Extensions of Set Functions*

S. Ovchinnikov1 and J.C. Falmagne2
1Mathematics Dept. San Francisco State Univ.
San Francisco, CA 94132
2Dept. of Cognitive Sciences. Univ. of California
Irvine, CA 92697
sergei@sfsu.edu, jcf@uci.edu

Abstract

We establish a necessary and sufficient condition for a function defined on a subset of an algebra of sets to be extendable to a positive additive function on the algebra. It is also shown that this condition is necessary and sufficient for a regular function defined on a regular subset of the Borel algebra of subsets of a given compact Hausdorff space to be extendable to a measure.

1991 Mathematics Subject Classification: 28A60

1 Introduction

A standard method of constructing a measure in a given set X is to define first an additive function on an algebra \mathcal{A} of subsets of X and then extend this function to a measure on the σ–algebra generated by \mathcal{A}. This ‘extension problem’ is an important part of the classical measure theory. Standard examples include Hahn’s extension theorem and the Borel measure in $[0, 1]$ (cf. [3, III.5]).

In the paper, we are concerned with the following problem: Let X be a set and \mathcal{A} be an algebra of subsets of X. Given a subset S

\footnote{This work is supported by NSF grant SES-9986269 to J.-Cl. Falmagne.}
of \mathcal{A} and a real valued function α on \mathcal{S}, find necessary and sufficient conditions for α to be extendable to a positive additive function μ on \mathcal{A}.

The following condition is instrumental in our treatment of the extension problem:

$$\sum_{A \in \mathcal{F}} n(A) \chi_A(s) \geq 0, \forall s \in X \Rightarrow \sum_{A \in \mathcal{F}} n(A) \alpha(A) \geq 0, \quad [R]$$

for any finite family $\mathcal{F} \subseteq \mathcal{S}$, where coefficients $n(A)$'s are arbitrary integers and χ_A stands for the characteristic function of a set $A \subseteq X$.

We show that condition [R] is necessary (Section 2) and sufficient (Section 3) for α to be extendable to a positive additive set function. In the case when X is a finite set, a stronger result is also established in Section 3. To obtain these results, we only assume that X is a finite union of elements of \mathcal{S} (this assumption is dropped in the case of a finite set X).

We make additional assumptions about the quadruple $(X, \mathcal{A}, \mathcal{S}, \alpha)$ when treating the extension problem for measures in sections 4 and 5. In both sections, X is a compact Hausdorff space. In Section 4, \mathcal{A} is the Borel algebra \mathcal{B} of subsets of X, whereas in Section 5, \mathcal{A} is the σ-algebra generated by \mathcal{S}. Assuming, in addition, that \mathcal{S} and α satisfy some ‘regularity’ conditions, we show that [R] is a necessary and sufficient condition for α to be extendable to a positive regular measure on \mathcal{A}.

Our approach to the extension problem comes close to that of Bruno de Finetti in his “Probability Theory” [4] (Sections 9 and 10). In particular, his “convexity condition” (Section 15 in Appendix) is equivalent to condition [R], although de Finetti formulates it in rather different terms.

2 Condition [R]

The following lemma establishes a useful equivalent form of condition [R].

Lemma 1. [R] is equivalent to the following condition

$$\sum_{A \in \mathcal{F}} c(A) \chi_A(s) \geq 0, \forall s \in X \Rightarrow \sum_{A \in \mathcal{F}} c(A) \alpha(A) \geq 0, \quad (1)$$
for any finite family $\mathcal{F} \subseteq \mathcal{S}$, where coefficients $c(A)$'s are arbitrary real numbers.

