On Some Geometric Transformation of t-norms*

Erich Peter Klement¹, Radko Mesiar² and Endre Pap³

¹ Dept. Mathematics, Johannes Kepler University, A-4040 Linz, Austria
² Dept. Mathematics, Fac. Civil Engineering, Slovak Tech. Univ., SK-81368 Bratislava, Slovakia and UTIA AV CR Prague, Czech Republic
³ Inst. of Mathematics, Univ. of Novi Sad YU-21000 Novi Sad, Yugoslavia

Abstract

Given a triangular norm T, its t-reverse T^*, introduced by C. Kimberling (Publ. Math. Debrecen 20, 21-39, 1973) under the name invert, is studied. The question under which conditions we have $T^{**} = T$ is completely solved. The t-reverses of ordinal sums of t-norms are investigated and a complete description of continuous, self-reverse t-norms is given, leading to a new characterization of the continuous t-norms T such that the function $G(x, y) = x + y - T(x, y)$ is a t-conorm, a problem originally studied by M.J. Frank (Acta Mathematica 19, 194-226, 1979). Finally, some open problems are formulated.

1 Introduction

Triangular norms (t-norms) and the corresponding t-conorms play a fundamental role in several branches of mathematics, e.g., in probabilistic metric spaces [6], in the theory of generalized measures and games [1] and in fuzzy logic [5]. In [3], the t-reverse T^* of a t-norm T was introduced (under the name invert). We somewhat extend and complete the study of t-reverses done there.

A triangular norm (t-norm for short) is a function $T : [0, 1]^2 \rightarrow [0, 1]$ which is commutative, associative, non-decreasing in both components, and satisfies the boundary condition $T(x, 1) = x$ for each $x \in [0, 1]$. Given a t-norm T, its dual t-conorm S_T is defined by

$$S_T(x, y) = 1 - T(1 - x, 1 - y).$$

The most important t-norms, together with their dual t-conorms are

*The second and the third author would like to thank the Department of Mathematics of the Johannes Kepler University, Linz, Austria, for the financial support of their visits; most of the paper was written there.
\[T_M(x, y) = \text{min}(x, y), \quad S_M(x, y) = \text{max}(x, y); \]

\[T_P(x, y) = xy, \quad S_P(x, y) = x + y - xy; \]

\[T_L(x, y) = \text{max}(0, x + y - 1), \quad S_L(x, y) = \text{min}(1, x + y); \]

\[T_W(x, y) = \begin{cases}
\text{min}(x, y) & \text{if } \text{max}(x, y) = 1, \\
0 & \text{otherwise},
\end{cases} \quad S_W(x, y) = \begin{cases}
\text{max}(x, y) & \text{if } \text{min}(x, y) = 0, \\
1 & \text{otherwise}.
\end{cases} \]

It is obvious that these \(t \)-norms satisfy the inequality \(T_W \leq T_L \leq T_P \leq T_M \). Moreover, for each \(t \)-norm \(T \) we have \(T_W \leq T \leq T_M \). A continuous \(t \)-norm is called Archimedean if for each \(x \in \mathbb{R} \) we have \(T(x, x) < x \).

An interesting family of \(t \)-norms \(\{ T^F_s \}_{s \in [0, +\infty]} \) was studied in [2]:

\[T^F_s(x, y) = \begin{cases}
T_M(x, y) & \text{if } s = 0, \\
T_P(x, y) & \text{if } s = 1, \\
T_L(x, y) & \text{if } s = \infty, \\
\log_s \left[1 + \frac{(s-1)(x^s-1)}{s^s-x^s} \right] & \text{otherwise}.
\end{cases} \]

These \(t \)-norms will be referred to as the Frank \(t \)-norms, the family of the dual Frank \(t \)-conorms will be denoted \(\{ S^F_s \}_{s \in [0, +\infty]} \). The family \(\{ T^F_s \}_{s \in [0, +\infty]} \) of Frank \(t \)-norms is decreasing (see [1] and [4]) and continuous in the sense that we have

\[(s_n)_{n \in \mathbb{N}} \uparrow t \Rightarrow (T^F_{s_n})_{n \in \mathbb{N}} \downarrow T^F_t. \]

2 Definition of the \(t \)-reverse

Let \(T \) be a \(t \)-norm. Then the function \(T^* : [0, 1]^2 \rightarrow [0, 1] \) defined by

\[T^*(x, y) = \text{max}(0, x + y - 1 + T(1 - x, 1 - y)) \] \hspace{1cm} (1)

is called the \(t \)-reverse of \(T \). This definition goes back to [3] where the name invert was used for \(T^* \).

