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Universitat Politècnica de Catalunya
Barcelona

Abstract

Bipartite graphs are combinatorial objects bearing some inter-
esting symmetries. Thus, their spectra—eigenvalues of its adja-
cency matrix—are symmetric about zero, as the corresponding
eigenvectors come into pairs. Moreover, vertices in the same
(respectively, different) independent set are always at even (re-
spectively, odd) distance. Both properties have well-known con-
sequences in most properties and parameters of such graphs.
Roughly speaking, we could say that the conditions for a given
property to hold in a general graph can be somehow relaxed
to guaranty the same property for a bipartite graph. In this
paper we comment upon this phenomenon in the framework
of distance-regular graphs for which several characterizations,
both of combinatorial or algebraic nature, are known. Thus, the
presented characterizations of bipartite distance-regular graphs
involve such parameters as the numbers of walks between ver-
tices (entries of the powers of the adjacency matrix A), the
crossed local multiplicities (entries of the idempotents Ei or
eigenprojectors), the predistance polynomials, etc. For instance,
it is known that a graph G, with eigenvalues λ0 > λ1 > · · · > λd

and diameter D = d, is distance-regular if and only if its idem-
potents E1 and Ed belong to the vector space D spanned by
its distance matrices I,A,A2, . . . Ad. In contrast with this, for
the same result to be true in the case of bipartite graphs, only
E1 ∈ D need to be required.
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1 Preliminaries

Let G = (V,A) be a (simple and connected) graph with adjacency matrix
A, and spectrum

sp G = sp A = {λm0
0 , λm1

1 , . . . , λmd
d }, (1)

where the different eigenvalues of G are in decreasing order, λ0 > λ1 >
· · · > λd, and the superscripts stand for their multiplicities mi = m(λi).
In particular, note that when G is δ-regular, the largest eigenvalue is λ0 =
δ and has multiplicity m0 = 1 (as G is connected). Moreover, all the
multiplicities add up to n = |V |, the number of vertices of G.

Recall also that G is bipartite if and only if it does not contain odd
cycles. Then, its adjacency matrix is of the form

A =

(
O B

B O

)
.

(Here and hereafter, it is assumed that the block matrices have the appro-
priate dimensions.) Moreover, for any polynomial p ∈ Rd[x] with even and
odd parts p0 and p1, we have

p(A) = p0(A) + p1(A) =

(
C O

O D

)
+

(
O M

M O

)
. (2)

Also, the spectrum of G is symmetric about zero: λi = −λd−i and mi =
md−i, i = 0, 1, . . . , d. (In fact, a well-known result states that a connected
graph G is bipartite if and only if λ0 = −λd; see, for instance, Cvetković et
al. [6].) This is due to the fact that, if (u|v) is an eigenvector with eigenvalue
λi, then (u|−v) is an eigenvector for the eigenvalue −λi. As shown below, a
similar symmetry also applies to the entries of the (principal) idempotents
Ei representing the projections onto the eigenspaces Ei, i = 0, 1, . . . , d. To
see this, first recall that, for any graph with eigenvalue λi having multi-
plicity mi, its corresponding idempotent can be computed as Ei = U iU


i ,

where U i is the n × mi matrix whose columns form an orthonormal ba-
sis of Ei. For instance, when G is δ-regular and has n vertices, its largest
eigenvalue λ0 = δ has eigenvector j, the all-1 vector, and corresponding
idempotent E0 = 1

njj = 1
nJ , where J is the all-1 matrix. Alternatively,

we can also compute the idempotents as Ei = λ∗i (A) where λ∗i is the La-
grange interpolating polynomial of degree d satisfying λ∗i (λj) = δij . That
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is,

