1. Introduction

Leonardo da Vinci is acknowledged for having created the first accurate map based on orthogonal view, which resembles our current modern maps. He was commissioned to elaborate the map of the small Italian town of Imola, in 1502. The Duke Cesare Borgia asked Leonardo to develop a plan for repairing the town’s fortification, destroyed by an attack. The new ballistic methods required accuracy in the measurements in order to calculate the angles and distances. Therefore, Leonardo used a transit, a magnetic compass and a modified odometer to guarantee the precision to register the dimensions of the town. The accuracy of his map is demonstrated by the superposition of his plan with the 1984 plan based in photogrammetry techniques. (Bosseleman 1998)

The exactitude of previous maps was not a major issue. These maps actually, had some of its details deliberately placed out of scale in order to represent a hierarchy of some elements. Usually churches and castles were placed larger than they were, in other occasions they were represented in a perspective view while the other elements were drawn in orthogonal view. They were highlighted because the users of maps were searching mainly for these elements. Thus, even if the instruments to take accurate measurements were available at that time, there had been no demand for a correct measured map.

Maps, similarly to other forms of representation are reduced and incomplete versions of actuality and they depend on their authors’ wish of how accurate and what will be exhibited through them. As Dennis Wood (1993) noted, they represent a “reality that exceed our vision.” Therefore, they are exposed to all sorts of influences such as social, political, cultural and technical.

3D city models, like maps, are powerful when they can locate a set of information and make it clearer. In the same way that the location of information facilitates its understanding, the place can be better understood with the embedded information. Electronic technologies bring forth a great variety of resources that can facilitate various phases of history of the cities’ research. Many of them remain untested or with few inscriptions done by historians. Some of them may even reduce the gap between the representations of such a complex theme and the great variety of lives that actually take place there.

Abstract

This paper aims to explore the use of information technology, particularly 3D models, for the city history research. Rio-H, a web-based system is as a digital alternative for the representation of the city history. These systems developed by ABACUS research group, in Glasgow, are analyzed for its influence on Rio-H conception. The tool developed as a prototype is grounded on 3D models representing different periods of the city linked to a database of a great diversity of historical documents. Thus, the city history is accessible through images of the significant sites from the 3D models.

Keywords: 3D historical models, web-based system, database, historical narrative, Rio de Janeiro.
2. Precedents from Glasgow: the 3D models developed by ABACUS

The development of the system Rio-H, described in this paper followed a long research initiated with the development of the 3D historical model of Rio de Janeiro and an analysis of precedents that elaborated historical models in different contexts. Some of the analyzed projects were developed at the University of Strathclyde, University of Waterloo, University of Bath, University of Sheffield, and by a PhD researcher for the Dutch city of Haarlem. Those analyses were previously described in earlier publications (Köss, 2002). Therefore, this paper will focus on the experience developed by the ABACUS research group, from the University of Strathclyde, which was particular meaningful for our research. ABACUS group is a pioneer for developing 3D city models and that model originated different systems with various goals. In the 1980’s the ABACUS (Architecture and Building Aid's Computer Unit Strathclyde) research group engaged in a major enterprise for that time. The group led by Prof. Thomas Mower built a 3D model of Glasgow City Center. ABACUS was already researching with digital modeling and visualization and had a strong experience in this area. At the end of the 1970’s they had developed a visualization software oriented to wire-frame lines models of buildings and urban scenes, called Viewer. This software could produce hidden line perspective from any chosen viewpoint, of computer generated 3D models.

In 1986 ABACUS took the opportunity given by Silicon Graphic that wanted to prove the capacity of their newly launched computer. The computer Iris “was revolutionary in that it had a dedicated graphics engine, specific circuitry devoted to the task of undertaking large geometric transformations at speed, giving the illusion of real-time animation.” (Ennis and Lindsay, 1999). Although very powerful at that time, their computer had not been tested as a geometry engine processor in Europe. Therefore, main purposes for the model construction in the 1980s were related to an academic exercise. It was created to test the creation, storage, access and manipulation of a large quantity of data. The model later proved to carry other significant uses such as the visualization of design proposals inserted in the context of the city. This latter use helped to finance the extension of the model to cover 25 square kilometers with the building geometries. (Ennis and Lindsay, 1999, Ennis and Maver 2001, ABACUS 2003). The geometries of the city center were captured during the summer of 1986 by a group of six students. The topography was modeled through digitizing the contours of a 1:10,000 scale map for an area of 64 square kilometers. The street network was digitized for an area of six square kilometers from orthogonal plans. Later, the roads were superimposed onto the terrain model, assuming its shape. The buildings, according to Maver, constituted the most laborious part of the modeling process. They were constructed from 20 ordnance maps of the city in the 1:1250 scale, which were digitized. The heights were obtained from a variety of sources: stereoscopic analysis of aerial photos, or previous projects which registered that information. (Maver 1987)

The resources presented in the Glasgow Model seem to be quite basic nowadays. However, they were revolutionary in the second half of the 80s, particularly for the amount of information modeled, and are still useful nowadays. That model, generated near twenty years ago, is still being used by several projects developed by ABACUS, related to the city of Glasgow. Three of those projects, which were related to Rio-H are briefly described below.