Using the dual \(t \)-conorm \(S_T \) of \(T \), this definition can be rewritten as

\[T^*(x, y) = \text{max}(0, x + y - S_T(x, y)). \] \hspace{1cm} (2)

The construction of \(T^* \) can be conceived geometrically as follows (it is visualized in Figure 1):

(i) The graph of \(T \) is rotated \(180^\circ \) around the vertical symmetry axis of the unit cube

(ii) The plane \(z = x + y - 1 \) is added to the rotated graph (this implies that the boundary conditions \(T^*(x, 1) = x \) and \(T^*(x, 0) = 0 \) are satisfied).

(iii) Any negative values are replaced by zero.
Figure 1: Visualization of the reversion: a t-norm (top left), rotating it around the vertical symmetry axis (top right), adding the plane $x + y - 1$ (bottom left), cutting off negative values (bottom right).
It is clear that T^* satisfies the symmetry and boundary conditions required for t-norms. The monotonicity and associativity, however, may not hold for T^*:

Example 2.1. (i) $T^*_W = T_L$.

(ii) $T^*_L = T_L$.

(iii) If T is the t-norm given by

$$T(x, y) = \begin{cases} \frac{xy}{x+y} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$$

then T^* is not associative, since, e.g., $T^*(T^*(0.2, 0.9), 0.9) \approx 0.1952$ and $T^*(0.2, T^*(0.9, 0.9)) \approx 0.1948$.

(iv) Let T be the ordinal sum \{\{0, 0.5, T_W\}, \{0.5, 1, T_L\}\} (for the general definition of ordinal sums see Section 4). Then T^* is not non-decreasing, since, e.g., $T^*(0.4, 0.6) = 0.4 > 0.2 = T^*(0.6, 0.6)$.

Examples 2.1 (iii) and (iv) both show that the t-reverse T^* of a t-norm T not necessarily is a t-norm. We shall say that a t-norm T is t-reversible if its t-reverse T^* is also a t-norm, and we shall denote the family of all t-reversible t-norms by R.

3 General properties

In [3] it was conjectured that a t-norm T is t-reversible only if T equals one of the basis t-norms T_M, T_P, T_L, T_W or a specific ordinal sum (for the general definition of ordinal sums see again Section 4) thereof. However, this conjecture turns out to be incorrect, as a consequence of the following result.

Theorem 3.1. For all t-norms T with $T \leq T_L$ we have $T^* = T_L$.

Proof. If $x + y \leq 1$ then $x + y = S_L(x, y) \leq S_T(x, y)$, where S_T is the dual t-conorm of T, in which case we have $x + y - S_T(x, y) \leq 0$ and, therefore, $T^*(x, y) = 0$. If $x + y > 1$ then $1 = S_L(x, y) \leq S_T(x, y)$, implying $S_T(x, y) = 1$ and, consequently, $T^*(x, y) = x + y - 1$.

Theorem 13 in [3] claims that for a t-norm T we always have $T^{**} = T$. This is not true since T may not be t-reversible, in which case $T^{**} = (T^*)^*$ is not properly defined. Even if T is t-reversible, this claim is wrong: from Example 2.1 (i) and (ii) we have $T^*_W = T_L$ and $T^*_L = T_L$, showing that $T^*_W \neq T_W$. However, we get the following result:

Theorem 3.2. Let T be a t-reversible t-norm. Then $T^{**} = T$ if and only if $T \geq T_L$.
Proof. By definition we have

\[T^*(x, y) = \max[0, x + y - S_T(x, y)], \]

where \(S_T^* \) is the dual of the \(t \)-norm \(T^* \), for which we get

\[
S_T^*(x, y) = 1 - T^*(1 - x, 1 - y) = 1 - \max[0, 1 - x + 1 - y - S_T(1 - x, 1 - y)] = 1 - \max[0, T(x, y) + 1 - x - y] = \min[1, x + y - T(x, y)].
\]

This implies

\[
T^{**}(x, y) = \max[0, x + y - \min(1, x + y - T(x, y))] = \max[0, \max(x + y - 1, T(x, y))] = \max(T_L(x, y), T(x, y)).
\]

Now it is clear that \(T^{**} = T \) if and only if \(T \geq T_L \).

