01DC169 Multipole-field correction of stretched-wire measurements of the gradient in accelerator magnets
P. Arpaia12, C. Petrone12,13, S. Russenschuck13, L. Walckiers13

A measurement system for the correction of gradient-field measurements using stretched wires is described. Relative field multipoles of a magnet are measured through the oscillating-wire technique. Then, by means of the same setup, the multipoles are used to correct the gradient measurements with the stretched wire technique. In this paper, after an analytical background on stretched and oscillating wire methods, the proposed correction is described. Results of experimental validation of the proposed correction on measurements of a quadrupole for the CLIC accelerator study at CERN in the final full paper will be illustrated.

Keywords: Electromagnetic Fields, Vibration Measurement, Measurement Science, and Force Measurement.

02RF006 Interlaboratory Comparison Of Microwave Power Measurement Using Type N Coaxial Line
Murat CELEP14, Senel YARAN14, Cem HAYIRLI14, Handan SAKARYA14

An interlaboratory comparison of microwave power measurement (Project UME-EM-10-02) was carried out among eight (8) laboratories in Turkey. In this comparison, it was requested to make microwave power measurements at +10 dBm, 0 dBm and -15 dBm power levels with 0.03 GHz, 1 GHz, 7 GHz, 12 GHz and 18 GHz frequencies with their own measurement systems and methods. The measurement results and the expanded uncertainties were presented by the participant laboratories. Also, the En values of each participant laboratory were calculated and presented to evaluate the performance of the laboratories. Most of the results in measuring power on a type N coaxial line show good agreement. According to the calculated En values, corrective actions were proposed to some of the participant laboratories.

Keywords: Comparison, microwave, power, uncertainty.