2.1. The Glasgow Directory

The Glasgow Directory (ABACUS 1999) was developed taking advantage of two main circumstances: the emergence of the language VRML for the World-Wide Web and the award of Glasgow as the 1999 UK City of Architecture. (Ennis and Maver 2001) The model, which was enormously complex and needed a very powerful computer that could manipulate its graphics in the 1980s, proved to be currently simple enough to be transformed into VRML files allowing the navigation over the Web. An in-house software was created to translate the database model files into VRML models. Therefore, the model, with the geometry of the topography, roads network and 10,000 buildings, was divided into “28 neighboring city ‘chunks’ which could then be interactively explored on the internet.” (Ennis and Maver 2001) This new project aimed to connect data related to buildings and streets to the 3D model. Users would search for the information navigating through the 3D model in a similar way they would do in the ‘real’ city. Information would be organized by different categories in a database, which would be linked to individual buildings of the 3D model.

The Glasgow Directory presents a creative method to apply the VRML language and the Glasgow Model. However, it also brings inherent difficulties of VRML models. The lack of details in the buildings, which makes navigation through every regular street appear to be almost the same. Models which don’t have many details are very efficient when viewed from far away but look poor when examined from a closer distance. Developing a VRML model to be downloaded over the Web carries always the dilemma of relation size/detail of the models. If the model is more detailed, the user may have difficulties to download it. On the other side, if the model has a reasonable size to be quickly downloaded by the average of users, it may be too poor to be navigated in a close distance. If the idea of the Glasgow Directory is noteworthy, sometimes the model lack of details does not facilitate the implementation of the authors’ objectives.

2.2. The CD-ROM Glasgow 2000

The CD-ROM Glasgow 2000 The CD-ROM Glasgow 2000. the History of the city (ABACUS 2001b) is probably the project that is closest to Rio-H. It does not present many images from 3D models and 3D models were not applied as a research tool for the CD development. Although the Glasgow’s digital model cannot be noticed in the CD-ROM, it was actually used as a base for artists to traditionally render perspectives of the city in different periods. They prepared their historical renderings from large printouts of the model’s perspective view. For that project, the possibility to manually elaborate the renderings was much more feasible due to the limited time and budget allocated to it. Thus, each period of the city was illustrated by watercolors and in “the most recent period of the city’s development, actual aerial photographs were ‘dipped’ over the computer generated topography.” (Maver, Ennis and Jarvis, 2001) The fact that 3D models were not used to render historical images for the final product, demonstrates that, even if the research group had a quite complete 3D model of the existing city configuration, the transformation of that model into historical ones from previous periods would be a laborious task.

The Glasgow2000 introduces the city in six different historical periods. Each one is presented with an aerial view of the city, displayed in the larger window on the screen interface. A cursor that moves through this window selects the areas of the city that will be zoomed on a separa- te smaller window. Therefore, the users can always evaluate a closer view of a specific area in the city while they locate this area in the overall image of the city. When an historical period is chosen, the navigation is done through two columns of items that the users can select. The column on the left is named ‘landscape’ and displays elements that are connected to locations in the city while the right column with the title ‘Concepts’ is constituted by elements which are not related to places such as “Government,” “People,” “Taxes,” and so on.

Figure 1: 3D model of Rio de Janeiro displaying two different moments of the city center.

Figure 2: The Glasgow2000 graphic interface.

It is important to acknowledge the authors’ aim through the CD, to “give a sense of ‘place’ and to link all of the information to geographical locations.” (Maver, Ennis and Jarvis 2001) The authors make use of a great number of historical documents from several file types, such as sound or video clips, photographs and written documents, connected to city locations. Traditionally, these files, when
2. Precedents from Glasgow: the 3D models developed by ABACUS

The development of the system Rio-H, described in this paper followed a long research initiated with the development of the 3D historical model of Rio de Janeiro and an analysis of precedents that elaborated historical models in different contexts. Some of the analyzed projects were developed at the University of Strathclyde, University of Waterloo, University of Bath, University of Sheffield, and by a PhD researcher for the Dutch city of Haarlem. Those analyses were previously described in earlier publications (Kós, 2002). Therefore, this paper will focus on the experience developed by the ABACUS research group, from the University of Strathclyde, which was particular meaningful for our research. ABACUS group is a pioneer for developing 3D city models and that model originated different systems with various goals. In the 1980's the ABACUS (Architecture and Building Aids Computer Unit Strathclyde) research group engaged in a major enterprise for that time. The group led by Prof. Thomas Mavor built a 3D model of Glasgow City Center. ABACUS was already researching with digital modeling and visualization and had a strong experience in this area. At the end of the 1970's they had developed a visualization software oriented to wire-frame lines models of buildings and urban scenes, called Viewer. This software could produce hidden line perspective from any chosen viewpoint, of computer generated 3D models.

In 1986 ABACUS took the opportunity given by Silicon Graphic that wanted to prove the capacity of their newly launched computer. The computer Iris “was revolutionary in that it had a dedicated graphics engine, specific circuitry devoted to the task of undertaking large geometric transformations at speed, giving the illusion of real-time animation.” (Ennis and Lindsay, 1999). Although very powerful at that time, their computer had not been tested as a geometry engine processor in Europe. Therefore, main purposes for the model construction in the 1980's were related to an academic exercise. It was created to test the creation, storage, access and manipulation of a large quantity of data. The model later proved to carry other significant uses such as the visualization of design proposals inserted in the context of the city. This latter use helped to finance the extension of the model to cover 25 square kilometers with the building geometries. (Ennis and Lindsay, 1999, Ennis and Mavor 2001, ABACUS 2003).