Corollary 3.3. Suppose that both \(T \) and \(T^* \) are \(t \)-reversible \(t \)-norms. Then we have \(T^{***} = T^* \).

Proof. This is obvious since we always have

\[T^*(x, y) = \max(0, x + y - S_T(x, y)) \geq \max(0, x + y - 1) = T_L(x, y). \]

\[\blacksquare \]

Theorem 3.4. Let \(T \) be a continuous Archimedean, \(t \)-reversible \(t \)-norm. Then \(T^* \) is a continuous Archimedean \(t \)-norm.

Proof. Continuity follows from the definition. That \(T^* \) is Archimedean is a consequence of the fact that for all \(x \in [0, 1] \)

\[T^*(x, x) = \max(0, x + x - S_T(x, x)) < x, \]

since the dual \(t \)-conorm \(S_T \) of \(T \) satisfies \(S_T(x, x) > x \) for all \(x \in [0, 1] \).

\[\blacksquare \]

4 \(t \)-reverses of ordinals sums

An important way to construct new \(t \)-norms from given ones is that of an ordinal sum: let \(\{[\alpha_k, \beta_k]\}_{k \in K} \) be a non-empty countable family of pairwise disjoint open subintervals of \([0,1]\) and let \(\{T_k\}_{k \in K} \) be a family of corresponding \(t \)-norms. Then the ordinal sum \(\{[\alpha_k, \beta_k, T_k]\}_{k \in K} \) is the function \(T : [0, 1]^2 \to [0, 1] \) defined by

\[
T(x, y) = \begin{cases}
\alpha_k + (\beta_k - \alpha_k) \cdot T_k \left(\frac{x-\alpha_k}{\beta_k-\alpha_k}, \frac{y-\alpha_k}{\beta_k-\alpha_k} \right) & \text{if } x, y \in [\alpha_k, \beta_k], \\
\min(x, y) & \text{otherwise,}
\end{cases}
\]
which is always a t-norm. In order to keep the notation short, we also consider here the trivial ordinal sum $T = \{0, 1, T_1\}$, i.e., where $K = \{1\}$ is a one point set and $\alpha_1 = 0$ and $\beta_1 = 1$, in which case we have $T = T_1$.

Ordinal sums of t-conorms are defined in the same way as ordinal sums of t-norms, only replacing min by max. Observe, however, that the dual t-conorm of an ordinal sum $\{(\alpha_k, \beta_k, T_k)\}_{k \in K}$ of t-norms is the ordinal sum $\{(1 - \beta_k, 1 - \alpha_k, S_{T_k})\}_{k \in K}$ of t-conorms which, in general, is different from the ordinal sum $\{(\alpha_k, \beta_k, S_{T_k})\}_{k \in K}$.

Each continuous t-norm can be written as an ordinal sum $\{(\alpha_k, \beta_k, T_k)\}_{k \in K}$ such that all T_k are continuous Archimedean t-norms.

Denote by \mathcal{F} the family of t-norms T such that the function $G : [0, 1]^2 \rightarrow [0, 1]$ given by

$$
G(x, y) = x + y - T(x, y)
$$

is associative, i.e., a t-conorm.

Each element of \mathcal{F} can be written as an ordinal sum $\{(\alpha_k, \beta_k, T_k)\}_{k \in K}$ such that all T_k are Frank t-norms (see [2]). For more details about ordinal sums, see, e.g., [6].