Proof. It suffices to show that [R] implies (1). Suppose that for some real coefficients $c(A)$'s such that $\sum_{A \in \mathcal{F}} c(A) \chi_A \geq 0$ we have $\sum_{A \in \mathcal{F}} c(A) \alpha(A) < 0$. There are rational numbers $p(A)$'s such that $\sum_{A \in \mathcal{F}} p(A) \alpha(A) < 0$ and $p(A) \geq c(A)$ for all $A \in \mathcal{F}$. Clearly,

$$\sum_{A \in \mathcal{F}} p(A) \chi_A \geq \sum_{A \in \mathcal{F}} c(A) \chi_A \geq 0.$$

Multiplying both inequalities $\sum_{A \in \mathcal{F}} p(A) \chi_A \geq 0$ and $\sum_{A \in \mathcal{F}} p(A) \alpha(A) < 0$ by a common multiple of the denominators of nonzero coefficients $p(A)$'s, we obtain a contradiction to [R].

\[\square \]

Suppose that α is a restriction of a positive additive set function μ on \mathcal{A}. Note that the first sum in (1) is, by definition, a simple function on X. Then condition (1) states that the integral of a positive simple function is positive ([3, III.2.14]). Thus we have the following proposition.

Proposition 1. [R] is a necessary condition for a function α on \mathcal{S} to be extendable to a positive additive set function on \mathcal{A}.

3 Extensions to positive additive set functions

We denote by B_0 the vector space of all simple functions (with respect to \mathcal{A}) on X and denote by $B_0^\#$ – the algebraic dual space. The space $B_0^\#$ is isomorphic to the vector space of all additive set functions μ on \mathcal{A}. The isomorphism is given by

$$\mu \mapsto f_\mu \quad \text{where} \quad f_\mu(x) = \int x(s) \mu(ds). \quad (2)$$

The set C of all positive simple functions on X is a convex cone in B_0. Thus B_0 is an ordered vector space. A functional $f \in B_0^\#$ is
monotone if $x \geq y$ implies $f(x) \geq f(y)$. A functional f is monotone if and only if it is positive, i.e., $x \geq 0$ implies $f(x) \geq 0$.

We shall use the following general fact about monotone linear extensions of linear functionals on ordered vector spaces ([1, Theorem 1, §6, ch. 2]).

Theorem 1. Let L be a vector space with a cone C. Let L_0 be a subspace of L such that for each x in L, $x + L_0$ meets C if and only if $-x + L_0$ meets C. Let f_0 in $L^\#$ be monotone. Then there exists an extension f of f_0 which is monotone and in $L^\#$.

Now we prove the main theorem of this section.

Theorem 2. Let S be a subset of A such that X is a finite union of sets in S and let α be a function on S. Then α can be extended to a positive additive function μ on A if and only if it satisfies condition [R].

Proof. Necessity was established in Proposition 1.

Sufficiency. Let L_0 be the subspace of B_0 generated by the characteristic functions of sets in S. For $x = \sum_{A \in \mathcal{F}} c(A)\chi_A \in L_0$ where \mathcal{F} is a finite subset of S, we define

$$f_0(x) = \sum_{A \in \mathcal{F}} c(A)\alpha(A).$$

It follows immediately from (1) that f_0 is well-defined and is a positive linear functional on L_0.

Note that for any $x \in B_0$ the set $x + L_0$ meets the cone C of positive functions in B_0. Indeed, let $X = \bigcup_{i=1}^n A_i$, $A_i \in S$ and define $x_0 = \sum_{i=1}^n \chi_{A_i} \in L_0$. Then, for $m = \sup_{s \in X} |x(s)|$, $x + mx_0 \in C$.

By Theorem 1, f_0 admits an extension to a positive linear functional f on B_0. By defining $\mu(A) = f(\chi_A)$ for $A \in A$, we obtain an extension of α to a positive additive function on A.

Note that the assumption that X is a finite union of sets in S is essential in the theorem. Indeed, let X be an infinite set, $A = 2^X$, and let S be the family of all singletons in A. Let us define $\alpha(\{s\}) = 1$, $\forall s \in X$. Thus defined α satisfies condition [R] but cannot be extended to a monotone additive function on A.

On the other hand, in the case of a finite set X we have a stronger result.

Theorem 3. Let X be a finite set, $S \subseteq A$, and α be a function on S. Then α can be extended to a positive additive function μ on A if and only if it satisfies condition [R] with coefficients from a finite set of integers.

