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Abstract

This work proposes a new method in order to simplify linguistic know-
ledge bases. The main goal consists of improving simultaneously accuracy
and interpretability when it is possible, or at least ensuring a good trade-off
between them, as well as consistency of the final knowledge base. It is used
with linguistic rules which can be defined by expert, induced from data, or
both of them. The simplification process is applied to the well known wine
classification problem. The results are encouraging.
Keywords: Simplification, linguistic knowledge bases, interpretability-accuracy
trade-off, expert and induced knowledge.

1 Introduction

The strength of Fuzzy Inference Systems (FIS) relies on their twofold identity: On
one hand they are able to handle linguistic concepts; on the other hand they are
universal approximators able to perform non linear mappings between inputs and
outputs. These two characteristics have been used to design two kinds of FIS.
The first kind of FIS to appear was focused on the ability of fuzzy logic to model
natural language [12]. These FIS contain fuzzy rules built from expert knowledge,
they can be seen as a fuzzy extension of expert systems. Sugeno [15] was one of
the first to propose self learning FIS and to open the way to a second kind of FIS,
those designed from data. As this field of fuzzy logic has become very popular, a
lot of methods are available [6, 10].

As expert knowledge and induced knowledge from data are complementary,
combining these two approaches may lead to more accurate systems. To make the
cooperation efficient, induced rules must be as interpretable as expert rules are.
The three conditions for a rule base to be interpretable have been stated in [6]:
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1. Interpretable fuzzy partitions.
2. A small number of rules.

3. Incomplete rules for large systems. A fuzzy rule is incomplete if its premise is
defined by a subset of the input variables. The number of variables used by
rule is very important regarding interpretability. Understand a rule with only
one input variable is very easy. Rule analysis is still easy when two variables
are involved because the rule can be described within a table. Nevertheless,
when the number of variables increases, the task becomes harder, the growth
of complexity is not linear. Large systems have lots of inputs and as a result
the use of complete rules yields quite poor interpretability.

The cooperation framework has been proposed in [9]. The process consists of
next steps:

1. Defining a common universe for each of the variables according to both expert
knowledge and data distribution.

2. Describing the system behavior. The expert is invited to express his/her
system knowledge as linguistic rules. Also, rules are induced from data.

3. Integrating both expert and induced rules into the knowledge base. Thanks
to the common universe previously defined both types of rules use the same
linguistic terms defined by the same fuzzy sets. In consequence rule compari-
son can be done at the linguistic level. During this last step, the fundamental
properties of a rule base have to be guaranteed.

Such an integrated knowledge base would potentially be simplified. This com-
munication deals with the simplification process of the whole knowledge base, both
data base and rule base are taken under consideration. The usefulness of this sim-
plification approach is not reduced to such a kind of integrated knowledge bases.
In many cases, induced knowledge bases will also reduce its complexity after the
simplification process. We assume that the knowledge base is previously built (no
matter how it was generated) and this paper goes into detail with the simplifica-
tion task. Note that the knowledge base generation is not the main topic of our
contribution. Please refer to the cited literature for a complete description.

The goal is to design incomplete, more general, rules while checking coherency
and avoiding redundancy in the final rule base. Building more general rules, as
expert, rules usually are, makes the system more robust and more interpretable.
The aim is not only to find a balance between accuracy and interpretability [4] but
to improve both at the same time.

The structure of the paper is as follows. Section 2 explains how to evaluate
the quality of the knowledge base. Section 3 offers a perspective of the overall
simplification process. Section 4 explains how to simplify the rule base. Section 5
describes how to reduce the data base. Section 6 shows the application of the sim-
plification process to a well-known problem of wine classification. Finally, section
7 offers some conclusions.
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2 Knowledge Base Quality

Quality indices are needed for system evaluation and optimization. The fuzzy
system quality can be assessed in terms of accuracy and/or interpretability. Never-
theless, the most difficult task in fuzzy modelling consists of setting a good trade-off
between both [4].

In the last few years lots of papers [16] related to interpretability in fuzzy
logic based systems have been written. However, interpretability is subjective, it
depends on the person who makes the assessment, and its quantification is still an
open problem. A first proposal [13] opens this way but a lot of work remains to do
in order to find an universal index.

