Didactical Note: Probabilistic Conditionality in a Boolean Algebra

Enric Trillas, Claudi Alsina*, Settimo Termini**
Dep. Inteligencia Art. Univ. Politcnica Madrid. Madrid, Spain
*Sec. Matemtiques. Univ. Polit. Catalunya. Barcelona, Spain
**Dip. Matematica. Univ. Palermo. Palermo, Italy

Abstract

This note deals with two logical topics and concerns Boolean Algebras from an elementary point of view. First we consider the class of operations on a Boolean Algebra that can be used for modelling “if-then” propositions. These operations, or Conditionals, are characterized under the hypothesis that they only obey to the Modus Ponens-Inequality, and it is shown that only six of them are boolean two-place functions.

Is the Conditional Probability the Probability of a Conditional? This problem will be only considered, with the Material Conditional Operation, on a Boolean Algebra endowed with a finite probability and in three different cases: with the Internal-Conditional Probability, with the External-Conditional Probability and with both the External-Conditional and the “a priori” probabilities. It is shown when and how the problem can have some solution.

1 Conditional operations on a Boolean algebra

Let $E = \{a, b, c, ...\}$ be a Boolean Algebra (see [3]) with least element 0, greatest element 1, complement $'$, union \cup, intersection \cap, and the partial order \leq defined, as usual, by: $a \leq b$ iff $a \cdot b = a$ iff $a + b = b$.

It is well-known that the operation $a \rightarrow b := a' + b$ is usually taken to represent in E the Material Conditional of Logic (see [6], [7], [8]) since affirming $a \rightarrow b$ is equivalent to stating that a and b are in the relation \leq.

Proposition 1.1. $a \leq b$ iff $a \rightarrow b = 1$.

149
Proof. From 1 = \alpha' + b it follows \alpha \cdot 1 = \alpha = \alpha \cdot (\alpha' + b) = \alpha \cdot \alpha' + \alpha \cdot b = \alpha \cdot b, or \alpha \leq b. Reciprocally from \alpha \leq b it follows 1 = \alpha' + \alpha \leq \alpha' + b, or 1 = \alpha' + b.

It is usual to see Conditionals as those operations \(R : E \times E \to E \) such that the \textbf{Modus Ponens}-Inequality [see 8]:

\[
f(a) \cdot R(a, b) \leq f(b),
\]
holds for some function \(f : E \to E \) (called a Logical-State) and any \(a, b \in E \). We have that:

\textbf{Proposition 1.2.} Equation (1) holds if and only if \(R(a, b) \leq f(a) \to f(b) \), for all the \(a, b \) in \(E \).

Proof. From (1) it follows \(f(b)' \cdot f(a) \cdot R(a, b) = 0 \), this means that \(R(a, b) \leq (f(b)' \cdot f(a))' \), \(f(a)' = f(a)' + f(b) \). Viceversa, from this last inequality it follows \(f(a) \cdot R(a, b) \leq f(a) \cdot f(b) \leq f(b) \).

The only functions \(f : E \to E \) which are boolean are the following ones: \(f_1(x) = id(x) = x \), \(f_2(x) = id'(x) = x' \), \(f_3(x) = 0 \) and \(f_4(x) = 1 \). Consequently, constant functions being excluded as proper Logical-States (see [8]), the only candidates to be boolean proper Logical-States for an operation \(R \) are \(id \) and \(id' \).

\textbf{Corollary 1.3.} The only Conditionals with boolean proper Logical-States in a Boolean Algebra are those \(R : E \times E \to E \) such that \(R(a, b) \leq a \to b \), or \(R(a, b) \leq b \to a \), for all \(a, b \) in \(E \).

Hence, operation \(\to \) gives the largest Conditional on \(E \).

\textbf{Proposition 1.4.} The only non-trivial boolean functions \(R \) that are Conditionals in a Boolean Algebra are: \(R_0(a, b) = a \to b \), \(R_5(a, b) = a \cdot b \), \(R_4(a, b) = a' \cdot b \), \(R_3(a, b) = a' \cdot b' \), \(R_2(a, b) = b \) and \(R_1(a, b) = a \cdot b + a' \cdot b' \).