In [3] the class of all t-norms satisfying the condition

$$
x \leq u \text{ and } y \leq v \Rightarrow u + v - T(u, v) \geq x + y - T(x, y)
$$

was denoted by \mathcal{M} (in the language of [3], these t-norms are said to be of moderate growth). In [3, Theorem 12] it is shown that, given $T \in \mathcal{M}$, then T^* is necessarily non-decreasing in each component, so only the associativity of the t-reverse can be a problem. Finally, Theorem 16 in [3] proves that if $T \in \mathcal{M}$ is an ordinal sum of t-reversible t-norms, i.e., $T = \{(\alpha_k, \beta_k, T_k)\}_{k \in K}$, with T_k reversible, then T itself is t-reversible, and T^* equals the ordinal sum $\{(1 - \beta_k, 1 - \alpha_k, T_k')\}_{k \in K}$.

An interesting question is now the relation between the three families \mathcal{R}, \mathcal{M}, and \mathcal{F}, i.e., of the families of t-norms which are t-reversible, of moderate growth, and which are solutions of the problem of Frank [2], respectively. Here are some simple observations concerning this problem.

Example 4.1. (i) The monotonicity of t-conorms implies that all elements of \mathcal{F} belong to \mathcal{M}, i.e., \mathcal{F} is a subfamily of \mathcal{M}.

(ii) Conversely, an element of \mathcal{M} need not be an element of \mathcal{F}: the t-norm T mentioned in Example 2.1 (iii) is an example for this, showing that \mathcal{F} is a proper subfamily of \mathcal{M}.

(iii) Not each t-reversible t-norm belongs to \mathcal{M}: T_W is an example for this. Hence, \mathcal{R} is not a subfamily of \mathcal{M}.

The exact relationship between the three families \mathcal{R}, \mathcal{M} and \mathcal{F} is given as follows.

Theorem 4.2. A t-norm T is both t-reversible and an element of \mathcal{M} if and only if T is an element of \mathcal{F} (this means that we have $\mathcal{F} = \mathcal{R} \cap \mathcal{M}$).
Proof. Assume first that $T = \{ (\alpha_k, \beta_k, T_{S_k}) \}_{k \in K}$ is an element of \mathcal{F} and, consequently, of \mathcal{M}. Let S_T be the dual t-conorm of T, i.e., S_T is the ordinal sum \(\{ (1 - \beta_k, 1 - \alpha_k, \textsc{S}_{\text{st}_k}) \}_{k \in K} \). Then from [2] we know that the expression
\[
x + y - S_T(x, y)
\]
is always nonnegative and defines a t-norm. Taking into account
\[
T^*(x, y) = \max(0, x + y - S_T(x, y)) = x + y - S_T(x, y),
\]
it is clear that T is t-reversible.

If, conversely, $T \in \mathcal{R} \cap \mathcal{M}$, observe first that (4) implies the inequality
\[
1 = 1 + 1 - T(1, 1) \geq 1 - x + 1 - y - T(1 - x, 1 - y),
\]
from which we get
\[
0 \leq x + y - 1 + T(1 - x, 1 - y) = x + y - S_T(x, y).
\]
Now, using $T \in \mathcal{R}$ and (2), we get
\[
T^*(x, y) = x + y - S_T(x, y)
\]
or, equivalently,
\[
S_T(x, y) = x + y - T^*(x, y),
\]
which, as a consequence of the results in [2], means that S_T can be written as an ordinal sum \(\{ (\alpha_k, \beta_k, \textsc{S}_{\text{st}_k}) \}_{k \in K} \), implying that we have $T = \{ (1 - \beta_k, 1 - \alpha_k, T_{\text{st}_k}) \}_{k \in K}$, i.e., $T \in \mathcal{F}$.

Remark 4.3. (i) Note that from the proof of Theorem 4.2 we can conclude that for $T \in \mathcal{F}$ we have
\[
T^*(x, y) = 1 - S(1 - x, 1 - y),
\]
where S is the t-conorm defined by $S(x, y) = x + y - T(x, y)$.

(ii) Let T be an ordinal sum of Frank t-norms, i.e., $T = \{ (\alpha_k, \beta_k, T_{\text{st}_k}) \}_{k \in K}$. Using the fact that for each pair $(T_{\text{st}}^{\text{F}}, S_{\text{st}}^{\text{F}})$ we have
\[
T_{\text{st}}^{\text{F}}(x, y) + S_{\text{st}}^{\text{F}}(x, y) = x + y
\]
(see again [2]), we see that T^* equals the ordinal sum \(\{ (1 - \beta_k, 1 - \alpha_k, T_{\text{st}_k}^{\text{F}}) \}_{k \in K} \), the dual t-conorm S_T^* of which is just given by $S_T^*(x, y) = x + y - T(x, y)$.

