Modelling the thermo-hydro-chemical behavior of compacted bentonite for nuclear waste disposal

Andrés Idiart

Team: Jorge Molinero, Marek Pekala, Orlando Silva, Elena Abarca, Babak Shafei, Alvaro Sáinz, David Arcos
Outline

- Background
- THC model of EBS evolution in the KBS-3V
- Main results
- Conclusions and perspectives
Background: KBS-3V concept

1. Compacted bentonite buffer surrounding canister
2. Backfill filling deposition tunnels
Many coupled processes in reactive porous media at play

- *Radioactive decay of SNF: a significant heat source*
- *Long-term heat dissipation involved a large rock volume*
- *Fractured granite gradually saturates the EBS components*
- *Groundwater and porewater in chemical disequilibrium: alteration of the EBS*
- *Temperature increase trigger a set of chemical reactions in the system*
- *Swelling of the clay components*

Geochemical processes

- Focus on geochemical processes expected to play a role during the evolution of the repository (e.g. Arcos et al., 2008):
 - Thermal and liquid saturation (mixing) effects
 - SiO$_2$(am) formation (cementation may prevent clay swelling)
 - Anhydrite redistribution during the thermal period
 - Cation exchange: Ca increase may affect swelling ability; coupling with carbonates
 - Surface complexation (protonation-deprotonation reactions) and carbonates (calcite, siderite, dolomite): pH buffers
- Not considered: montmorillonite long-term dissolution, copper-bentonite interaction, redox reactions
- Assumption: all reactions under thermodynamic equilibrium (i.e. no reaction kinetics)
Background: THC processes in the KBS-3V

Geochemical processes: experience from in-situ experiments

Previous modelling efforts

<table>
<thead>
<tr>
<th>Test</th>
<th>LOT A0</th>
<th>LOT A2</th>
<th>FEBEX In situ</th>
<th>ABM1</th>
<th>ABM2</th>
<th>Mock-Up-CZ</th>
<th>TBT</th>
<th>Prototype Rep.</th>
<th>CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ site</td>
<td>Asp0 HRL</td>
<td>Asp0 HRL</td>
<td>Grimsel</td>
<td>Asp0 HRL</td>
<td>Asp0 HRL</td>
<td>CEG, CTU</td>
<td>Asp0 HRL</td>
<td>Asp0 HRL</td>
<td>Asp0 HRL</td>
</tr>
<tr>
<td>Duration (years)</td>
<td>1.5</td>
<td>1.5</td>
<td>2.5</td>
<td>2.5</td>
<td>7</td>
<td>3.75</td>
<td>4.85</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Concept tested</td>
<td>KBS 3V</td>
<td>KBS 3V</td>
<td>Horizontal</td>
<td>KBS 3V</td>
<td>KBS 3V</td>
<td>KBS 3V</td>
<td>KBS 3V</td>
<td>KBS 3V</td>
<td>KBS 3V</td>
</tr>
<tr>
<td>Diameter/Length (m)</td>
<td>0.3 / 4</td>
<td>0.3 / 4</td>
<td>2.28 / 17.4</td>
<td>0.3 / 3</td>
<td>0.3 / 3</td>
<td>0.8 / 2.24</td>
<td>1.75 / 8</td>
<td>1.75 / 8</td>
<td>1.76 / 7.05</td>
</tr>
<tr>
<td>Bentonite type</td>
<td>MX80</td>
<td>MX80</td>
<td>FEBEX</td>
<td>Multiple types</td>
<td>Multiple types</td>
<td>Rokli *</td>
<td>MX80</td>
<td>MX80</td>
<td>Volclay MX80</td>
</tr>
<tr>
<td>Artificial hydration</td>
<td>gw from borehole nearby</td>
<td>gw from borehole nearby</td>
<td>Natural wetting from the rock</td>
<td>gw from borehole nearby</td>
<td>gw from borehole nearby</td>
<td>synthetic</td>
<td>gw from borehole nearby</td>
<td>Natural wetting from the rock</td>
<td>natural Na-Ca-Cl</td>
</tr>
<tr>
<td>Max temperature (°C)</td>
<td>120-150</td>
<td>120-150</td>
<td>97</td>
<td>120-140</td>
<td>120-140</td>
<td>97</td>
<td>130-150</td>
<td>85</td>
<td>75-95</td>
</tr>
<tr>
<td>Initial dry density (kg/m²)</td>
<td>1570</td>
<td>1570</td>
<td>1700</td>
<td>1700-2150</td>
<td>1700-2150</td>
<td>1760-1770</td>
<td>1700</td>
<td>1570</td>
<td>1700-1780</td>
</tr>
<tr>
<td>Initial water content (w%)</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Geochemical alterations observed