The geometries of the city center were captured during the summer of 1986 by a group of six students. The topography was modeled through digitizing the contours of a 1:10.000 scale map for an area of 64 square kilometers. The street network was digitized for an area of six square kilometers from orthogonal plans. Later, the roads were superimposed onto the terrain model, assuming its shape. The buildings, according to Mavor, constituted the most laborious part of the modeling process. They were constructed from 20 ordnance maps of the city in the 1:1250 scale, which were digitized. The heights were obtained from a variety of sources: stereoscopic analysis of aerial photos, or previous projects which registered that information. (Mavor 1987). The resources presented in the Glasgow Model seem to be quite basic nowadays. However, they were revolutionary in the second half of the 80s, particularly for the amount of information modeled, and are still useful nowadays. That model, generated near twenty years ago, is still being used by several projects developed by ABACUS, related to the city of Glasgow. Three of those projects, which were related to Rio-H are briefly described below.

2.1. The Glasgow Directory

The Glasgow Directory (ABACUS 1999) was developed taking advantage of two main circumstances: the emergence of the language VRML for the World-Wide-Web and the award of Glasgow as the 1999 UK City of Architecture. (Ennis and Mavor 2001) The model, which was enormously complex and needed a very powerful computer that could manipulate its graphics in the 1980s, proved to be currently simple enough to be transformed into VRML files allowing the navigation over the Web. An in-house software was created to translate the database models into VRML models. Therefore, the model, with the geometry of the topography, roads network and 10.000 buildings, was divided into “28 neighboring city ‘chunks’” which could then be interactively explored on the internet.” (Ennis and Mavor 2001)

This new project aimed to connect data related to buildings and streets to the 3D model. Users would search for the information navigating through the 3D models in a similar way they would do in the ‘real’ city. Information would be organized by different categories in a database, which would be linked to individual buildings of the 3D model.

The Glasgow Directory presents a creative method to apply the VRML language and the Glasgow Model. However, it also brings inherent difficulties of VRML models. The lack of details in the buildings, which makes navigation through every regular street appear to be almost the same. Models which don’t have many details are very efficient when viewed from far away but look poor when examined from a closer distance. Developing a VRML model to be downloaded over the Web carries always the dilemma of relation size/detail of the models. If the model is more detailed, the user may have difficulties to download it. On the other side, if the model has a reasonable size to be quickly downloaded by the average of users, it may be too poor to be navigated in a close distance. If the idea of the Glasgow Directory is noteworthy, sometimes the model lack of details does not facilitate the implementation of the authors’ objectives.

2.2. The CD-ROM Glasgow 2000

The CD-ROM Glasgow 2000, the History of the city (ABACUS 2001b) is probably the project that is closest to Rio-H. It does not present many images from 3D models and 3D models were not applied as a research tool for the CD development. Although the Glasgow’s digital model cannot be noticed in the CD-ROM, it was actually used as a base for artists to traditionally render perspectives of the city in different periods. They prepared their historical renderings from large printouts of the model’s perspective view. For that project, the possibility to manually elaborate the renderings was much more feasible due to the limited time and budget allocated to it. Thus, each period of the city was illustrated by watercolors and in “the most recent period of the city’s development, actual aerial photographs were ‘dipped’ over the computer generated topography.” (Mavor, Ennis and Jarvis, 2001) The fact that 3D models were not used to render historical images for the final product, demonstrates that, even if the research group had a quite complete 3D model of the existing city configuration, the transformation of that model into historical ones from previous periods would be a laborious task.

The Glasgow2000 introduces the city in six different historical periods. Each one is presented with an aerial view of the city, displayed in the larger window on the screen interface. A cursor that moves through this window selects the areas of the city that will be zoomed on a separate smaller window. Therefore, the users can always evaluate a closer view of a specific area in the city while they locate this area in the overall image of the city. When an historical period is chosen, the navigation is done through two columns of items that the users can select. The column on the left is named ‘landscape’ and displays elements that are connected to locations in the city while the right column with the title ‘Concepts’ is constituted by elements which are not related to places such as “Government,” “People,” “Taxes,” and so on.

In 1999 ABACUS took the opportunity given by Silicon Graphic that wanted to prove the capacity of their newly launched computer. The computer Iris “was revolutionary in that it had a dedicated graphics engine, specific circuitry devoted to the task of undertaking large geometric transformations at speed, giving the illusion of real-time animation.” (Ennis and Lindsay, 1999). Although very powerful at that time, their computer had not been tested as a geometry engine processor in Europe. Therefore, main purposes for the model construction in the 1980s were related to an academic exercise. It was created to test the creation, storage, access and manipulation of a large quantity of data. The model later proved to carry other significant uses such as the visualization of design proposals inserted in the context of the city. This latter use helped to finance the extension of the model to cover 25 square kilometers with the building geometries. (Ennis and Lindsay, 1999, Ennis and Mavor 2001, ABACUS 2003).

