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with right censored count data
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Abstract

A Poisson model typically is assumed for count data. In many cases because of many zeros in

the response variable, the mean is not equal to the variance value of the dependent variable.

Therefore, the Poisson model is no longer suitable for this kind of data. Thus, we suggest

using a hurdle negative binomial regression model to overcome the problem of overdispersion.

Furthermore, the response variable in such cases is censored for some values. In this paper,

a censored hurdle negative binomial regression model is introduced on count data with many

zeros. The estimation of regression parameters using maximum likelihood is discussed and the

goodness-of-fit for the regression model is examined.

MSC: 62J12
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1. Introduction

Commonly, for the modelling of counts such as the number of reported insurance claims,

the starting point is the Poisson distribution:

fYi
(yi) =

e−λiλ
yi
i

yi!
(1)

where covariates are included in the model by the parameter λi = exp(xT
i β) where xi is

a vector of explanatory variables (Dionne and Vanasse, 1989). The Poisson distribution
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is equidispersed since its mean and variance are both equal to λi. Because the Poisson

distribution has some severe drawbacks that limit its use, other distributions can be used,

such as hurdle models (Boucher et al., 2007).

Mullahy (1986) has first discussed hurdle count data models. Hurdle models allow

for a systematic difference in the statistical process governing individuals (observations)

below the hurdle and individuals above the hurdle. In particular, a hurdle model is

mixed by a binary outcome of the count being below or above the hurdle (the selection

variable), with a truncated model for outcomes above the hurdle. That is why hurdle

models sometimes are also called two-part models.

The most important usage of a hurdle count data model is the hurdle at zero. The

hurdle at zero formulation can account for excess zeros. It means that this model can

be used in situations where there are many zeros at the response variable. In this case,

the hurdle at zero defines a probability (Pr(Y = 0)) that is the first part of the two part-

models.

The hurdle model is flexible and can handle both under- and overdispersion problem.

A generalized hurdle model is introduced by Gurmu (1998) for the analysis of overdis-

persed or underdispersed count data. Greene (2005) has discussed about the compar-

ison between hurdle and zero-inflated models as two part-models. Some researchers

have discussed the applications of hurdle models, such as Pohlmeier and Ulrich (1995),

Arulampalam and Booth (1997). A hurdle model to the annual number of recreational

boating trips by a family is discussed by Gurmu and Trivedi (1996). Dalrymple, Hud-

son and Ford (2003) applied three mixture models including a hurdle model and argued

its application in the incidence of sudden infant death syndrome (SIDS). Boucher, De-

nuit and Guillen (2007) compared generalized heterogeneous, zero-inflated, hurdle, and

compound frequency models for the annual number of claims reported to the insurer.

Saffari, Adnan and Greene (2011) argued the overdispersion problem on count data us-

ing a right truncated Poisson regression model.

Suppose that g1(0) is the probability value when the value for response variable is

zero and that g2(k),k = 1,2, . . . is a probability function when the response variable is a

positive integer. Therefore, the probability function of the hurdle-at-zero model is given

by:

p(Yi = k) =

{

g1(0), k = 0,

(1−g1(0))g2(k), k = 1,2, . . .
(2)

Mullahy (1986) discussed the hurdle-at-zero model and he believes that both parts

of the hurdle model are based on probability functions for nonnegative integers such

as f1 and f2. In terms of the general model above, let g1(0) = f1(0) and g2(k) =

f2(k)/(1− f2(0)). In the case of g2, normalization is required because f2 has support

over the nonnegative integers (k = 0,1, . . .) whereas the support of g2 must be over

the positive integers (k = 1,2, . . .). This means that we need to truncate the probability

function f2. However, this is a theoretical concept, i.e., truncation on f2 does not mean
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that there is truncation of the population here. All we need to do is to work with a

distribution with positive support, and the second part of a hurdle model can use a

displaced distribution or any distribution with positive support as well.