Proof. All functions \(R_i \) verify \(a \cdot R(a, b) \leq b \). Reciprocally, since any boolean two-place function \(R \) can be written as \(R(a, b) = \alpha \cdot a \cdot b + \beta \cdot a \cdot b' + \gamma \cdot a \cdot b' + \delta \cdot a' \cdot b' \), with \(\alpha, \beta, \gamma \) and \(\delta \) in \(\{0, 1\} \subseteq E \), from the \textbf{Modus Ponens}-Inequality successively follows \(\alpha \cdot a \cdot b + \gamma \cdot a \cdot b' \leq b \), \(\gamma \cdot a \cdot b' = 0 \) and \(\gamma = 0 \). Thus, varying \(\alpha, \beta \) and \(\delta \) in \(\{0, 1\} \) the only different \(R \) obtained are the \(R_i \), \(1 \leq i \leq 6 \), plus those that are identical, respectively, to 0 and 1, to be excluded as Conditional Operations.

\textbf{Remarks.} 1) Any of the functions \(R_i \) formally allow to represent, in the Propositional Calculus, conditional propositions like “If \(a \), then \(b \)”. Nevertheless, the only
well-known function usually considered in such Calculus is \(R_6 \). In fact, let’s denote by \(R_i \subseteq E \times E \) the binary relations:

\[
(a, b) \in R_i \quad \text{or} \quad aR_ib \quad \text{iff} \quad R_i(a, b) = 1,
\]

Proposition 1.2 shows \(R_6 = \leq \) and it is quite obvious that \(R_5 = \{(1,1)\} \), \(R_4 = \{(0,1)\} \), \(R_3 = \{(0,0)\} \), \(R_2 = \{(x,1); x \in E\} \) and \(R_1 = \{(x,x); x \in E\} \). Then it seems that \(R_6 \) is the most convenient Conditional, but the world of Logic has not Propositional Calculus as a fence.

It is easy to see that each \(R_i \) can be written as a function of the others. For example, it is \(R_6(a, b) = R_5(a, b')^\dagger = R_4(b, a')^\dagger = R_3(a', b) = R_2(1, a' + b) = R_1(1, a' + b) \).

2) The operations \(R_6, R_5, R_2 \) and \(R_1 \) verify the Modus Ponens-Inequality because \(a \cdot R_i(a, b) = a \cdot b \), and \(R_4 \) and \(R_3 \) through \(a \cdot R_i(a, b) = 0 \).

3) The only \(R_i \) that are commutative operations are \(R_6, R_3 \) and \(R_1 \). It is \(R_6(a, b) = R_6(b', a')^\dagger, \ R_4(a, b) = R_4(b, a')^\dagger \) and \(R_2(a, b) = R_2(b, a) \) if \(a = b \).

4) Defining \(R \) as reflexive if \(R(a,a) = 1 \) for any \(a \) in \(E \), and as transitive if \(R(a,b) \cdot R(b,c) \leq R(a,c) \) for any \(a, b, c \) in \(E \) (see [8]), \(R_6 \) and \(R_1 \) are reflexive and transitive but the other ones are only transitive. Hence, the only “preorders” are \(R_6 \) and \(R_1 \), and then \(R_6 \) and \(R_1 \) are classical preorders ([8]).

5) Defining \(R \) to be Monotonic if \(R(a,b) \leq R(a \cdot c, b) \) for any \(a, b, c \) in \(E \) ([8]), it is easy to see that \(R_6, R_4, R_3 \) and \(R_2 \) are Monotonic, but \(R_5 \) and \(R_1 \) are Non-Monotonic.

\[\]

2 Conditioning in Boolean algebras

2.1 Given \(a \) in \(E \), let \(aE = \{x \in E; x = a \cdot y, \text{ for some } y \in E\} \), i.e.,

\[
aE = \{z \in E; z \leq a\}.
\]

Subsets \(aE \) of \(E \) are characterized by \(a \), that is: \(aE = bE \) if and only if \(a = b \). In fact, if \(a = b \) it is obvious that \(aE = bE \), and reciprocally as \(a = a \cdot 1 \in aE \) it follows that \(a \in bE \) and \(b \in aE \), or \(a \leq b \) and \(b \leq a \).

Proposition 2.1.1. \(aE \) is a Boolean Algebra with least element \(\emptyset \) and greatest element \(a \), endowed with the restrictions of \(+ \) and \(\cdot \), and with the complement defined by \(x^\dagger = a \cdot x^\dagger \).

