The Logic of Neural Networks

J.L. Castro\(^1\) and E. Trillas\(^2\)
\(^1\)Dpto. Ciencias Comp. e I.A., ETSI Informática, Univ. Granada.
Avda. Andalucía 38. 18071 Granada, Spain.
\(^2\) Dpto. Inteligencia Art. Fac. Informática Univ. Politécnica Madrid
Campus Montegancedo, 28660 Boadilla del Monte, Madrid, Spain.
e-mail: castro@robinson.ugr.es - trillas@fi.upc.es

Abstract

This paper establishes the equivalence between multilayer feedforward networks and linear combinations of Lukasiewicz propositions. In this sense, multilayer forward networks have a logic interpretation, which should permit to apply logical techniques in the neural networks framework.

Keywords. Feedforward Networks, Lukasiewicz Logic, Universal Approximators, Squashing functions.

1 Introduction

In the last several years researches have begun to explore the ability of multilayer feedforward networks to approximate general mappings. Recently, this research has virtually exploded with impressive successes across a wide variety of applications. The scope of these applications is too broad to mention useful specifics here; the interested reader is referred to the proceeding of recent conference IEEE Conferences on Neural Networks for a sampling of examples [6-13].

The ability of sufficiently elaborate feedforward networks to approximate quite well nearly any function has been established in a very specific and satisfying sense [4,5]. Nevertheless, neural networks are until now black boxes whose mechanism has not a logic explication. In this way, in [15] Williams gives a logic interpretation of activation functions. In this paper we will give a first step in order to obtain a general explication of the neural network mechanism.

Before enunciating the result we will give definitions and notation which enable us to speak about the class of multilayer feedforward networks under consideration.

Let \(RN \) be a single hidden layer feedforward networks with squashing at the hidden layer and no squashing at the output layer. Remember that a function \(\psi : \mathbb{R} \to [0, 1] \) is a squashing function if it is non-decreasing, \(\lim_{\lambda \to \infty} \psi (\lambda) = 1 \), and \(\lim_{\lambda \to \infty} \psi (\lambda) = 0 \).
The output function of RN will be
\[
f(x) = \sum_{j=1}^{k} \beta_j \psi \left(b_j + \sum_{i=1}^{n} w_i^j x_i \right), \tag{1}
\]
where \(\psi \) is a squashing function, \(x = (x)_i \) corresponds to network input, \(w_i^j \) corresponds to networks weights from input to intermediate layer, \(b_j \) corresponds to a bias, and the scalars \(\beta_j \) correspond to network weights from hidden to output layer (see fig. 1).

Fig. 1. Neural Networks

Hornik et al. [5] established that fixed \(\psi \), this kind of neural networks are universal approximators, that is, they are capable of approximating any Borel measurable function and any continuous function from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many hidden units are available. Concretely, they proved that the class \(\sum \psi \) of functions defined by (II) is uniformly dense on compacta in the set \(C^n \) of all the continuous function from \(\mathbb{R}^n \) to \(\mathbb{R} \), and fixed a probability measure \(\mu \) on \((\mathbb{R}^n, \mathcal{B}^n)\) – the Borel \(\sigma \)-field of \(\mathbb{R}^n \), \(\sum \psi \) is \(\mu \)-dense in the set \(M^i \) of all Borel measurable functions from \(\mathbb{R}^n \) to \(\mathbb{R} \).

In this paper we will prove that for any bounded set \(\mathbb{K} \subseteq \mathbb{R} \), if \(\psi \) verifies \(\psi(\lambda) = 0 \) if \(\lambda \leq 0 \) and \(\psi(\lambda) = 1 \) if \(\lambda \geq 1 \) (see fig. 2), these functions, and thus these networks, over \(\mathbb{K} \) are linear combinations of transformations by \(\psi \) of propositions of Kleene-Lukasiewicz logic:
\[
f(x) = \sum_{j=1}^{k} \beta_j \psi \left(P_j \left(\alpha_1^j (x_1 + M_1), \ldots, \alpha_n^j (x_n + M_n), \alpha_{n+1}^j \right) \right) \tag{II}
\]
or equivalently

\[f(x) = \sum_{j=1}^{k} \beta_j \psi \left(P_j \left(\alpha^j_1(x_1 + M), ..., \alpha^j_n(x_n + M), \alpha^j_{n+1} \right) \right) \]

where

1) \(\alpha^j_i \in [-1, 1] \) is calculated from \(w^j_i \), and such that \(\alpha^j_i(x_i + M) \in [0, 1] \),