Proof. Again, we need to prove sufficiency only. Let $X' = \bigcup S$ and A' be the algebra of subsets of X' consisting of sets in A that are subsets of X'. By Theorem 2, α can be extended to a positive additive set function μ' on A'. For an $A \in A$, we define $\mu(A) = \mu'(A \cap X')$. Clearly, μ is a positive additive set function on A.

Let us consider characteristic functions of sets in S as integral vectors in $\mathbb{R}^{\{X\}}$ and let C be the intersection of the subspace generated by these vectors with the positive cone in $\mathbb{R}^{\{X\}}$. The cone C is a rational polyhedral cone and therefore has an integral Hilbert basis (Theorem 16.4 in [5]). Thus we can use only vectors from this basis in the right side of the implication in [R]. It follows that in the case of finite set X coefficients in [R] can be taken from a finite set of integers.

\[\square \]

Remark. It was noted by Jean-Paul Doignon (personal communication) that sufficiency of condition [R] in the finite case is a direct consequence of Farkas' lemma [5, Corollary 7.1d].

4 Extensions to measures I

The following example shows that, in general, condition [R] is not sufficient for a function α to be extendable to a positive measure (σ–additive set–function) on a σ–algebra A.

Example 1. Let $X = [0, 1]$ and $S = \{[0, t) : t \in (0, 1]\} \cup \{[0, t] : t \in [0, 1]\}$. Note that $X \in S$. We define $\alpha(\{0\}) = 0$ and $\alpha(A) = 1$ if A is $[0, t)$ or $[0, t]$ for $0 < t < 1$. It is easy to verify that thus defined α satisfies condition [R].
Let μ be a σ–additive extension of α to the σ–algebra \mathcal{B} of Borel subsets of $[0, 1]$. We have

$$
\begin{align*}
\mu((t, 1]) &= 1 - \alpha([0, t]) = 0, \quad \text{for } t > 0, \\
\mu((0, 1]) &= 1 - \alpha(\{0\}) = 1, \\
\mu((s, t]) &= 1 - \alpha([0, s]) - \mu((t, 1]) = 0, \quad \text{for } 0 < s < t.
\end{align*}
$$

By σ–additivity of μ,

$$
1 = \mu((0, 1]) = \mu\left(\bigcup_{k=1}^{\infty} \left(\frac{1}{k+1}, \frac{1}{k}\right]\right) = \sum_{k=1}^{\infty} \mu\left(\left(\frac{1}{k+1}, \frac{1}{k}\right]\right) = 0,
$$

a contradiction. On the other hand, by condition [R], there is an additive extension of α to \mathcal{B}.

This example suggests that in order to keep [R] as a necessary and sufficient condition for extendibility of a set function to a measure, some constrains should be imposed on the quadruple $(X, \mathcal{A}, \mathcal{S}, \alpha)$. Namely, we assume that X is a compact Hausdorff space and introduce the following ‘regularity’ conditions on \mathcal{S} and α.

Definition 1. (i) A family \mathcal{S} of subsets of X is said to be regular if

(a) For each $E \in \mathcal{S}$ and a closed set $F \subseteq E$ there is $E' \in \mathcal{S}$ such that

$$
F \subseteq E' \subseteq \text{cl}E' \subseteq E.
$$

(b) For each $E \in \mathcal{S}$ and an open set $G \supseteq E$ there is $E'' \in \mathcal{S}$ such that

$$
E \subseteq \text{int}E'' \subseteq E'' \subseteq G.
$$

(ii) A function α on a family \mathcal{S} is said to be regular if for each $E \in \mathcal{S}$ and $\varepsilon > 0$ there is a set F in \mathcal{S} whose closure is contained in E and a set G whose interior contains E such that $|\alpha(G) - \alpha(F)| < \varepsilon$.

In this section, \mathcal{A} is the Borel algebra \mathcal{B} of subsets of X.