The geometries of the city center were captured during the summer of 1986 by a group of six students. The topography was modeled through digitizing the contours of a 1:10.000 scale map for an area of 64 square kilometers. The street network was digitized for an area of six square kilometers from orthogonal plans. Later, the roads were superimposed onto the terrain model, assuming its shape. The buildings, according to Mavor, constituted the most laborious part of the modeling process. They were constructed from 20 ordnance maps of the city in the 1:1250 scale, which were digitized. The heights were obtained from a variety of sources: stereoscopic analysis of aerial photos, or previous projects which registered that information. (Mavor 1987).

The Glasgow2000 introduces the city in six different historical periods. Each one is presented with an aerial view of the city, displayed in the larger window on the screen interface. A cursor that moves through this window selects the areas of the city that will be zoomed on a separate smaller window. Therefore, the users can always evaluate a closer view of a specific area in the city while they locate this area in the overall image of the city. When an historical period is chosen, the navigation is done through two columns of items that the users can select. The column on the left is named ‘landscape’ and displays elements that are connected to locations in the city while the right column with the title ‘Concepts’ is constituted by elements which are not related to places such as “Government,” “People,” “Taxes,” and so on.

It is important to acknowledge the authors’ aim through the CD, “to give a sense of ‘place’ and to link all of the information to geographical locations.” (Mavor, Ennis and Jarvis 2001) The authors make use of a great number of historical documents from several file types, such as sound or video clips, photographs and written documents, connected to city locations. Traditionally, those files, when
displayed in historical works, are only ac-
cessible in limited number and connec-
ted to some texts on specific topics. Se-
wing, hearing or reading many of them, in a
chosen order which is linked by the known
areas of the cities is a powerful move.
One has a comprehensible feeling of the
city’s environment through those pieces of
information and the comparison of the
present city’s urban spaces.

Although the 3D model was just a sup-
port to generate city’s historical repre-
sentations, this project suggests signifi-
cant use for it. From the digital base the
artists could render freely what the city
looked like in previous times following the
correct location of rivers, streets, and other
elements that relate to current roads and other physical features of the
city. The advantage of the watercolors
over the digital models is that the for-
mers are less precise. The images are of-
ten blurred suggesting some configura-
tions for the city without exactly assert-
ing how it was physiologically constituted.
From a distance, the lack of precision was
not a problem and, actually, was probably more efficient than a complete
model of the city in the past. Those im-
ges successfully achieved their goal. An-
other aspect which is important in this
case is the capacity of the digital system
in its potential to be used as a web-based
medium for the presentation of a place’s
history. Rio-H embodies two main character-
istics, which differentiate it from usual historical
documents:
1-users do not follow it sequentially or if
there is any sequence it is rather a spa-
tial sequence since the documents are or-
ganized according to places in the city;
2-users can explore a diverse group of
documents concerning one subject -many of them can present opposed ver-
sions.

Rio-H rests on a database of historical
documents related to specific places wit-
in the city of Rio de Janeiro, in Brazil. The
documents from the CD-ROM are digital versions of historical
documents taken from a great variety of
sources. Each database entry can be lin-
ed up to five different places in the
city model, five different historical pe-
riods and five keywords for searching the
information. Every search starts from
places represented in the city models.
Thus, the information is organized accor-
ding to the space in the city and the
users are always aware of the city spatial
organization and relationships. The data-
base entries are classified in different ca-
tegories such as photographs, newspa-
per articles, paintings, fiction books and
official documents. Therefore, the users
search documents which present different versions or aspects of a place’s
history. They should be able to elaborate
their own historical narrative from the
spaces within a city.

One of the main drawbacks of this sys-
tem is the lack of spatial references. If
the CD-ROM is always connecting the historical information to
places in the city, that does not happen
in TheGlasgowStory, at least not with images. Names of neighborhoods were
always mentioned, the same thing hap-
pened with the streets and rivers. However,
whoever do not have a device to facilitate
their spatial location within the city.
Even maps are seldom displayed when
a neighborhood analysis is done. When
users who are not much familiar with the
city visit TheGlasgowStory, they have dif-
ficulties to locate the places mentioned
with those they know. In a project that
aims to present the city history, it is im-
portant to verify spatial relationships
among events even for the Glasgow
dwellers.

3. The system Rio-H
The three projects developed by ABA-
CUS research group influenced the con-
ception of Rio-H and its characteristics
were defined after a careful analysis of
the former projects. Rio-H is presented in
this paper as a prototype version of a lar-
ger scale proposed system. It was con-
ceived as a web-based alternative for the
presentation of a place’s history. Rio-H
embrides two main characteristics, which differentiate it from usual historical
documents:
1-users do not follow it sequentially or if
there is any sequence it is rather a spa-
tial sequence since the documents are or-
ganized according to places in the city;
2-users can explore a diverse group of
documents concerning one subject -many of them can present opposed ver-
sions.

Rio-H rests on a database of historical
documents related to specific places wit-
in the city of Rio de Janeiro, in Brazil. The
documents from the CD-ROM are digital versions of historical
documents taken from a great variety of
sources. Each database entry can be lin-
ed up to five different places in the
city model, five different historical pe-
riods and five keywords for searching the
information. Every search starts from
places represented in the city models.
Thus, the information is organized accor-
ding to the space in the city and the
users are always aware of the city spatial
organization and relationships. The data-
base entries are classified in different ca-
tegories such as photographs, newspa-
per articles, paintings, fiction books and
official documents. Therefore, the users
search documents which present different versions or aspects of a place’s
history. They should be able to elaborate
their own historical narrative from the
spaces within a city.