2) \(P_j \) is a function from \([0, 1]^n\) to \([0, 1]\) defined as the truth function of propositions in the Kleene-Lukasiewicz propositional logic. That is, they are defined by means of the logic operators:

\[
\begin{align*}
 a \oplus b &= \min\{1, a + b\} \\
 a \odot b &= \max\{0, a + b - 1\} \\
 a^c &= 1 - a.
\end{align*}
\]

Fig. 2. Squashing function of the result

In scheme, we can represent the result by:

\[
\begin{array}{c}
\mathbb{K} \xrightarrow{t_j} [0, 1]^n \xrightarrow{P_j} [0, 1] \xrightarrow{\psi} [0, 1] \xrightarrow{f} \mathbb{R}
\end{array}
\]

where \(t_j(x_1, ..., x_n) = \left(\alpha^j_1(x_1 + M_1), ..., \alpha^j_n(x_n + M_n), \alpha^j_{n+1} \right) \).

Important consequences of this result are:

a) It gives a logic interpretation of neural networks, they are linear combinations of logical propositions (modified by \(\psi \)), which are applied to affine transformations of inputs to the unit n-cube \([0, 1]^n\). Moreover, if \(\psi \) is interpreted as a linguistic modifier of the truth value [16], then we will have a linguistic interpretation of the network.
b) It shows that the class $CL^n (\psi)$ of functions defined as linear combinations of logical propositions (modified by ψ), which are applied to affine transformations of inputs to the unit n-cube $[0, 1]^n$, is uniformly dense on compacta in the set C^n, and fixed a probability measure μ on $(\mathbb{R}^n, \mathcal{B}^n)$, $CL^n (\psi)$ is μ-dense in the set M^r. Thus, they are also capable of approximating any Borel measurable function and any continuous function from one finite dimensional space to another to any desired degree of accuracy.

c) The equivalence between neural networks and linear combinations of logical propositions is an open door to study one concept from the view of the other. For example, we can think on using algebraic logic tools for reducing neural networks, or think on learning a logic proposition by means of neural networks in order to reduce the complexity of the logic expression.

The plain of this paper is as follows. In section 2 we present the translation of neural networks into linear combinations of propositions. In Section 3 we will see that any linear combination of propositions is a multilayer feedforward networks. Finally, section 4 contains discussion of our results, directions for further research and some concluding remarks.

2 Neural Networks are linear combinations of propositions

We begin with definitions and notation which enable us to speak precisely about the propositions under consideration.

Definition. The set P_n of the well formed formulas (in brief w.f.f.) over a set of propositional variables $X = \{ p_1, ..., p_n \}$ is defined in Lukasiewicz logic by [1,14]:

1. If $p \in X$, then p is a w.f.f.
2. If P and Q are w.f.f., also $(P \land Q)$, $(P \lor Q)$ and $(\neg P)$ are w.f.f.
3. All the w.f.f. are obtained by finite applications of 1 and 2.

Definition. The truth function of a proposition $P \in P_n$ is the mapping from $[0,1]^n$ to $[0,1]$ defined recursively by [1,14]:

1. $p_i(a_1, ..., a_n) = a_i$
2. $1(a_1, ..., a_n) = 1, 0(a_1, ..., a_n) = 0$
3. $P \land Q(a_1, ..., a_n) = P(a_1, ..., a_n) \land Q(a_1, ..., a_n)$
 $P \lor Q(a_1, ..., a_n) = P(a_1, ..., a_n) \lor Q(a_1, ..., a_n)$
 $\neg P(a_1, ..., a_n) = P(a_1, ..., a_n)^c = 1 - P(a_1, ..., a_n).$
Remark. Note that these functions can be extended to functions from \mathbb{R}^n to \mathbb{R} by the same definition.

Let ϕ be the ramp squashing function defined by $\phi(x) = (1 \wedge x) \vee 0$ (see fig. 3).

Fig. 3. Squashing function ϕ

Lemma 1. For any $x \in \mathbb{R}$ and any $a \in [0, 1],$

$$\phi(x + a) = (\phi(x) \oplus a) \otimes (\Phi(-x))^c.$$

Proof. If $x + a > 1$, then $x > 1 - a$ and $-x < a - 1 < 0$. Thus, $\phi(x) \geq \phi(1 - a) = 1 - a$ and $\phi(-x) = 0$, hence $(\phi(x) \oplus a) \otimes (\Phi(-x))^c = (\phi(x) + a) \vee 1 = \phi(x + a)$.

