Rythme, symétrie et ornement

Première partie: groupes ponctuels et frises

par Alain Findeli

Résumé

Sur le thème illustré dans le titre, nous avons effectué à l'automne 1981 à l'École de design industriel de l'Université de Montréal un exercice pédagogique dont nous proposons ici les résultats. L'expérimentation a porté sur des applications concrètes de la théorie des groupes d'isométrie dans le plan: groupes ponctuels et linéaires dans ce premier article, groupes plans dans un article à venir.

Abstract

Rhythm, Symmetry and Ornament

Part I: Point Groups and Friezes

On the theme illustrated in the title, we conducted during the fall of 1981 at the École de Design Industriel a pedagogical exercise whose results are presented here. The experimentation dealt with some concrete applications of the theory of isometry groups in the plane: point and line groups appear in this first paper, plane groups in a coming paper.

Préliminaires à une expérience pédagogique

À l'automne 1981, l'occasion nous est fournie, sous la forme d'un projet d'atelier de quatre semaines, à raison de 20 heures environ par semaine à l'École de design industriel, de travailler sur des applications possibles de la théorie des groupes spatiaux*. L'idée du

Preliminaries to a Pedagogical Experiment

During the fall of 1981, at the École de Design Industriel, through a workshop project that lasted four weeks and took about 20 hours a week, we had the opportunity to work on possible applications of the theory of spatial groups*. This project, which was offered to

* Cette dénomination remplace parfois celle de groupes d'isométries ou de groupes de transformations; les trois notations ci-dessus seront employées indifféremment, de préférence toujours à celle de groupes de symétrie, en raison de l'ambiguïté attachée à la notion de symétrie.

* This term sometimes replaces that of isometry group or transformation group; the three terms above will be used interchangeably, and always preferred to that of symmetry group, because of the ambiguity attached to the notion of symmetry.
projet, proposé à 30 étudiants de deuxième année, avait germé à la suite des considérations suivantes, qui constituèrent par la suite ses objectifs:

— la diminution inquiétante de la part laissée à l'enseignement de la géométrie dans les écoles, en particulier celles qui forment les concepteurs de notre environnement construit: urbanistes, architectes (de paysage, de bâtiments, d'intérieur), concepteurs industriels et graphistes;

— le besoin d'outils méthodologiques permettant aux étudiants et aux concepteurs d'élargir le champ de leur imagination créative. En puisant dans le corps théorique de disciplines extérieures ou accessoires à celui de la faculté de l'Aménagement, il semble possible d'accéder à des outils nouveaux, donc précieux pour la partie créative du processus de conception d'un objet. De manière analogue, la synthèse permet d'accroître les possibilités expressives d'un art en s'inspirant de la sensibilité propre à d'autres champs artistiques (certains peintres ont, par exemple, trouvé dans la musique des ressources inutiles); c'est ainsi qu'un groupe restreint d'étudiants s'est proposé pour exposer les résultats de la recherche dans un montage audio-visuel où la composante musicale devait prendre une part importante, répondant ainsi à la partie rythme du titre (ce montage est conservé à l'école);

— enfin, il redevenait urgent de se pencher sur la signification de l'ornement dans l'objet construit. Depuis le manifeste cinglant de Loos (A. Loos, Ornament and crime, 1908 et Trotzdem, 1930) et l'interprétation très étiquetée que les écoles ont retenue de la leçon du Bauhaus (1919-1933), nous livrant pour près d'un demi-siècle à l'intolérance fonctionnaliste, il n'y a guère que le post-modernisme à utiliser, en un art, qui semble possible il y a quelques années, pour nous proposer récemment une nouvelle lecture de l'ornement.

Si, au cours du projet, l'aspect théorique des groupes plans n'a été qu'esquissé, c'est pour mettre l'accent davantage sur les applications pratiques. Notre brève bibliographie est la même que celle proposée aux étudiants. Notre présentation conserve la forme didactique du projet; toutefois, les travaux réalisés devraient intéresser même les lecteurs familiarisés avec ces notions élémentaires.

Rappel sur les groupes plans

Les isométries: définitions. Parmi les opérations géométriques possibles dans l'espace, on distingue celles des déplacements, ou isométries (March & Steadman, 1971). Celles-ci ont la propriété de conserver les longueurs, les angles, le parallélisme, les proportions et les relations de proximité des ensembles de points ou figures géométriques. Les isométries peuvent se combiner par une opération produit qui porte sur des isométries de même nature ou de natures différentes.

Dans certaines conditions, un ensemble d'isométries constitue un groupe pour l'opération produit; l'ensemble satisfait alors aux conditions suivantes:

1) l'opération produit est une opération interne;
2) la loi d'associativité est vérifiée;
3) il existe une isométrie appelée élément neutre;
4) à chaque isométrie correspond une isométrie symétrique.

30 second-year undergraduates, sprang from the following concerns, which became its objectives:

— the worry about the diminishing role of the teaching of geometry in the schools, particularly in those programs which educate the designers of our built environment: urban planners, landscape architects, architects, interior decorators, industrial designers and graphic artists;

— the need for methodological tools to allow the students and the designers to enlarge the field of their creative imagination. From the theoretical work in disciplines outside of the Faculté de l'Aménagement, it seemed possible to draw new tools which would prove valuable when applied to the creative part of the product design process. In a similar vein, synesthesia, inspiration arising from sensitivities proper to other artistic field, helps to increase the expressive possibilities of an art. (For example, some painters have found unheard of resources in music.) One group of students gave the results of their research in an audio-visual presentation (now kept at the school) in which the musical component played an important role. This was their response to the call for rhythm in the project title;

— finally, it becomes urgent, once more, to stress the meaning of ornament in construction. Ever since the scathing manifesto by Loos (A. Loos, Ornament and Crime, 1908, and Trotzdem, 1930) and the very narrow interpretation which the schools have kept from the lessons of Bauhaus (1919-1933), we have surrendered to the functionalist intolerance for nearly a half century. Only in post-modernism, with its often out-dated lyricism, is there the proposal that we undertake a new study of ornament.

