Newton directions are mainly local (i.e., in
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the vecinity of ﬁ), there'appears to be no -
justification for expending the effort requi
red to get an accurate solution to equation
(1.2) when far from a local optimum X. 1t ma
kes sense to give an inexact solution d(k) -
to that eguation, increasing the accuracy --
when getting close to i, provided that stora
ge and computation are reduced: a scale inde
pendent measure of this accuracy is the rela

tive residual error

e i A IS N (2.1)

(k)

where e is the residual error vector when

solving equation (1.2) with the given accura
cy at iteration k, such that it can be writ-
ten

S0 gkl gl L (k1)

=B (2.2)

where 8*™ 1) ig5 the approximation of glk-1),

IN methods solve Newton equation (1.2) at --
each major iteration k, producing a stepdi--
rection d(k) such that condition r(k)Sn(k)is
(k)

satisfied, where n is the given tolerance

in the accuracy. They have the following pro
perties:

(i) Global convergence if lim n(k)

(k)

=0 for --
k+» and a satisfies conditions GPW;
the rate of convergence is superlinear

depending on n(k).

(ii) Stepdirection d(k) is always descent, -
even when the equation solving is abrupt

ly interrupted.

(iii) Then there is always solution to equa-
tion (1.2).

(k=1

(iv) Hessian matrix G alone is not requi

red to be evaluated, nor approximated.

The CG method to solve systems of linear —----
equations introduced in /19/ obtains d(k) by
iterativelyv solving (1.2); at each iteration,
(1)

say i , a stepdirection d is obtained so

that i]e(i)Hz < He(i'l)Hz , where e(i) is de

fined in (2.2). A so-termed Truncated-Newton

(TN) method, a IN method, 'truncates' the se

quence of iterations {i} once the given ---

accuracy is obtained. Let 'major iteration’ k

denote the calculation of steplength 0.0 N

along a given d(k)

g(k) (k). Major iterations are used to -

and the computation of =---
and B

264



modify the algorithm so as to control its --
global behavior; they play a significant ro-
le in early stages of the computation. Let -
'minor iteration' i at iteration k denote a
given iteration for an iterative solving of
Newton or Quasi—Newt?ﬁ)equation (1.2) so —=--
d

that stepdirection is obtained; they --

are important when close to % since, in its
vecinity, u(k)=1 satisfies conditions GPW --
and the algorithm possesses the same asympto
tic rate of convergence as Newton method. No
te that for n(k) large enough, the TN method
is the same CG method since iteration i=1 sa
(i)Sn(k) vk; for n(k)=0 the TN ----

method is the same Newton (or ON) method sin

tisfies r

ce the equation solving is not truncated. It
shares the rate of convergence of the Newton
methodology, but it does not require to sto-

rage the Hessian matrix G(k_l), nor its ----

approximation B(k_l); it only needs (see be-

low) the product ¢ ¥ 1 s or j4g approxima

tion). Therefore, there is a direct trade-off
between the amount of work required to com-
pute a stepdirection and the accuracy with -
which the Newton equation is solved. This --
method, 'intermediate' between CG and Newton
methodologies, is suggested for solving su--
per-scale problems (say, -300<n<600 for UNP -

and 300<ﬁsgeoo for LCNP).

3, TRUNCATED-NEWTON (TN) METHOD.

3.1. Skeletal algorithm.

The TN method is a natural extension of the

CG method for solving system (1.2), such ---
that by substituting notations G(k_l),g(k—l)
ana a® by G, g, and 4,

be written

respectively it can

Gd + g=20 (3.1)

At each minor iteration i, a stepdirection -
6(1) is obtained as a linear combination of
. (i-1)
residual error e

and the stepdirections
(6 (3)

} of previous iterations, such that ---

(1) 5= (9)

they are conjugate (i.e., § G§ =0 ----

1,9,i#5) . tet @B og@-1 o (D) 1o e
solution (probably, inexact) of system (3.1)
(i)

where a is the steplength that solves =---

(1.4) along Y in the UNP problem min ----

. t . AN .
{e(l—l) astd) | 1/2a26(l) 56(1)}

(1)

the resi-

dual error e of (3.1) can be written
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D) 2 gat®) pog - - 4 (g D) (3.2

If e(l)sﬁ , where ﬁ is the given accuracy to
then a:=d(l)

is the truncated solution of system (3.1}). -

lerance at major iteration k,

The procedure is as follows.

Skeletal algorithm Al.
(0) Assign e(o) =g, (l) (@ q<1)==§5(1)
1 d(l)t . |1 (l)|| J.= (1)

 «P; - “),em _8(0)+q<1)

Stopping rule I:
1t ue“m

1+t/|18|h+cs HI*E: = d(ll stop
@ &0, ae GDyE ey, .
X(1¥ _eli- 1)+ (1) 5 (i- 1) q(l):= gs (D)
1f 5(1)t i) < e ”5(1)‘[ ->-:=d(i-l): stop
3) LB lle (i- 1)“% /6(1) q(l)
d(l):= (i-1) i) 5(1)
If i = 11»8:=d(1)

o(1) 2 (-1 4 () (D)

(4) Stopping rule I:

1f ” (1)11 (1)

no+d:=d , stop

e/ 1Bl <

(5) i:=1i+l, go to (2)

It can be shown /4/ that for €l>0 small ----
enough, & is a descent stepdirection (1.5),

the steplength a(k)

=1 satisfies conditions -
GPW in the vecinity of % (if G is pd and ---
HI+0 for k»=), and the above algorithT is --
globally convergent; in addition, if G is pd
the rate of convergence on {X}+¥ is superli-
near /5/ iff

lim [e|l/ |[gll »0 (i.e.,7+0) (3.3)

such that its order is t+1, where 0O<tsl iff

; ! i+t
lim ’1+c |! h+t (3.4)
Thus, tolerance ﬁI can be written

RI = mxn(no.y ”gHt+l (3.5)

for O<ﬁo<l and §>O; for t=1 the rate of con-
vergence is quadratic as the Newton method.

If |[g]| is large (X is away from %), only --
few minor iterations are required for obtain
ing d; when X is getting close to ¥ then ---
/lg]]+0 which implies EI+0 and, then, 4 is -
aetting close to a Newton stepdirection. To-
lerance T is a safegugrd against unstabili-
(l). Although N
needs to be positive, it is other safeguard;
it avoids that d is not descent (e.g., if G

ties on calculating q only -
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is not pd), Typical values, el=e;/2

€y is the machine precision in floating point

, where -

calculations (in our case, 10E-15), Tl=3n, --
ﬁo=1/k and y=1 /2/.

3.2 Using Hessian matrix.

Note that algorithm Al does not reguire the
calculation of any Hessian matrix (unlike QN
methods) but the product q(l)Ead(l).

per-scale problems, G is suggested to be ana

For su-

lytically evaluated only when it is very —--—-
sparse; if G has a special sparse structure,
it could be approximated by finite differen-
ces by using the CPRT methodology /27/; note
that G is .available in 79Te way for F(X) =---
i

gquadratic. Otherwise, g is approximated by

finite differences such that
qIi) (i)

= (g(X+0 6 7) -g(X)) /o (3.6)

Note that an additional gradient evaluation
is required at each minor iteration; it does
not add any- great inconvenience if the pro--
blem is sparse with many constant or zero --
gradient elements; note that CG methods re--
quire, at least, one gradient evaluation per
each related iteration. For o+0 the rate of
convergence is still superlinear if the gra-
dient is analytically evaluated; otherwise,
the approximation (3.6) may be unstable /15/.
Typical value,

(i)

_.12
o=ey, /ST,

4, PRECONDITIONING THE TRUNCATED NEWTON
(PTN) METHOD.