- **Transformation of expandable clay changes**
 - no evidence of structural changes
 - no evidence of structural changes tentatively, anhydrite formation
 - minor transformation (illite/beidellite)
 - no evidence of structural changes
- **Anhydrite/Gypsum formation**
 - distributed near the heater
 - distributed near the heater
 - redistributed near the heater
 - redistributed near the canister
- **Cristobalite**
 - no significant redistribution
 - no significant redistribution
 - dissolved near the heater
 - dissolved near the heater
- **Calcite**
 - no clear tendency
 - measured decrease
 - no clear tendency
 - no clear tendency
- **CEC changes**
 - no change
 - extensive equilibration with gw
 - extensive equilibration with gw
 - decrease in Mg in cold part
- **Cation exchange**
 - increase in Mg near the heater
 - increase near the heater
 - increase near the heater
 - low solubility Mg-phase forms near the heater
- **Non-exchangeable Mg**
 - increase near the heater
 - increase near the heater
 - increase near the heater

 gw = groundwater; * mix: 85% Czech Ca-Mg bentonite (Rokli), 10% quartz sand; 5% graphite

Modelled using e.g. Phreeqc, PHAST, Toughreact, Crunchflow, Comsol
Objective - Multiphysics and Geochemistry

iMaGe
interfacing geosciences
an Amphos21 initiative
http://image-modelling.net/

Providing solutions to couple multiphysics and geochemistry
Objective - Multiphysics and Geochemistry

Projects

- Miscible and immiscible multiphase flow formulations for CO_2, H_2, and CH_4
- Multiphase flow and reactive transport
- Development of solid mechanics capabilities for reactive porous media

(Nardi et al. 2014)
THC model of the evolution of the EBS in the KBS-3V

Geometry: 2 distinct chemically reactive domains included

1. Buffer (MX-80 bentonite) surrounding copper canister
2. Backfill (mainly Friedland clay) filling deposition tunnels
THC model of the evolution of the EBS in the KBS-3V

Thermo-hydro-chemical boundary conditions

Heat source

Groundwater source
THC model of the evolution of the EBS in the KBS-3V

Thermo-hydro-chemical boundary conditions

<table>
<thead>
<tr>
<th>Species</th>
<th>Groundwater</th>
<th>Backfill</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.385</td>
<td>7.14</td>
<td>7.146</td>
</tr>
<tr>
<td>pe</td>
<td>-2.246</td>
<td>-2.904</td>
<td>1.151</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Totals (M) Groundwater</th>
<th>Totals (M) Backfill</th>
<th>Totals (M) Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.49E-03</td>
<td>5.18E-03</td>
<td>5.19E-03</td>
</tr>
<tr>
<td>Ca</td>
<td>1.62E-02</td>
<td>1.83E-02</td>
<td>1.80E-02</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1134</td>
<td>0.005676</td>
<td>0.005752</td>
</tr>
<tr>
<td>Fe</td>
<td>6.45E-06</td>
<td>8.49E-05</td>
<td>4.94E-11</td>
</tr>
<tr>
<td>K</td>
<td>4.86E-04</td>
<td>2.18E-03</td>
<td>1.32E-03</td>
</tr>
<tr>
<td>Mg</td>
<td>7.50E-03</td>
<td>1.53E-02</td>
<td>6.09E-03</td>
</tr>
<tr>
<td>Na</td>
<td>0.0766</td>
<td>0.1347</td>
<td>0.1579</td>
</tr>
<tr>
<td>S</td>
<td>4.79E-03</td>
<td>9.69E-02</td>
<td>9.85E-02</td>
</tr>
<tr>
<td>Si</td>
<td>1.45E-03</td>
<td>1.42E-03</td>
<td>1.42E-03</td>
</tr>
<tr>
<td>Z</td>
<td>8.46E-11</td>
<td>3.06E-10</td>
<td>9.89E-11</td>
</tr>
<tr>
<td>Ca/Na</td>
<td>0.211</td>
<td>0.136</td>
<td>0.114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase</th>
<th>Formula</th>
<th>Saturation Indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrite</td>
<td>Ca(SO4)</td>
<td>-1.0 0 0</td>
</tr>
<tr>
<td>Calcite</td>
<td>CaCO3</td>
<td>0.0 0 0</td>
</tr>
<tr>
<td>Dolomite</td>
<td>CaMg(CO3)2</td>
<td>-0.3 0 0.4</td>
</tr>
<tr>
<td>Gypsum</td>
<td>CaSO4·2H2O</td>
<td>-0.7 0.3 0.3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Fe2Z</td>
<td>0.0 0 0.0</td>
</tr>
<tr>
<td>Siderite</td>
<td>Fe(CO3)</td>
<td>-1.2 0.0 -6.3</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>0.0 0 0.0</td>
</tr>
</tbody>
</table>