During the project, the theoretical aspect of the plane groups was only sketched, in order to further emphasize the practical applications. Our brief bibliography is the same as that given to the students. Our presentation preserves the didactic form of the project; readers familiar with these elementary notions may nevertheless be interested to see the students' work.

Things to Recall about the Plane Groups

Isometry: definitions. Among the geometric operations possible in space, we distinguish certain motions called isometries (March & Steadman, 1971). These have the properties of preserving lengths, angles, parallelism, proportions and proximity relations of sets of points or geometric figures. These isometries can be combined using a product operation which applies to isometries of the same type or of different types.

Under certain conditions, a set of isometries, with the product operation, forms a group; this set then satisfies the following conditions:

1) the product is an internal operation;
2) the associative law is satisfied;
3) there is an isometry called the identity (or neutral) element;
4) to each isometry corresponds a symmetric (or inverse) isometry.
Les isométries planes élémentaires

1. Les translations. Ces isométries, qui déplacent une figure parallèlement à elle-même, sont le plus simplement définies par un vecteur t (Figure 1). L'ensemble des translations du plan constitue un groupe pour l'opération produit de deux translations qui correspond à l'addition vectorielle. En effet, c'est une opération interne (Figure 2) qui obéit à la loi d'associativité (Figure 3). L'élément neutre est la translation de vecteur zéro et le vecteur de la translation symétrique à même direction, même module mais sens opposé.

2. Les réflexions. Ce sont des isométries qui font correspondre à une figure sa symétrique telle que vue dans un miroir plan; les deux figures sont dites enantiomorphes (tels nos deux pieds). Les réflexions sont définies par un axe de réflexion qui est la trace du miroir dans le plan; le terme miroir sera préféré cependant à celui d'axe pour éviter les confusions (Figure 4). L'ensemble des réflexions ne constitue pas un groupe. Il faut les combiner à d'autres isométries (translations, rotations) pour constituer les groupes que nous étudierons.

Elementary Plane Isometries

1. Translations. These isometries which move a figure parallel to itself are most simply defined by a vector t (Figure 1). The set of translations in the plane forms a group with respect to the product. The product of two translations is a new translation given by vector addition (Figure 2). The product satisfies the associative law (Figure 3). The identity element is a translation by the zero vector, and the symmetric or inverse translation vector has the same direction, the same length, but the opposite sense.

2. Reflections. These are the isometries which create a figure such as that seen in a plane mirror; the two figures are said to be enantiomorphic (such as our two feet). Reflections are defined by an axis of reflection which is the trace of a mirror on the plane; the term mirror will be used in preference to that of axis in order to avoid confusion (Figure 4). The set of reflections does not form a group. We have to combine them with other isometries (translations, rotations) in order to make up the groups which we will study.
3. Les réflexions glissées ou glissements. Ces isométries sont définies par un miroir et une translation parallèle au miroir; la figure obtenue est enantiomorphe à la figure d'origine (Figure 5). Comme pour les réflexions, les glissements ne formeront un groupe que combinés à d'autres isométries. Il est intéressant de remarquer (comme Emmer l'a fait) que pour effectuer le retournement propre au miroir dans le cas des réflexions et des glissements, nous sommes obligés de sortir du plan rendant ainsi nécessaire la présence d'une troisième dimension.

4. Les rotations. Ce sont des isométries définies par un axe (ou centre) et un angle de rotation (Figure 6). On démontre aisément que l'ensemble des rotations avec un centre fixe constitue un groupe pour l'opération produit de deux rotations (Fejes-Tóth, 1964). Les seules rotations utilisées dans le projet sont celles d'une fraction entière d'un tour entier; elles sont notées R_k, et leurs angles valent $n2\pi/k$ ($n \in \mathbb{Z}^*$, $k = 1, 2, 3, ...$). À chaque valeur de k correspond le groupe ponctuel constitué des rotations d'angles $n2\pi/k$ lorsque n prend toutes ses valeurs. Ainsi, l'ensemble R_k qui est l'ensemble des rotations d'angle $2\pi/5$, $4\pi/5$, $6\pi/5$, ... constitue le groupe ponctuel d'ordre 5.

Quelques mots sur les techniques utilisées

La durée limitée du projet a entraîné le groupe à développer des techniques de dessin efficaces; en effet, ce type de travail, reposant sur la répétition régulière d'un motif de base, devient rapidement fastidieux au cours de longues séances de dessin.

Certaines techniques très simples peuvent être évoquées:

— les pliages de papier ou de calque en accordéon suivis de découpages;
— pour les groupes ponctuels, l'usage de deux miroirs a été particulièrement fertile et parfois spectaculaire;
— une artiste invitée a pu familiariser les étudiants avec les techniques de linogravure; des frises et tableaux dont ainsi a été immédiatement produit, l'introduction d'encres colorées rehaussant l'intérêt des propositions;
— l'utilisation d'une photocopieuse pour obtenir rapidement un grand nombre de motifs identiques auxquels peut ensuite être appliquée la couleur; les possibilités de réduction et d'agrandissement des machines rehaussent l'intérêt de certaines propositions;
— la fabrication de gabarits et de pochoirs;
— la reproduction rapide d'un motif grâce à une pomme de terre sculptée et encrée.