We have stated that the number of iterations
to obtain ﬁ_is m.<n if F({X) is quadratic, G
is pd, the directions are conjugate and the
steplength satisfies (1.4). So, the number -
of iterations will be reduced if the origi--
nal problem is substituted by other eguiva--
lent problem where m <Mqs being R the new —--

R
Hessian matrix.

Let W be a symetric pd (spd) matrix. The so-
lution d to system (3.1): Gd=-g (and, then,
the solution to the related unconstrained ---

quadratic problem) can be obtained by solving
system

w'l/zéw‘l/zdw = -w /%5 (4.1)

- - - - ~1/9— -
such that d=w l/2dw. Let R=W l’2GW 1/2 and, -

Qtiestiié - V. 6, n.o 3 (setembre 1982)

_ q&i’;w-l/z 1) ana evsi)zw_l/ze(i)

then, w_1/2§w1/2=w_15. It can be shown /15/
that R has the same eigenvalues as W 1G. So,
G with a
matrix W !, such that matrix W 'G has a ---

a target could be to precondition

great number of eigenvalues close to unity.

Since the condition number k of a matrix =--

maxl/“‘min|
largest and smallest

can be expressed as |\

A and A_.
max min

eigenvalues, respectively, it results that

, where --
are the
smaller x,greater probability of more ---

(normalized) eigenvalues close to unity.

Once a suitable matrix W is identified, al-
gorithm Al can be used to obtain the solu--
tion (probably, inexact) &, to system -----

= - - _=1/2= Wi i
Rdw=—gw, where I=W / g; éé) B dé )

and
e&i)=§d%i)+§w are the stepdirection solution,
estimate and residual error at minor itera--
tion i, respectively. Calculation of matrix

w172 ¢ unstable and, so are the calcula---

~1/2

tions of §w and R; but, matrix W is not

required to be used since equivalences -----
gw;w‘l/z . 5(wi) s w2 (D) , d‘(ﬂi) = ygl/2 41
may be ---
used, such that

wl/2 2D w2 : £
W2 Ly V2gs s (D g
and

w1/25(1)= —w‘l/ze(i'1)+s(i)w1/25<i‘1)3 ﬁi) =
=l (D) (D) G-1)

,.\,—1/2 q(i) : w—1/2 Eé(i)-'- q(i) =c 5(i)
where

- _ < 2 - s 2 _
5(1)=Hw 1/23(1 l)”z /”w l/ze(l 2)”2_

= DAL D (G-2)E o1 (i-2)
such that

w1/2 d(i)= w1/2d(i—1)+u(i)w1/2 éi):-d(i) _

S () (D)
where
. t .
(i) e I-1) 7 -1 (i-1)
JENS of - 1
6<l) w1/2 W 1/2 q(l)

o,

and, finally
w-l/2e(i)=
S W20 (D172 (D () G- ) @)
Of course, stepdirection d(i) and solution -
estimate d(i) obtained as above have diffe-
rent values to those obtained, by using algo

rithm Al, in the original problem.
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Note that in the above approach W' ia not -

required, but W—lé and W_le(i_l); computatio
nally, obtaining wt is more unstable than -
obtaining W—lb, where b is a vector. Since -~
W is spd, it can be expressed as W=LU, where
L is a lower triangular matrix with identity
diagonal and U is an upper triangular matrix
such that vector x that solves Wx=b can be
obtained with the following stable procedures
obtain x in Lx=b and obtain x in Ux=x. The -
LU factorization of symmetric non-pd matrix
is unstable. In summary, the preconditioned

algorithm Al is as follows.

Skeletal algorithm A2

(0) Assign e(o): = g
Obtain z(o): Wz(0)= e(o)
5(1):=—z(0), q(l):=§6(1)

e s(DF e < s P36, seop
(1) alP oo s (1), _ (0) o)

Stopping rule I:

If ”e(l)HZ/”gHZ 7-1 a:=d(l), stop

i: =2
(2) obtain 217D, o, G-D_ -1
B(i): (1 l)t (1 1)/ (1 z)t (1 2)
£, L= 1)+ g(i) ¢ (1 1) (i),

=gsD
If 6(1) (1) i) (1 1)
t ”6 H s Stop
(3 Ol(1) e( 1) (1 1)/6(1F (1)
d(i) (1 l) (1) (1)
If_i= Tad: ( ), stop
e(l):=e i- 1)+ Jl)q(i)
(4) Stopping rule I:
If ”e(l)” /”g” 5'—1 ~d: =d(i), stop

(5) i:=1i+l, go to (2)

The values of tolerances ¢ T

1’ 1 and nI are -

as in algorithm Al.

Obtaining matrix W.

Matrix W can be identified in several ways

/24/. Basically, they obtain the LSQN appro-

ximation of matrix G_l; it is fixed after a
given number of updatings /23/ or it is upda

ted al each major iteration /2/.
1_H(k—l)

In the se--
cond case, W has been obtained by
using the last, say m previous major itera--
tions; note that the matrix is spd. If a(j)—
has been obtained with an exact linesearch -
for j=k-m,...,k-1 and F(X) is quadratic, the
ON condition is satisfied; that is,
gy () _ ()

j=k-m, ..., k-1 (4.2)
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where y(j)zg(j)—g(j_l) and p(j)za(j)d(J) _
since F(X) is gquadratic

Gp(j) ZY(J) j=l, ,n (4.3)
and, then

#* Vea@ 2 g yokm, Lk (4.4)

(k-1)

Note that matrix H G has, at least, m

eigenvalues equal to unity; in that case, -
mpsn-m+l. On the other hand, LSON update --

B(k D of G is more stable than update ----

H(k_l) of G_l and B(k_l)_l

glk=1)

is not necessari-

Using a ON update for preconditioning G (and
then, (k l)) has some theoretical Justifica
tion, since it can be shown /23/ that, under
the same hypothesis for which (4.2) is satis
fied, the CG method preconditioned with a

spd matrix W (algorithm A2 for HI=O) and, -

then, W may be the identity matrix (algorithm
Al for EI=O) and the BFGS (QN) method produce
identical stepdirection if in the latter =----
H(O):=W_l. The same results may be obtained -

for ﬁI>0 and, then, for the TN method.

Now, since the CG method is an alternate to -
the ON method such that the need for storage
is reduced, instead of calculating gk-1)

the product H(k—l)g(k_l) is directly obtained;
then, there is not any matrix alone to be ---
used. This product may be obtained with the -

sequence of linear combinations
H(k—m)g(k—l)

:lc{H(k—m—l)g(k—l),H(k—m—l)y(k—m)’p(k—m)}

H(k—m+1)g(k-l)

(k—m)g(k—l),H(k—m)y(k—m+l),p(k—m+l)}

H(k-l)g(k—l)

=lc{H(k—Z)g(k—l),H(k—2)y(k—l)'p(k—l)}

where H(k_m—l)=I; note that H(j—l)y(j) for
j=k-1,

me procedure used for H

+«.,k-m+l is obtained following the sa
(j_l)g(k-l). The pro-
cedure does not require a great amount of --
storage for reasonable values of m (say, ---
2<m<4), although it is time consuming; it is
more unstable than using B(k—l), but it is -

prohibitive with Limited Storage.