λ∗i =
1

φi

d∏
j=0
j 
=i

(x− λj) =
(−1)i

πi

d∏
j=0
j 
=i

(x− λj)

where φi =
∏d

j=0,j 
=i(λi − λj) and πi = |φi|. Then, the idempotents of A

satisfy the known properties: EiEj = δijEi; AEi = λiEi; and p(A) =∑d
j=0 p(λj)Ej, for any polynomial p ∈ R[x] (see, for example, Godsil [16,

p. 28]). In particular, taking p = 1 we obtain,
∑d

j=0 Ej = I (as expected),

and for p = x we have the spectral decomposition theorem A =
∑d

j=0 λjEj.
The entries of the idempotents muv(λi) = (Ei)uv has been recently called
crossed uv-local multiplicities and satisfy

a(j)
uv = (Aj)uv =

d∑
i=0

muv(λi)λ
j
i . (3)

(See [15, 8, 7]). In particular, when u = v, mu(λi) = muu(λi) are the so-
called local multiplicities of vertex u, satisfying

∑d
i=0 mu(λi) = 1, u ∈ V ,

and
∑

u∈V mu(λi) = mi, i = 0, 1, . . . , d (see [12]).
From any of the above expressions of Ei we deduce that, when G is

bipartite, such parameters satisfy:

• muv(λi) = muv(λd−i), i = 0, 1, . . . , d, if dist(u, v) is even.

• muv(λi) = −muv(λd−i), i = 0, 1, . . . , d, if dist(u, v) is odd.

In particular, the local multiplicities bear the same symmetry as the stan-
dard multiplicities: mu(λi) = mu(λd−i) for any vertex u ∈ V and eigenvalue
λi, i = 0, 1, . . . , d.

Form the above, notice that, when G is regular and bipartite, we have
E0 = 1

nJ (as mentioned before) and

Ed =
1

n

(
J −J

−J J

)
. (4)

2 Polynomials and regularity

The predistance polynomials p0, p1, . . . , pd, deg pi = i, associated to a given
graph G with spectrum sp G as in (1), are a sequence of orthogonal poly-
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nomials with respect to the scalar product

〈f, g〉 =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(λi)g(λi),

normalized in such a way that ‖pi‖2 = pi(λ0) (this makes sense as it is
known that always pi(λ0) > 0). Notice that, in particular, p0 = 1 and, if G
is δ-regular, p1 = x. Indeed,

• 〈1, x〉 = 1
n

∑d
i=0 miλi = 0.

• ‖1‖2 = 1
n

∑d
i=0 mi = 1.

• ‖x‖2 = 1
n

∑d
i=0 miλ

2
i = δ = λ0.

Moreover, if G is bipartite, the symmetry of such a scalar product yields
that pi is even (respectively, odd) for even (respectively, odd) degree i.

In terms of the predistance polynomials, the preHoffman polynomial is
H = p0 + p1 + · · · + pd, and satisfies H(λ0) = n (the order of the graph)
and H(λi) = 0 for i = 1, 2, . . . , d (see Cámara et al. [5]). In [17], Hoffman
proved that a (connected) graph G is regular if and only if H(A) = J , in
which case H becomes the Hoffman polynomial. (In fact, H is the unique
polynomial of degree at most d satisfying this property.) Furthermore,
when G is regular and bipartite, the even and odd parts of H, H0 and H1,
satisfy, by (2):

H0(A) =

(
J O

O J

)
and H1(A) =

(
O J

J O

)
. (5)

As far as we know, the following proposition is new and can be seen as
the biregular counterpart of Hoffman’s result. Recall that a bipartite graph
G = (V1 ∪ V2, E) is called (δ1, δ2)-biregular when all the n1 vertices of V1

has degree δ1, and the n2 vertices of V2 has degree δ2. So, counting in two
ways the number of edges m = |E| we have that n1δ1 = n2δ2.

Proposition 1 Let G be a bipartite graph with n = n1+n2 vertices, predis-
tance polynomials p0, p1, . . . , pd, and consider the odd part of its preHoffman
polynomial; that is, H1 =

∑
i odd pi. Then, G is biregular if and only if

H1(A) = α

(
O J

J O

)
(6)
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with α =
n1 + n2

2
√

n1n2
.