Under the Mullahy (1986) assumptions, the probability distribution of the hurdle-at-

zero model is given by

f (Y = 0) = f1(0)

f (Y = k) =
1− f1(0)

1− f2(0)
f2(k) = θ f2(k), k = 1,2, . . .

where f2 is referred to as parent-process. The numerator of θ presents the probability

of crossing the hurdle and the denominator gives a normalization that accounts for the

(purely technical) truncation of f2. It follows that if f1 = f2 or, equivalently, θ = 1 then

the hurdle model collapses to the parent model. The expected value of the hurdle model

is given by

E(Y ) = θ
∞

∑
k=1

k f2(k) (3)

and the difference between this expected value and the expected value of the parent

model is the factor θ . In addition, the variance value of the hurdle model is given by

Var(Y ) = θ
∞

∑
k=1

k2 f2(k)−

[

θ
∞

∑
k=1

k f2(k)

]2

(4)

If θ exceeds 1, it means that the probability of crossing the hurdle is greater than the

sum of the probabilities of positive outcomes in the parent model. Therefore, increasing

the expected value of the hurdle model is related to the expected value of the parent

model. Alternatively, if θ is less than 1 (that is the usual case in an application with

excess zeros), it means that the probability of not crossing the hurdle is greater than

the probability of a zero in the parent model, thus decreasing the expected value of

the hurdle model relatively to the expected value of the parent model. Therefore, this

model gives a new explanation of excess zeros as being a characteristic of the mean

function rather than a characteristic of the variance function. The mean function of the

hurdle model provides additional nonlinearities relative to the standard model in order

to account for the corner solution outcome, much as in other corner solution models,

and this is just like as how a Tobit model works.

Consequently, the model can be overdispersed and that depends on the value of the

parent processes. To overcome overdispersion, we would like to cut the values of the

response variable that are very big. In statistics, this is called truncation and because we

want to truncate the values that are bigger than a constant, it is called a right truncation.
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There are many options to choose the processes f1 and f2. Some of the most

popular hurdle model choices are nested models where f1 and f2 come from the

same distribution, such as the Poisson distribution (Mullahy, 1986) or the Negative

Binomial (Pohlmeier and Ulrich, 1995). However, non-nested models (Grootendorst

(1995), (Gurmu, 1998), or Winkelmann (2003)) can also be used. These models do

not nest with a standard count distributions such as the Poisson or the NB types, but are

overlapping with suggested model by Vuong (1989) since models can be equivalent for

certain parameter restrictions.

Maximum likelihood is used to estimate the parameters. The log-likelihood function

of a hurdle model can be expressed as:

ll =
n

∑
i=1

I{yi=0} log f1(0;θi)+ I{yi>0} log(1− f1(0;θi))+
n

∑
i=1

I{yi>0} log
f2(yi;θi)

1− f2(0;θi)
(5)

The interesting aspect of the hurdle model is to estimate the parameters by two

separate steps. In fact, we can estimate the zero-part parameters by using MLE on the

first part of the likelihood function while the other parameters only use the second part,

only composed with non-zero elements. We have used SAS code to implement this

algorithm and this characteristic of the model helps us to save computer time in the

estimation (Chou and Steenhard, 2009).

In this article, the main objective is to explain how we can use hurdle negative bino-

mial regression model in right censored data. In Section 2, the hurdle negative binomial

regression model is defined and the likelihood function of hurdle negative binomial

regression model in right censored data is formulated. In Section 3, the parameter es-

timation is discussed using maximum likelihood. In Section 4, the goodness-of-fit for

the regression model is examined and a test statistic for examining the dispersion of

regression model in right censored data is proposed. An example is conducted for a cen-

sored hurdle negative binomial regression model in terms of the parameter estimation,

standard errors and goodness-of-fit statistic in Section 5.