If $x + a < 0$, then $x < -a < 0$ and $-x > a$, thus $\phi(x) = 0$ and $\phi(-x) \geq \phi(a) = a$, hence $(\phi(x) \oplus a) \otimes (\Phi(-x))^c \geq a \otimes a^c = 0 = \phi(x + a)$. Finally, if $0 \leq x + a \leq 1$, then $-a \leq x \leq 1 - a$. If $0 \leq x \leq 1 - a$, then $\phi(x) = x$ and $\phi(-x) = 0$, hence $(\phi(x) \oplus a) \otimes (\Phi(-x))^c = x + a = \phi(x + a)$. If $-a \leq x < 0$, then $\phi(x) = 0$ and $\phi(-x) = -x$. Thus $(\phi(x) \oplus a) \otimes (\Phi(-x))^c = a \otimes (-x)^c = a + 1 - (-x) - 1 \wedge 1 = a + x = \phi(x + a)$.

Lemma 2. For any $\alpha_1, \ldots, \alpha_n \in [-1, 1]$, there exists a proposition $P = P(\alpha_1, \ldots, \alpha_n) \in \mathbb{P}_n$ such that

$$\phi\left(\sum_{i=1}^n \alpha_i a_i \right) = P(\{\alpha_1|a_1, \ldots, \alpha_n|a_n\}) \text{ for any } a_1, \ldots, a_n \in [0, 1].$$

Proof. We will prove it by induction over n. If $n = 1$, there are two cases:

- If $\alpha_1 < 0$, then $\phi(\alpha_1 a_1) = 0 = p_1 \land \neg p_1 (|\alpha_1|a_{-1})$.
- If $\alpha_1 \geq 0$, then $\phi(\alpha_1 a_1) = p_1 (|\alpha_1|a_1) = |\alpha_1|a_1$.
Let us suppose that it is verified by a fixed n, and let us prove that it is verified for $\phi \left(\sum_{i=1}^{n+1} \alpha_i a_i \right)$.

- If $\alpha_0 \leq 0 \forall 1 \leq i \leq n + 1$, $\sum_{i=1}^{n+1} \alpha_i a_i \leq 0$ and $\phi \left(\sum_{i=1}^{n+1} \alpha_i a_i \right) = 0 = p_1 \land -p_1 (|\alpha_1 a_1, ..., |\alpha_n a_n|)$.

- If there exists some α_i such that $\alpha_i > 0$, we can suppose without loss of generality that it is $\alpha_{n+1} > 0$, and since $\alpha_{n+1} a_{n+1} \in [0, 1]$, by lemma 1,

$$\phi \left(\sum_{i=1}^{n+1} \alpha_i a_i \right) = \phi \left(\alpha_{n+1} a_{n+1} + \sum_{i=1}^{n} \alpha_i a_i \right) = \left[\phi \left(\sum_{i=1}^{n} \alpha_i a_i \right) \oplus \alpha_{n+1} a_{n+1} \right] \oplus \left[\phi \left(\sum_{i=1}^{n} (-\alpha_i) a_i \right) \right]^c.$$

By induction hypothesis, $\exists P, Q \in \mathbb{P}_n$ such that

$$\phi \left(\sum_{i=1}^{n} \alpha_i a_i \right) = P (|\alpha_1 a_1, ..., |\alpha_n a_n|)$$

and

$$\phi \left(\sum_{i=1}^{n} (-\alpha_i) a_i \right) = Q (|\alpha_1 a_1, ..., |\alpha_n a_n|),$$

hence taking $R = (P \lor p_{n+1}) \land \neg Q$, we have that $R \in \mathbb{P}_{n+1}$ and

$$\phi \left(\sum_{i=1}^{n+1} \alpha_i a_i \right) = R (|\alpha_1 a_1, ..., |\alpha_n a_n, |\alpha_{n+1} a_{n+1}|) \quad \blacksquare$$

Lemma 3. Let K be a bounded subset of \mathbb{R}^n such that for every $i=1...n$ it is verified that $x_i \leq 0$ for every $x \in K$ or $x_i \geq 0$ for every $x \in K$, and let $w_1, ..., w_n \in \mathbb{R}$ be. There exist $M = M (K) \in \mathbb{N}$, $\alpha_1, ..., \alpha_n \in [0, 1] - \alpha_i = \alpha_i (w_1, ..., w_n) -$ and a proposition $P = P (K, w_1, ..., w_n) \in \mathbb{P}_n$ such that

$$\phi \left(\sum_{i=1}^{n} w_i x_i \right) = P (|\alpha_1 x_1 / M|, ..., |\alpha_n x_n / M|) \quad \forall x \in K.$$

Proof. Since K is bounded, there exists a $M \in \mathbb{N}$ such that if $x \in K$, then $|x_i| \leq M$ for all $1 \leq i \leq n$. Let M be fixed. Let $N = 1 + \text{Ent}(\max(|w_1|, ..., |w_n|))$ where $\text{Ent}(x)$ means the integer part of x. Then

$$\left(\sum_{i=1}^{n} w_i x_i \right) = M.N \left(\sum_{i=1}^{n} \delta x_i / M \right),$$

where $\delta_i = w_i / N \in [-1, 1]$.