Dans les ateliers ultérieurs, l'utilisation de l'ordinateur est envisagée.

A Few Words on the Techniques Used

The limited time for the project led the group to develop efficient drawing methods. This type of work, relying as it does on the regular repetition of a basic motif, soon becomes tedious during long drafting sessions.

Certain very simple techniques can be used:

— an accordion folding of paper or tracing paper, followed by cutting;
— for the point groups, the use of two mirrors was particularly suggestive and sometimes spectacular;
— an invited artist showed the students the techniques of line engraving; the friezes and networks could thus be quickly produced, the use of coloured inks increasing the visual effect;
— the use of a photocopier to obtain quickly a large number of identical patterns on which colour can be applied later; the reducing and enlarging capacities of these machines allow for some more interesting results;
— the fabrication of pattern generators and stencils;
— the fast reproduction of a pattern with a carved and inked potato.

The use of computer is proposed for further projects.

* Rappelons que \mathbb{Z} symbolise l'ensemble des nombres entiers positifs et négatifs.
Figure 7 Des sigles de compagnies • Some company logos.

<table>
<thead>
<tr>
<th></th>
<th>1m</th>
<th>3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_2</td>
<td>1m</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8 Des exemples de groupes ponctuels dans la nature: une poire (1m), un poivron (3m), un oignon (1m), une fleur (3m), un papillon (1m), des cristaux de neige (6mm) et encore des cristaux de neige (1m, 2mm, 1m, 2mm, 1m, 3mm, 3m, 1m, 2mm, 3m et 2mm). Some examples of point groups in nature: pear (1m), pimento (3m), onion (1m), flower (3m), butterfly (1m), snow flakes (6mm) other snow flakes (1m, 2mm, 1m, 2mm, 3m, 2mm, 3m, 1m, 2mm, 3m and 2mm).
Figure 9 Des exemples de groupes ponctuels dans l'architecture (Montréal): des vitraux, du fer forgé (1m, 1m) et un œil-de-bœuf (4mm) • Examples of point groups in architecture (Montréal): stained glass windows, wrought iron (1m, 1m), bull's-eye window (4mm).

Figure 10 Les groupes ponctuels directs • Direct point groups.

Figure 11 Les groupes ponctuels à miroirs • Mirror point groups.
Les groupes de transformations ponctuels

Ces groupes sont formés à partir de rotations autour d’un centre unique et de réflexions. Nous exposerons ici les seuls groupes que, en raison de leurs symétries remarquables, nous retrouverons plus tard dans les réseaux plans; ils sont au nombre de dix. Ces groupes, appelés parfois *kaleidoscopiques* sont à la base de nombreuses applications dans le graphisme des logotypes et sigles de sociétés (Figure 7); on les retrouve bien sûr dans la nature (Figure 8), dans l’architecture (Figure 9), ainsi que dans la fabrication de nombreux papiers peints et textiles.

D’abord, les cinq groupes dits * directs* (Figure 10):

1) le plus simple, sans intérêt, est le groupe R_1^* des rotations d’angles $n2\pi$;
2) le groupe R_2 des rotations d’angles $n\pi$;
3) le groupe R_3 des rotations d’angles $n2\pi/3$;
4) le groupe R_4 des rotations d’angles $n\pi/2$;
5) le groupe R_6 des rotations d’angles $n\pi/3$.

Accessoirement, on peut noter, par exemple, que le groupe R_2 est un sous-groupe du groupe R_4 et du groupe R_6.

Ensuite, les cinq groupes dits à * miroirs* (Figure 11):

6) le groupe $1m$, constitué des réflexions selon un miroir et des rotations d’angles $n2\pi$;
7) le groupe $2mm$, constitué des réflexions selon un miroir et des rotations d’angles $n\pi$ dont le centre se trouve sur le miroir. La combinaison de ces deux isométries fait apparaître un deuxième type de réflexions, dans un miroir perpendiculaire au premier passant par le centre de rotation, d’où la notation $2mm$ plutôt que $2m$;
8) le groupe $3m$, constitué des réflexions selon un miroir et des rotations d’angles $n2\pi/3$ autour d’un centre placé sur le miroir;
9) le groupe $4mm$, constitué des réflexions selon un miroir et des rotations d’angles $n\pi/2$; notons l’apparition d’un deuxième miroir à 45° du premier;
10) le groupe $6mm$, constitué des réflexions selon un miroir et des rotations d’angles $n\pi/3$; un second miroir à 30° du précédent apparaît cette fois.

La présence, dans l’illustration du groupe $3m$, de trois miroirs ne signifie pas que les trois miroirs soient nécessaires pour engendrer la figure complète; une seule réflexion suffit, puisque cette symétrie par miroir est ensuite déplacée par les rotations. Nous aurons l’occasion d’observer ce phénomène plus tard dans le plan, ainsi que celui de l’apparition de nouvelles isométries dues à la combinaison des isométries constitutantes du groupe (ainsi un deuxième ensemble de miroirs apparaît dans les groupes $4mm$ et $6mm$, respectivement à 45° et à 30° des miroirs principaux).

* Nous n’utiliserons que la notation recommandée par les conventions internationales en cristallographie (*International tables for X-ray crystallography*). Les autres notations (par exemple Speiser, 1935) sont progressivement abandonnées au profit de celle-ci, plus descriptive, dite de Hermann-Mauguin.

Groups of Point Transformations

These groups are formed from rotations and reflections with a single centre. We describe here only those groups which, by virtue of their remarkable symmetry, we will encounter later in plane networks; there are ten in number. These groups, sometimes called *kaleidoscopic*, are basic to many applications in the graphics of logos and corporate symbols (Figure 7); one also finds them in nature (Figure 8), in architecture (Figure 9), and in the manufacture of wallpapers and textiles.