2. The model

Let Yi(i = 1,2, . . . ,n) be a nonnegative integer-valued random variable and suppose

Yi = 0 is observed with a frequency significantly higher than can be modeled by the

usual model. We consider a hurdle negative binomial regression model in which the

response variable Yi(i = 1, . . . ,n) has the distribution

Pr(Yi = yi) =











w0, yi = 0,

(1−w0)
Γ(yi +α

−1)

Γ(yi +1)Γ(α−1)

(1+αµi)
−α−1−yi αyiµ

yi
i

1− (1+αµi)
−α−1 , yi > 0,

(6)
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or

Pr(Yi = yi) =







w0, yi = 0,

(1−w0)
g

1− (1+αµi)
−α−1 , yi > 0, (7)

where

g = g(yi;µi,α) =
Γ(yi +α

−1)

Γ(yi +1)Γ(α−1)
(1+αµi)

−α−1−yi αyiµ
yi
i (8)

where α(≥ 0) is a dispersion parameter that is assumed not to depend on covariates. In

addition, we suppose 0 < w0 < 1 and w0 = w0(zi) satisfy

logit(w0) = log(
w0

1−w0

) =
m

∑
j=1

zi jδ j (9)

where (zi1 = 1,zi2, . . . ,zim) is the i-th row of covariate matrix Z and (δ1,δ2, . . . ,δm)

is an unknown m-dimensional column vector of parameters. In this set up, the non-

negative function w0 is modeled via logit link function. This function is linear and other

appropriate link functions that allow w0 being negative may be used. In addition, there

is interest in capturing any systematic variation in µi, the value of µi is most commonly

placed within a loglinear model

log(µi) =
k

∑
j=1

xi jβ j (10)

and β j’s are the independent variables in the regression model and m is the number of

these independent variables. Furthermore, in this paper we suppose that w0 and β j are

not related.

The value of response variable, Yi, for some observations in a data set, may be

censored. If censoring occurs for the ith observation, we have Yi ≥ yi (right censoring).

However, if no censoring occurs, we know that Yi = yi. Thus, we can define an indicator

variable di as

di =

{

1 if Yi ≥ yi,

0 otherwise.
(11)

We can now write

Pr(Yi ≥ yi) =
∞

∑
j=yi

Pr(Yi = j) = 1−
yi−1

∑
j=0

Pr(Yi = j) (12)
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Therefore, the log-likelihood function of the censored hurdle regression model can be

written as

logL(θi;yi) =
n

∑
i=1

{

(1−di)
[

Iyi=0 log f (0;θi)+ Iyi>0 f (yi;θi)
]

+di log
( ∞

∑
j=yi

Pr(Yi = j)
)}

(13)

We now obtain the log-likelihood function for the hurdle negative binomial regression

model, we have

LL =
n

∑
i=1

{

(1− di)
[

Iyi=0 logw0 + Iyi>0

{

log(1−w0)+ logg− log
(

1− (1+αµi)
−α−1

)}]

+di log
∞

∑
j=yi

Pr(Yi = j)
}

(14)

3. Parameter estimation

In this section we estimate the parameters by maximum likelihood. By taking the partial

derivatives of the likelihood function and setting them equal to zero, the likelihood

equation for estimating the parameters is obtained. Thus we obtain

∂LL

∂βr

=
k

∑
i=1

{

(1−di)Iyi>0

[

g′µi

g
−

(1+αµi)
−α−1−1

1− (1+αµi)−α
−1

]

µixir

+
di

∞

∑
j=yi

Pr(Yi = j)

∂
∞

∑
j=yi

Pr(Yi = j)

∂βr

}

= 0

∂LL

∂α
=

k

∑
i=1

{

(1−di)Iyi>0

[

g′α

g

−
α−1µi/(1+αµi)−α

−2 log(1+αµi)

1− (1+αµi)−α
−1

(1+αµi)
−α−1

]

+
di

∞

∑
j=yi

Pr(Yi = j)

∂
∞

∑
j=yi

Pr(Yi = j)