Example 2. Since X is a normal space, the families of all open sets and of all closed sets in X are examples of regular families of Borel sets (cf. [2, VII.3.2(2)]).
Example 3. Let \(X = [0, 1] \) and \(S \) be the family of all intervals in the form \([a, b)\). Clearly, \(S \) is a regular family of Borel sets.

Example 4. Let \(S = \mathcal{B} \) and let \(\alpha = \mu - \) a regular positive additive set function on \(\mathcal{B} \) in the usual sense (cf. [3, III.5.11]). Then \(\alpha \) is a regular function in the sense of Definition 1.

Lemma 2. Let \(\mu \) be a regular positive measure on the Borel algebra \(\mathcal{B} \) and let \(S \) be a regular family of Borel sets. Then the restriction of \(\mu \) to \(S \) is a regular function on \(S \).

Proof. Let \(E \in S \) and \(\varepsilon > 0 \). Since \(\mu \) is regular and positive, there is a closed set \(F \subseteq E \) and an open set \(G \supseteq E \) such that \(\mu(G) - \mu(F) < \varepsilon \). Since \(S \) is regular, there are \(E', E'' \in S \) such that \(F \subseteq E' \subseteq \text{cl}E' \subseteq E \subseteq \text{int}E'' \subseteq E'' \subseteq G \). Since \(\mu \) is positive, \(\mu(E'') - \mu(E') < \varepsilon \). Therefore the restriction of \(\mu \) to \(S \) is a regular set function on \(S \).

Lemma 3. Let \(S \) be a regular family of Borel sets such that \(X \) is a finite union of sets in \(S \) and let \(\alpha \) be a regular function on \(S \) satisfying condition \([R]\). Then \(\alpha \) is extendable to a regular positive measure on \(\mathcal{B} \).

Proof. By Theorem 2, \(\alpha \) admits an extension to a positive additive set function \(\mu \) on \(\mathcal{B} \). Since \(\mu \) is bounded, it defines a bounded positive linear functional \(f \) on the Banach space \(\mathcal{B} \) of all uniform limits of functions in \(B_0 \) endowed with the norm \(\| \cdot \|_\infty \). This functional is given by [3, IV.5.1]

\[
f(x) = \int x(s) \mu(ds), \quad x \in B_0.
\]

By the Riesz representation theorem [3, IV.6.3] the restriction of this functional (which we denote by the same symbol \(f \)) to the space \(C(X) \) of continuous functions on \(S \) is given by

\[
f(x) = \int x(s) \mu^*(ds), \quad x \in C(X),
\]

where \(\mu^* \) is a regular positive measure on \(\mathcal{B} \).
Now it suffices to show that $\mu^*(E) = \mu(E)$ on S. Let $E \subseteq S$ and $\varepsilon > 0$. Since μ^* is positive and regular there is a closed set F and an open set G such that

$$F \subseteq E \subseteq G, \quad \mu^*(F) \cdot \mu^*(E) \cdot \mu^*(G), \quad \text{and} \quad \mu^*(G) - \mu^*(F) < \varepsilon.$$

Since S is regular, there are $E', E'' \in S$ such that

$$F \subseteq E' \subseteq \text{cl}E' \subseteq E \subseteq \text{int}E'' \subseteq E'' \subseteq G \quad \text{and} \quad \mu(E'') - \mu(E') < \varepsilon.$$

We denote $F' = \text{cl}E'$ and $G' = \text{int}E''$. Since μ and μ^* are positive,

$$\mu(G') - \mu(F') < \varepsilon \quad \text{and} \quad \mu^*(G') - \mu^*(F') < \varepsilon. \quad (3)$$

Since X is a normal space, by Urysohn’s lemma, there is a continuous function x such that

$$0 \cdot x(s) \cdot 1, \quad \text{for all } s \in X,$$

$$x(s) = 1, \quad \text{for all } s \in F',$$

$$x(s) = 0, \quad \text{for all } s \notin G'.$$

For a natural number n, we define a family of $n+1$ intervals in $[0, 1]$ by

$$I_k = \begin{cases} \left[\frac{k-1}{n}, \frac{k}{n} \right), & \text{for } 1 \cdot k \cdot n; \\ \{1\}, & \text{for } k = n + 1. \end{cases}$$