It should be pointed out that in general \(aE \) is not a subalgebra of \(E \) and for a fixed \(a \) in \(E \), it is \(R_6(a, x) = a \cdot x \in aE \) when \(x \in E \). Since this reason we may say that the Boolean Algebra \(aE \) is obtained by “conditioning” the initial algebra \(E \) with \(R_6 \). Because of this \(aE \) is called the Conditioned Algebra of \(E \) by \(a \).
2.2. In Probability Theory one usually writes E/a instead of aE and the elements $x \in aE$ are also written as y/a, provided that $y \cdot a = x$. In this quotient-style notation we have that $y/a = z/a \iff y \cdot a = z \cdot a$, and as:

- $y \cdot a + z \cdot a = (y + z) \cdot a$, it is $y/a + z/a = (y + z)/a$
- $(y \cdot a) \cdot (z \cdot a) = (y \cdot z) \cdot a$, it is $y/a \cdot z/a = (y \cdot z)/a$
- $(y \cdot a)^* = a \cdot (y' + a') = a \cdot y'$, it is $(y/a)^* = y'/a$.

Evidently it is $y/a = a \cdot y/a = (a' + y)/a$.

Proposition 2.2.1. For a fixed $a \in E$ the only functions $F : E \times E \to E$ such that

$y/a = F(a, y)/a$,

are those functions satisfying,

$a \cdot y \leq F(a, y) \leq a' + y$.

Proof. From $y \cdot a = F(a, y) \cdot a$ it follows $F(a, y) \cdot a \cdot y' = 0$, or $F(a, y) \leq (a \cdot y')' = a' + y$. Analogously it also follows $y \cdot a \cdot F(a, y)' = 0$, or $F(a, y)' \leq (y \cdot a)'$, then $y \cdot a \leq F(a, y)$. Viceversa, from the inequalities we obtain $a \cdot y \leq a \cdot F(a, y) \leq a \cdot y$, or $a \cdot y = a \cdot F(a, y)$.

Proposition 2.2.2. For a fixed $a \in E$ the only boolean functions $F : E \times E \to E$ such that $y/a = F(a, y)/a$, are R_0, R_5, R_2 and R_1.

Proof. Like before it should be $F(a, y) = \alpha \cdot a \cdot y + \beta \cdot a' \cdot y + \gamma \cdot a \cdot y' + \delta \cdot a' \cdot y'$. From Proposition 2.2.1 it follows $a \cdot y \leq \alpha \cdot a \cdot y + \gamma \cdot a \cdot y' \leq a \cdot y$, or $\alpha \cdot a \cdot y + \gamma \cdot a \cdot y' = a \cdot y$, for any y in E. Hence $\alpha = 1, \gamma = 0$ and the functions are $F(a, y) = a \cdot y + \beta \cdot a' \cdot y + \delta \cdot a' \cdot y'$. Varying β and δ in $(0, 1)$ the proof is complete.

Given a, y in E there are only four boolean ways of writing y/a:

$y/a = a \cdot y/a = a' + y/a = a \cdot y + a' \cdot y'/a$,

and the upper term of each “quotient” is always the a-Section of some boolean Conditional.

2.3. As it was already stated, in a Boolean Algebra of propositions the operation R_6 is used to model the conditional propositions of the type “If x, then y”. In the Conditioned Algebra aE this operation becomes $x \rightarrow_a y = x^* y = a \cdot x' + y = x \cdot a' + y = x'$.

152
(a + y) \cdot (x' + y) = a \cdot (x \to y)$. Consequently, when $x \to y$ in E we have also $x \to_a y$ in aE. Nevertheless, when affirming $x \to_a y$ in some aE we can only deduce in general that $a \leq x \to y$ in E, because $a = a \cdot (x \to y)$.

3 The case with finite probabilities

In what follows a probabilized Boolean Algebra (E, p) will be considered, i.e., a Boolean Algebra E endowed with a finite probability $p : E \to [0, 1]$ such that:

1) $p(1) = 1$ (axiom of normalization)

2) $p(x + y) = p(x) + p(y)$, whenever $x \cdot y = 0$ (axiom of finite additivity).