∂α

}

= 0

∂LL

∂δs

=
n

∑
i=1

(1−di)
[

Iyi=0(1−w0)− Iyi>0w0

]

zis = 0
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where

∂
∞

∑
j=yi

Pr(Yi = j)

∂βr

=
∞

∑
j=yi

(1−w0)
g′µi

(1− (1+αµi)
−α−1

)− (1+αµi)
−α−1−1g

(1− (1+αµi)−α
−1)2

µixir

∂
∞

∑
j=yi

Pr(Yi = j)

∂α
=

∞

∑
j=yi

(1−w0)

[

g′α

1− (1+αµi)−α
−1

+
log(1+αµi)

α−2
− α−1µi

1+αµi
(

1− (1+αµi)−α
−1
)2

g(1+αµi)
−α−1

]

g′α =

(

Γ′(yi +α
−1)

Γ(yi +α−1)
−

Γ′(α−1)

Γ(α−1)
+α−2 log(1+αµi)−

α−1 + yi

1+αµi

µi +α
−1yi

)

g

g′µ =
yi −µi

µi(1+αµi)
g

Since these partial derivative equations cannot be further simplified, we have applied

the Newton-Raphson method with ridging as the optimization algorithm, using code

in SAS given in the Appendix. Furthermore, the Convergence of the algorithm does

not necessarily mean that a global maximum has been found, it just means that the

convergence criteria have been achieved, and thus it can be a local maximum.

4. Goodness-of-fit statistics

For count regression models, a measure of goodness of fit may be based on the deviance

statistic D defined as

D =−2
[

logL(θ̂i; µ̂i)− logL(θ̂i;yi)
]

(15)

where logL(θ̂i; µ̂i) and logL(θ̂i;yi) are the model’s likelihood evaluated respectively

under µ̂i and yi. The log-likelihood functions are given in equation (7).

For an adequate model, the asymptotic distribution of the deviance statistic D is chi-

square distribution with n− k − 1 degrees of freedom. Therefore, if the value for the

deviance statistic D is close to the degrees of freedom, the model may be considered

as adequate. When we have many regression models for a given data set, the regression

model with the smallest value of the deviance statistic D is usually chosen as the best

model for describing the given data.

In many data sets, the µi’s may not be reasonably large and so the deviance

statistic D may not be suitable. Thus, the log-likelihood statistic log(θ̂i;yi) can be used

as an alternative statistic to compare the different models. Models with the largest

log-likelihood value can be chosen as the best model for describing the data under

consideration.
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When there are several maximum likelihood models, one can compare the perfor-

mance of alternative models based on several likelihood measures which have been pro-

posed in the statistical literature. The AIC and BIC are two of the most regularly used

measures. The AIC is defined as

AIC =−2l+2p (16)

where l denotes the log likelihood evaluated for estimated parameters µ and p the

number of parameters. For this measure, the smaller the AIC, the better the model is.

5. An application

The state wildlife biologists want to model how many fish1 are being caught by

fishermen at a state park. Visitors are asked how long they stayed, how many people

were in the group, were there children in the group and how many fish were caught.

Some visitors do not fish, but there are no data on whether a person fished or not. Some

visitors who did fish did not catch any fish so there are excess zeros in the data because

of the people that did not fish. We have data on 250 groups that went to a park. Each

group was questioned about how many fish they caught (count), how many children

were in the group (child), how many people were in the group (persons), and whether

or not they brought a camper to the park (camper).

We will use the variables child, persons and camper in our model. Table 1 shows

the descriptive statistics of using variables and also the camper variable has two values,

zero and one as Table 2. In addition, Figure 1 shows the histogram of the count variable

before censoring.

We have considered the model as follow

log(µ) = b0 +b1 ∗ camper+b2 ∗ persons+b3 ∗ child,

logit(w0) = a0 +a1 ∗ child

Furthermore, we put two censoring points, c1 = 3,c2 = 5. Table 3 shows the estimation

of the parameters according to different censoring constants. Also, the −2logL and AIC

are presented as the goodness-of-fit measures.