The representation of the landscape is
critical for this project due to the history
and characteristics of the city. The rela-
tionship with the natural landscape has
always driven the city growth. Somet-
times this relationship required a defensi-
ve or laborious attitude and in others, the
natural assets supported urban enter-
pises. Thus, mountains and the waterfront
have changed several times over the his-
tory to conform to major urban changes.
Infill and hill dismantling are not unusual
in Rio’s urban evolution. Besides that,
the city dwellers always used the water-
front and the mountains as guiding re-
sources or references for places. Until
today, the city is better known for its na-
tural configuration than for its built envi-
rnment. The city landmarks built by its
inhabitants are often exhibited near the
natural landscape. Therefore, even requi-
ring complex modeling solutions, the to-
ography was constructed with fairly rich
details. The topography was always the

3. The system Rio-H
The three projects developed by ABA-
CUS research group influenced the con-
ception of Rio-H and its characteristics
were defined after a careful analysis of
the former projects. Rio-H is presented in
this paper as a prototype version of a lar-
ger scale proposed system. It was con-
ceived as a web-based alternative for the
presentation of a place’s history. Rio-H
embrides two main characteristics, which differentiate it from usual historical
documents:
1-users do not follow it sequentially or if
there is any sequence it is rather a spa-
tial sequence since the documents are or-
ganized according to places in the city;
2-users can explore a diverse group of
documents concerning one subject -many of them can present opposed ver-
sions.

Rio-H rests on a database of historical
documents related to specific places wit-
in the city of Rio de Janeiro, in Brazil. The
documents from the CD-ROM are digital versions of historical
documents taken from a great variety of
sources. Each database entry can be lin-
ed up to five different places in the
city model, five different historical pe-
rperiods and five keywords for searching the
information. Every search starts from
places represented in the city models.
Thus, the information is organized accor-
ding to the space in the city and the
users are always aware of the city spatial
organization and relationships. The data-
base entries are classified in different ca-
tegories such as photographs, newspa-
per articles, paintings, fiction books and
official documents. Therefore, the users
search documents which present different versions or aspects of a place’s
history. They should be able to elaborate
their own historical narrative from the
spaces within a city.

The representation of the landscape is
critical for this project due to the history
and characteristics of the city. The rela-
tionship with the natural landscape has
always driven the city growth. Somet-
times this relationship required a defensi-
ve or laborious attitude and in others, the
natural assets supported urban enter-
pises. Thus, mountains and the waterfront
have changed several times over the his-
tory to conform to major urban changes.
Infill and hill dismantling are not unusual
in Rio’s urban evolution. Besides that,
the city dwellers always used the water-
front and the mountains as guiding re-
sources or references for places. Until
today, the city is better known for its na-
tural configuration than for its built envi-
rnment. The city landmarks built by its
inhabitants are often exhibited near the
natural landscape. Therefore, even requi-
ring complex modeling solutions, the to-
ography was constructed with fairly rich
details. The topography was always the
displayed in historical works, are only ac-
cessible in limited number and connec-
ted to some texts on specific topics.
Sewing, hearing or reading many of them,
in a chosen order is possible. A text can convey a powerful move.
One has a comprehensive feeling of the
place's environment through those pieces of
information and the comparison of the
present city's urban spaces.

Although the 3D model was just a sup-
port to generate city's historical repre-
sentations, this project suggests signifi-
cant use for it. From the digital base the
artists could render freely what the city
looked like in previous times following
the correct location of rivers, streets, and
other elements that relate to current
roads and other physical features of the
city. The advantage of the watercolors
over the digital models is that the for-
mers are less precise. The images are of-
ten blurred suggesting some configura-
tions for the city without exactly assert-
ing how it was physically constituted.
From a distance, the lack of precision was not a problem and, actually, was
probably more efficient than a complete
model of the city in the past. Those im-
ages successfully achieved their goal. An-
other advantage is that it is possible to
recognize its spaces and will relate
the events displayed, to the known places in
the city. The watercolors exhibit distant
views of the city. Thus, they are often si-
milar to maps but, since they are persis-
tive views, it is possible to identify the
hills and rivers and how they directed the
city growth. The watercolors facilitate the
recognition of the places from the past and
locate the events described by the
files included in the Glasgow2000. The fi-
les exhibit the main events and, particu-
larly, how people lived in the different
places in the city. Therefore, the most va-
luable issue of this project is to link those
files that present the human interac-
tions within the urban spaces to the au-
nal views. They exhibit a city we cannot
grasp with our senses when we are wal-
kng through its streets. Both of them are
meaningful representations of the city.

One presents what is missing in the oth-
er. However, they are seldom put toget-
her in usual city's representations. Al-
though this CD-ROM presents a limited
amount of information and the texts pre-
sented are relatively short, it is an inva-
nuable contribution to those who re-
search creative forms of presenting the
history of the city.

