MATERIALS EDUCATION
Adapting to the needs of the 21st century
Overview

- Introduction
- History and the present context of Education
- Breadth and Depth
- Materials Systems and Design
- An implementation
- Conclusions
Introduction

- Transmission of **materials** knowledge
 - In ways that recognise its broader context
 - Appreciating its temporal importance and evolution

- Appreciation of balance between breadth and depth
 - Highly complex problems facing Mankind
 - ...of an inherently interdisciplinary nature
History and the present context of Education

Tradition

- Alchemy
- Empiricism

Era of “try it and see” to Era of predictive modelling

Pure sciences
- Physics and Solid-state physics
- Crystallography
- Mineralogy
- Bio- and Environmental sciences

A bridging science
- Chemistry and Bio-chemistry

Applied sciences
- Engineering design
- Architecture, Product design
- Mechanical, Electrical, Civil Engineering
- Chemical engineering and processing
Engaging interest: evolution of materials in products (1)

<table>
<thead>
<tr>
<th>Circa 1900</th>
<th>1940</th>
<th>2012</th>
<th>2050??</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kettles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Image of kettle]</td>
<td>[Image of kettle]</td>
<td>[Image of kettle]</td>
<td></td>
</tr>
<tr>
<td>Cameras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Image of camera]</td>
<td>[Image of camera]</td>
<td>[Image of camera]</td>
<td></td>
</tr>
<tr>
<td>Vacuum cleaners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Image of vacuum cleaner]</td>
<td>[Image of vacuum cleaner]</td>
<td>[Image of vacuum cleaner]</td>
<td>[Image of vacuum cleaner]</td>
</tr>
</tbody>
</table>
Evolution of materials in products (3)

Trains
- Circa 1900: Early steam locomotive
- 1940: Modern steam locomotive
- 2012: Bullet train
- 2050??: Hypothetical futuristic design

Planes
- Circa 1900: Wright brothers' airplane
- 1940: Classic propeller plane
- 2012: Modern jet plane
- 2050??: Hypothetical futuristic aircraft

Phones
- Circa 1900: Early telephone
- 1940: Rotary dial phone
- 2012: Smart phone
- 2050??: Hypothetical futuristic device
The evolution of structural materials

Strength - Density

Early history 3000 BC

The first king: Menes
The evolution of structural materials

Strength - Density

50 BC

Strength, σ (MPa)

Density, ρ (Mg/m3)

Ceramics and glasses

Metals

Natural materials

Woods, // to grain

Fir

Pine

Ash

Oak

Wrought iron

Bronze

Silver

Gold

Copper

Lead

Brick

Concrete

Glass

Stone

Shell

Pottery

Tin

Cork

Balsa

© MFA 2012
The evolution of structural materials

![Diagram of Strength - Density relationship for various materials including Ceramics and glasses, Metals, and Natural materials.](image)

Henry VIII
The evolution of structural materials

Queen Victoria 1837 - 1901
The evolution of structural materials

Franklin Roosevelt 1933 - 1945
<table>
<thead>
<tr>
<th>Information</th>
<th>Knowledge</th>
<th>Understanding</th>
<th>Synthesis and innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facts, data, methods</td>
<td>How to use information (shallow comprehension)</td>
<td>Origins, context, relationships (deep comprehension)</td>
<td>Extension, innovation, creation</td>
</tr>
<tr>
<td>Discipline-based</td>
<td>System-based</td>
<td>Society-based</td>
<td></td>
</tr>
<tr>
<td>specialist as outcome</td>
<td>Integration with design</td>
<td>Integration with society</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialised novice</td>
<td></td>
<td>Specialised expert</td>
</tr>
</tbody>
</table>
Breadth and Depth (2)

<table>
<thead>
<tr>
<th>Increasing breadth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline-based</td>
</tr>
<tr>
<td>System-based</td>
</tr>
<tr>
<td>Society-based</td>
</tr>
</tbody>
</table>

Information
Facts, data, methods

- **Novice specialist**

Knowledge
How to use information (shallow comprehension)

Understanding
Origins, context, relationships (deep comprehension)

Synthesis
Extension, innovation, creation

- **Novice generalist**

© MFA 2012
Breadth and Depth (3)