Proof: Assume first that G is biregular with degrees, say, δ1 and δ2.
Then, λ0 = −λd =

√
δ1δ2 with respective (column) eigenvectors u =

(
√

δ1j|√δ2j) and v = (
√

δ1j| − √δ2j), with the j’s being all-1 vec-
tors with appropriate lengths. Therefore, the respective idempotents are

E0 =
1

‖u‖2 uu =
1

n1δ1 + n2δ2

(
δ1J

√
δ1δ2J√

δ1δ2J δ2J

)
,

Ed =
1

‖v‖2 vv =
1

n1δ1 + n2δ2

(
δ1J −√δ1δ2J

−√δ1δ2J δ2J

)
.

As H1(x) = 1
2 [H(x) −H(−x)] and H(λi) = nδ0i, we have that H1(λ0) =

n/2, H1(λi) = 0 for i = 0, d, and H1(λd) = −n/2. Hence, using the
properties and the above expressions of the idempotents,

H1(A) =
d∑

i=0

H1(λi)Ei = H1(λ0)E0 + H1(λd)Ed

=
n

2
(E0 −Ed) =

n
√

δ1δ2

n1δ1 + n2δ2

(
O J

J O

)
.

Thus, the result follows since n1δ1 = n2δ2. Conversely, if (6) holds, and

A =

(
O B

B O

)
, the equality AH1(A) = H1(A)A yields

(
BJ O

O BJ

)
=

(
JB O

O JB

)
.

Thus, (BJ)uv = (JB)uv implies that δ(u) = δ(v) for any two vertices
u, v ∈ V1, whereas (BJ)wz = (JB)wz means that δ(w) = δ(z) for any
two vertices w, z ∈ V2. Thus, G is biregular and the proof is complete.
�

Notice that the constant α is the ratio between the arithmetic and
geometric means of the numbers n1, n2. Hence, (6) holds with α = 1 if and
only if n1 = n2 or, equivalently, G is regular.

In fact, the above result could be reformulated (and proved) by saying
that a (general) bipartite graph is connected and biregular if and only if
there exists a polynomial satisfying (6).
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3 Distance-regular graphs

Let G be a graph with diameter D, adjacency matrix A and d + 1 distinct
eigenvalues. Let Ai, i = 0, 1, . . . ,D, be the distance-i matrix of G, with
entries (Ai)uv = 1 if dist(u, v) = i and (Ai)uv = 0 otherwise. Then,

A = Rd[A] = span{I ,A,A2, . . . ,Ad}

is an algebra, with the ordinary product of matrices and orthogonal ba-
sis {E0,E1, . . . ,Ed} and {p0(A), p1(A), . . . , pd(A)}, called the adjacency
algebra, whereas

D = span{I ,A,A2, . . . ,AD}

forms an algebra with the entrywise or Hadamard product of matrices,
defined by (X ◦Y )uv = X uvY uv. We call D the distance ◦-algebra. Note
that, when G is regular, I,A,J ∈ A ∩ D since J = H(A) =

∑D
i=0 Ai.

Thus, dim (A ∩ D) ≥ 3, if G is not a complete graph (in this exceptional
case, J = I + A). In this algebraic context, an important result is that G
is distance-regular if and only if A = D, which is therefore equivalent to
dim (A∩D) = d+1 (and hence d = D); see, for instance, Biggs [2] or Brower
et al. [4]. This leads to the following definitions of distance-regularity
where, for types (a) and (b), pji and qij, i, j = 0, 1, . . . , d, are constants, pi,
i = 0, 1, . . . , d, are the predistance polynomials, and qj, j = 0, 1, . . . , d, are

the polynomials defined by qj(λi) = mj
pi(λj)
pi(λ0) , i, j = 0, 1, . . . , d:

(a) G distance-regular ⇐⇒ AiEj = pjiEj , i, j = 0, 1, . . . , d(= D),

⇐⇒ Ai =

d∑
j=0

pjiEj , i = 0, 1, . . . , d(= D),

⇐⇒ Ai =

d∑
j=0

pi(λj)Ej , i = 0, 1, . . . , d(= D),

⇐⇒ Ai ∈ A, i = 0, 1, . . . , d(= D).
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(b) G distance-regular ⇐⇒ Ej ◦Ai = qijAi, i, j = 0, 1, . . . , d,

⇐⇒ Ej =

d∑
j=0

qijAi, j = 0, 1, . . . , d,

⇐⇒ Ej =
1

n

d∑
i=0

qj(λi)Ai, j = 0, 1, . . . , d,

⇐⇒ Ej ∈ D, j = 0, 1, . . . , d.