Table 1: Descriptive statistics for the fish data.

Variable Mean Std Dev Min Max Variance

count 3.296 11.635028 0 149 135.373880

child 0.684 0.850315 0 3 0.723036

persons 2.528 1.112730 1 4 1.238169

1. The fish dataset is available at the UCLA Academic Technology Services website, http://www.ats.ucla.edu.
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Table 2: camper variable description.

camper Frequency Percent

0 103 41.2

1 147 58.8

Table 3: Parameter estimation.

Parameter c1 = 3 c2 = 5

b0 −1.0922 −0.9616

(0.5998) (0.4764)

b1 0.7043 0.6079

(0.3235) (0.2702)

b2 0.7397 0.7227

(0.2086) (0.1533)

b3 −0.9130 −0.9266

(0.3449) (0.2807)

a0 −0.3843 −0.3843

(0.1703) (0.1703)

a1 1.1110 1.1110

(0.2049) (0.2049)

α 0.5673 0.6225

(0.4388) (0.3412)

−2logL 540.9 618.1

AIC 554.9 632.1

According to the censoring points, there is 22.8% censored data when c1 = 3. It

means that 22.8% of the values of the response variable (count) are 0, 1, 2, 3 and the

remaining 77.2% of values of the response variable are greater than 3, that is censored

in the model. Also the percentage of the censoring for c2 = 5 is 12%. For example, the

25th value of the response variable is count25 = 30, and the values of the independent

variables are as follow

camper25 = 1, persons25 = 3, child25 = 0

So we want to censor only the value of the response variable (count25 > censored point).

The estimated parameter for camper variable of the model is a positive value for

both censoring points, it means that while being a camper (camper = 1), the expected

log(count) will be increased by 0.7043 and 0.6079, respectively when c1 = 3 and c2 = 5.

Also, the effect of persons is positively associated with the number of fish caught for

both censoring points, and the expected log(count) will be increased for a unit increase

in persons for the first and the second censoring point, respectively, by 0.7397 and

0.7227. But, the expected log(count) will be decreased for a unit increase in child for

by 0.9130 and 0.9266, respectively for the first and the second censoring point. Further-
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Figure 1: Histogram of the response variable.

Figure 2: Estimate vs Real when the censoring point is 3.

more, the estimated parameter for child variable of the logit part of the model is positive

for both censoring points, i.e, the group with more children was less successful in

fishing. The estimated dispersion parameter suggested overdispersion in the model for

both censoring points.

We have compared the censored hurdle negative binomial (CHNB) regression model

with the censored negative binomial (CNB) regression model and the results are shown

in Figure 2 and Figure 3 when the censoring points are c1 = 3, c2 = 5, respectively.

The CHNB regression model shows a better estimation than the CNB regression model

except when the value of the count variable is 3 in Figure 2 and 4 in Figure 3. The CHNB
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Figure 3: Estimate vs Real when the censoring point is 5.

regression model estimated the number of zeros as 142 (the same as number of zeros

in fish data) in both cases (c1 = 3,c2 = 5), but the CNB regression model estimated

141 and 123, respectively, when the censoring points are c1 = 3,c2 = 5. Also, the

CHNB regression model shows a closer estimate for the censored values than the CNB

regression model. For example, when there are 45 censored values in the fish data, the

CHNB regression model presented 38 censored values and the CNB regression model

presented 20 censored values.

6. Conclusion

In this article we want to show that the hurdle negative binomial regression model can be

used to fit right censored data. In fact, the proposed model is suitable to solve the excess

zeros problem in the response variable when the data are censored from the right side.

The results from the fish data are summarized in Table 1-3. The goodness-of-fit measures

are presented in the Table 3 according to different censoring points and it is obvious that

we have a smaller value for −2logL or AIC when the percentage of censoring increase

and that is because of the number of the data which are used in the model. Also, the

censored hurdle negative binomial model shows a better fit with respect to the censored

negative binomial model for different censoring points as shown in Figure 2 and

Figure 3.
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Matemáticas, 103(2), 277–294.