On the other hand, measuring accuracy is relatively easy: The only thing to do
is to compare the inferred output, g, and the observed one, y, in the real system
to build an error index. A lot of indices are available in the literature. We use the
three following ones:

e Performance: For regression cases, it is defined as the root mean of sum of
squared errors (eq.1). And for classification cases, it is defined as the number
of misclassified items (eq.2).
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e Max error: Maximum difference between observed and inferred value.

e Coverage: Percentage of examples from data that fires at least one rule with
a degree higher than A.

As the present paper is focused on classification problems, the next indices are
considered:

e Error cases: Number of covered cases from data set that produces error,
i.e., observed and inferred values are different, in inference. Note that it is a
Performance index.

e Ambiguity cases: Number of covered cases from data set that produces
ambiguity, i.e., difference between the two highest confidence levels is smaller
than an established threshold.

e Unclassified cases: Number of cases from data set that do not fire at least
one rule with a degree higher than A. Note that this parameter expressed in
percentage is the complementary of Coverage.
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These indices convey complementary information. A good knowledge base
should minimize them by offering an accurate (reducing error cases), consistent
(reducing ambiguity cases) and complete (reducing unclassified cases) set of rules.
Note that Max error index is not taken into account. It does not make sense in
classification problems disregarding the order of classes, for example a wine clas-
sification problem. Of course, it should be used in those problems where the class
order is essential. For instance, assessing the risk levels for an insurance policy.

When the simplification process involves a modification in the knowledge base,
its accuracy is evaluated in order to confirm or discard the changes. Modifications
are saved, only if accuracy does not decrease, i.e., the indices do not increase.

Note that the simplification process can also be applied when no data are avail-
able. In this case it is made only at linguistic level, without checking the knowledge
base accuracy.

3 Knowledge Base Simplification Process
The main goal of the simplification process is to achieve a more compact knowledge
base, with a smaller size in order to increase interpretability, but without getting

worse accuracy than the original base. Figure 1 shows a schematic diagram of
knowledge base simplification process.

{ Original Knowledge Base }

Rule Base Simplification

Data Base Reduction

{ Simplified Knowledge Base }

Figure 1: Knowledge Base Simplification

Linguistic knowledge bases are highly interpretable. In order to guarantee this
interpretability, two aspects are considered, one for each part of the knowledge
base:

1. Data base: The use of strong fuzzy partitions [14] satisfies semantic cons-
traints on membership functions in order to respect semantic integrity within
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the partitions. As a result, all the fuzzy sets for each variable are interpretable
as linguistic terms.

1.0

0.5 —f----F---

0.0

Figure 2: A Strong Fuzzy Partition

Figure 2 shows a strong fuzzy partition with 5 terms. In this kind of parti-
tions, all fuzzy sets are of triangular shape, except at the domain edges where
the shape is semi trapezoidal, and they satisfy next conditions:

Vo e, 3 pa(a) = 1 (3)
i=1
VA; 3z, pa,(z) =1 (4)

U is the range, £ is the number of terms and 4, is the membership degree
of z to the A; fuzzy set.

2. Rule base: The use of a small number of linguistic rules helps to express
the system behavior in an understandable way. Fuzzy linguistic rules are of
form If condition Then conclusion where both, the premise and conclusion
use linguistic terms.

4 Rule Base Simplification

Rule base comprises linguistic rules. Rule premises are made up of couples (input
variable, linguistic term), where the absence of an input variable in a rule means
that the variable is not considered in the evaluation of the rule. The rule conclusions
are also made up of couples (output variable, linguistic term).

The fuzzy partitions include only basic labels, A;, which correspond with ele-
mentary fuzzy sets. Nevertheless in the rule description, for each input variable the
user can choose between basic labels (elementary terms) or composite labels (com-
posed by elementary terms linked through disjunction or negation operators). The
implementation of OR (disjunction) and NOT (negation) operators is explained in
[8]. The OR composite labels are defined as the convex hull of the combined terms.
And the NOT composite labels are defined by equation 5. Note that AND is not
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Table 1: Linguistic terms.

Number Name Fuzzy set
1 Ax |
2 As PN
3 As A,
4 As N
5 As -
6 NOT(A4,) -
7 NOT(Az2) = Smaller than As | B
OR Bigger than A, Ay
8 NOT(A3) = Smaller than As | B,
OR Bigger than A3 a
9 NOT(A4) = Smaller than As | .
OR Bigger than A4 P
10 NOT(As) B,
11 A; OR A, | N
12 As; OR A3 F -
13 As OR Ay p 9
14 A4 OR As y
15 A; OR A; OR A . N
16 Az OR Az OR A4 PN
17 A3z OR A4 OR 45 p 1

used for building composite labels because of the result would be a subnormal fuzzy
set while we always work with strong fuzzy partitions.