In fact, for general graphs with D ≤ d, the conditions of type (a) are a
characterization of the so-called distance-polynomial graphs, introduced by
Weichsel [19] (see also Beezer [3] and Dalfó et al. [7]). This is equivalent
to D ⊂ A (but not necessarily D = A); that is, every distance matrix Ai

is a polynomial in A. In contrast with that, the conditions of type (b)
are equivalent to A ⊂ D and, hence, to A = D (which implies d = D) as
dimA ≥ dimD.

Note also that in (a) (respectively, in (b)) the second implication is
obtained from the first one by using that

∑d
i=0 Ai = J (respectively,∑d

j=0 Ej = I).

Moreover, with the a
(j)
i , i, j = 0, 1, . . . , d, being constants, we also have:

(c) G distance-regular ⇐⇒ Aj ◦Ai = a
(j)
i Ai, i, j = 0, 1, . . . , d,

⇐⇒ Aj =
d∑

i=0

a
(j)
i Ai, j = 0, 1, . . . , d,

⇐⇒ Aj =
1

n

d∑
i=0

d∑
l=0

qilλ
j
l Ai, j = 0, 1, . . . , d,

⇐⇒ Aj ∈ D, j = 0, 1, . . . , d,

where we have used (3) with auv(j) = a
(j)
i and muv(λl) = qil for vertices

u, v at distance dist(u, v) = i.

4 Characterizing bipartite distance-regular graphs

A general phenomenon is that the above conditions for being distance-
regular can be relaxed giving more ‘economic’ characterizations (see [11]).
Thus, the purpose of the following three theorems is twofold: First to show
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how, for general graphs, such conditions can be relaxed if we assume some
extra natural hypothesis (such as regularity) and, second, to study what
happens in the case of bipartite graphs.

Theorem 2 (i) A graph G with predistance polynomials p0, p1, . . . , pd is
distance-regular if and only if any of the following conditions holds:

(a1) Ai = pi(A) for i = 2, 3, . . . , d.

(a2) G is regular and Ai = pi(A) for i = 2, 3, . . . , d− 1.

(a3) G is regular and Ad = pd(A).

(a4) G is regular and Ai = pi(A) for i = d− 2, d − 1.

(ii) A bipartite graph G with predistance polynomials p0, p1, . . . , pd is dis-
tance-regular if and only if

(a5) G is regular and Ai = pi(A) for i = 3, 4, . . . , d− 2.

Proof: Statement (a1) with i = 0, 1, . . . , d is a well-known result; see, for
example, Bannai and Ito [1]. For our case, just notice that always p0(A) =
A0 = I and, as I + A +

∑d
i=2 pi(A) = J , G is regular and hence p1(A) =

A1 = A; Condition (a2) is a consequence of (a1) taking into account that,
under the hypotheses, Ad = J −∑d−1

i=0 Ai = H(A)−∑d−1
i=0 pi(A) = pd(A)

(see Dalfó et al. [7]); (a3) was first proved by Fiol et al. in [14] (see also van
Dam [9] or Fiol et al. [13] for short proofs); and (a4) is a consequence of a
more general result in [7] characterizing m-partially distance-regularity (G
is called m-partially distance-regular if Ai = pi(A) for any i = 0, 1, . . . ,m).
Thus, we only need to prove (a5). This is a consequence of (a2) since, if
G is δ-regular, A2 = p2(A) = A2 − δI . Moreover, from (5) and assuming
first that d is even,

Ad−1 =

(
O J

J O

)
−

d−3∑
i = 1
i odd

Ai = H1(A)−
d−3∑
i = 1
i odd

pi(A) = pd−1(A)

whereas, if d is odd,

Ad−1 =

(
J O

O J

)
−

d−3∑
i = 0
i even

Ai = H0(A)−
d−3∑
i = 0
i even

pi(A) = pd−1(A),
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and the proof is complete. �

The above results suggest the following question:

Problem 3 Prove or disprove: A regular bipartite graph G with predis-
tance polynomial pd−1 is distance-regular if and only if Ad−1 = pd−1(A).