First, there are the five groups which are called *direct* (Figure 10):

1) the simplest, which is without interest, is the group R_1^* of rotations with angles $n2\pi$;
2) the group R_2 with rotations of angle $n\pi$;
3) the group R_3 with rotations of angle $n2\pi/3$;
4) the group R_4 with rotations of angle $n\pi/2$;
5) the group R_6 with rotations of angle $n\pi/3$.

In passing one should notice that, for example, group R_2 is a subgroup of the group R_4 and of the group R_6.

Next we find the five groups which are called *mirror* groups (Figure 11):

6) the group $1m$, made up of reflections in a mirror and rotations of angle $n2\pi$;
7) the group $2mm$, made up of reflections in a mirror and of rotations by angles $n\pi$ where the centre is on the mirror. The combination of these two isometries causes the appearance of a second type of reflection, in a mirror perpendicular to the first passing through the centre of rotation, whence the notation $2mm$ rather than $2m$;
8) the group $3m$, made up of reflections in a mirror and of rotations by angles $n2\pi/3$ around a centre placed on the mirror;
9) the group $4mm$, made up of reflections in a mirror and of rotations by angles $n\pi/2$; we observe the appearance of a second mirror at a 45° to the first;
10) the group $6mm$, made up of reflections in a mirror and of rotations by angles $n\pi/3$; this time a second mirror appears at angle 30° to the first.

The presence of three mirrors in the illustration of group $3m$ does not mean that all three mirrors are necessary to generate the complete figure; one reflection suffices, because this mirror symmetry is moved by the rotations. We will have occasion to observe this phenomenon later, in the plane, as well as the appearance of new isometries due to the combination of isometries making up the group (thus a second set of mirrors appears in the groups $4mm$ and $6mm$, at 45° and at 30° to the main mirrors respectively).

* We will use the notation recommended by the international standards in crystallography (*International Tables for X-Ray Crystallography*). Other notations (e.g. Speiser, 1935) have been increasingly abandoned in favor of the above, more descriptive notation, by Hermann-Mauguin.
La notion de *motif élémentaire* doit être introduite ici: c'est la figure géométrique minimale nécessaire pour reconstituer la figure complète à l'aide des isométries d'un groupe. À titre d'exemple, la figure suivante $\frac{\pi}{3}$ peut être produite par l'application du groupe $4mm$ au motif $\frac{\pi}{3}$, ou encore du groupe $2mm$ au motif $\frac{\pi}{3}$, ou encore du groupe $R4$ au motif $\frac{\pi}{3}$, ou finalement du groupe $R1$ au motif complet. Dans notre cas, c'est la première possibilité qui sera retenue, pour son intérêt pédagogique. Cependant, pour des raisons pratiques, il est parfois plus intéressant de considérer les autres possibilités; le procédé de fabrication ou de production doit nous guider alors.

Ainsi, les artisans zelligeurs du Maroc, créateurs des admirables mosaïques qui ornent les mosquées, les palais et les habitations, se constituent un vocabulaire de pièces de mosaïque élémentaires (appelées *zelliges*) dont certaines possèdent déjà un certain ordre de symétrie (Paccard, 1981). (Cet enseignement s'est transmis oralement à travers de nombreuses générations et est encore vivant.)

Nous profiterons de cette remarque pour introduire une autre notion, celle de *pavage*. Dans le cas des groupes ponctuels, un pavage serait constitué de pavés élémentaires, tous identiques, qui permettraient de remplir sans vides et sans superpositions un disque plan. La recherche formelle de ces pavés élémentaires, attestée depuis l'antiquité égyptienne et reprise par l'art musulman, constitue un exercice sans limites en design.

Ainsi, le pavé élémentaire le plus simple du groupe $R6$ serait un secteur de disque d'angle $\pi/3$ (Figure 12). D'autres pavés, aux formes plus complexes, peuvent être développés, à condition de suivre des règles de construction qui sont évidentes dans ce cas (Figure 13).

Applications. Les exercices suivants furent proposés:
- la création libre de motifs abstraits des groupes $R4$ et $2mm$ (Figures 14 et 15);
- l'une des propositions suivantes:
 - un napperon pour un restaurant québécois (Figure 16),
 - une enseigne pour une quincaillerie (Figure 17),
 - un logotype illustrant l'idée de souveraineté-association (Figure 18).

The notion of an *elementary motif* can be introduced here: it is the minimal geometric figure necessary for reconstructing the whole figure using the group isometries. For example the following figure $\frac{\pi}{3}$ can be produced by applying the group $4mm$ to the motif $\frac{\pi}{3}$, or else by applying the group $2mm$ to the motif $\frac{\pi}{3}$, or the group $R4$ to the motif $\frac{\pi}{3}$, or finally the group $R1$ to the complete motif. In the present example, it is the first case which will be selected, because of its pedagogical interest. Nevertheless, for practical reasons, it is sometimes more interesting to consider other possibilities; we must then be guided by the manufacturing and production process.

For example the craftsmen (zelligeurs) from Morocco, creators of the admirable mosaics which ornament the mosques, the palaces and homes, created a vocabulary of elementary mosaic pieces (called *zelliges*) of which some already possess a certain order of symmetry (Paccard, 1981). (This teaching has been transmitted orally across many generations and is still alive.)

This observation lets us introduce another idea, that of tiling. In the case of point groups, a tiling would consist of *elementary tiles*, each identical, which permit one to completely fill a plane disc without voids or superpositions. The formal search for these elementary tiles, known from Egyptian antiquity and taken up again by Moslem art, constitutes a boundless exercise in design.