The preconditioning can be directly applied

for F(X) being a general nonlinear function
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/25/; note that, (k-1)

(4.2)

in this case, matrix H

satisfies only for m=1.

A more simple preconditioning consists in --

assigning w:=§(k_l), where E(k_l) is the dia
gonal of the BFGS matrix /6/ B(k_l), such --
that B(0)=I and
1
éék) T S ____;:____yék)z+
g 5
1
. k=17 (4.5)

t 14

ék-n 4%

for £=1,...,n and k>1. Note that ﬁ[ is the -
(£,£)-th element of matrix B. The new matrix
W requires small storage; it is very stable
since:

-nf - S(k-L
y(k l)P(k 1) (k-1

—(k-1
< ey OT -]Bl <e, B(k )

(a) If

the
matrix is not updated. €, is a small positi-

is not guarantee to be pd; in this case,

ve tolerance; typically, 52=10E—4. Note that
the previous update is always pd.

(b) If the condition number « of E(k-l) is -

- 1/2 -
large (e.g.,»<>1<m where Km—l/(100n eM)
and

K = maxﬁ(kml)/minﬁék-l) (4.6)
(£) (2)
w
Eék-l) is substituted /15/ by ﬁék_l) v,

where w=log Km/lOgK.

2, LINEARLY CONSTRAINED NONIINEAR PROGRAMMING

5.1. Introduction.

The linearly constrained nonlinear program-
ming (LCNP) problem is

minimize {F(X) XeFeR®} (5.1)
where
F . (X|B2AX2b, U2X21} (5.2)

where A is an m.n matrix, m<n, and F(X) is a
general nonlinear twice continuously diffe--
rentiable function,

at least, for feasible -

points such that for all XeF the level sets
L{X)A{XeF, F(X)SF(X)} (5.3)

are bounded. Let M be the set of constraints,
E be the set of equality constraints (such -
that ie¢E if Ei=§i), and J be the set of vari
ables. Let A be the £.n matrix of active ---
constraints at a local optimal point, say %

and b the ¥-vector of right-hand-side corre-
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sponding to j{ (i.e., A§=ﬁ), such that §=rﬁ]
where W is the set of active constraints --
and ﬁi=5iv9i for ieW. Let ¥ be the set of -
active variables at ﬁ, such that js§ if -—-
ﬁj'--Ujvlj and §=}§l. Let T be the r,n matrix
of active bounds at ﬁ, such that it is the
n.n identity matrix I from where the row re

lated to variable j¢§ has been deleted.

Note that AX-Y=b, b-b2¥20b2aX2b; then
for §i=0vgi. The X-variables are termed
the

structural; Y-variables are termed ---

slack.

Because the constraints are a linear system,
the properties of linear subspaces make it
possible to state a simple characterization
of all feasible moves from a feasible point.
Consider the move between two feasible -----
points % ana X along the manifold defined by
the sets W and ¥; by linearity X(%-X)=0 and
$(%-%)=0 since A}=H, AxX=B and §j=§j vied —-
and, then,

la =0, $a=o0 (5.4)

where d is the stepdirection from § to X —--
such that X=%+ad. Any vector d for which ---

(5.4) holds is a feasible stepdirection from

% with respect to

the above manifold; it —-
is also an active stepdirection; it will be
descent if F(X)<F(X). Steplength is requi-

red to be 0<asam. where n defines the maxi-
mum allowed steplength such that X is still

feasible.

Let us define a non-active stepdirection 4
as the feasible

stepdirection such that ---
some constraint or bound is removed from the
sets W and 6, respectively; a feasible step-
direction d is non-active if 3ieM-EnW for -~
which A,d>0 if ¥,=0, A;d<0 if ¥,=b,-b,, or -
3je¥ for which d.>0 if %.=1., 4.<0 if ¥.=u.

J J 3 3 3 ]

5.2. Optimality conditions.

The necessary optimality conditions for % -=
being a weak local minimum are as follows --

/12/, /15/.
(i) %eF {feasible) .

*
The reduced gradient vector, say h of
such that

(ii)

F(X) wvanishes,

* kg ok
h=z%g=0
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where ? is a n.(n—@-?) full column rank ma-
trix, whose columns form the null basis of
the range of matrix (ﬁt, ft)t and, then,

X%=0, fZ=0 (5.6)

Based on (5.4) and (5.5). we mav note that
anv linear combinations of the columns of )

agive an active stepdirection 4,

_ (5.7)
d-ids

where ds is a (n—%—?)—vector termed reduced

stepdirection (or superbasic stepdirection)

suct that a vector 4 that cannot be expres-
sed by (5.7) is not an active stepdirection
in the manifold defined by W an ¥.

Any point at which the reduced gradient h -

vanishes (5.5) is termed constrained statio

nary point.

The result (5.5) implies that 8 must be a -

linear combination of the rows of X and i,
§ = K&+ 1% (5.8)

for some vectors ﬁ and X; they are termed -

the Lagrange multipliers of the active ---

constraints and bounds, respectively; vice-

versa, (5.8) implies (5.5).

(iii) Uniqueness of the Lagrange multipliers.

Let us partition matrix X and gradient
3 such that ﬁ=(ﬁ§,ﬁ) and §=(§;S,§§)t, where
ﬁ is a §.§ matrix defined by sets % and 6, -
and §N is the gradient of set ¥. Based in --
(5.8), ¥ can be written,

=35, - 5 (5.9)

*
such that |1 satisfies the linear system

* _ tx
gpg = (BB (5.10)
Point X does not require A to be a full row
rank matrix, but the unigueness of vectors

ﬁ and X requires B5 to have that property. -

In any case, computational stability in the
algorithms that obtain the sequence {X(k)}+§

requires {Ai} to be linearly independent for
ieM.

(iv) The sign of the Lagrange multipliers --
must be as follows:
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0 for icE (equality constraint).

ﬁ.=0 for i[ﬁ (non-active inequality cons—--

traint) .

u,z0 for ieM—Enﬁ such that §i=0 (active ine
quality constraint whose associa--
ted slack variable has the value -

zero) .

et 2
"
o

for ieM-EoW such that §i=51—§i (active
inequality constraint whose asso--
ciated slack variable takes its --
upper bound) .

¥.=0 for j£6 (non~active variable).

$.20 for je§ such that §j=lj (active varia-
ble at its lower bound).

$.<0 for je§ such that §j=Uj (active varia-
ble at its upper bound).

*
The set D uD,, where D 4{ieM-EnW for fi;=0}
and Dzé{je§ for fj=0} is termed degenerate

set of active constraints and bounds.

(v) Positive semi-definiteness of the -----

Hessian matrix.

*
The reduced Hessian matrix H must be positi

ve semi-definite,

A

where
(5.11)

If the degenerate set D ub, is not empty --

1
then the positive semi-definiteness property
of & must be extended to the non-active step

direction d for which it holds

Aid>0A§i=OAleD or Aid<OA§i=bi—piAleDl, or

1’

* *
d.>0AX.=1.AjeD or d.<0AX.=U.AjeD,.
j jort P O 9y SR M

Conditions (i)-(ii) and (iv)-(v) are neces--
sary conditions for local optimality; if ---
Hessian matrix is required in (v) to be posi
tive definite then they are sufficient condi
tions.