From these axioms it is easy to deduce the following well-known properties of any probability: $p(x') = 1 - p(x)$; $p(0) = 0$; $p(x + y) = p(x) + p(x' \cdot y)$; $p(x) = p(x \cdot y) + p(x' \cdot y')$; $p(x) + p(y) = p(x + y) + p(x \cdot y)$, and $p(x) \leq p(y)$ when $x \leq y$.

3.1. Let aE be a Conditioned Boolean Algebra in E. The restriction p_{aE} of p to aE is not a probability for aE unless $a = 1$, and the necessary and sufficient condition for p_{aE} to be identically zero is $p(a) = 0$. To avoid this, from now on we will consider $a \in E^+ = \{x \in E; p(x) > 0\}$.

A finite probability on aE is a function $\tilde{p} : aE \to [0, 1]$ verifying the above axioms of normalization and finite additivity:

1) $p(a) = 1$, and 2) $p(x + y) = p(x) + p(y)$, whenever $x \cdot y = 0$, for any x, y in aE.

Next definition gives a \tilde{p} depending on both p and a (see [2]).

Definition 3.1.1. The function $\tilde{p}_a^r : aE \to [0, 1]$, $\tilde{p}_a^r(x) = p(x)/p(a)$, with $a \in E^+$ is a finite probability on aE and it will be called the Internal-Conditional Probability.

Definition 3.1.2. The function $p_a^r : E \to [0, 1]$, $p_a^r(y) = p(a \cdot y)/p(a)$ is a finite probability on E and it will be called the External-Conditional Probability.

As $p_a^r(1) = p(a)/p(a) = 1$, and when $x \cdot y = 0$ it is also $a \cdot (x \cdot y) = (a \cdot x) \cdot (a \cdot y) = 0$ and the $p_a^r(x + y) = p(a \cdot (x + y))/p(a) = p(a \cdot x + a \cdot y)/p(a) = (p(a \cdot x) + p(a \cdot y))/p(a) = p_a^r(x) + p_a^r(y)$, so p_a^r is a finite probability on E.

These probabilities are formally different since they are defined in different Boolean Algebras and, of course, the restriction of p_a^r to aE is p_{aE}^r. In the Theory of Probability 1, $p_y^r(y)$ has been traditionally called the Conditional Probability of y given a, and it is usually written as $p(y/a)$. From now on this notation will be assumed and instead of finite probabilities we will say just probabilities. Nevertheless, it should be noticed that $p(y/a)$ is actually a function of only $y \in E$.
as \(a \) is fixed in \(E^+ \) and, if considered as a two-place function \(p(\cdot / \cdot) : E \times E^+ \to [0,1] \) it is not a probability, at least because of \(E \times E^+ \) does not inherit the Boolean Algebra structure of \(E \) as there will be not, in general, a least element for the product order \((x,y) \leq (x_1,y_1) \) \(\iff x \leq x_1 \) and \(y \leq y_1 \). This function \(p(\cdot / \cdot) \) is just a Fuzzy Relation between \(E^+ \) (also not a Boolean Algebra) and \(E \) (see [4], [5]).

Remark. Since \(p(y/a) = p(a \cdot y)/p(a) = p(R_5(a,y))/p(a) : = p_0(y/a) \), it is natural to think about the possibility of using in the same way the other conditionals \(R_i \). But a probability is rarely obtained since, for example: \(p_0(1/a) = p_2(1/a) = 1/p(a) \), \(p_4(1/a) = p_1(0/a) = p(a^s)/p(a) \) and \(p_3(1/a) = 0 \).

3.2. Let us now study the possible solutions of the equations:

\[
p^R_n(x) = p^R_n(z \rightarrow_a x) \quad \text{and} \quad p(y/a) = p(z \rightarrow y/a),
\]

in \(aE \) and \(E \) respectively.

Proposition 3.2.1. Given \(x \in aE \) a necessary and sufficient condition for the existence of \(z \in aE \) such that \(p^R_n(x) = p^R_n(z \rightarrow_a x) \) is given by \(p(a \cdot x',z') = 0 \). Two sufficient conditions are \(p(a \cdot z') = 0 \) and \(z = a \).

Proof. The equation holds if and only if \(p(x) = p(x^a + x) \), or \(p(x^a) - p(x^a \cdot x) \neq 0 \) equivalent to \(p(a \cdot z', x) = 0 \). Since \(a \cdot x' \cdot z' \leq a \cdot z' \) the first sufficient condition follows and, for this it is sufficient, e.g., to have \(a \cdot z' = 0 \), or \(a \leq z \) that actually means \(z = a \).