Thus,

$$\sum_{i=1}^{n} w_i x_i = \sum_{j=1}^{nM} \delta_j^* a, \text{ where}$$

for every $i = 1..n$ and for every $j = (i-1) \cdot N \cdot M + i \cdot N \cdot M$,

$$\delta_j^* = \begin{cases}
\delta_i & \text{if } x_i \geq 0 \text{ for every } x \in \mathbb{K} \\
-\delta_i & \text{if } x < 0 \text{ for every } x \in \mathbb{K}
\end{cases}$$

and

$$a_j = \begin{cases}
{x_i}/M & \text{if } x_i \geq 0 \text{ for every } x \in \mathbb{K} \\
-{x_i}/M & \text{if } x < 0 \text{ for every } x \in \mathbb{K}
\end{cases}$$

Since that $\delta_j^* \in [-1, 1]$ and $a_j \in [0, 1]$, by lemma 2, there exists a $Q \in \mathbb{P}_{n, N, M}$ such that

$$\phi \left(\sum_{i=1}^{n} w_i x_i \right) = Q(\delta_1^* a_1, \ldots, \delta_{n \cdot N \cdot M}^* a_{n \cdot N \cdot M}) \text{, for every } x \in \mathbb{K},$$

and since there are only n elements $|\delta_j^* a_j|$, we have that by substitution in Q of every p_j by p_i being i such that $(i-1) \cdot N \cdot M < j \leq i \cdot N \cdot M$, we have a proposition $P \in \mathbb{P}_n$ such that

$$\phi \left(\sum_{i=1}^{n} w_i x_i \right) = P(\alpha_1, \ldots, \alpha_n) \text{ \forall } x \in \mathbb{K},$$

where

$$\alpha_i = |\delta_i^*| = |w_i/N|. \quad \blacksquare$$

Lemma 4. Let \mathbb{K} be a bounded subset of \mathbb{R}^n and $w_1, \ldots, w_n \in \mathbb{R}$. There exist $M \in \mathbb{R}$, $\alpha_1, \ldots, \alpha_n, \alpha_{n+1} \in [0, 1]$ such that $M - \alpha_i = \alpha_i (w_1, \ldots, w_n, \mathbb{K})$ and $P \in \mathbb{P}_{n+1}$ such that

$$\phi \left(b + \sum_{i=1}^{n} w_i x_i \right) = P(\alpha_1 x_1 + M, \ldots, \alpha_n x_n + M, \alpha_{n+1}) \text{ \forall } x \in \mathbb{K}.$$

Proof. Since that \mathbb{K} is bounded, $\exists M \in \mathbb{R}$ such that $\forall x \in \mathbb{K}, |x_i| \leq M$ for every $i = 1..n$. Thus, $x + M' \geq 0$ for every $i = 1..n$. Since

$$b + \sum_{i=1}^{n} w_i x_i = b + \sum_{i=1}^{n} w_i (x_i + M) - M \sum_{i=1}^{n} w_i = b - M \sum_{i=1}^{n} w_i + \sum_{i=1}^{n} w_i (x_i + M)$$

By applying lemma 3 to $\left(\sum_{i=1}^{n+1} w_i (x_i + M) \right)$; with $w_{n+1} = b - M \sum_{i=1}^{n} w_i$, and $x_{n+1} = 1$, over the set $\mathbb{K} + Mx\{1\} = \{(x_1 + M, \ldots, x_n + M, 1) / (x_1, \ldots, x_n) \in \mathbb{K}\}$, we conclude the proof of the lemma. \blacksquare
In order to simplify the complexity of the affine transformations \((M \text{ might be a very big number})\), we will prove the following

Lemma 4 bis. Let \(\mathcal{K}\) be a bounded subset of \(\mathbb{R}^n\) and \(w_1, \ldots, w_n \in \mathbb{R}\). There exist \(M_1, \ldots, M_n \in \mathbb{R}\) - \(M_i = M_i(\mathcal{K})\) - \(\alpha_1, \ldots, \alpha_n, \alpha_{n+1} \in [-1, 1]\) - \(\alpha_i = \alpha_i (w_1, \ldots, w_n, \mathcal{K})\) - an a proposition \(P \in \mathbb{P}_{n+1}\) such that

\[
\phi \left(b + \sum_{i=1}^{n} w_i x_i \right) = P (\alpha_1 (x_1 + M_1), \ldots, \alpha_n (x_n + M_n), \alpha_{n+1} 1) \quad \forall x \in \mathcal{K}.
\]