5.3. Skeletal algorithm.

Following a traditional approach /21/, let -
the active constraints matrix, say A be par-
titioned as

d

B
- - - = 5.12
Ad = (B,S,N)| dg |= 0 ¢ )

dy
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where the basic stepdirection dB is used to
satisfy the constraints set, the superbasic
stepdirection dS is allowed to vary to mini
mize F(X) (5.1) and the nonbasic stepdirec-
tion dN is zero, such that set V is fixed

at any of their bounds. Here BS=(B,S) and B
is a .t non-singular matrix. At each itera
tion, the problem then becomes determininé_
vector d=(dg,d§,d§)t so that it is feasible
descent. Let P, Q and V denote the sets of

structural basic, superbasic and nonbasic -
variables, respectively; and §s and vé the

sets of slack basic and nmbasic variables,

respectively. Let EE]ﬁs[, GE‘GSI and ng=|0|

where ﬁs=n—E—f; recall t=|P| and rz|v|. --

Since dN=O and ds is allowed to be free,
it results

a, = -8-'%a

B = g (5.13)

such that the variable-reduction characteri

zation of matrix Z can be written

(5.14)

so that (5.7) holds.

The unconstrained reduced problem of minimi-

zing F(X) in the manifold defined by W and V

can be expressed as a function of the current
superbasic set of variables; its quadratic -

approximation can be written

minimize {n%a

e- .
gt l/ZdSHdS} (5.15)

where h and § are given by (5.5) and (5.11),

respectively. Note that h can alsoc be --—----

written

= - _—t—

h = gg4 § g (5.16)
where ﬁB solves de linear system

= =t

gg = B Mg (5.17)

Note that §BSE(§E,§§£:where EB and §S are the
basic and superbasic gradients, respectively.
Theoretically the algorithm continues till

HE||=O or the superbasic set is empty and,-
then, the de-activating process is executed;
the Lagrange multipliers if the solution is

'optimal' or their estimates if the solution
is 'quasi-optimal' are used for selecting --

the nonbasic variable to be de-activated.
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The active constraints Lagrange multipliers
estimates may be obtained by solving system

(5.17), basic estimation or by minimizing

the residual error on solving system (5,10),

basic-superbasic estimation by using the QR

factorization /8/; see in /11/, /12/ an ex—-
tensive discussion on the subject.The Lagran
ge multipliers estimates of the structural -
nonbasic variables are obtained by using for
mula (5.9).

In the de-activating process, a {(structural
or slack) nonbasic variable with favorable -
Lagrange multiplier estimate A, 3jeV or Ei
i¢M-EnW will be chosen to be de-activated. -
If not, the optimum point ¥ has been found;
otherwise, the selected nonbasic variable be
comes superbasic and, if it is a slack varia
ble, it is exchanged with an appropiate =-—-—--
basic variable such that, in this case, a —--
new reduced unconstrained UNP problem is to

be solved.

While minimizing in a given manifold, it is

possible that either a basic or a superbasic
variable strikes a bound during the search.-
If a superbasic variable strikes a bound ---
then it becomes nonbasic, the cardinality of
the basic-superbasic set (the manifold) is -
reduced by one, and the search continues. If
a basic variable strikes a bound then it is

exchanged with an appropiate superbasic va--
riable, and the resulting new superbasic va-
riable is made nonbasic. See the details of

the whole process in /9/. It is out of the -
scope of this work to describe the different
treatment to be given to slack and structu--
ral variables, structural unbounded and ----
bounded

pure linear, linear with variable coeffi----

variables, and structural bounded -

cient and nonlinear variables. In any case,

note that slack variables will only be super
basic while changing the status from basic -
to nonbasic and viceversa. A structural va--
riable is defined to be pure linear if its -
coefficient in the objective function is ---

constant; it is linear with variable-coeffi-

cient if, for a given value of the other va-
riables that are used in the same objective
function terms, these are a linear function
of the given variable; it is nonlinear if, -
at least, there is an objective function --
term that is a nonlinear function of the gi-
ven variable if the rest of the variables --

are fixed. An example is as follows:
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F(X)=4x1+X logX3; variable X1 is pure linear,

2
variable X2 is linear with variable-coeffi--
cient, and variable X3 is nonlinear. The ---
rough procedure for major iteration k21 is -
as follows.

Skeletal algorithm A3.

T (k=1)

Let HZH k=1)

and hsh Let A=(B,S,N) -—-
also include the submatrix related to slack
variables (i.e., sets §s and VS), so that B -
is related to sets P and PS (being an (t+s).
. (t+s) nonsingular matrix) and N is related
to sets V and VS (being an (£+8) . (T+Vv) ma---

trix) .

(1) Analyse stopping criteria on optimizing
the current reduced unconstrained UNP -
problem on the given manifold. If they are -

satisfied then a 'quasi-optimal' or 'optimal'

solution to this problem is found, go to (6).

(2) Obtain a (descent) superbasic stepdirec-

tion assdék) on the current UNP and, by
using (5.13), obtain a feasible basic step--
direction aB. Note that as is obtained by --
using problem (5.15) and, then, by solving -

linear system

HdS = =h (5.18)

In our case, the method to be used is termed
Preconditioned Reduced Truncated Newton ----
(PRTN) method.

(3) Obtain the steplength &Eu(k)

such that,
by using an approximate linesearch, con-

ditions GPW are satisfied in problem

min{F (X+ad) : 0<asa } (5.19)
s_o(k-1) . : .

where X=X is the feasible solution ob--

tained at the previous iteration, and &mzaék)

is the maximum allowed value, at the current
iteration, for a such that od is still feasi
that -
satisfies conditions GPW, reset a:=am; note

ble. If there is not any value 0<os<a

that ad is still feasible-descent.

(4) In any case, a new point X(k)=§+&a is =--
t t t
obtained and its gradient (gék). gék) )

is evaluated or approximated. In our case, -
the diagonal BFGS update Eék)(4.5) related -
to the current reduced UNP is also obtained
z(k-1)

as a function of By , EE&ES, §Eh(k) -h --
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(k) (k)

and h , where h is the reduced gradient

(5.16) related to current iteration k; see -

(k) = (k) (®)

sec. 6. Reset X:=X , g:=g , h:=h

(5) If &:&m, identify the active (structural

or slack) variable and change its basic-
superbasic status so that the basic, superba

sic and nonbasic sets are updated and, so, -
matrix A. In our case, matrix ﬁsfﬁék)

Go to (2).

is also
updated; see sec. 6.

If &<am, go to (1).

(6) De-activating strateqgy. Let D be the --

set of (structural and slack) nonbasic -

variables with favorable Lagrange multiplier
estimate to k= made inactive. If D=f§, stop -
to be found. Note

that it is possible |D|>1; it is the case --

since point % is assumed

for which a multiple de-activating strategy
is allowed such that as many as possible non
basic variables are de-activated up a given
bound, say T2(§+§). Although more computatio
nal experience is required, it seems that --
allowing |D|>1 has better performance /3/, -
/17/, /29/ than the single de-activating --
strategy, provided that T, is not too-large;
typically, T2=0.05. Our computational results

(see sec.8) are also better for |D|>1.

(7) 1f |p|>0,

update ﬁs and obtain the new superbasic

update K, h and, in our case,

stepdirection dS; see sec. 7. Obtain the new

basic stepdirection dB and go to (3).