For example, the simplest elementary tile in group $R6$ would be a sector of a disc having an angle $\pi/3$ (Figure 12). Other tiles with more complex forms can be developed, if we merely follow certain rules of construction which are evident in this case (Figure 13).

Applications. The following exercises were proposed:
- the free creation of abstract motifs using groups $R4$ and $2mm$ (Figures 14 and 15);
- one of the following projects:
 - a tablemat for a Quebecois restaurant (Figure 16),
 - a sign for a hardware store (Figure 17),
 - a logo illustrating sovereignty-association (Figure 18).
Figure 14 Des motifs $R4 • R4$ motifs.
Figure 15 Des groupes 2mm • 2mm groups.
Figure 16. Des napperons pour un restaurant québécois
- Table-mats for a Quebec restaurant.

Figure 17. Des enseignes pour une quincaillerie
- Hardware store signs.

Figure 18. Des logo-types pour la souveraineté-association au Quebec
- Logotypes for sovereignty-association in Quebec.
Les groupes linéaires: frises

Si on combine certains groupes ponctuels avec les translations et les réflexions glissées suivant une seule direction, on obtient les sept groupes d'isométries linéaires, ou frises. Ces groupes sont les seuls qui, lorsqu'on applique leurs isométries caractéristiques à l'ensemble de la frise, mettent celle-ci en coinncidence avec elle-même; les frises transformées sont physiquement superposables à la frise d'origine; la vérification se fait à l'aide d'un papier calque sur lequel la frise est reproduite (Figure 19). On distingue:

1) le groupe t, constitué uniquement des translations suivant les vecteurs pt ($p \in \mathbb{Z}$), d'un motif élémentaire du groupe ponctuel R_I;
2) le groupe $t2$, constitué des translations pt et des rotations de π. Si on reproduit sur un calque l'une des frises suivantes et qu'on fait subir à ce calque une combinaison quelconque de translations pt et de rotations d'un demi-tour, le calque coïncidera avec la frise d'origine;
3) le groupe mt, constitué des translations pt et des réflexions dans un miroir parallèle à la direction du vecteur de translation;
4) le groupe tm, constitué des translations pt et des réflexions dans un miroir perpendiculaire;
5) le groupe tmm, constitué des translations pt et des réflexions dans deux miroirs, l'un parallèle, l'autre perpendiculaire à la direction de translation;
6) le groupe tg, constitué des translations pt et des réflexions glissées suivant un miroir parallèle à la direction de translation, dont le vecteur a un module $t/2$;
7) le groupe $t2mg$, constitué des translations pt, des réflexions dans un miroir perpendiculaire à la direction de translation et des réflexions glissées suivant un miroir parallèle à la translation et de vecteur $t/2$. On fait apparaître ici les rotations π, résultat de la combinaison des isométries m et g. (En fait, la notation $t2mg$ pourrait s'écrire seulement $t2m$, ou tmg, la troisième isométrie résultant de la combinaison des deux premières; mais pour bien faire remarquer toutes les possibilités de symétrie de la frise, on choisit une notation pléonastique.)

Linear Groups: Friezes

If we combine certain point groups with translations or glide reflections having one single direction, we obtain the seven linear isometry groups, or friezes. These groups are the only ones which, when one applies their isometries to the entirety of the frieze, place the frieze in coincidence with itself: the transformed friezes are physically superimposed on the original frieze; the proof is made with the aid of tracing paper on which the frieze is reproduced (Figure 19). We distinguish:

1) the group t, consisting only of translations along the vectors pt ($p \in \mathbb{Z}$), of an elementary motif having point group R_I;
2) the group $t2$, made up of translations pt and of rotations by π. If we reproduce on tracing paper one of the following friezes and if the tracing paper undergoes an arbitrary combination of translations pt and of half rotations, the tracing paper will coincide with the original frieze;
3) the group mt, made up of translations pt and of reflections in a mirror parallel to the direction of the translation vector;
4) the group tm, made up of translations pt and of reflections in a perpendicular mirror;
5) the group tmm, made up of translations pt and of reflections in two mirrors, one parallel, the other perpendicular to the direction of translation;
6) the group tg, made up of translations pt and of glide reflections in a mirror parallel to the direction of translation, having a vector with length $t/2$;
7) the group $t2mg$, made up of translations pt, of reflections in a mirror perpendicular to the direction of translation and of glide reflections in a mirror parallel to the translation, with vector $t/2$. Here the rotations π appear, as a result of the combination of the isometries m and g. (Actually the notation $t2mg$ could be written merely $t2m$, or tmg, the third isometry resulting from combination of the first two; but in order to best point out all the possibilities of symmetry in the frieze, we select a pléonastic notation.)

Figure 19 Les sept groupes d'isométries linéaires • The seven linear isometry groups.
Applications. Les photographies illustrent les exercices suivants:

- la réalisation de frises à partir de lignes circulaires (Figure 20);
- la réalisation de frises à partir de surfaces triangulaires (Figure 21);
- l'identification d'un autobus scolaire ou d'une garderie (Figure 22);
- l'illustration de couvertures de livres scolaires (Figure 23).

Ornements et pavages. Comme dans le cas des groupes ponctuels, il convient pour les frises de distinguer entre les ornements et les pavages.

Dans le premier cas, il s'agit de réaliser une frise par répétition d'un motif graphique de base; c'est le cas des corniches ornementales apparaissant parfois sur les façades des édifices et des monuments (Figures 24 et 25); cette utilisation des frises est également fréquente en textiles (Figure 26) ou en bijouterie (Figure 27). La liberté du concepteur s'exprime alors dans la création du motif élémentaire: forme du dessin, couleur, contrastes.