Ay OR --- OR A;_1 = Smaller than A;

5
Aiv1 OR --- OR A,, = DBigger than A; 5)

For example, for one regular partition with 5 labels, the user can choose between
the linguistic terms of table 1 in rule definition. As it can be seen in this table,
OR combination is restricted to neighboring terms in order to ensure that the
aggregated fuzzy set is convex.

Rules can be defined by expert or induced from data. Rule nature is taken
account into the simplification process and in case of conflict expert rules are our
priority.

The overall reduction process involves two steps. First the Simplify RB proce-
dure is applied in order to remove redundant rules. Second the Merge RB procedure
is used for building more compact and general rules.

4.1 Simplify RB

A consistency analysis of the knowledge base is made in order to detect redundant
rules:
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e Rules with the same premise and the same conclusion. The recommended
action is remove one of them.

e The input space covered by one rule is included into the one covered by the
other, and both rules have the same conclusion. The most specific rule is
removed, but only if it is an induced rule, or it is an expert rule and the most
general rule is an expert rule too. Expert rules have priority.

4.2 Merge RB

A linguistic analysis of the rule base is made in order to detect rules that can
be merged. Two rules can be merged if they are of the same nature (expert or
induced rules) and also satisfy next condition: They have the same conclusion
and their premises can be merged, i.e. there must be a composite linguistic term
equivalent to the merger of both labels.

The procedure for merging rules follows next sequence of steps, which are re-
peated until the whole rule base is analysed:

1. Evaluate quality of knowledge base.
. Look for two rules which can be merged.

. Generate a temporal copy of the knowledge base.

2
3
4. Substitute both rules for the merger rule in the temporal knowledge base.
5. Evaluate quality of temporal knowledge base.

6

. If (new quality is not worse than old quality) Then (changes in knowledge
base are saved) Else (changes are discarded).

7. Go to 2.

Note that knowledge base quality is measured in terms of accuracy (see section
2). However, in order to keep or discard changes, the rule base consistency has
to be checked too. The simplification process produces a generalization, a simpli-
fied rule may cover an input space which was not initially managed, for instance
because there are no available data in this zone. It is necessary to check that the
simplification does not lead to inconsistency as illustrated in figure 3. R3 can not
be merged with R1 and R2 because they have different conclusions. Linguistically
R1 and R2 can be merged. However, R3 input space is included into the one cov-
ered by the merger rule R12, and they are contradictories rules because they have
different conclusion. In consequence the fusion has to be discarded.

In order to merge two rules, there is a need to analyze their premises. There is
no problem with the conclusion because it is the same in the merger rule and in
the original rules. However, the premises of original rules have to be compared for
each input. If both premises are the same, then this is the merger rule premise.
But, if premises are different, then a new premise has to be built as merger of both.
Counsidering the two types of labels (basic or composite with NOT/OR) used, there
could be six situations:
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R1: IF Inputl is A1 AND Input2 is B1 THEN Output is C1 - - -
R12: IF Inputl is A1 OR A2 AND Input2 is BI OR B2 THEN Output is C1
R2: IF Inputl is A2 AND Input2 is B2 THEN Output is C1 . . .
R3: IF Inputl is A1 AND Input2 is B2 THEN Output is C2

R3: IF Inputl is A1 AND Input2 is B2 THEN Output is C2

’ i
Input2 ! Tnput2
I
Bl ‘ B2 '
‘ : :
i 1
Al ] |CLRD |1 | C2(R3) E Herme
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I | !
Inputl ——F-------- Rt ' !
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I |
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Figure 3: Rule generalization and possible conflicts.

e T'wo adjacent basic labels.

— New premise is an OR composite label which includes both basic labels.
e One basic label and its respective NOT composite label.

— New premise is the universal set. This condition will be always true.

e One basic label and one NOT composite label regarding to a different basic
label.
— If (Number of Labels equals two) Then (New premise is the basic label).
— Else (New premise is the NOT composite label).

e One basic label and one OR. composite label.

— If (the basic label is included into the OR composite label) Then (New
premise is the OR composite label).