5.4. The PRTN method. Skeletal algorithm A4.

Linear system (5.18) is solved by using the
TN methodology with basically the same algo
rithm A2 where g, G, 5 (1)
tuted by h, H, ééi) and d

and d are substi-
g’ respectively. -

and 1T, are as follows: —-=-~——--

Tolerances €1 1

_1/2
£17%M

and Tl=3ﬁs. Tolerance ﬁI of stopp--
ing rule I, step (4) is obtained by using --
formula (3.5), where 5 is substituted by h ,
vy=1 and ﬁo=l/k' where k'21 is the major ite
ration of the subproblem defined by current
sets W and V; k' is reset to 1 when superba-
sic set Q is changed or the active bounds on
sets V and §s have been changed. Precondi---
tion W in algorithm A2 is, now, expressed by
= (k=-1) |
s ;

diagonal matrix B see sec. 6.

Recently /17/, the following rule has been -



suggested to stop the execution of algo---
rithm A4 in step (4).

Stopping rule II

l®(1-1>_¢(i>‘/‘¢(i)‘snII

(1)

(5.20)

where & is the value at minor iteration i
of the related quadrattic function (5.18). -

Note that ®(0)=0 and

t
(1) _~t_(1) (1) "%, (1)
o' ftalM 11720V TRal
t t t
=-e (0 (01 26 (1) TR lM 20 (0 7500,
t
172880 g1 (5.21)

where all elements are already available. --
For iz2, Q(l) can be expressed by using --—--
(3.2) as follows.
IS VAR SO FIC
. ] . . RN
=¢(1—1)+e(i_lfd(1)6gl)+l/2u(1)5g1) Héél)
(5.22)

N . At
such that éél) Héél) Eéél) q(l) is already
available; then it results that only one --
inner product is required in its computation.
One of the possible ways to overcome this in
convenience is as follows. Note that -------

. t .
e(l L 5;1) can be expressed by using (3.2)

as follows.

oyt s
L= 651) -

(i-nf G-1)
=e &

_ e(i—l>tz(1 D, (1) o= n° (1 1)
- _e(i"1>tz<i‘1>+-é1><e(l 2) pes CE P él—l)
_ _e(i—l)tz(i-1)+_éi)(e(i—z)tz(l-2)+ Q-2 5™ 1y
- _e(i-l)tZ(i-l)+e(i—l)tz(i-1)+B(i)e(i-2)t &0

g (D) (=D F (i-D)

gl Li- 1)

(5.23)

where also all elements are already availa--

o (1)

ble. Hence,

by using (5.22) and (5.23).Note that for i=2

can be computed very easily

; t .
the inner product e(l_z) Gél-l) in (5.23) --
can be expressed
t t
el® s (017, (0 (5.24)

In summary, stopping rule II (5.20), where -
the convergence tolerance Nyp Must be non-ne
gative (typically, nII=0.l) is not time-con-
suming and does not require special storage;
we have not used it yet, but the results re-

ported in /17/ are very promising.

The preconditioned algorithm, where matrix -
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W is expressed by the diagonal BFGS matrix

= (k-1) (k-1)

BS_BS related to point X=X is as

follows.

Skeletal algorithm A4

Set tolerances

ey= e/, Apmmint1/kt, IRl

n..= 0.1,1g =10E—12,11=3ﬁs

II

(0) Assign e(®:= R

z(o):=e(°)/ﬁs,6éll=-z(°) NN
t
1f 5é1) oD

1) = 1
551H6% ”b+ds:= % ) stop

(1) a{P:= 5§1>, e, L (O, (D

Stopping rule I:

ve le ), Jl1RI, < 7ypdse = o)

= -0t ,(0)

, stop

t
Assign e(O) 6§1):

W, @& ®) (1t (1
¢ =e (0 +0.555 5D

i:=2

(2) Assign o(i-1),._

<i_1)/1§s
801 = (i~ L(i-1)/, (i~ 2)t ,(i-2)

S(1) = -1 1) (1 1) q(i) —Hs(l’

¢ 651) Do, ||5(1)” *—d (1 s
(3) «(Dhe JG-DE (11)/¢U>t<1)

dél): (i-1) , (D él§

If i=rl»as.=dé1), stop

Assign e(i-D)fs(i), (1) (i-2)F 6(1 1)
(1) _ e(l 1 +a(D (1)

(4) Stopping rule I:

N P Y P A e
S G0 () e(i—l)tdéi)m.s,a(i)z 5S(i)t ¢ ®

Stopping rule II:

R O P R C PR DAINE lsng,»dg:=
=déi) » Stop

(5) i:=1i+1, go to (2)

The aditional amount of storage required in

the above algorithm is as follows: 5 ﬁs—vec—
(l_l). Z(l‘l) (although it may not
(1)

is used), g , —=

tors for e
. (i-1) =

be necessary if e /BS
(i-1) (1)
GS and dS

, and 15 scalars for —--=----

e, e(i-DF,(i-1), (G- (), ali-2),(i-2),
&)1 2,a0 g
qi(l 1)

VRN, 6 Te e,

fMysr Nypr Tg and Ty¢ only 3 inner pro-

i ~ -1t (i-
ducts (||e(l)|l2,||6él)||§ ang e 1"1) 5, (4 b

are performed at each iteration besides the
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operations required for q(l) (see below). No

te that e(o) and z(o) are not needed provi--

ded that in step (0): 5é1) i=-fi/Bg, -==----~
t -

e(o) z(o):=—ht6él), and in step (1):

(1)

- t
eMishig(t), (0 Gél):=-e(0)tz(0)

5.5. Using Reduced Hessian matrix. Skeletal
algorithm A5.

Note that algoritm A4 does not require the -
calculation of any Hessian matrix, but the -
product q(i)Eﬁdéi) . Note also that H (5.11)
is usually a dense matrix, even if G and A -

are sparse matrices. In any of the possible

(i)

ways to obtain g such that
q't) = z%Gzs Y (5.25)

the intermediate vector 5(1),

s (1) 2 Eaéi) (5.26)

‘must be obtained; matrix 2 (5.14) is not ex-

plicitly calculated. By assuming that fac---

tors L and U of basic matrix B are updated,
the procedure for obtaining (5.26) is as fol
lows. (Note that suffix £ in the vectors to
be used refers to the element related to va-
riable £ in the given vector and it does not
necessarily refer to the position of the ele
ment in the vector; this remark also holds -
for the matrices and vectors to be used in -
the rest of the work).

(1) Assign 6212:=0 veeTul, , ééi):éaéi)vﬂea

(2) &P :=-56{t ¢
(3) obrain 55t : Lus{P)ag(®)
(4) Géi):=6gz) Vﬂe?ufs

Once G(i) is obtained, 56(i) must be calcu-
lated. For super-scale problems, G is sugges
ted to be analytically evaluated only if it
is very sparse; if G has a special sparse --
structure, it could be approximated by fini-
te differences by using the CPRT methodology
/27/; note that G is available in some way -
for F(X) quadratic. Otherwise, vector éd(i)-
is approximated by finite differences such -
that
(5)

g(i) (k-1)

1= (g(X +os Py g x B Dyy s L gD

where only the basic-superbasic elements of

(k—l)+06(i)) are evaluated (or -

approximated) . As usual, o=e§/2/[|6(i)H2

gradient g(X

Finally, the procedure for obtaining =-=-=----
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q(i)52t§(i) is similar to the procedure for

obtaining ﬁ=§t§=§s—§t§t_l§B; see (5.16) and
= _(k-1) = _ (k-1)

(5.17). Note that gB:éB and 9g3dg are

the gradients of sets ﬁuﬁs and Q, respective

(k-1)

ly evaluated at point X=X such that

. (i) —por=1_,: .
(6) q(1) :'Qél)-StBt §é1)5§é1)_§tﬁ

t-lg(i)

Vector ﬁEﬁ S5

is obtained in (LU)tu=§él)
as vector ﬁB(LP simplex multipliers) is ob--

tained in (5.17). Note that Eéi) and §él)

are the subvectors of E(l)related to sets --

ﬁuﬁs and Q , respectively.