Réaliser le pavage d'une frise consiste à remplir par des pavés (ou tuiles) identiques, sans recouvrements et sans vides, et sans les retourner (les tuiles ont un dessus et un dessous distincts), une partie du plan constituée par une bande; c'est le cas de nombreuses mosaïques (Figure 28). Les formes géométriques possibles pour les pavés sont évidemment tributaires des contraintes de symétrie imposées par les isométries caractéristiques du groupe considéré.

L'utilisation de la notion de quotient (Jullien, 1978) a permis de développer une méthode pratique d'obtention des pavés pour les sept groupes linéaires, à partir du découpage de papiers collés selon les éléments laissés invariants lors des opérations de symétrie (miroirs, centres de rotation) (Figure 29);

- le groupe t1: former un cylindre en collant les deux bords opposés d'un rectangle. Joindre les deux bords du cylindre par une ligne quelconque et découper; le concepteur a l'entière liberté pour le choix de la forme de la ligne, ainsi bien sûr que pour la décoration du pavé lui-même (motif décoratif, couleur);
- le groupe t2: fabriquer une pochette en collant trois côtés de deux rectangles en papier superposés, laissant le quatrième ouvert. Joindre chacun des coins de la pochette au bord ouvert par une ligne quelconque; découper suivant les lignes et déplier le pavé ainsi obtenu;
- le groupe mt: plier un rectangle en deux suivant une médiane et former un cylindre avec le rectangle obtenu en collant les bords. Procéder comme pour t1;
- les groupes tm et tm2m: aucune liberté n'est permise pour ces groupes en raison de la présence des miroirs. Les pavés élémentaires sont des rectangles;
- le groupe tg: fabriquer avec un rectangle un ruban de Möbius; couper le ruban suivant une ligne quelconque et déplier le pavé obtenu;
- le groupe t2mg: prendre une demi-pochette telle que fabriquée pour t2 et joindre le coin au bord supérieur par une ligne quelconque; découper et déplier.

Ornements and Tilings. As was the case for point groups it is convenient to distinguish between frizzes which are ornaments and those which are tilings.

In the first case it is a question of constructing a frieze by repetition of a basic graphic motif; this is the case for ornamental cornices seen sometimes on the facades of buildings and monuments (Figures 24 and 25); this use of frizzes is equally common in textiles (Figure 26) and in jewelry (Figure 27). The designer's liberty is thus expressed in the creation of an elementary motif: the shape of the drawing, colour and contrast.

To tile a frieze means to fill a band in the plane with identical tiles, without overlaps or voids, and without turning the tiles over (the tiles having distinct tops and bottoms); this is the case in many mosaics (Figure 28). The geometric forms possible for the tiles are clearly consequences of symmetry constraints imposed by isometries belonging to the group under consideration.

The use of the idea of quotient (Jullien, 1978) lets us develop a practical method of obtaining tiles for the seven linear groups, starting with pasted paper cut according to the elements left invariant by the operations of symmetry (mirrors, centres of rotation) (Figure 29);

- the group t1: make a cylinder by gluing two opposite edges of a rectangle. Join the two edges of the cylinder by an arbitrary line and cut along it; the designer has complete liberty for the choice for the shape of this line, and of course also for the decoration of the tile itself (decorative motif, colour);
- the group t2: make an envelope by gluing three edges of two superimposed paper rectangles, leaving the fourth open. Join each of the corners of the envelope to the open boundary by an arbitrary line; cut along these lines and unfold the tile thus obtained;
- the group mt: fold a rectangle in two along a median and make a cylinder from the rectangle obtained by gluing the edges. Proceed as for t1;
- the groups tm and tm2m: no liberty is permitted for these groups, by reason of the presence of mirrors. The elementary tiles are mere rectangles;
- the group tg: make a Möbius band from a rectangle; cut the band along an arbitrary line and unfold the tiling obtained;
- the group t2mg: take a half envelope such as that constructed for t2 and join the corner to the upper boundary by an arbitrary line; cut out and unfold.
Figure 20 Des frises à lignes circulaires • Friezes with circular lines.
Figure 21 Des frises avec des surfaces triangulaires.
Frieses with triangular surfaces.
Figure 22 Des identifications d'un autobus scolaire ou d'une garderie • School bus or day nursery identifications.
Figure 23 Des couvertures de livres scolaires • School book covers.
Figure 24 Des frises ornamentales architecturales (Montréal) - Architectural ornamental frizes (Montreal).
Figure 25 Quelques exemples de frises architecturales maya, romane et gothique • Examples of Maya, romanesque and Gothic architectural frizes.

Figure 26 Des frises réalisées en textile et une dentelle • Textile frizes and lace.
Figure 27 Un bracelet • A bracelet.

Figure 28 Des mosaiques (architecture arabe) • Mosaïcs (Arabic architecture).

Figure 29 L'obtention de pavés par la méthode des quotients • Obtaining tiles with the quotient method.
Conclusion

L’atelier proposé a été accueilli avec enthousiasme par les étudiants, malgré la densité du travail exigé.

Pour que l’exercice soit exploré au maximum de ses possibilités, il est important que l’introduction théorique (isométries, produit d’isométries, groupe de transformations) soit parfaitement assimilée et mémorisée; on s’aidera pour cela de nombreuses démonstrations grâce au dessin ou à des maquettes en carton et en acétate, ou encore à des éléments aimantés déplacés sur un plan vertical.

Une introduction iconographique abondamment illustrée par des exemples pris dans l’histoire, la botanique, la zoologie, l’architecture, l’artisanat a immédiatement allumé l’intérêt pour les applications possibles de la symétrie et levé l’obstacle représenté par la partie mathématique.