— Else if (both labels are adjacent) Then (New premise is a new OR com-
posite label that includes both labels).

e One NOT composite label and one OR composite label which is included into
the NOT composite label.

— New premise is the NOT composite label.
e Two OR composite labels.

— If (one label is included into the other one) Then (New premise is the
biggest OR composite label).

— Else if (both labels are adjacent) Then (New premise is a new OR com-
posite label which includes both labels).
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Merging rules changes rule base configuration, but it does not modify the fuzzy
partitions in data base. Nevertheless, as a result of Merge RB process, composite
labels could appear in the premise part of the rules. The fuzzy partition modifica-
tion is made in the Data Base Reduction process.

5 Data Base Reduction

Data base comprises variable definitions, qualitative and quantitative information

about variable behavior. It includes partition definition for each input or output,

as well as semantic meaning of each linguistic term related to each fuzzy set.
This reduction process includes next steps:

1. Look for variables which are used by none of the rules and propose to remove
them.

2. Look for labels which are used by none of the rules and propose to remove
them.

3. Look for adjacent labels which are always used together and propose to merge
them into a new one.

1.0 T T T
AT\ A2 W/ A3, ) VA4 ' AS
05 —=---
00 T T T T ! T T T T
0.0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 T T T T T T T
Al A3 | Ad AS
i 1
05—----
00 T T T T ! T T T T
0.0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 T
Al ' | A3JOR A4} | /[ A5
05 ===
00 T T T T I T T T T
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4: Removing and merging labels within a strong fuzzy partition.

Removing or merging labels change elementary fuzzy sets of given partitions
as explained below. For instance, figure 4 illustrates how a regular strong fuzzy
partition with five linguistic terms (picture on the top) is altered through two



212 J.M. Alonso, L. Magdalena & S. Guillaume

consecutive modifications: First, in the middle part A, has been deleted, then As
and A4 have been merged in the bottom part of the figure. Let us note that final
partition is still a strong fuzzy partition.

5.1 Remove Labels

If one label is used by no rule, then it can be removed. However, in order to keep
a strong fuzzy partition, adjacent fuzzy sets are expanded. The right boundary of
the prior fuzzy set and the left boundary of the subsequent one are moved up to
the center of the other. Thus, deleting a label comes to expand adjacent fuzzy sets.
This makes the control surface of the fuzzy inference system smoother.

5.2 Merge Labels

Labels which are always used together, can be grouped in only one label. The
algorithm makes a linguistic analysis of the rule base in order to find out which
labels are used for each variable in at least one rule. When an OR composite
label is used but its component labels are not, neither alone nor in another OR
composite label, then the merger of component labels is proposed. Merge labels at
this level implicates to modify the fuzzy partition definition. The number of labels
is decreased and a new label with trapezoidal or semi trapezoidal shape substitutes
to the old component labels.

6 Application results

The simplification process was tested with its application to a well-known problem
of wine classification. The data set was collected from KEEL! data repository. It
contains 178 instances which have been divided into two different subsets of equal
size for five times. The original class distribution is kept within each subset. As
a result, five pairs of training (50% examples) and test (50% examples) sets were
generated. These data are the results of a chemical analysis of wines grown in
the same region in Italy but derived from three different cultivars. The analysis
determined the quantities of 13 constituents (Alcohol, Malic acid, Ash, Alcalinity
of ash, etc.) found in each of the three types of wines. Therefore, the knowledge
base includes 13 input variables and 1 output (type of wine).

For each input variable, a regular strong fuzzy partition with 5 fuzzy sets was
built in the variable range. Afterwards, with the previously defined regular par-
titions and the training data set, several rules were induced from data. Finally,
the simplification process described in the paper was applied over the resultant
knowledge base.

A lot of rule induction methods are available in the fuzzy literature [6, 10].
We choose two of them?: Wang and Mendel (WM) [17] and Fuzzy Decision Trees

Thttp://sci2s.ugr.es/keel-dataset
2Let us underline that our contribution does not rely on such algorithm development but in
showing simplification results. Please refer to the cited literature for a complete description.
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(FDT) [11]. According to the classification proposed in [3], WM is a prototype
oriented strategy because it starts from examples. It generates complete rules,
induced rules are defined considering all the available variables, and as a result
they are likely to be simplified. On the other hand, FDT builds incomplete, more
general, rules that also can be simplified.

Table 2: Simplification results.