(iii) This means that all Frank t-norms are self-reverse, i.e., we have $(T_{\text{st}}^{\text{F}})^* = T_{\text{st}}^{\text{F}}$ for all $s \in [0, +\infty]$ (for a more detailed discussion see Section 5).

Example 2.1 (iv) and Theorem 3.1 show that ordinal sums of t-reversible t-norms, in general, need not be t-reversible (this fact is visualized in Figure 2). The following proves that a t-reversible ordinal sum can have at most one summand which is smaller than T_L.
Figure 2: Ordinal sum \(\{0.3, 0.9, T\} \) with \(T(x, y) = 1 - \min[1 - (\sqrt{1 - x} + \sqrt{1 - y})^2] \), i.e., \(T < T_L \) (top left) whose \(t \)-reverse (top right) is not monotone and, therefore, not a \(t \)-norm. The \(t \)-reverse (bottom right) of the ordinal sum \(\{0.4, 1, T\} \) (bottom left), however, is a \(t \)-norm, namely, the ordinal sum \(\{0, 0.6, T_L\} \).

Theorem 4.4. Let \(T \) be the ordinal sum \(\{\alpha_k, \beta_k, T_k\} \) \(\forall k \in K \) such that \(T \) is \(t \)-reversible and \(T_{k_0} < T_L \) for some \(k_0 \in K \). Then we have \(\beta_{k_0} = 1 \) (as a consequence, there is at most one summand \(T_k \) with \(T_k < T_L \)).
On Some Geometric Transformation of t-norms

Proof. Let \((x, y) \in [0, 1]^2 \) be a point such that \(T_{h_0}(x, y) < T_L(x, y) \), i.e.,
\[
x + y - 1 - T_{h_0}(x, y) > 0.
\]
(5)
Assume that \(\beta_{h_0} < 1 \) is true. Then, on the one hand, we have
\[
T^* (1 - \beta_{h_0}, 1 - \beta_{h_0}) = 1 - \beta_{h_0}.
\]
(6)
On the other hand, observe that
\[
1 - \alpha_{h_0} + (\alpha_{h_0} - \beta_{h_0}) \cdot x > 1 - \beta_{h_0},
\]
(7)
\[
1 - \alpha_{h_0} + (\alpha_{h_0} - \beta_{h_0}) \cdot y > 1 - \beta_{h_0},
\]
(8)
implying that
\[
T^* (1 - \alpha_{h_0} + (\alpha_{h_0} - \beta_{h_0}) \cdot x, 1 - \alpha_{h_0} + (\alpha_{h_0} - \beta_{h_0}) \cdot y)
= \max \left(0, 1 - \alpha_{h_0} + (\alpha_{h_0} - \beta_{h_0}) \cdot x + 1 - \alpha_{h_0} + (\alpha_{h_0} - \beta_{h_0}) \cdot y - 1 + \alpha_{h_0} \cdot (\alpha_{h_0} - \beta_{h_0}) \cdot T_{h_0}(x, y) \right)
= \max \left(0, 1 - \alpha_{h_0} + (\beta_{h_0} - \alpha_{h_0}) \cdot (T_{h_0}(x, y) - x - y) \right)
= \max \left(0, 1 - \beta_{h_0} + (\beta_{h_0} - \alpha_{h_0}) \cdot (x + y - 1 - T_{h_0}(x, y)) \right)
< 1 - \beta_{h_0},
\]
where the inequality follows from (5). This, together with (6), (7) and (8), violates the monotonicity of the t-norm \(T^* \), and therefore \(\beta_{h_0} < 1 \) cannot be true. ■

Conversely, it is not difficult to see that the each ordinal sum of some special form is \(t \)-reversible allowing us to formulate the following result:

Corollary 4.5. Let the t-norm \(T \) be the ordinal sum \(\{ (\alpha_k, \beta_k, T_k) \}_{k \in K} \) of Frank t-norms up to possibly one summand, say \(T_{h_0} \), with \(T_{h_0} < T_L \) and \(\beta_{h_0} = 1 \). Then \(T \) is \(t \)-reversible and its t-reverse \(T^* \) equals the t-reverse of \(T \), where \(T \) is the ordinal sum \(\{ (\alpha_k, \beta_k, T_k) \}_{k \in K} \) with \(\tilde{T}_k = T_k \) for all \(k \neq h_0 \) and \(\tilde{T}_{h_0} = T_L \).