À l’issue de l’atelier s’était manifesté un intérêt plus perspicace et critique envers l’environnement visuel.

Enfin, nous résumerons ainsi l’acquis principal d’un projet axé avant tout sur la méthodologie de conception: l’approche intuitive, nécessaire à certains projets de design où les qualités formelles (ornement) prédominent sur les exigences strictement fonctionnelles, s’est enrichie considérablement en s’appuyant sur la discipline de la méthode mathématique et a permis de concevoir et de réaliser des produits à la fois plus variés et plus originaux.

Remerciements. Ils s’adressent aux personnes suivantes, dont l’aide a été précieuse à la réalisation de ce travail:
— tous les étudiants de deuxième année 1981-82 de l’École de design industriel, particulièrement F. Gagnon, J. Lecomte, L. Magnan, C. Pauzet et Y. Quenneville qui ont réalisé le montage audio-visuel et la compilation du matériel photographique;
— Pierre Jullien de l’IREM de Grenoble pour ses précisions sur les pavages, au cours de plusieurs communications orales;
— Sylvie Emery pour le secrétariat et Roger Thibault pour l’assistance technique en photographie, tous deux de l’École de design industriel.

Adresse de l’auteur:
Alain Findeli, professeur adjoint
École de design industriel
Faculté de l’Aménagement
Université de Montréal
C.P. 6128, Succursale “A”
Montréal, Québec, Canada H3C 3J7

Conclusion

The workshop was enthusiastically received by the students, in spite of the amount of work required.

For the maximum potential of the exercise to be realized, the theoretical introduction (isometries, isometry product, transformation group) must be perfectly assimilated and memorized; this can best be promoted through many demonstrations made with drawings, or cardboard or acetate models, or else with magnetized elements moved on a vertical plane.

An iconographical introduction, profusely illustrated with examples taken from history, botany, zoology, architecture and handicraft, immediately aroused interest in the possible applications of symmetry and removed the obstacle of the mathematical part.

At the end of the workshop, the students showed a keener and more critical interest in the visual environment.

Finally, we summarize as follows, the main gain from a project primarily centered on design methodology: the intuitive approaches, necessary for design projects where formal qualities (ornament) predominate over strictly functional requirements, were substantially enriched by the discipline of the mathematical method; the students designed and realized products with both more variety and more originality.

Acknowledgements. We thank the following people whose help was essential to completion of this work:
— all the students in the second year 1981-1982 of the École de Design Industriel, especially F. Gagnon, J. Lecomte, L. Magnan, C. Pauzet and Y. Quenneville who made the audio-visual montage and compiled the photographic material;
— Pierre Jullien of the IREM of Grenoble for information on tilings provided during several conversations;
— Sylvie Emery for the typing and Roger Thibault for technical assistance in photography, both at the École de Design Industriel.

Address of the author:
Alain Findeli, Assistant Professor
École de Design Industriel
Faculté de l’Aménagement
Université de Montréal
P.O. Box 6128, Station “A”
Montreal, Quebec, Canada H3C 3J7
Bibliographie

Le code qui apparaît dans la première colonne de chaque entrée bibliographique est constitué de trois parties séparées par des tirets. La première partie indique s'il s'agit d'un livre (Book), d'un Article, d'une Pré-impression ou de notes de cours (Course notes). La deuxième partie indique si le texte a été rédigé pour des Mathématiciens, des Architectes ou des ingénieurs (Engineers). La partie finale indique si le texte touche un ou plusieurs des thèmes principaux de la topologie structurale: Géométrie (en général), Polyédres, Juxtaposition ou Rigidité.

Les mots-clés ou les annotations de la colonne finale signalent la pertinence de l'ouvrage à la recherche en topologie structurale, mais ne témoignent pas nécessairement de l'ensemble du contenu ou de l'intention de l'auteur.

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Titre</th>
<th>B-M-J-H-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berger 1977</td>
<td>Géométrie</td>
<td></td>
</tr>
<tr>
<td>Collonge & Trehard 1980</td>
<td>Pavages et coloriages</td>
<td></td>
</tr>
<tr>
<td>Marie-Pierre Collonge et Françoise Trehard</td>
<td>Institut de recherche sur l'enseignement des mathématiques, Université de Paris VII, no 7, janvier 1980.</td>
<td>C-M-J</td>
</tr>
<tr>
<td>Coxeter 1961</td>
<td>Introduction to geometry</td>
<td></td>
</tr>
<tr>
<td>Druick & Driver 1975</td>
<td>The graphic work of M.C. Escher</td>
<td></td>
</tr>
<tr>
<td>Emmer</td>
<td>Flatland</td>
<td></td>
</tr>
<tr>
<td>Michele Emmer</td>
<td>Film.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un chapitre sur les pavages plans. Un classique • A chapter on plane tessellations. A classic.</td>
<td>MAE-PJ</td>
</tr>
<tr>
<td>Fejes-Tóth 1964</td>
<td>Regular figures</td>
<td></td>
</tr>
<tr>
<td>Gardner 1975</td>
<td>On tessellating the plane with convex polygon tiles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un exposé théorique sur les pavages plans. Un autre classique • A theoretical account on plane tessellations. Another classic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un des nombreux articles de cet auteur consacrés aux pavages plans • One of many papers by this author dealing with plane tessellations.</td>
<td></td>
</tr>
</tbody>
</table>

Bibliography

The code in the first block of each bibliographic item consist of three parts, separated by dashes. The first letter indicates whether the item is a Book, Article, Preprint or Course notes. The middle letter(s) indicates whether the piece was intended primarily for an audience of Mathematicians, Architects or Engineers. The final letter(s) indicates if the piece touches on one or more of the principal themes of structural topology: Geometry (in general), Polyhedra, Juxtaposition or Rigidity.