REFERENCE 2 MX-80 BENTONITE BLOCKS

<table>
<thead>
<tr>
<th>Mineral</th>
<th>data wt%</th>
<th>Mw (kg/mol)</th>
<th>mol/l_medium</th>
<th>Mv (cm3/mol)</th>
<th>VOL FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smectite</td>
<td>88.2</td>
<td>0.4767</td>
<td>3.1456</td>
<td>232.5</td>
<td>73.135%</td>
</tr>
<tr>
<td>Illite</td>
<td>0.1</td>
<td>0.4018</td>
<td>0.0042</td>
<td>141.34</td>
<td>0.060%</td>
</tr>
<tr>
<td>Calcite</td>
<td>0.2</td>
<td>0.1001</td>
<td>0.0340</td>
<td>36.934</td>
<td>0.125%</td>
</tr>
<tr>
<td>Biotite</td>
<td>0.233</td>
<td>0.3983</td>
<td>0.0099</td>
<td>0</td>
<td>0.000%</td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.0144</td>
<td>0.1844</td>
<td>0.0000</td>
<td>64.365</td>
<td>0.000%</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.467</td>
<td>0.0601</td>
<td>0.9809</td>
<td>22.69</td>
<td>2.226%</td>
</tr>
<tr>
<td>Cristobalite</td>
<td>0.1</td>
<td>0.0601</td>
<td>0.0283</td>
<td>25.74</td>
<td>0.073%</td>
</tr>
<tr>
<td>Tridymite</td>
<td>0.0</td>
<td>0.0601</td>
<td>0.0000</td>
<td>0</td>
<td>0.000%</td>
</tr>
<tr>
<td>Gypsum</td>
<td>0.367</td>
<td>0.1722</td>
<td>0.0362</td>
<td>74.69</td>
<td>0.271%</td>
</tr>
<tr>
<td>Goethite</td>
<td>0.0</td>
<td>0.0889</td>
<td>0.0000</td>
<td>20.82</td>
<td>0.000%</td>
</tr>
<tr>
<td>Hematite</td>
<td>0.033</td>
<td>0.1597</td>
<td>0.0035</td>
<td>30.3</td>
<td>0.011%</td>
</tr>
<tr>
<td>Pyrite</td>
<td>0.867</td>
<td>0.1200</td>
<td>0.1229</td>
<td>23.94</td>
<td>0.294%</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>2.867</td>
<td>0.2622</td>
<td>0.1859</td>
<td>0</td>
<td>0.000%</td>
</tr>
<tr>
<td>K-feldspar</td>
<td>2.4</td>
<td>0.2622</td>
<td>0.1556</td>
<td>0</td>
<td>0.000%</td>
</tr>
</tbody>
</table>
THC model of the evolution of the EBS in the KBS-3V

Different domains for different physics

Maintaining the compatibility of the different variables over the common domains
Main results: TH processes

Temperature after 25 years
Point A: cold buffer spot
Point B: hot buffer spot

Liquid degree of saturation
Main results: Chemical reactions

Cementation due to silica redistribution

Porosity changes due to chemical reactions
Main results: Chemical reactions (2)

Cation exchange is the most important geochemical process in the EBS

Cation exchange: Ca to Na

Point A: cold buffer spot
Point B: hot buffer spot
Conclusions

- The iCP framework has been developed as a tool that aims facilitating the interaction between engineers and (geo)chemists
- The tool has been used to revisit the thermo-hydro-chemical evolution of the EBS in a KBS-3V system
- Overall, small geochemical changes are observed even after 10^5 years:
 - Redistribution of secondary minerals
 - Cementation is not significant
 - Increase in Ca in the montmorillonite exchanger

Perspectives

- On-going developments aim at studying other sources of coupling in this system (multi-phase flow, swelling)
- THMC tools are necessary to assess the effect on safety of e.g. hydrogen generation due to steel corrosion processes in deep geological repositories
Thank you

ESPÁÑA
AMPHOS 21 CONSULTING S.L.
Paseo de García Faria, 49-51
08019 BARCELONA
Tel.: +34 93 583 05 00
Fax: +34 93 307 59 28

CHILE
AMPHOS 21 CONSULTING CHILE Ltda.
Av. Nueva Tajamar 481 of. 1005 (Torre Sur)
Las Condes 7550099
SANTIAGO DE CHILE
Tel.: +562 27991630

PERÚ
AMPHOS 21 CONSULTING PERU S.A.C.
Av. del Parque Sur 661, San Borja
Lima 41
Tel.: +511 5921275

FRANCE
AMPHOS 21 CONSULTING FRANCE S.A.R.L.
14 Avenue de l’Opéra
75001 PARIS
Tel.: +33 1 69345030