Proof. Since that \(\mathcal{K}\) is bounded, for every \(i = 1..n\) there exist \(N_1^i\) and \(N_2^i\) \(\in \mathbb{R}\) such that \(N_1^i \leq x_i \leq N_2^i\) for every \(x \in \mathcal{K}\). Taking \(M' = \min \{N_1^i, N_2^i\}\) and \(M_i = M_i'\) if \(N_1^i \leq N_2^i\) or \(M_i = -M_i'\) if \(N_1^i > N_2^i\), we have that the set

\[\mathcal{K} + (M_1, \ldots, M_n) x\{1\} = \{(x_1 + M_1, \ldots, x_n + M_n, 1) / (x_1, \ldots, x_n) \in \mathcal{K}\}\]

verifies the conditions of lemma 3 and by applying this lemma to

\[\left(\sum_{i=1}^{n} w_i (x_i + M_i)\right) \; \text{with} \; w_{n+1} = b - \sum_{i=1}^{n} M_i w_i, x_{n+1} = 1 \; \text{and} \; M_{n+1} = 0,\]

we conclude the proof. \(\blacksquare\)

As a immediate consequence we have the following results:

Theorem 1. Let \(w_i^j \in \mathbb{R}, \beta_j, b_j \in \mathbb{R}, i = 1..n, j = 1..k\), and let \(f\) be the function defined by

\[f (x) = \sum_{j=1}^{k} \beta_j \phi \left(b_j + \sum_{i=1}^{n} \omega_i^j x_i \right).\]

For every bounded subset \(\mathcal{K}\) of \(\mathbb{R}^n\), there exist \(k\) propositions \(P_1, \ldots, P_k \in \mathbb{P}_{n+1}\), \((n + 1).k\) real numbers \(\alpha_i^j \in [-1, 1] \; (i = 1..n + 1, j = 1..k)\) and \(n\) real numbers \(M_1, \ldots, M_n\) such that

\[f (x) = \sum_{j=1}^{k} \beta_j P_j \left(\alpha_1^j (x_1 + M_1), \ldots, \alpha_n^j (x_n + M_n), \alpha_{n+1}^j 1 \right) \quad \forall x \in \mathcal{K} \quad (III)\]

We can express in scheme this result by:

\[
\begin{array}{ccc}
\mathcal{K} & \overset{f}{\longrightarrow} & \mathbb{R} \\
\downarrow_{\beta_j} & \overset{\sum_k \beta_j P_j}{\longrightarrow} & [0,1] \\
[0,1]^{n+1} & \overset{P_j}{\longrightarrow} & [0,1]
\end{array}
\]
where \(t_j(x_1, \ldots, x_n) = \left(\alpha_1^j \left(x_1 + M_1 \right), \ldots, \alpha_n^j \left(x_n + M_n \right), \alpha_{n+1}^j \right) \).

Theorem 1 bis. (Neural Networks Version). Let RN be a single \(k \)-nodes hidden layer feedforward networks with squashing function \(\phi \) at the hidden layer and no squashing at the output layer. For every bounded subset \(\mathbb{K} \) of \(\mathbb{R}^n \), there exist \(k \) propositions \(P_1, \ldots, P_k \in \mathbb{P}_{n+1}, (n + 1) \) real numbers \(\alpha_i^j \in [-1, 1] \) (\(i = 1..n+1 \), \(j = 1..k \)) and \(n \) real numbers \(M_1, \ldots, M_n \), such that the function \(f \) calculated by the net over \(\mathbb{K} \) is

\[
\begin{align*}
 f(x) &= \sum_{j=1}^{k} \beta_j P_j \left(\alpha_1^j \left(x_1 + M_1 \right), \ldots, \alpha_n^j \left(x_n + M_n \right), \alpha_{n+1}^j \right) \quad (IV)
\end{align*}
\]

Examples:

1) If the net has the form

\[
\begin{align*}
 &x_1 \\
 &\downarrow w_1 \\
 &z \xrightarrow{\beta} y \\
 &\downarrow w_2 \\
 &x_2
\end{align*}
\]

- If \(w_1x_1 \in [0, 1] \) and \(w_2x_2 \in [0, 1] \) for each \(x_1, x_2 \) in the domain, the output will be

\[
\begin{align*}
 \beta \phi \left(w_1x_1 + w_2x_2 \right) &= \beta [\phi \left((w_1x_1) \otimes w_2x_2 \right) \otimes \phi (-w_1x_1)^{\dagger}] = \\
 &= \beta [\phi \left((w_1x_1) \otimes w_2x_2 \right) \otimes 0^\dagger] = \\
 &= \beta [(\phi (w_1x_1) \otimes w_2x_2) \otimes 1] = \beta [(\phi (w_1x_1) \otimes w_2x_2)] = \\
 &= \beta [w_1x_1 \otimes w_2x_2]
\end{align*}
\]

hence the equivalent linear combination is \(\beta \left(p_1 \lor p_2 \right) \left(w_1x_1, w_2x_2 \right) \).