The key-words or other annotations in the third column are intended to show the relevance of the work to research in structural topology, and do not necessarily reflect its overall contents or the intent of the author.
<table>
<thead>
<tr>
<th>Author/Reference</th>
<th>Title</th>
<th>URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huff 1977</td>
<td>Symmetry 5: Man’s observation of the natural environment</td>
<td>Link</td>
<td>De nombreux exemples de motifs ornementaux. Many examples of ornamental motifs.</td>
</tr>
<tr>
<td>Cardner 1977</td>
<td>The geometry of environment</td>
<td>Link</td>
<td>Un classique. Un exposé très clair et précis sur les isométries et les groupes de transformations, des illustrations architecturales, l’histoire. A classic. A very clear and precise account on isometries and transformation groups, some architectural illustrations, an historical account.</td>
</tr>
<tr>
<td>Kershner 1968</td>
<td>On paving the plane</td>
<td>Link</td>
<td>Une présentation de pavés hexagonaux et pentagonaux. A presentation of hexagonal and pentagonal tiles.</td>
</tr>
<tr>
<td>Humbert 1970</td>
<td>Ornamental design</td>
<td>Link</td>
<td>De nombreux exemples de motifs ornementaux. Many examples of ornamental motifs.</td>
</tr>
<tr>
<td>Jullien 1978</td>
<td>Dessins, groupes et ordinateurs</td>
<td>Link</td>
<td>Des rappels théoriques sur les groupes d’isométries bidimensionnels et un exposé de méthodes de construction. Some theoretical background on bidimensional isometry groups and an account on construction methods.</td>
</tr>
<tr>
<td>Huff 1976</td>
<td>Symmetry 4: Man’s conceptualization of the universe</td>
<td>Link</td>
<td>Des reproductions en facsimilé d’articles de la série Symmetry: an appreciation of its presence in man’s consciousness. Facsimile reproductions of papers from the series Symmetry: An Appreciation of its Presence in Man’s Consciousness.</td>
</tr>
<tr>
<td>Grünbaum & Shephard 1977</td>
<td>The eighty-one types of isohedral tilings in the plane</td>
<td>Link</td>
<td>Des reproductions en facsimilé d’articles de la série Symmetry: an appreciation of its presence in man’s consciousness. Facsimile reproductions of papers from the series Symmetry: An Appreciation of its Presence in Man’s Consciousness.</td>
</tr>
<tr>
<td>Gardner 1977</td>
<td>Extraordinary nonperiodic tiling that enriches the theory of tiles</td>
<td>Link</td>
<td>Quelques exemples de pavages non-réguliers. Some examples of non-regular tessellations.</td>
</tr>
<tr>
<td>Huff 1977</td>
<td>Symmetry 5: Man’s observation of the natural environment</td>
<td>Link</td>
<td>De nombreux exemples de motifs ornementaux. Many examples of ornamental motifs.</td>
</tr>
<tr>
<td>Kershner 1968</td>
<td>On paving the plane</td>
<td>Link</td>
<td>Une présentation de pavés hexagonaux et pentagonaux. A presentation of hexagonal and pentagonal tiles.</td>
</tr>
<tr>
<td>Humbert 1970</td>
<td>Ornamental design</td>
<td>Link</td>
<td>De nombreux exemples de motifs ornementaux. Many examples of ornamental motifs.</td>
</tr>
<tr>
<td>Jullien 1978</td>
<td>Dessins, groupes et ordinateurs</td>
<td>Link</td>
<td>Des rappels théoriques sur les groupes d’isométries bidimensionnels et un exposé de méthodes de construction. Some theoretical background on bidimensional isometry groups and an account on construction methods.</td>
</tr>
<tr>
<td>Huff 1976</td>
<td>Symmetry 4: Man’s conceptualization of the universe</td>
<td>Link</td>
<td>Des reproductions en facsimilé d’articles de la série Symmetry: an appreciation of its presence in man’s consciousness. Facsimile reproductions of papers from the series Symmetry: An Appreciation of its Presence in Man’s Consciousness.</td>
</tr>
<tr>
<td>Grünbaum & Shephard 1977</td>
<td>The eighty-one types of isohedral tilings in the plane</td>
<td>Link</td>
<td>Des reproductions en facsimilé d’articles de la série Symmetry: an appreciation of its presence in man’s consciousness. Facsimile reproductions of papers from the series Symmetry: An Appreciation of its Presence in Man’s Consciousness.</td>
</tr>
<tr>
<td>Gardner 1977</td>
<td>Extraordinary nonperiodic tiling that enriches the theory of tiles</td>
<td>Link</td>
<td>Quelques exemples de pavages non-réguliers. Some examples of non-regular tessellations.</td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Publisher</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>André Paccard</td>
<td></td>
<td></td>
<td>Two splendid books on the zelligeurs-craftsmen of Morocco, with exceptionally high quality illustrations.</td>
</tr>
<tr>
<td>R. Rivière</td>
<td></td>
<td></td>
<td>A crystallography handbook.</td>
</tr>
<tr>
<td>René Smeets</td>
<td></td>
<td></td>
<td>Many illustrations of ornamental production from various cultures.</td>
</tr>
<tr>
<td>A. Speiser</td>
<td></td>
<td></td>
<td>A remarkable account of the 17 plane groups.</td>
</tr>
<tr>
<td>P.S. Stevens</td>
<td></td>
<td></td>
<td>The best book we know on this topic.</td>
</tr>
</tbody>
</table>