We may see that obtaining q(i) only requires
at each minor iteration i, one evaluation of
the basic-superbasic gradient and the solv--
ing of two linear systems with the basic ma-
trix (whose LU factorization is available).

Note that the gradient elements related to -
pure linear variables are constant; the ele-
ments related to linear variables whose va--
riable coeficient is only related to nonba--
sic variables do not change from X to —==——-
§+06(i). Note also that the solution of the
two linear systems consists in multiplying -
(premultiplying in one case and postmultiply
ing in the other) the inverse of the (nonsin
gular) basic matrix by a given vector. And,-
finélly, note that 53 =0 for KePs and, then,
3é1)=0 in step (5) f&r £eP_ such that ﬁi=o

being ifW (see secs. 5.1 and 5.2) the nonac-
tive inequality constraint related to slack

variable £ ; note also that slack variables -
cannot be used as superbasic for obtaining -

ds.

6. PRECONDITIONING IN LCNP,

Recall that the preconditioning matrix in --
algoritm A4 is expressed by the diagonal ---
BFGS matrix Eszﬁék-l) related to point -----
g=x (=1)

6.1. Obtaining ﬁék) in current reduced pro--

blem UNP. Skeletal algorithm A6.

(0)

(0) At iteration k=0, assign ES :=1 v£2eQ.

t

We do not recommend to obtain Z°GZ even --—

for F(X) quadratic and G sparse. Before ob--
5 (1) (1)

taining B (but after obtaining X , ma--

trix Eéo) is scaled /30/ so that the new ma-
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trix §é0) can be written
— —t- -
50 = ¥R/IIBIE ke
4
where §Eh(l)-h(0) and 5EX(1)—X(0).
(k)

At iteration k21 matrix B is calculated -
(after X(k) is obtained) by using the BFGS -
formula /6/ for the approximation of matrix

Etéz such that

S(k) | g(k=l) e sts
(1) By Bg » if y'pSe,
- (k- 1 _ —
£ £ ~t= -t (k)
Yy p h dS

otherwise note §Eh(k)—ﬂ‘, ﬁia(k)d(k) and --

hzh 571 ana e,=10E-4.

-, w(k) (k) . _z5(k-1)

(2) 1f BBSK < &:2->le : le
=(k) _=(k)V¥ =

(3) 1f K>Km+Bs& '=BSz ¥leQ

where szl/(looﬁé/zem), K=max§(k)/min§(k)and

S S
w=logKm/1ogk. T B

(k)

fa)
O

6.2. Updating B when a structural basic -

variable strikes a bound.

Let us assume that structural basic variable,
say peP strikes a bound and, then, a pivot--
ing with an appropiate superbasic variable,-
say gqeQ is performed such that, at the end -
of the process, P«Pu{gl}/{p} and G«Qu{pl/{q}.
The related updating of vector ﬁszﬁék) is as
follows.

Since B=LU for the old set ﬁ, it results =---
from (5.14) that

z = —(uiy7?!

)pS (6.1)

where z is the Es—row vector related to va--

riable p in old matrix Z; let z_be the pi--
vot element and v the n_-row vector such —--

S
that

v = (—z+eq)/zq z (zl""’—1+zq""’zﬁs) (6.2)

where °q is the unit Es—column vector with 1

as the g-th element.

Note that after pivoting in (p,q) qeﬁ and
pe@; then, the new matrix has the following
expression

7 = E(I+eqv) (6.3)

where I is the n_.n

g-Pg identity matrix and Z -
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is given in (5.14). Note that column vector
Zq related to variable 'p' is positioned in
matrix Z as vector Zq in matrix Z.
By assuming that, say C is such that ESEZtCE
is the diagonal BFGS approximation of the re
duced Hessian matrix ﬁEZtEZ, it results that
its update can be written
- _t _
BS.—Z CZ =

- - _.t_
= (Z(I+e v))" CZ(I+e V) = (I+eqv)tZ CZ(I+e v)
= (1+eqv)tﬁs(:+eqv) (6.4)

The rough procedure is as follows.

Skeletal algorithm A7

(1)Obtain row vecto- Z: vt LE 2 =e,

(2)Assign zZ:=235
zg:=-1/%, z£:=2£quKea/{Q}

(3)Assign By :=B. +B. 22 v2eQ/ B, :=B, 22
Sp Sp’Sq % {4} Sq Sq %a

Since z and z are not required to be saved, -
only one temporary additional ﬁs—vector is -
needed in algorithm A7.

= (k)

6.3. Updating B. when a superbasic variable

strikes a bound.

Let us assume that variable, say qeﬁ strikes
a bound; g is a superbasic variable in the -
current iteration, or it is a (structural or
slack) basic variable and an exchange with -
an appropiate superbasic variable has been
already performed. In this case, Q<Q/{q},

n.+n.-1 and, so B and h
S q

S are deleted from

S
- - q - -
By and h, respectively such that VS+VSu{q}
and v+v+l if q is slack, and §+§U{q}and —-——
r<r+l if g is structural. Note that ES is -
- _ q
deleted from Bs only after BS has been upda-

ted and, then, §q and ﬁq have been used.

6.4. Updating ﬁék) when a structural nonbasic

variable is de-activated.

Let us assume that structural nonbasic varia
ble, say qe? has been selected to become non
active in the next iteration and, so it is -
made superbasic. In this case, V<V/{q}, ----
0<Quiql}, r<r-i1, ﬁs+ﬁs+l and h_=X , where -
this element is related to the new superbasic
variable qg.

The new reduced Hessian matrix will be =-----

HEZtEZ , where Z (5.14) can be expressed
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(6.5)

where the column vector z is the golution of

system
LUz = -N (6.6)
q
such that
z'cz ZtG.
= ztcz = (6.7)
2"87 2%

z

Note that the old and new diagonal BFGS ma--
trices are intended to approximate H and H,

respectively. For |D|=1 (only one variable -
to be de-activated), it makes sense to ex—---

press the new element B in B

Sq S related to -

variable g as follows

[Etaf, if Etag > €,
BSq = (6.8)
1, otherwise

Vector z is obtained with a similar procedu-
re to step (3) of algorithm A5 (see sec. 5.5)
and Gz

is obtained with its step (5) where
(1)
8

is substituted by z. Recall tolerance -
£2>0 avoids possible unstabilities. The re--
marks made in that step are also applied ---
here; note that g is the unique superbasic -
variable to be used and slack variables have
no elements in objective function F(X); note
also that the gradient elements of basic va-
riables and variable g that are linear with

variable-coefficient only related to superba
sic and nonbasic variables will not change.-
Since there is a direct trade-off between —--
the amount of work required to compute a ---
stepdirection and the accuracy with which =--
the Hessian matrix is preconditioned, it is

suggested to set ES =1, instead of computing

- a .
thg if the basic set P and variable g are -

not nonlinear.

If |D|>1 it is suggested to set the new ele-
ments of ES to 1, since the computation of -
the first part of (6.8) may be too-much time
consuming without any gquarantee that they --
will not be reset to 1.