<table>
<thead>
<tr>
<th>Information</th>
<th>Discipline-based specialist as outcome</th>
<th>System-based Integration with design</th>
<th>Society-based Integration with society</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facts, data, methods</td>
<td>Novice specialist</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Discipline-based specialist as outcome</th>
<th>System-based Integration with design</th>
<th>Society-based Integration with society</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to use information (shallow comprehension)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Understanding</th>
<th>Discipline-based specialist as outcome</th>
<th>System-based Integration with design</th>
<th>Society-based Integration with society</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origins, context, relationships (deep comprehension)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synthesis</th>
<th>Discipline-based specialist as outcome</th>
<th>System-based Integration with design</th>
<th>Society-based Integration with society</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension, innovation, creation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increasing breadth

Increasing depth

Creative generalist

© MFA 2012
Some creative generalists...
Breadth and Depth (4)

<table>
<thead>
<tr>
<th>Information</th>
<th>Discipline-based</th>
<th>System-based</th>
<th>Society-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facts, data, methods</td>
<td>specialist as outcome</td>
<td>Integration with design</td>
<td>Integration with society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to use information (shallow comprehension)</td>
</tr>
<tr>
<td>Novice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Understanding</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Origins, context, relationships (deep comprehension)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synthesis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension, innovation, creation</td>
<td></td>
</tr>
</tbody>
</table>

Increasing breadth

Increasing depth

Achievable balance

© MFA 2012
Some things don’t change

- Principles of mathematics,
- Laws of physics, chemistry, biology
- The scientific method
Project-based learning, using some of these examples:

- Wind turbines as a contribution to future power provision
- Electric cars as a contribution for future mobility

... but spending equal time on:

- Materials
- Design
- Regulatory restrictions/incentives
- Interests / arguments / influence / welfare of the stakeholders

Grand Challenges for the 21st Century

- Shelter (built environment)
- Energy
- Mobility (transportation)
- Water
- Environment
- Sustainability

(stakeholders can be either government, the supply chain, manufacturers, consumers, unions, the public at large,...)
An implementation (1)

- What is being done currently at TULisbon in a course on Engineering Materials
 - The context
 - The situation until 2009
 - The changes made to the curriculum in 2009
 - Further changes in 2010
 - The outcomes
An implementation (2)

- The context
 - A course on Engineering Materials at the 4th semester of a 10 semester integrated MSc program on Mechanical Engineering
 - A cohort of around 250 students
 - A 14 weeks semester
 - 3 hours of theory + 1 hour problems + 1 hour laboratory per week

- The situation until 2009
 - Course topics centred on:
 - mechanical testing
 - thermal and mechanical treatments of metals
 - long and exhaustive descriptions of each material family
 - Boring classes, not very motivating
 - Students gradually stopped coming to class
 - Fail rate of about 30%
The changes made to the curriculum in 2009

- Design-led approach – starting at the product level and ending at the atom level
- Fundamentals of materials science uncovered where appropriate
- Focus on materials selection instead of materials description
 - Analysing a particular product and setting the design requirements (function, objectives and constraints) to then select the appropriate materials to do the job

Further changes in 2010

- Introduction of concepts of sustainability in the last 2 weeks of the semester (6 hours of lectures)
- Historic perspectives, evolution of the use of materials, look ahead
- World population growth, (perceived) materials scarcity
- Life cycle of products
The outcomes from a student perspective:
- Fail rate dropped from 30 to 12%
- Number of students actively attending increased drastically
- Students feel motivated

The outcomes from the faculty team perspective:
- The team is motivated and willing to explore new developments
- Getting encouraging feedback from colleagues
- Some of the feedback is negative...
Conclusions

- 1st half of 21st century saw a shift of ceramics, polymers and metallurgy from arts to sciences
- 2nd half saw the integration of those into single programs on Materials Science and Engineering
 - These sit as an interdisciplinary subject, linking engineering, science and design
- We now seem to be moving towards programs on Materials Systems and Design
 - Materials courses taught to non-Materials programs will take a broader perspective of materials
 - Grand Challenges may provide motivating themes
MATERIALS EDUCATION:
Adapting to the needs of the 21st century

Thank you

Arlindo Silva
Senior Materials Education Consultant for Engineering and Design

arlindo.silva@grantadesign.com
www.grantadesign.com/education/resources

© MFA 2012