Corollary 3.2.2. For the equation \(p^R_n(x) = p^R_n(z \rightarrow_a x) \) to be verified for any \(x \in aE \), a necessary and sufficient condition is \(p(a \cdot z') = 0 \) and a sufficient condition is \(z = a \).

Analogously we have:

Proposition 3.2.3. Given \(y \in E \) a necessary and sufficient condition for the existence of \(z \in E \) such that \(p(y/a) = p(z \rightarrow y/a) \) is that \(p(a \cdot y',z') = 0 \). Two sufficient conditions are \(p(a \cdot z') = 0 \) and \(a \leq z \).

Corollary 3.2.3. For the equation \(p(y/a) = p(z \rightarrow y/a) \) to be verified for any \(y \in E \) a necessary and sufficient condition is \(p(a \cdot z') = 0 \) and a sufficient condition is \(a \leq z \).

The study of these equations shows that we have other solutions, besides the trivial one \(z = a \), depending, in the internal case, on the probability \(p \) if there are elements \(z \in aE \) such that \(p(a \cdot z') = 0 \) these elements are solutions of the equation \(p^R_n(x) = p^R_n(z \rightarrow_a x) \) and the Internal-Conditional Probability is the Internal-
Conditional Probability of a Conditional. In the External case, in addition to those
\(z \in E \) such that \(p(a \cdot z') = 0 \), any \(z \geq a \) is a solution. Consequently, the general
question (see [6], [7]) “Is a Conditional Probability the Probability of a
Conditional?” has a positive answer, at least when the “probabilities” appearing
on both sides of the equation are the same kind of Conditional Probability.

Remark. Proposition 3.2.1 is not formally a particular case of Proposition 3.2.3
as the restriction of \(\to \) to \(aE \) is not \(\to_a \). In fact, when \(x = a \cdot x_1 \in aE \) and also
\[y = a \cdot y_1 \in aE \] it is:

\[-x \to_a y = a \cdot (x \to y) = a \cdot x_1 + a \cdot y_1 = a \cdot (x_1 \to y_1)\]

\[-x \to y = (a \cdot x_1)' + a \cdot y_1 = a' + x_1 + a \cdot y_1,\]

both expressions being different unless \(a = 1 \).

3.3. Let’s consider a different but well-known problem (see [6], [7]). Given \(a \in E^+ \) to
solve the equation \(p(y/a) = p(z \to y) \) for \(y \in E \), where the unknown is \(z \in E \),
considering the Conditional Probability \(p(y/a) \) and the “a priori” probability \(p \).
The possibility of solutions, for a given \(y \) or for all \(y \), depend not only on the
effectiveness of \(z \) but also on the effective range of \(p \) in \([0,1]\).

Proposition 3.3.1. A necessary but not sufficient condition for the existence of
some solution of \(p(y/a) = p(z \to y) \) is \(p(y) \leq p(y/a) \), for each \(y \in E \).

Proof. From the equation follows \(p(y) \leq p(z' + y) = p(y/a) \). The reciprocal is
evidently not true.

Without satisfying this condition the equation has no solutions for the given
\(y \). In fact, from \(p(y/a) < p(y) \) and the equation, it follows \(p(z + y) > 1 \), because of
\[p(y/a) = p(z' + y) = p(y) + p(z' \cdot y') = p(y) + 1 - p(z + y) \].

In any case, the equation is equivalent to \(1 - p(y/a) = 1 - p(z' + y) = p(z \cdot y') \),
or to \(p(a \cdot y') / p(a) = p(z \cdot y') \). Thus, if the necessary condition is satisfied, the
solutions are to be searched among the \(z \in E \) verifying this equation for the given
\(y \), and depend on the available values of \(p \). For example, to be \(z = a \) a solution it
should be \(p(a \cdot y') = p(a) \cdot p(a \cdot y') \), and this when \(p(a) < 1 \) implies \(p(a \cdot y') = 0 \)
only for particular values of \(y \); with \(y = a' \) it is \(p(a) = 0 \).