The family of Borel sets $E_k = x^{-1}(I_k)$, $1 \cdot k \cdot n+1$, forms a partition of X. Clearly, $\bigcup_{k=2}^{n} E_k \subseteq G' \setminus F'$. Therefore, by the first inequality in (3),

$$\sum_{k=2}^{n} \mu(E_k) \cdot \mu(G') - \mu(F') < \varepsilon. \quad (4)$$

Let x_n be a function defined by $x_n(s) = \frac{k-1}{n}$ for $s \in E_k$, $1 \cdot k \cdot n+1$. Thus

$$|f(x) - f(x_n)| \cdot \|f\| \cdot \|x - x_n\| < \frac{1}{n} \|f\| \quad (5)$$
Further,

\[x_n = \sum_{k=1}^{n+1} \frac{k-1}{n} \chi_{E_k} = \sum_{k=2}^{n} \frac{k-1}{n} \chi_{E_k} + \chi_{E_{n+1}}. \]

Thus

\[f(x_n) = \sum_{k=2}^{n} \frac{k-1}{n} \mu(E_k) + \mu(E_{n+1}), \]

which implies, by (4),

\[f(x_n) - \mu(E_{n+1}) = \sum_{k=2}^{n} \frac{k-1}{n} \mu(E_k) < \varepsilon. \]

This inequality together with one in (5) imply

\[|f(x) - \mu(E_{n+1})| < \varepsilon + \frac{1}{n} \|f\|. \quad (6) \]

Clearly, \(F' \subseteq E_{n+1} \subseteq G' \), and \(F' \subseteq E \subseteq G' \). Thus, by (3),

\[|\mu(E_{n+1}) - \mu(E)| < \varepsilon. \quad (7) \]

Since \(f(x) = \int x(s) \mu^*(ds) \), we have \(\mu^*(F') \cdot f(x) \cdot \mu^*(G') \). On the other hand, \(\mu^*(F') \cdot \mu^*(E) \cdot \mu^*(G') \). By the second inequality in (3),

\[|\mu^*(E) - f(x)| < \varepsilon. \quad (8) \]

Combining inequalities (6), (7), and (8), we have

\[|\mu^*(E) - \mu(E)| < 3\varepsilon + \frac{1}{n} \|f\|. \]

Hence, \(\mu^*(E) = \mu(E) = \alpha(E) \).

Combining the results of Lemma 2 and Lemma 3, we have the following theorem.

Theorem 4. Let \(S \) be a regular family of Borel sets such that \(X \) is a finite union of sets in \(S \). A function \(\alpha \) on \(S \) is extendible to a regular positive measure on \(B \) if and only if it is regular and satisfies condition \([R]\).
5 Extensions to measures II

In this section we make a different assumption about components of the quadruple \((X, \mathcal{A}, \mathcal{S}, \alpha)\). Namely, let \(X\) again be a compact Hausdorff space, \(\mathcal{S}\) be a family of subsets of \(X\), and let \(\mathcal{A}\) be the \(\sigma\)-algebra generated by \(\mathcal{S}\).

Lemma 4. Let \(\mathcal{S}\) be a regular family of subsets of \(X\). The restriction of a regular positive measure \(\mu\) on \(\mathcal{A}\) to \(\mathcal{S}\) is a regular function on \(\mathcal{S}\).

Proof. Let \(E \in \mathcal{S}\) and \(\varepsilon > 0\). Since \(\mu\) is regular and positive, there is \(F \in \mathcal{A}\) such that \(\text{cl}F \subseteq E\) and \(G \in \mathcal{A}\) such that \(\text{int}G \supseteq E\) such that \(\mu(G) - \mu(F) < \varepsilon\). Since \(\mathcal{S}\) is regular, there are \(E', E'' \in \mathcal{S}\) such that

\[
F \subseteq \text{cl}F \subseteq E' \subseteq E \subseteq \text{int}E'' \subseteq E'' \subseteq \text{int}G \subseteq G.
\]

Since \(\mu\) is positive, \(\mu(E'') - \mu(E') < \varepsilon\). Therefore the restriction of \(\mu\) to \(\mathcal{S}\) is a regular set function on \(\mathcal{S}\).