2.2. TheGlasgowStory
TheGlasgowStory. (ABACUS 2004) is
one of the results of the United Kingdom
support with governmental funds of
great initiatives that provide learning and
research material online. The project
TheGlasgowStory is being carried out by
a large consortium including two Univer-
sities and every public library that carries
archives related to the city; it aims to di-
gitize archives of different institutions
about the city of Glasgow, bringing to-
gether the material and providing online
access to the public, particularly educa-
tors, students and researchers. The au-
hors of the project aimed to digitize
about 15,000 images located in several
recognized institutions such as univer-
sities, museums, libraries, art galleries
and other archives. The digitalization process was carefully planned and for each digi-
tilized image, a caption was created. The
se captions explain the images and the
online survey from the database. Additio-
nally, several writers were hired to elabo-
rate around 500 essays of 250 to 1,500
words, on topics of the city history in
which they specialize. The digitized im-
ge are associated to essays and cap-
tions directly through the database.

The most remarkable characteristics ex-
hibited by TheGlasgowStory are its size
and the importance of the digitized ma-
terial distributed via the website. The ma-
terial owned by libraries, museums and
archives is always seen for the economic
value associated to its historical value
and uniqueness. In this case the institu-
tions were the most prominent in the city.
They all agreed to give away medium si-
z resolution copies of their collections
to any one who would freely access the

database through TheGlasgowStory. That is a remarkable issue, particularly to
researchers and students, whose access
will be extremely facilitated. It is most
probably more efficient than a complete
model of the city in the past. Those images
have access to those historical archives
will increase exponentially. Historical
books always present a small selection of
images due to the typical limitations of
printed material. Thus, students, and so-
metimes researchers, are exposed to a
frustrated number of all available images
concerning the history of the city. Similar
initiatives will start to change the way
history is communicated and appréhen-
died. Therefore, those pioneer projects
that organize and distribute that material
should be carefully analyzed. As ‘revolu-
tionary’ vehicles, they will influence the
way users choose the distributed mate-
rial and consequently, how they learn
from those instruments.

One of the main drawbacks of this sys-
tem is the lack of spatial references. If
the CD-ROM Glasgow2000 is always
connecting the historical information to
places in the city, that does not happen in
TheGlasgowStory, at least not with images.
Names of neighborhoods were always
mentioned, the same thing hap-
pened with streets and rivers. However, the
users do not have a device to facilitate their
spatial location within the city. Even
maps are seldom displayed when a neigh-
bhood analysis is done. When users who are not much familiar with the
city visit TheGlasgowStory, they have
difficulties to locate the places mentioned
with those they know. In a project that
aims to present the city history, it is im-
portant to verify spatial relationships
among events even for the Glasgow
dwellers.

3. The system Rio-H
The three projects developed by ABAC-
CUS research group influenced the con-
ception of Rio-H and its characteristics
were defined after a cautious analysis of the
former projects. Rio-H is presented in
this paper as a prototype version of a lar-
ger scale proposed system. It was con-
ceived as a web-based alternative for the
presentation of a place’s history. Rio-H
embodies two main characteristics, which
differentiate it from usual historical
documents:

1- users do not follow it sequentially or if
there is any sequence it is rather a spa-
tial sequence since the documents are
organized according to places in the city;

2- users can explore a diverse group of
documents concerning one subject -many
of them can present opposed ver-
sions.

Rio-H rests on a database of historical
documents related to specific places within
the city of Rio de Janeiro, in Brazil.
These documents are searched from 3D
model's images of different periods in the
city's history. The database entries are
text, image or even sound and movie fi-
les. They are digital versions of historical
documents taken from a great variety of
sources. Each database entry can be linked
to up to five different places in the
city model, five different historical peri-
ods and five keywords for searching the
information. Every search starts from
places represented in the city models.
Thus, the information is organized accor-
ding to the space in the city and the
users are always aware of the city spatial
organization and relationships. The data-
base entries are classified in different ca-
tegories such as photographs, newspa-
per articles, paintings, fiction books and
official documents. Therefore, the users
can search documents which present
different versions or aspects of a place’s
history. They should be able to elaborate
their own historical narrative from the
spaces within a city.

Rio-H’s complete system should be a
large-scale project, which would be ca-
rried out by a multidisciplinary team. It is
composed of four main parts, which, even
for the prototype, were developed separa-
tely. In the definitive project, diffe-
rrent people or teams should develop them.
Therefore, the construction of the
3D Historical models; the development
and maintenance of the Historical data-
base; the collection of historical docu-
ments; and the elaboration of the web-
based tool constitute the whole system.
All four phases are already structured but
the system is not yet fully functional in
the prototype. Only after feeding it with
meaningful data, it can be useful to most
users.

3. The Rio de Janeiro 3D historical mo-
dels
The 3D models of the city of Rio de Ja-
neiro were elaborated in the Laboratory
of Urban Analysis and Digital Representa-
tions (LAURIO-FPROURB) at the Federal
University of Rio de Janeiro. They have
been used in several projects related to the
city. Those models render historical
periods in the city, represented in cuts
selected from available antique maps or
aerial photographs. The models were
constructed from the existing city 3D
model with the support of the historical
graphic information. The current city mo-
del represents the existing situation of
the city in the year 2000. Thus, each his-
torical model was elaborated backwards
based on previous maps and in the re-
maining constructions and streets, de-
constructing the changes which occu-
red over the years until 2000. In order to
facilitate their construction, every model
was structured in three main parts: the
natural landscape, with the topography
and the shoreline; the street network;
and the main buildings.