- If \(w_1x_1 \in [0, m_1] \) and \(w_2x_2 \in [0, m_2] \) in the domain, then the output will be

\[
\begin{align*}
 \beta \phi \left(w_1x_1 + w_2x_2 \right) &= \beta [\phi \left(\left(w_1/n_1x_1 + \frac{n_1}{n_2} \right) + \frac{w_1}{n_1} + \frac{w_2}{n_2x_2} + \frac{n_2}{n_1} + w_2/n_2 \right)] = \\
 &= \beta [w_1/n_1x_1 \oplus \frac{n_1}{n_2} \oplus w_1/n_1 \oplus w_2/n_2x_2 \oplus \frac{n_2}{n_1} \oplus w_2/n_2]
\end{align*}
\]

hence, the equivalent linear combination is

\(\beta \left(m_1 \ast p_1 \lor m_2 \ast p_2 \right) \left(w_1/n_1x_1, w_2/n_2x_2 \right) \),

where \(n \ast p \) represents the proposition \(p \lor \frac{n}{m} \lor p \).

For example the net
where $x_1 \in [0, 1]$ and $x_2 \in [1, 3]$ calculate the function $0.5 \ (x_1 \oplus 0.5x_2) = 0.5[(p_1 \lor p_1 \lor p_2) \ (x_1, 0.3x_2)]$; and the net

where $x_1 \in [0, 4]$ and $x_2 \in [0, 1]$ calculate the function

$$\begin{align*}
(x_2 \oplus \frac{3}{4}) \oplus (x_2 \oplus (1/4x_1) \oplus \frac{3}{4}) \oplus (1/4x_1) - (x_2 \oplus 0.2x_1) = \\
(8 \ast p_1 \lor 4p_2) \ (1/4x_1, x_2) - (p_1 \lor p_2) \ (0.2x_1, x_2).
\end{align*}$$

We can unify the affine transformation by

$$[(40 \ast p_1 \lor 4 \ast p_2) - (4 \ast p_1 \lor p_2)] \ (1/20x_1, x_2).$$

As is well-known, networks with this squashing function do not learning by backpropagation. Thus, it is necessary to extend the result to networks with others squashing function.

Lemma 5. Let ψ be a squashing function verifying $\psi(x) = 0$ if $x \leq 0$ and $\psi(x) = 1$ if $x \geq 1$. Then, $\psi(x) = \psi \circ \phi (x)$ for each $x \in \mathbb{R}$.

Proof. If $x \leq 0$, then $\psi(x) = 0 = \psi(0) = \psi \circ \phi (x)$. If $x \geq 1$, then $\psi(x) = 1 = \psi(1) = \psi \circ \phi (x)$. If $0 \leq x \leq 1$, then $\phi(x) = x$ and $\psi(x) = \psi \circ \phi (x)$.
Useful examples of this kind of squashing functions are the threshold function
\(\psi(x) = 1_{\{x \geq 0\}} \) (where \(1_{\{.\}} \) denotes the indicator function), and the cosine squasher
of Gallant and White over \([0, \pi/2]\):

\[
\psi(x) = 1_{\{x \geq \pi/2\}} + (1 + \cos(x + 3\pi/2))(1/2) 1_{\{x \geq 0\}}.
\]

Theorem 2. Let \(\psi \) be a squashing function verifying \(\psi(x) = 0 \) if \(x \leq 0 \) and
\(\psi(x) = 1 \) if \(x \geq 1 \). Let \(w_i^j \in \mathbb{R} \) and \(\beta_j, b_j \in \mathbb{R}, \ i = 1, n, j = 1, \ldots, k \). Let \(f \) the function

\[
f(x) = \sum_{j=1}^{k} \beta_j \psi \left(b_j + \sum_{i=1}^{n} w_i^j x_i \right). \tag{I}
\]

For every bounded subset \(\mathbb{K} \) of \(\mathbb{R}^n \), there exist \(k \) propositions \(P_1, \ldots, P_k \in \mathbb{P}_{n+1}, \) \((n + 1), k \) real numbers \(\alpha_i^j \in [-1, 1] \) \((i = 1, \ldots, n + 1, j = 1, \ldots, k) \) and \(n \) real numbers
\(M_i, \ldots, M_n \), such that \(f(x) = \sum_{j=1}^{k} \beta_j \psi \left(P_j \left(\alpha_1^j (x_1 + M_1), \ldots, \alpha_n^j (x_n + M_n), \alpha_{n+1}^j \right) \right), \)

\(\forall x \in \mathbb{K} \).