5 Self-reverse t-norms

We are now interested in studying t-norms which are self-reverse, i.e., satisfy the equality \(T^* = T \). From Remark 4.3(iii) we know that all Frank t-norms \(T_s^F \), \(s \in [0, +\infty) \) have this property. We are now able to characterize all continuous self-reverse t-norms.

Theorem 5.1. Let \(T \) be a continuous t-norm. Then \(T^* = T \) if and only if \(T \) is an ordinal sum \(\{ (\alpha_k, \beta_k, T_k^F) \}_{k \in K} \) of Frank t-norms such that for each \(k \in K \) with \(T_{s_k}^F \neq T_M \) there is a \(j \in K \) with \(s_j = s_k \), \(\alpha_j = 1 - \beta_k \) and \(\beta_j = 1 - \alpha_k \).

Proof. Assuming \(T^* = T \) then we have \(T^{**} = T \) and, by Theorem 3.2, \(T \geq T_L \).
Then for the dual t-conorm \(S_T \) of \(T \) we obtain
\[
S_T(x, y) \leq S_L(x, y) \leq x + y.
\]
implying
\[x + y - S_T(x, y) \geq 0 \]
and, taking into account \(T^* = T \),
\[T(x, y) = x + y - S_T(x, y). \]

Because of [2], this means that \(T \) must be an ordinal sum \(\{ (\alpha_k, \beta_k, T_{s_k}^F) \}_{k \in K} \) of Frank \(t \)-norms. From Remark 4.3(ii) we know that \(T \) has to be symmetric in the sense that for each \(k \in K \) with \(T_{s_k}^F \neq T_M \) (\(T_M \) acts like a neutral element when constructing ordinal sums and does not influence this symmetry) there exists a \(j \in K \) such that \(s_j = s_k, \alpha_j = 1 - \beta_k \) and \(\beta_j = 1 - \alpha_k \).

Recall that in the trivial case \(K = \{1\} \), \(\alpha_1 = 0 \) and \(\beta_1 = 1 \), i.e., if \(T \) itself is a Frank \(t \)-norm, the symmetry condition is always satisfied. In the light of this theorem we can give the following variation of the results of [2]:

Corollary 5.2. For a continuous \(t \)-norm \(T \) the function \(G : [0, 1]^2 \to [0, 1] \) given by \(G(x, y) = x + y - T(x, y) \) is a \(t \)-conorm if and only if \(T \) is an ordinal sum \(\{ (\alpha_k, \beta_k, T_{s_k}^F) \}_{k \in K} \) of Frank \(t \)-norms, in which case the \(t \)-conorm \(G \) is dual to the \(t \)-reverse \(T^* \), i.e.,
\[G(x, y) = 1 - T^* (1 - x, 1 - y). \]

6 Concluding remarks

Some questions concerning \(t \)-reverses of \(t \)-norms remain still open. The most important open problem is the complete characterization of all \(t \)-reversible \(t \)-norms. Other related questions can be formulated as follows:

Question 1. Is a continuous \(t \)-norm \(T \) \(t \)-reversible if and only if \(T \) is an ordinal sum whose summands are Frank \(t \)-norms up to possibly one summand in the upper right corner of the unit square which is weaker than \(T_L \)?

Question 2. If \(T \) is a \(t \)-reversible \(t \)-norm, is \(T^* \) necessarily \(t \)-reversible?

Question 3. If \(T \) is a \(t \)-reversible \(t \)-norm, is \(T^* \) necessarily continuous?

Question 4. If \(T \) is a \(t \)-reversible \(t \)-norm, is \(T^* \) necessarily an ordinal sum of Frank \(t \)-norms?

We conjecture that there is an affirmative answer to each of these questions. However, we have not proven this claim so far (nor do we have counterexamples). Obviously, if there is a positive answer to Question 4, this would imply positive answers to both Questions 2 and 3.

References