The representation of the landscape is
critical for this project due to the history
and characteristics of the city. The rela-
tionship with the natural landscape has
always driven the city growth. Someti-
mes this relationship required a defensi-
ve or laborious attitude and in others, the
natural assets supported urban enter-
prises. Thus, mountains and the waterfront
have changed several times over the his-
tory to conform to major urban changes.
Infill and hill dismantling are not unusual
in Rio’s urban evolution. Besides that, the
city dwellers always used the water-
front and the mountains as guiding re-
sources or references for places. Until
today, the city is better known for its na-
tural configuration than for its built envi-
ronment. The city landmarks built by its
inhabitants are often exhibited near the
natural landscape. Therefore, even requi-
riring complex modeling solutions, the to-
ography was constructed with fairly rich
details. The topography was always the


Figure 3: An architectural plan selected from Rio-H historical document's database
most problematic part of the model. It re-
quired a lot of workstation’s disk and
memory to manage the models and ela-
borated procedures to place streets or
buildings in it.

The Municipality of Rio de Janeiro gran-
ted their digital topography files to the
project. However, since they were used
mainly for 2D printing, they had several
problems for transferring to three dimen-
sions. Thus, the contours have been re-
done over the official ones in order to
provide good quality curve lines to exhu- 
sate the hills and mountains. The level of
detail used to model the mountains in-
creased accordingly to the proximity to
the city center.

The street network was produced from
the official current model, superimposed
to old maps. The maps were adapted to
conform to the official representation and
the width of existing streets or the chan-
ges in others that disappeared were mo-
dified from the 2000 version of the mo-
del. Every change was registered in the
historical models and was important to
guide the readers in the past models.

Just some selected buildings were mo-
deled for the historical models. Most of
them have changed or disappeared sin-
cen they were built. The lack of precise
information was a problem to elaborate
them. Since few had plans or sections
available, they were mostly built from
paintings or old pictures. They were se-
lected due to their importance in the ur-
bain environment and the amount of his-
torical documents. They were modeled
with few details to facilitate the manipu-
lation of the city model, already complex
because of the elaborated topography.

The models were elaborated with Auto-
Desk AutoCAD and Discreet 3DS MAX.
Most undergraduate students, who we-
re more proficient with those pieces of
software, developed the historical mo-
dels. Therefore, even though, those tools
were not the most suitable for the job,
they were chosen for practical reasons.

Although most of the topography of the
“Greater Rio de Janeiro” was modeled,
only part of the city center had the street
network and important buildings con-
structed. Therefore, the tool Rio-H is cu-
rently restricted to the center of the city,
where it originated. It is important to no-
tice that before the XVII century, the city
was mostly circumscribed into that area.
Even though urban areas did not occupy
the mountains, it is important to have
them modeled in order to understand the
surrounding configuration and the feeling
of the city center’s natural environment.

The central area of the city has eight his-
torical models and one current model of
the city in the year 2000 in this first sta-
ge of the research. The dates for the his-
torical models were chosen due to the
interval between the models and the qual-
ity of the available information, main-
ly maps or aerial photographs for the
most recent years. Thus, the years 1860,
1690, 1713, 1750, 1808, 1850, 1910, 1928
were selected to be represented in the
first historical models, which were in-
cluded in the prototype. Those historical
models of the city were not constructed
to be realistic representations of the city.
Actually, it is important to emphasize their
abstractionism. Each model should be
accessed as a reduction to a physical
fragment of the city in the past. Therefo-
re, its role as a spatial representation is
mainly to locate the “historical image” -
or “dialectic images”, as Walter Benja-
min states (Benjamin 1999) - elaborated
by the readers in the space of the city
they already know. The simplicity of the
model, based on a digital Cartesian sys-
tem, is crucial to bring about the great
complexity of the city history. The organi-
zation of historical urban 3D models pos-
ses additional important issues. It is
much easier to represent an existing si-
tuation than past moments of the city,
which are never completely document-
ed. Latin American cities, for example,
suffered radical changes, particularly
from the end of the eighteenth century.
Most buildings in the city center were de-
molished and few records remained from
them. Even with a relatively short age,
those cities are very difficult to represent
with historical 3D models because few
buildings remained from the previous
centuries. Therefore, modeling an “in-
complete” and more abstract version of
the city can overcome lack of informa-
tion problems and also facilitates the users
to construct their own images of that pe-
riod. That could be done with the sup-
port of other historical documents asso-
ciated with the users’ knowledge of that
existing space in the city. 3D models ha-
ve an important role to locate within the
city, past events and associate present
and past spaces. It is more important to
place those events in the city space than
to try realistically reproduce an envi-
ronment from the past.