\(\square\)

Lemma 5. Let \(\mathcal{S}\) be a regular family of subsets of \(X\) such that \(X\) is a finite union of sets in \(\mathcal{S}\) and let \(\alpha\) be a regular function on \(\mathcal{S}\) satisfying condition [R]. Then \(\alpha\) is extendable to a regular positive measure \(\mu\) on the \(\sigma\)-algebra \(\mathcal{A}\) generated by \(\mathcal{S}\).

Proof. Let \(\mathcal{A}_0\) be the algebra generated by \(\mathcal{S}\). By Theorem 2, \(\alpha\) admits an extension to a positive additive set function \(\mu\) on \(\mathcal{A}_0\). It suffices to show that \(\mu\) is a regular function on \(\mathcal{A}_0\). Indeed, by Theorem 14 in [3, III.5], a regular function on \(\mathcal{A}_0\) admits an extension to a positive measure on \(\mathcal{A}\).

Let \(\varepsilon > 0\) and \(A\) and \(B\) be two sets in \(\mathcal{S}\). Since \(\mathcal{S}\) is a regular family and \(\alpha\) is a regular function, there are \(A_1, A_2 \in \mathcal{S}\) and \(B_1, B_2 \in \mathcal{S}\) such that

\[
A_1 \subseteq \text{cl}A_1 \subseteq A \subseteq \text{int}A_2 \subseteq A_2, \quad \alpha(A_2) - \alpha(A_1) < \varepsilon/2,
\]

and

\[
B_1 \subseteq \text{cl}B_1 \subseteq B \subseteq \text{int}B_2 \subseteq B_2, \quad \alpha(B_2) - \alpha(B_1) < \varepsilon/2,
\]
We have
\[\mu(A_1 \cup B_1) + \mu(A_1 \cap B_1) = \mu(A_1) + \mu(B_1) = \alpha(A_1) + \alpha(B_1) \]
and
\[\mu(A_2 \cup B_2) + \mu(A_2 \cap B_2) = \mu(A_2) + \mu(B_2) = \alpha(A_2) + \alpha(B_2). \]

Hence,
\[\mu(A_2 \cup B_2) - \mu(A_1 \cup B_1) \]
\[= [\alpha(A_2) - \alpha(A_1)] + [\alpha(B_2) - \alpha(B_1)] < \varepsilon, \]
implying
\[\mu(A_2 \cup B_2) - \mu(A_1 \cup B_1) < \varepsilon \quad \text{and} \quad \mu(A_2 \cap B_2) - \mu(A_1 \cap B_1) < \varepsilon. \]

Clearly,
\[\text{cl}(A_1 \cup B_1) \subseteq A \cup B \subseteq \text{int}(A_1 \cup B_1) \quad \text{and} \]
\[\text{cl}(A_1 \cap B_1) \subseteq A \cap B \subseteq \text{int}(A_1 \cap B_1). \]

Thus the regularity condition for \(\mu \) is satisfied for unions and intersections of sets in \(S \). Hence, \(\mu \) is a regular function on \(A_0 \).

Combining the results of Lemma 4 and Lemma 5, we have the following theorem.

Theorem 5. Let \(\mathcal{A} \) be the \(\sigma \)-algebra generated by a regular family \(\mathcal{S} \) of subsets of \(X \) such that \(X \) is a finite union of sets in \(\mathcal{S} \). A function \(\alpha \) on \(\mathcal{S} \) is extendable to a regular positive measure on \(\mathcal{A} \) if and only if it is regular and satisfies condition \([R]\).

6 Acknowledgments

We thank Lester Dubins for attracting the attention of the first author to the treatment of the extension problem in de Finetti’s book [4] and pointing out to the example that we use at the beginning of Section 4.
References