6.5. Updating §£k) when a nonactive constra-
int is activated.

Let us assume that slack basic variable, say

Qtiestiidé - V. 6, n.° 3 (setembre 1982)

peﬁs strikes a bound; it is the case where -
the related nonactive constraint, say 1i#W
becomes active. An appropiate superbasic va-
riable, say qsé is selected such that the pi
voting (p,q) is performed and algorithm A7 -
(see sec. 6.2) is used for updating gS such
that §s+§s/{P}, 0«<Qui{q}, B«Pulq}, s<+s-1 and
t+t+l. Since p is a slack variable the proce
dure suggested in sec. 6.3 must be followed
such that 5+6/{p},§se§su{p}, n +ﬁs—1 and —---

- s
v<v+l.

6.6. Updating B K

is de—-activated.

when an active constraint

Let us assume that slack nonbasic variable,

say quS has been selected to become nonacti
ve in the next iteration; it is the case whe
re the related active (inequality) constra--
int, say ieM-EnW becomes nonactive. The pro-

cedure is as follows:

(a) Use the procedure suggested in sec. 6.4
such that §S+§S/{q}, 0«Qu{ql, v+v-1 and

ns+ns+l. Note that Nq=—eq (see (5.12) and --
sec. 6.1) and, then, the solution z of sys--
tem (6.6) is the column vector related to --
(inequality) constraint i in inverse basic -
matrix B . Note also that the superbasic va
riable with nonzero element in vector z is a
slack variable.

(b) Select an appropiate structural basic va

riable, say p<«P such that the pivoting -
(p,q) is performed and algorithm A7 (see sec.
g S° that --=—-=~-
§S+§su{q}, P«P/{p}, 0<Qu{pl/{q}, s<s+l and -
t<t-1.

6.2) 1s used for updating B

/. "SOLVING’ THE NEWTON EQUATION ONCE THE DE-
ACTIVATING PROCESS HAS BEEN PERFORMED.
SKELETAL ALGORITHM A8

t
Let dS = (g; ,gg) be the new superbasic step

direction, where QS is the direction related
to the old superbasic set 0 and gS is related

to set D. The following stepdirection dS is -
suggested /3/ such that, although the Newton
equation Hd =-h will not be solved with full
accuracy, it is always descent and is not --
time-consuming.

0 if Q=pV| hllse, (7.1)

PRTN direction in ﬁds-—ﬁ
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vqeDd (7.2)

where QS’ 5 and h are related to the old su-

perbasic set (such that h is the reduced gra
dient related to the 'optimal' or 'quasi-op-
timal' solution X+od ), h_ A _ and e.>0 is -
S q q 3
a dynamically adjusted tolerance that is ---
being used in the criteria for defining when
an 'optimal' solution has been reached in --
the minimization of the manifold defined by

the old sets V and 65'

Note that if I|ﬁ|‘2>s3 it is not too-large

since i+aa is, at least, a 'quasi-optimal’

solution and, then, ﬁI is relatively small -
(see sec. 5.4). We may note that ds (7.1)- -
(7.2) is a mixture of the stepeest direction

and a relatively accurate Newton direction.

8. SOME COMPUTATIONAL RESULTS:

This section reports the results of running
the diagonai BFGS PRTN method in two real-1li
fe problems; see table 1. Both problems in--
volve the management of hydroelectric sys—--
tems with multiple reservoirs. The goal is -
to determine the amount of water to be relea
sed from and storage in each reservoir in --
each period (week) of a planning horizon (a
year), so that the weekly power demand is sa
tisfied at 'minimum cost'; the objective =---
function includes a convex, nondecreasing --
and piecewise differenciable function of the
cost of energy defecit (or surplus) determi-
ned by the energy market structure, and a --
nonseparable function of the reward for fi--
nal reservoir storage. Problem I is well-con
ditioned; Problem II is very ill-conditioned.

The gradients are analytically evaluated.

The PRTN method is included in the LCNP algo
rithm described in /9/. The main strategies
are as follows.

(1) Slack variables are either basic or non-
basic such that, once a nonbasic slack va
riable has been selected to be de-activated, -
it is made basic; the reason is that the ran-
ge 5—9 is large enough and, hopefully, the re
lated inequality constraint will have lesser
chance of striking a bound than 'critical' --
structural variables. For the same reason, ba
sic structural variables have priority over -

slack variables for being made superbasic.
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(2) When the single de-activating strategy -
is used, nonbasic structural variables -
have priority over slack variables for being

de-activated.

(3) The partitions of structural variables -
into pure linear, linear with variable--

coefficient and nonlinear, and basic, super-
basic and nonbasic variables are used for --
gradient evaluations and solving LP basic-su
perbasic and LP basic-nonbasic problems at -
each major iteration whenever it is possible

/%/.

(4) Basic nonlinear variables have some prio

rity over linear variables for being ma-
de superbasic, and superbasic linear varia--
bles have some priority over nonlinear varia
bles for being made basic. The goal is to —-
keep the basic set as close as possible to a
linear set, provided that stability in the -

basic matrix is preserved.

(5) Partial and multiple pricing and partial

exact normalization strategies /9/ are -

not used in this experiment; they are being

used in the computational comparison to be -
reported in the sequel of this paper between
the PRTN method and the diagonally precondi-
tioned 2-steps BFGS with accumulated step --
method /14/.

(6) Problem I is optimized by, alternatively

using the PRTN method and the RQN method;

the latter uses the BFGS Quasi-Newton update
of the reduced Hessian matrix and solves the
Newton equation with full accuracy. The RQN

method uses the basic-superbasic estimation

XBS /9/,/10/ of the Lagrange multipliers to-
gether with the basic estimation XB; the --
PRTN method only uses the basic estimation.

Both methods use the zero or near-to-zero --
strateqgy described in /12/ for de-activating
a nonbasic variable.

(7) The RQN method uses the approach descri-
bed in /9/ for obtaining the new superba
sic stepdirection once a nonbasic variable -

is de—-activated.

(8) The RQN method usually uses the single -

de-activating strategy; the PRTN method
also uses the multiple strategy with the --—-
upper bounds min {5,0.01(v+r)} and
min {20,0.05(v+r)}.
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(9) Both methods obtain the first partition
into basic, superbasic and nonbasic va--

riables by using the procedure described in

/9/.

(10) The stopping tests (with values true or
false) on the current manifold are as -
follows, provided that the solution is feasi
ble; these tests are based, although not ---
identical, in the tests described in /21/.

tl: “ 1?1|12$“:3V|| a|[2/(|| l+i+aa||2 )S€4V6= g

t2:

F(i+&a)—F(§)|/[1+F(§)+&a)]ses in the --

last Ty consecutive iterations

e3: 1Bl <e

t4d:

[hl e )T where ------

7T T >‘Bj_)‘

BS.|
]
t5: T>e8

where T = min {IAB.I,IABS.]} jsﬁuﬁs
J
t6: There is not any nonbasic variable with

Zero or near-to-zero Lagrange multipliers

estimate whose tendency is favorable.

An 'optimal' solution is assumed to be found
in the current manifold if tl; the current -

solution is 'quasi-optimal' if [tla (£2VE3) .