With respect to the characterizations of type (b), we can state the fol-
lowing result:

Theorem 4 (i) A graph G with idempotents E0,E1, . . . ,Ed is distance-
regular if and only if any of the following conditions holds:

(b1) Ej ∈ D for j = 0, 1, . . . , d.

(b2) Ej ∈ D for j = 0, 1, . . . , d− 1.

(b3) G is regular and Ej ∈ D for j = 1, 2, . . . , d− 1.

(b4) G is regular and Ej ∈ D for j = 1, d.

(ii) A bipartite graph G with idempotent E1 is distance-regular if and only
if

(b5) G is regular and E1 ∈ D.

Proof: Statement (b1) (see also (b) in Section 3) is also well-known and
comes from the fact that G is distance-regular if and only if A = D; Con-
dition (b2) is a consequence of (b1) since, under the hypotheses, Ed =
I −∑d−1

j=0 Ej ∈ D; (b3) comes from (b2) since, if G is regular, then E0 =
1
nJ = 1

nH(A) ∈ D; (b4) was proved by the author in [10] (see also [11]). Fi-
nally, (b5) can be seen as a consequence of (b4) since, under the hypotheses,
(4) yields

Ed =

d∑
i = 0
i even

Ai −
d∑

i = 0
i odd

Ai ∈ D

and the proof is complete. �

Now let us go to the characterizations of type (c) which are given in

terms of the numbers a
(j)
uv = (Aj)uv of walks of length j ≥ 0 between vertices

u, v at distance dist(u, v) = i, i = 0, 1, . . . ,D. When such numbers do not

depend on u, v but only on i and j, we write a
(j)
uv = a

(j)
i . In particular,

notice that always a
(0)
0 = a

(1)
1 = 1 and G is δ-regular if and only if a

(2)
2 = δ.
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Theorem 5 (i) A graph G, with diameter D and d + 1 distinct eigenval-
ues, is distance-regular if and only if, for any two vertices u, v at distance
dist(i, j) = i, any of the following conditions holds:

(c1) a
(j)
uv = a

(j)
i for i = 0, 1, . . . ,D and j ≥ i.

(c2) a
(j)
uv = a

(j)
i for i = 0, 1, . . . ,D and j = i, i + 1, . . . , d.

(c3) D = d, and a
(j)
uv = a

(j)
i for i = 0, 1, . . . ,D and j = i, i + 1, . . . , d− 1.

(c4) G is regular, D = d, and a
(j)
uv = a

(j)
i for i = 0, 1, . . . ,D − 1 and

j = i, i + 1.

(ii) A bipartite graph G is distance-regular if and only if

(c5) G is regular, D = d, and a
(j)
uv = a

(j)
i for i = j = 2, 3, . . . ,D − 2.

Proof: Characterization (c1) was first proved by Rowlinson [18]; Statement
(c2) is a straightforward consequence of (b1) since A = span{I,A,A2, . . . ,
Ad}; (c3) comes from (c2) since, if G is regular and D = d, the number of
d-walks between any two vertices u, v at distance d, is a constant:

a(d)
uv = (Ad)uv =

π0

n
[H(A)]uv =

π0

n
(J)uv =

π0

n
= a

(d)
d ;

(c4) derives from a similar result in [10] (not requiring D = d) and the

above reasoning on a
(d)
uv . Finally, (c5) is a consequence of (c4) since, when

G is bipartite, there are no walks of length j = i + 1 between vertices at

distance i and, thus, a
(i+1)
i = 0. Moreover, if G is δ-regular and D = d,

a
(d−1)
d−1 = 1

δa
(d)
d = π0

nδ . �

Problem 6 Give similar characterizations of types (a), (b) and (c) for
distance biregular graphs.
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