Chou, N. T. and Steenhard, D. (2009). A Flexible Count Data Regression Model Using SAS. PROC

NLMIXED. Proceedings SAS Global Forum, paper 250-2009.

Dalrymple, M., Hudson, I. and Barnett, A. (2003). Finite mixture, zero-inflated poisson and hurdle models

with application to SIDS. Computational Statistics & Data Analysis, 41, 491–504.

Dionne, G. and Vanasse, C. (1989). A generalization of automobile insurance rating models: the negative

binomial distribution with regression component. Astin Bulletin, 19, 199–212.

Greene, W. (2005). Functional form and heterogeneity in models for count data. Foundations and Trends in

Econometrics, 1(2), 113–218.

Grootendorst, P. V. (1995). A comparison of alternative models of prescription drug utilization. Health

Economics, 4, 183–198.

Gurmu, S. and Trivedi, P. K. (1996). Excess zeros in count models for recreational trips. Journal of Business

and Economic Statistics, 14, 469–477.

Gurmu, S. (1998). Generalized hurdle count data regression models. Economics Letters, 58, 263–268.

Mullahy, J. (1986). Specification and testing of some modified count data models. Journal of Econometrics,

33, 341–365.

Pohlmeier, W. and Ulrich, V. (1995). An econometric model of the two-part decision-making process in the

demand for health care. The Journal of Human Resources, 30, 339–361.

Saffari, S. E. and Robiah, A. (2011a). Zero-inflated poisson regression models with right censored count

data. Matematika, 27(1), 21–29.

Saffari, S. E. and Robiah, A. (2011b). Zero-inflated negative binomial regression model with right censor-

ing count data. Journal of Materials Science and Engineering, B 1, 551–554.

Saffari, S. E., Robiah, A. and Greene, W. (2011). Handling of over-dispersion of count data via truncation

using poisson regression model. Journal of Computer Science and Computational Mathematics,

1(1), 1–4.

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica,

57, 307–333.

Winkelmann, R. (2003). Health care reform and the number of doctor visits – an econometric analysis.

Journal of Applied Econometrics, 19, 455–472.



Seyed Ehsan Saffari, Robiah Adnan and William Greene 193

Appendix:

SAS code to estimate the parameters for Fish data

data fish;

set fish;

bound=3;

if count > bound then count=bound+1; * This is probably

how you would see the data if it was actually censored;

proc nlmixed TECH=NRRIDG;

parms a_0=-0.4 a_1=1 b_0=-1 b_1=1 b_2=1 b_3=-1 alpha=0.5;

bounds alpha>0;

lin = a_0 + a_1* child;

w = exp(lin)/(1+exp(lin));

eta = b_0 + b_1 *camper + b_2* persons + b_3* child;

mu = exp(eta);

phi=1/alpha;

pdf=(gamma(count+phi)/(gamma(count+1)*gamma(phi)))

*((1/(1+alpha*mu))**phi*(alpha*mu/(1+alpha*mu))** count);

l_1 = w;

l_2 = (1-w) * pdf / (1-(1+alpha*mu)**(-phi));

cdf=0;

do t=1 to bound;

cdf=cdf+(gamma(t+phi)/(gamma(t+1)*gamma(phi)))

*((1/(1+alpha*mu))**phi*(alpha*mu/(1+alpha*mu))**t);

end;

l_3= (1-w)*(1-cdf/(1-(1+alpha*mu)**(-phi)));

if count = 0 then ll = log(l_1);

if 0 < count <= bound then ll = log(l_2);

if count <= bound then d=0; else d=1;

ll=(1-d)*ll+d*log(l_3);

model count ˜general(ll);

predict mu out=hnbmu;

predict w out=hnbw;

run;