Let’s consider the peculiar case \(p(a) = 1 \). The necessary condition is \(p(y) \leq
p(a \cdot y) \); since \(p(a') = 0 \) we have that \(p(a' \cdot y) = 0 \) and \(p(y) = p(a \cdot y) \), and it is
then satisfied. The equation is \(p(a \cdot y) = p(z' + y) = p(z') + p(y) - p(z' \cdot y) \), which
is equivalent to \(p(z') - p(z' \cdot y) = p(a \cdot y) - p(y) \) and to \(p(z' \cdot y') = -p(a' \cdot y') = 0 \).
The solutions then are to be searched among those \(z \) such that \(p(z + y) = 1 \), and
for obtaining this it is sufficient to have \(z + y = 1 \), or \(y' \leq z \).
Examples. Let it be $E = 2^3$ with atoms a_1, a_2, a_3 and the uniform probability $p(a_i) = 1/3, 1 \leq i \leq 3$.

- If $a = a_1, y = a_2$ it is $p(a_2/a_1) = 0 < 1/3 = p(a_3)$. There is no solution for the equation $p(a_2/a_1) = p(z \to a_2)$.

- If $a = a_1, y = a_1 + a_3$, it is $p(a_1 + a_3) = 2/3 < 1 = p(a_1 + a_3/a_1)$: the necessary condition is satisfied. The equation being $1 = p(x' + a_1 + a_3)$, or $p(z, a_2) = 0$, there are the three solutions $z = a_1, a_2, a_1 + a_3$.

- If $a = a_1 + a_2, y = a_1$ it is $p(a_1) = 1/3 < 1/2 = p(a_1/a_1 + a_2)$: the necessary condition is satisfied. But now the equation $1/2 = p(x' + a_1)$ has no solutions because there is no $x' + a_1 \in E$ with probability 0.5: the “a priori” probability has no enough values.

The first example shows that in the given probabilized Boolean Algebra there is no solution of the equation $p(y/a_1) = p(z \to y)$ for all y in 2^3.

4 Conclusions and final comments

In the setting of Boolean Algebras it was studied the problem of finding two-place functions to be used as Conditional Operations (to represent “If-then” propositions), and the problem of possibilities for a Conditional Probability to become the “a priori” probability of the Material Conditional.

With the above results it is intended to reach some level of clarification for a problem that was, and still is, studied by many logicians, Artificial Intelligence researchers and philosophers (see [6], [7]). Nevertheless, and apart from minor questions, the problem still remains open at least for what concerns σ-additive “a priori” probabilities: when considering a σ-Algebra and not a finitely additive probability the set of probability’s values could have a higher cardinality and, presumably, there will be space for new innovative ideas.

Let’s end the paper with a final comment. It is easy to see that the mapping $r_5 : E \to aE$, $r_5(y) = a \cdot y$, is an epimorphism between the Boolean Algebra E and its subset $aE = R_5(a, E)$ endowed with the complement $x^\# = a \cdot x'$. This gives a method to prove that aE is a Boolean Algebra.

Analogously, defining the mappings $r_6 : E \to R_6(a, E), r_6(y) = a' + y$, and $r_4 : E \to R_4(a, E), r_4(y) = a' \cdot y$, it is easy to see that both are epimorphisms between E and, respectively, its subsets $a' + E = \{a' + y; y \in E\} = \{z \in E; a' \leq z\}$ and $a' E = \{a' \cdot y; y \in E\}$, with the complements $x^\# = a' + x'$ and $x^\# = a' \cdot x'$. Then also $a' + E$ and $a' E$ are Conditioned Boolean Algebras of E by a.

Nevertheless, the cases $r_5(y) = a' \cdot y'$, $r_2(y) = a$ and $r_1(y) = a \cdot y + a' \cdot y'$, respectively for $R_5(a, E), R_2(a, E)$ and $R_1(a, E)$, don’t give Boolean Algebras.
The function \(p_a^b(y) = p(a' \cdot y)/p(a') \) is exactly \(p(y/a') \), the Conditional Probability of \(y \) by \(a' \). But \(p_a^b(y) = p(a' + y) \), although verifies \(p_a^b(1) = 1 \) is not additive as, for example, \(p_a^b(0 + 1) = p_a^b(1) = 1 \) and \(p_a^b(0) + p_a^b(1) = p(a') + 1 \).

Actually, only \(aE \) seems to be a boolean right way of Conditioning \((E, p)\).

References