5. Final considerations

Historical publications rarely utilize 3D
city models in their works. Their use is
critical in Rio-H and the choice to in-
clude renderings in those models as a
point of departure to search information
has several reasons and implications. As
already mentioned, the renderings gene-
rated by the models are simple and do
not intend to be photorealistic. They may
resemble perspective maps developed for
tourists with only city landmarks or
even antique maps. The renderings from
the 3D models of the past should not at-
tempt to convey the complexity of reality
in that moment because they could ne-
ever reproduce it. When the 3D renderings

Figure 4: Rio-H graphic interface with a detail of the 1910 3D model

support the location of the historical in-
formation in the city, they contextualize it
and help to clarify a puzzling set of rela-
tionships from past society. Therefore,
the space organizes the historical infor-
mation, taking for granted its complexity
but trying to display it in an organized
form.

Rio-H’s concept of collecting historical
documents, which disclose the history of
Rio de Janeiro is a response to several
issues analyzed throughout the...
most problematic part of the model. It required a lot of workstation's disk and memory to manage the models and elaborated procedures to place streets or buildings in it.

The Municipality of Rio de Janeiro granted their digital topography files to the project. However, since they were used mainly for 2D printing, they had several problems for transferring to three dimensions. Thus, the contours have been redone over the official ones in order to provide good quality curve lines to extrude the hills and mountains. The level of detail used to model the mountains increased accordingly to the proximity to the city center.

The street network was produced from the official current model, superimposed to old maps. The maps were adapted to conform to the official representation and the width of existing streets or the changes in others that disappeared were modified from the 2000 version of the model. Every change was registered in the historical models and was important to guide the readers in the past models. Just some selected buildings were modeled for the historical models. Most of them have changed or disappeared since they were built. The lack of precise information was a problem to elaborate them. Since few had plans or sections available, they were mostly built from paintings or old pictures. They were selected due to their importance in the urban environment and the amount of historical documents. They were modeled with few details to facilitate the manipulation of the city model, already complex because of the elaborated topography. The models were elaborated with AutoDesk AutoCAD and Discreet 3DS MAX. Mostly undergraduate students, who were more proficient with those pieces of software, developed the historical models. Therefore, even though, those tools were not the most suitable for the job, they were chosen for practical reasons. Although most of the topography of the “Greater Rio de Janeiro” was modeled, only part of the city center had the street network and important buildings constructed. Therefore, the tool Rio-H is currently restricted to the center of the city, where it originated. It is important to notice that before the XVIII century, the city was mostly circumscribed into that area. Even though urban areas did not occupy the mountains, it is important to have them modeled in order to understand the surrounding configuration and the feeling of the city center’s natural environment.

The central area of the city has eight historical models and one current model of the city in the year 2000 in this first stage of the research. The dates for the historical models were chosen due to the interval between the models and the quality of the available information, mainly maps or aerial photographs for the most recent years. Thus, the years 1600, 1650, 1713, 1750, 1808, 1850, 1910, 1928 were selected to be represented in the first historical models, which were included in the prototipo. Those historical models of the city were not constructed to be realistic representations of the city. Actually it is important to emphasize their abstractionism. Each model should be accessed as a reduction to a physical fragment of the city in the past. Therefore, its role as a spatial representation is mainly to locate the “historical image” - or “dialectic images”, as Walter Benjamin states (Benjamin 1999) - elaborated by the readers in the space of the city they already know. The simplicity of the model, based on a digital Cartesian system, is a criticism to bring about the great complexity of the city history. The organization of historical urban 3D models poses additional important issues. It is much easier to represent an existing situation than past moments of the city, which are never completely documented. Latin American cities, for example, suffered radical changes, particularly from the end of the eighteenth century. Most buildings in the city center were demolished and few records remained from them. Even with a relatively short age, those cities are very difficult to represent with historical 3D models because few buildings remained from the previous centuries. Therefore, modeling an “incomplete” and more abstract version of the city can overcome lack of information problems and also facilitates the users to construct their own images of that period. That could be done with the support of other historical documents associated with the users’ knowledge of that existing space in the city. 3D models have an important role to locate within the city, past events and associate present and past spaces. It is more important to place those events in the city space than trying to realistically reproduce an environment from the past.

5. Final considerations

Historical publications rarely utilize 3D city models in their works. Their use is critical in Rio-H and the choice to include renderings from those models as a point of departure to search information has several reasons and implications. As already mentioned, the renderings generated by the models are simple and do not intend to be photorealistic. They may resemble perspective maps developed for tourists with only city landmarks or even antique maps. The renderings from the 3D models of the past should not attempt to convey the complexity of reality in that moment because they could never reproduce it. When the 3D renderings support the location of the historical information in the city, they contextualize it and help to clarify a puzzling set of relationships from past society. Therefore, the space organizes the historical information, taking for granted its complexity but trying to display it in an organized form.

Rio-H’s concept of collecting historical documents, which disclose the history of Rio de Janeiro is a response to several issues analyzed throughout the research. Project Rio-H does not resolve all of them but its contribution should be the presentation of an alternative to narrate the history of the city and its dwellers, exalted in each of its built fragments. Susan Buck-Morss’ expressed Walter Benjamin’s methodology for the analysis of Paris History in this last statement. Our wish is that a final version of Rio-H would follow similar aims.

“... each of these ‘small, particular moments’ was to be identified as an ur-form of the present. Benjamin’s commentary, in which those facts were allowed the fragments to cohere as the philosophical representation of history as a ‘total event.’” (Buck-Morss 1991)

References


Figure 4: Rio-H graphic interface with a detail of the 1910 3D model.