Method | Rules | Premises | Inputs | Labels
WM 88.8 1154.4 13 65

WM + S 6.2 48.4 8 37
FDT 35.8 107 13 65

FDT + S 9.2 24 6.6 17.8

Table 2 gives the main simplification results, expressed in average value over
the five data sets. Two cases were studied: Induced rules with WM and their
simplification (WM + S), and induced rules with FDT and their simplification
(FDT + S).

Tables 3 and 4 show how the simplification process alters the knowledge base
accuracy.

Table 3: Accuracy over training data set (89 cases).

Method | Error Cases | Ambiguity Cases | Unclassified Cases
WM 0 0 0

WM + S 0 0 0
FDT 0 0.6 0

FDT + S 0 0.2 0

Table 4: Accuracy over test data set (89 cases).

Method | Error Cases | Ambiguity Cases | Unclassified Cases
WM 0.8 1.2 33

WM + S 5.4 5 3
FDT 2.8 2.8 0.8

FDT + S 3 5 0.8

The simplification process yields a more compact and interpretable knowledge
base. The size of both, data base (number of inputs and labels defined by input) and
rule base (number of rules and inputs used by rule, premises), is reduced. More

Notice that we use the methods implemented in Fispro [7]. This WM implementation differs
from the original one in the fuzzy partition design step. Interpretable fuzzy partition are built
previous to rule induction.
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general rules are built and, as a consequence, after simplification the knowledge
base covers input space parts where there was not available knowledge.

‘WM produces complete rules which are very specific ones. As a result, they yield
a very good performance with respect to the training data set while the accuracy is
not so good in relation with the test data set, there are lots of unclassified cases (the
number of uncovered cases rises up to 33 over 89). The simplification process lets
us achieve a very reduced number of rules (it decreases from 88.8 to 6.2), while the
number of unmanaged samples drops to 3. Most of these rules are complete ones
(rule number multiplied by input number is almost equal to premise number, see
table 2), but they use OR and NOT composite linguistic terms (the induced rules
only use basic labels) and in consequence they are much more general rules than
the initial ones. On the other hand, the accuracy is kept over training (see table
3) but it is also improved over test data set (see table 4). Notice that although the
accuracy is improved on the test set after the simplification process (in the sense
that the number of unclassified cases is reduced), the number of errors increases.

FDT generates incomplete rules which are quite general ones. The initial cov-
erage is high (smaller number of unclassified cases) for both, training and test sets.
Nevertheless, in this case there is another problem, it is possible that the merger
rules produce contradictions (partially redundant premises with different conclu-
sions) in relation with the other rules. In those cases, the rule fusion is discarded,
and as a result the final knowledge base looks less compact: The number of rules
is higher than in the WM + S case, 9.2 instead of 6.2. However, most of these
rules are incomplete ones (the number of premises is much smaller than in WM +
S, 24 instead of 48.4). Therefore, they are more general rules and the number of
uncovered samples drops to 0.8 for the test set. Regarding accuracy, results are
improved over training (see table 3), but they slightly get worse over test data set
(see table 4). This accuracy worsening is negligible in comparison with the achieved
interpretability improvement as result of the knowledge base size reduction.

To sum up, in all cases, the final knowledge base is more compact and inter-
pretable, but it is also as accurate as the initial one, or more accurate (in some
cases), with a larger coverage (smaller number of unclassified cases) and a smaller
number of error and ambiguity cases. Note that error and ambiguity cases are
measured in relation to the covered examples. If the number of managed cases
is much larger, then the number of error and ambiguity cases would probably be
slightly increased.

7 Conclusions

Previous work [2] presented an approach to build FIS through using both, expert
and induced knowledge, by focusing in the interpretability.

This paper describes a simplification procedure for linguistic knowledge bases,
whose aim is not only to find a balance between accuracy and interpretability but
to improve both at the same time. That was illustrated with the well-known wine
classification problem. Achieved results show that the final knowledge base is more
compact and transparent, but also more accurate than initial one.



Linguistic Knowledge Base Simplification Regarding Accuracy... 215

Thanks to the fuzzy logic formalism the induced knowledge can be described
with the same kind of linguistic rules that those used for expressing expert know-
ledge. The simplification process deals with linguistic rules which can be of different
nature: Defined by expert, induced from data, or both of them.

The whole process is implemented in KBCT [1], an open source software (dis-
tributed under the terms of the GNU General Public License) for generating and
refining fuzzy knowledge bases.
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