When the solution on the current manifold is
'quasi-optimal', both methods use the anti--
zigzegging strategy whose main features are
as follows: Let us assume that the set D of
candidate nonbasic variables (included by =--
the variables with favorable Lagrange multi-
pliers estimates) is already built; note -~--
that, in the experiment, the RQN method —---
uses both estimations XBS. and XB. such that

J
they must agree in sign and t4Aat5; the PRNT
only uses XB for which t4at5 must be satis-

fied.A nonbagic variable will not be inclu--
ded in set D if it is an unsafe variable. --
The set of unsafe variables is included by -
those nonbasic variables that were made ba-—-
sic-superbasic and, again, become nonbasic -
in the process of obtaining the next 'optimal’
solution. After the de-activating process --

(even if D=@), tolerance € is reset to ---
56=min{€3,86(l—€9)}; the unsafe set is decla

red empty if e _=¢..

6 3

When the solution on the current manifold is
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'optimal’, the unsafe set is declared empty -
and set D is built with the nonbasic varia--
bles with favorable Lagrange multipliers (no

te that, in this case, AB.= ABS. ]eVUVs) and

] J
t5. If D=¢ and t6 /12/, stop since the opti-
mal solution of the problem is found; if rte
then the related nonbasic variable is de-ac-

tivated. Tolerance 2P is reset to -——-=—-—---
56=€10||ABI[2’ where AB is the vector of ba-

sic estimations of the Lagrange multipliers
related to set D.

The values that we have used for obtaining -
the results shown in tables 2 and 3 are as -
=€g= 10E~04, initial =-—=-—--

follows: e,=¢c, =¢

3 74 75

0
€6=€10|lh( )|12, £.,=0.9, €

9 =0.3, &

=0.2, —--

9 10

T3=3 and T4=2

(11) Stopping rule I is used for 'solving' -
the Newton equation in the PRTN method;

stopping rule II has not yet been implement-

ed. Tolerance EI is obtained by using formu-

la (3.5), where 5 is substituted by --=-----

H [ 1 v = -1 _.1/2

h, no—l/k , Y=1, Tl—BnS and el—EM .The tole

rance to prevent unstabilities when updating

the diagonal BFGS matrix are such that -----

10— - Sl/2 e
92—10E 04 and Km—l/(loonS sM), where

€y = 10E-15. Vector §(l)zaﬁ(l) is obtained
at each minor iteration by using algorithm
A5 (see sec. 5.5), where o=e;/2/|]6(l)||2;—-

the basic-superbasic gradient is analytically
evaluated.

(12) The approximate linesearch used in this

experimént is the Gill-Murray line-----
search (routine GETPC, version 1.981) used -
in /21/; n=0.9 and u=10E-04. An alternative
linesearch (whose results are not shown) ---
strongly increase the number of iterations -
(and, then, gradient evaluations) required -
to solve Problem II.

The experiment was made in an IBM 370/158 --
with 3MB of real storage and using VM/CMS,
3MB of virtual storage, the algorithmic ----
tools of MPSX/370 VIL6 and compiler PL/I ---
OPT(2) .

The results for Problem I are shown in table
2; both methods are used. Together with the
single de-activating strategy, a multiple --
strategy was also tested up 5 and 20 varia--
bles to be de-activated at a time. Strate---

277



[ABLE 1

PROBLEM DIMENSIONS

. A o . oy | % *
Problem! m [E] [ n Variables partition (%) Damlty*bﬂ b A ;
Pure L Non-Purel| Nonlinear A G
1 32 19 | 88 20 58 22 10 |45 26 47 15
I1 583 (241 (1479 24 36 40 1 120 502 }459]518
TA 2
RESULTS FOR PROBLEM |
[ .
De-activating # Major #Accumulative | # Evaluations
Method : N
. 3 . of F(X),g(X) in
strategy iters. ~minor iters: i :
major iters-
RQN single 132 (132) 310
PRTN single 86 238 216
RQN 5 vars.: 103 (103) 274
PRTN 20 vars. 90 204 263
TABLE 3
RESULTS FOR PROBLEM [I
Precondi- | De-~activating | # Major | # Accumulative | # Evaluations
tioning strategy iters: minor iters. of ?(X)!g(x) at
major 1iters-
single 183 10968 515
No T, =0.01 212 11460 621
T, =0.05 153 10314 402
Diagonal single 190 8834 486
BFGCS T, =0.01 205 9372 ‘ 541
T, =0.05 141 7334 384
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gies (1)-(12) are used in both methods when-
ever they are applicable. The PRTN method re
quires as much as twice the number of gradient
evaluations required by the RON method; but,
it does not require to save, nor to update -
the reduced Hessian matrix. Certainly, more
experimentation is needed before any conclu-
sion may be drawn; but, it seems that for --
small-scale problems, it could be a good ---
strategy to obtain vector q(i)EZtézdéi) if A
is sparse and G is sparse and available, ins

tead of approximating q(i) by differencing.

The results for Problem II are shown in ta--
ble 3; it is a super-scale, badly scaled pro
blem and we cannot afford to use the amount

of storage regquired by the reduced Hessian -
update in the RQN method. So, the experiment
was only made with the PRTN method. Several

values on the multiple de-activating toleran
ce have been tested; 7,=0.01 and 12=0.05 ga-

2
The average number of -~

ve the best results.
minor iterations per major iteration is here
much greater than for Prcblem I, mainly in -
the vecinity of the optimal solution on the
manifold. The diagonal BFGS preconditioning
does not strongly reduce the number of minor
iterations but, since its updating does not
require large amount of storage, nor it is -
time consuming, it is interesting to consi--

der it as a default stratsgy.

Although some results are erratic, we may --
concliude, based on tables 2 and 3, that de--
activating more than cone variable at a time
generally reduces the number of major itera-
tions.

9. CONCLUSION.

The application of the Truncated Newton me--
thodelogy to linearly constrained nonlinear
programming (LONP) has been described; it is
used for obtaining the superbasic stepdirec-
tien, say as in the frame of a variable-re--
duction method for LCNP. A procedure for ---
dealing with the reduced Hessian matrix is -
described; it appears that it is very stable
and the required amount of storage is quite
acceptable for super-scale problems (i.e.,
the cardinality, say ng of the superbasic --
set of variables is between 300 and 600).The
reduced gradient is scaled at each major ---
iteration and a 'truncated' strategy is used

Qtiestiié - V. 6, n 3 (setembre 1982)

so that the solving of the Newton equation -

for obtaining as needs a smaller number of -

iterations. The preconditioning is the diago

nal BFGS approximation of the reduced Hessian
the specialization of the general methodology
for updating a product of matrices when one -
of them is modified (in this case, due to a -
basic-superbasic exchange or a reduction of -
the cardinality of nonbasic sets of structu-

ral and slack variables) is alsa fast and sta
ble.

For small-scale problems (ES<300), the Quasi-
Newton update has the best performance in our
limited computational experience. But for su-

per-scale problems, the Quasi-Newton approach

seems not to be practical; in this case, the
Truncated-Newton approach performs quite sa-
tisfactory; the diagonal BFGS used as a pre-
conditioning matrix reduces the number of --
iterations and its using and updatings requi
re a meaningless amount of storage and time-~
consumming. The performance of the Truncated-
Newton approach could be degradated for non-
sparse Hessian and constraints matrices. ‘

The mulfiple de-activating strategy has gene-
rally better performance than the single one,
provided that the maximum fraction, say T, of
nonbasic variables to be de-activated is not

too-larae; 12=0.05 seems reasonable.

A computational comparison between the Precon
ditioned Reduced Truncated Newton (PRTN) ----
approach and the Preconditioned 2-steps BFGS
with accumulated step (P2BFGSA) /14/ is requi
red for super-scale problems. In the sequel -
of this paper we are planning to report compu
tational results.
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