Theorem 2 bis. (Neural Networks Version).

Let \(\psi \) be a squashing function verifying \(\psi(x) = 0 \) if \(x \leq 0 \) and \(\psi(x) = 1 \) if \(x \geq 1 \). Let \(\mathbb{K} \) be a single \(k \)-nodes hidden layer feedforward networks with squashing function \(\psi \) at the hidden layer and no squashing at the output layer. For every bounded subset \(\mathbb{K} \) of \(\mathbb{R}^n \), there exist \(k \) propositions \(P_1, \ldots, P_k \in \mathbb{P}_{n+1}, (n + 1), k \) real numbers \(\alpha_i^j \in [-1, 1] \) \((i = 1, \ldots, n + 1, j = 1, \ldots, k) \) and \(n \) real numbers \(M_1, \ldots, M_n \), such that the function \(f \) calculated by la red over \(\mathbb{K} \) is

\[
f(x) = \sum_{j=1}^{k} \beta_j \psi \left(P_j \left(\alpha_1^j (x_1 + M_1), \ldots, \alpha_n^j (x_n + M_n), \alpha_{n+1}^j \right) \right) \tag{II}
\]

A leading case occurs when \(\psi \) is a linguistic modifier of the truth value [Zadeh],
for example \(\psi(x) = \mu \text{very} (x) = x^2 \) for every \(x \in [0, 1] \). Then \(\psi \circ P \) is the “fuzzy”
proposition “very \(P' \)”, and thus, \(f \) is a linear combination of fuzzy propositions.

Let us observe that if we use a different squashing function \(\psi_j \) in each node of the hidden layer, then the theorem holds with

\[
f(x) = \sum_{j=1}^{k} \beta_j \psi_j \left(P_j \left(\alpha_1^j (x_1 + M_1), \ldots, \alpha_n^j (x_n + M_n), \alpha_{n+1}^j \right) \right) \tag{II}.
\]
3 Linear combinations of Lukasiewicz propositions are neural networks

From theorem 2 it is followed:

Corollary 1. Let \(\psi \) be a squashing function verifying \(\psi(x) = 0 \) if \(x \leq 0 \) and \(\psi(x) = 1 \) if \(x \geq 1 \). Let us denote \(CL^n(\psi) \) the class of function defined by (II), where each \(P_j \) is seen as a function from \(\mathbb{R}^{n+1} \) to \(\mathbb{R} \), that is, linear combinations of Lukasiewicz propositions applied to affine transformation of \(\mathbb{R}^n \). \(CL^n(\psi) \) is uniformly dense on compacta in \(C^n \), and give a probability measure \(p_{\psi} \) over \(\mathbb{R}^n \), \(CL^n(\psi) \) is \(p_{\psi} \)-dense on \(M^n \). We will denote \(CL^n(\psi) = CL^n \).

As an immediate consequence of theorem 1, “any continuous function can be approximate over each compact by functions expressed by means of scalar product, +, \oplus, \otimes \) and \(\epsilon \).”

Definition. Given a subset \(\mathbb{K} \) of \(\mathbb{R}^n \), we will say that a function \(f \in CL^n(\psi) \) defined by \(\Pi \) is logically defined over \(\mathbb{K} \) if for each \(x \in \mathbb{K}, \alpha_{ij}^k(x_i + M_i) \in [0, 1] \) for every \(i = 1, \ldots, n, j = 1, \ldots, k \). We will denote \(CL^n(\psi, \mathbb{K}) \) the class of the functions in \(CL^n(\psi) \) logically defined over \(\mathbb{K} \).

Let us observe that \(CL^n(\psi) \) is a real vectorial space, and \(CL^n(\psi, \mathbb{K}) \) is either the empty set if \(\mathbb{K} \) is unbounded or a vectorial subspace of \(CL^n(\psi) \) if \(\mathbb{K} \) is bounded.

Lemma 6. Let \(\mathbb{K} \) be a bounded subset of \(\mathbb{R}^n \) and let \(\alpha_1, \ldots, \alpha_n \in [-1, 1], M_1, \ldots, M_n \in \mathbb{R} \) such that \(\alpha_i(x_i + M_i) \in [0, 1] \) for every \(x \in \mathbb{K} \). Let \(P \in \mathbb{R}_n \). There exists a neural network \(RNP \) with squashing function \(\phi \) in all its nodes such that the function calculated by \(RNP \) is:

\[
f(x) = P(\alpha_1(x_1 + M_1), \ldots, \alpha_n(x_n + M_n)) \quad \text{for every } x \in \mathbb{K}.
\]

Proof. We will prove it by induction over the recursive construction of \(P \). If \(P = p \) is a simple proposition, the net

\[
x_i \xrightarrow{\alpha_i} z_P
\]

calculate \(z_P = \phi(\alpha_i(x_i + M_i)) = \alpha_i(x_i + M_i) = \phi(P(\alpha_1(x_1 + M_1), \ldots, \alpha_n(x_n + M_n))). \)

If \(P \) is a complex proposition, then there exist three cases:

a) \(P = Q \lor R \). By hypothesis of induction \(Q \) and \(R \) will be calculated by two neural networks \(RNP_Q \) and \(RNP_R \), then the net
calculate $z_P = \phi(z_Q + z_R) = \min(z_Q + z_R, 1) = z_Q \oplus z_R = P(\alpha_1(x_1 + M_1), \ldots, \alpha_n(x_n + M_n))$.

b) $P = \neg Q$. By hypothesis of induction Q will be calculated by a net RN_Q, and the net

c) $P = Q \land R$. Then $P = \neg (\neg Q \lor \neg R)$ and by applying a) and b) we obtain the net RN_P from RN_Q and RN_R. ■

Lemma 7. Let \mathbb{K} be a bounded subset of \mathbb{R}^n and let $\alpha_1, \ldots, \alpha_n, \alpha_{n+1} \in [-1, 1]$, $M_1, \ldots, M_n \in \mathbb{R}$ such that $\alpha_i(x_i + M_i) \in [0, 1]$ for every $x \in \mathbb{K}$. Let $P \in \mathbb{P}_{n+1}$. There exists a neural network RN_P with squashing function ϕ in all its nodes such that the function calculated by RN_P is:

$$f(x) = P(\alpha_1 x_1 + M_1, \ldots, \alpha_n x_n + M_n, \alpha_{n+1})$$ for each $x \in \mathbb{K}$.

Proof. It is enough to apply lemma 6 to $\mathbb{K} \times \{1\}$. ■

Theorem 3. Let $f \in CL^n$, i.e., $f(x) = \sum_{j=1}^{k} \beta_j P_j(\alpha_{1j}^1(x_1 + M_1), \ldots, \alpha_{nj}^1(x_n + M_n))$.

\[f(x) = \sum_{j=1}^{k} \beta_j P_j(\alpha_{1j}^1(x_1 + M_1), \ldots, \alpha_{nj}^1(x_n + M_n)) \]
For every bounded subset of \(\mathbb{R}^n \) where \(f \) is logically defined there exist a feedforward network \(RN \) with squashing function \(\phi \) at the hidden layers and no squashing at the output layer such that over \(\mathbb{R} \) \(RN \) calculates exactly \(f(x) \).

Proof. By lemma 7 for every \(P_j \) there exist a net \(RN_j \) with squashing function \(\phi \) in all nodes calculating \(P_j \left(\alpha_j^1 x_1 + M_1, \ldots, \alpha_j^n x_n + M_n, \alpha_j^{n+1} \right) \). Then, the net

\[
\begin{align*}
x_1 & \quad \rightarrow \quad z_1 \\
x_2 & \quad \rightarrow \quad z_1 \\
\vdots & \quad \rightarrow \quad z_1 \\
x_n & \quad \rightarrow \quad z_1
\end{align*}
\]

\[
\begin{align*}
& x_1 \\
& R_N \\
& \vdots \\
& x_n \\
& \rightarrow \quad z_k
\end{align*}
\]

calculates \(f \). \(\blacksquare \)

4 Discussion and Concluding Remarks

The results of section 2 establish that standard multilayer feedforward networks can be logically interpreted, in a very specific and satisfying sense. It is important to observe that the construction of the linear combination of propositions from a neural network is algorithmic. These results would provide a fundamental basis for rigorously establishing the reasoning used by multilayer feedforward networks in learning. We can associate a successsion of linear combinations of propositions to the different configurations of a net during learning, and thus we can hope a "logic connection" among the linear combination of propositions. If it were possible, then we could talk about a "logic learning" in neural networks!

In section 3 we proves that linear combination of propositions can be seen as neural networks. Now, if we have a logic learning in \(CL^n (\psi) \) of a function, we can associate a network learning which could help the classical network logic learning. Conversely, we can use neural networks in order to learning logical connections from examples [3].

Other important related area for further research is the construction of neural networks with a priori knowledge. We must translate the knowledge in propositions and then to add this propositions as a subnet before starting the learning. In this paper only Lukasiewicz logic is considered. But many others logics are used in Approximate Reasoning [2] for representing knowledge. An interesting and open question is: exist there a similar result for these logics?

The results given here are clearly only one step in a rigorous general investigation of the intrinsic logic of multilayer feedforward networks. We can say that the equivalence between neural networks and linear combinations of logical propositions is an open door to study one concept from de view of the other.
References

