EL TENSOR DE INÉRCIA
3. EL TENSOR DE INERCIA
2.1. Momento de inercia respecto a un eje genérico Ω

El momento de inercia de una superficie plana, respecto a un eje Ω contenido en el plano, vendrá determinado por la expresión

$$ I_Ω = \int d^2 s \cdot dΩ $$

Si definimos un vector $\mathbf{\epsilon}$ tal que:

$$ \mathbf{\epsilon} \perp \mathbf{n} $$

para lo cual:

$$ (tx, ty) = (-ny, nx) $$

será posible calcular $d_Ω$ mediante el producto escalar:

$$ d_Ω = \mathbf{n} \cdot \mathbf{\epsilon} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -ny \\ nx \end{bmatrix} = -nyx + ynx = $$

$$ = d_Ω = \begin{bmatrix} y & -x \\ -ny & nx \end{bmatrix} \begin{bmatrix} nx \\ ny \end{bmatrix} $$

(siendo $d_Ω$ positiva en el caso de la figura)

Por lo tanto:

$$ I_Ω = \int s^2 ds = \int s \left[nx \, ny \right] \begin{bmatrix} y & -x \\ -ny & nx \end{bmatrix} ds $$

$$ I_Ω = \int s \left[[nx \, ny] \begin{bmatrix} y^2 & -xy \\ -xy & x^2 \end{bmatrix} [nx] ds $$

$$ I_Ω = [nx \, ny] \left[\int y^2 ds - \int xy ds \right] [nx] $$

$$ I_Ω = [nx \, ny] \left[\int x^2 ds - \int xy ds \right] [ny] $$
de signo, de un tensor que denominaremos de INERCIA.

Así pues, mediante la MATRIZ ASOCIADA AL TENSOR DE INERCIA, que es:

\[
(T_1) = \begin{bmatrix}
I_x & -p_{xy} \\
-p_{xy} & I_y
\end{bmatrix}
\]

A cada dirección del plano, que definirá un cierto vector \(\vec{n} \), asociaremos un vector \(\vec{w}_n \), que denominaremos de INERCIA, mediante la expresión:

\[
\begin{bmatrix}
\psi_x^n \\
\psi_y^n
\end{bmatrix} = \begin{bmatrix}
I_x & -p_{xy} \\
-p_{xy} & I_y
\end{bmatrix} \begin{bmatrix}
\alpha_x \\
\alpha_y
\end{bmatrix} \iff \begin{bmatrix}
\psi_x^n \\
\psi_y^n
\end{bmatrix} = (T_1) \begin{bmatrix}
\alpha_x \\
\alpha_y
\end{bmatrix}
\]

La proyección del VECTOR INERCIA, sobre la dirección definida por \(\vec{n} \), nos proporciona el MOMENTO DE INERCIA respecto a un eje que posea dicha orientación y que contenga el origen de coordenadas.

Por lo tanto:

\[
I_n = \vec{n} \cdot \vec{w}_n
\]

\[
I_n = \vec{n} \cdot \left[\begin{bmatrix}
\psi_x^n \\
\psi_y^n
\end{bmatrix} = \vec{n} \cdot \left(T_1 \right) \begin{bmatrix}
\alpha_x \\
\alpha_y
\end{bmatrix} \right]
\]

(3.3.22)

\[
I_n = \vec{n} \cdot \left[\begin{bmatrix}
I_x & -p_{xy} \\
-p_{xy} & I_y
\end{bmatrix} \begin{bmatrix}
\alpha_x \\
\alpha_y
\end{bmatrix} \right]
\]

(Lo que en efecto es coincidente con (3.6.16))

La proyección del VECTOR INERCIA \(\vec{w}_n \), asociado a una dIRECCION \(\vec{n} \), sobre otra \(\vec{m} \), nos proporciona el PRODUCTO DE INERCIA CAMBIADO DE SIGNO, respecto a dos ejes que conteniendo el ORIGEN DE COORDENADAS POSEAN las citadas orientaciones. Por lo tanto:
Se define que dos ejes son CONJUGADOS DE INERCIA, cuando su producto de inercia es nulo, lo que equivale a señalar que \(\mathbf{m}^* \) es ortogonal con \(\Psi_n \).

Un vector \(\mathbf{V}_{m^*} \) que posea la dirección del eje \(m^* \) conjugado de inercia de \(n \), será:

\[\mathbf{V}_{m^*} = (-\Psi_x^*, \Psi_y^*) \]

Ya que permutando las componentes de un vector definido en el plano, y cambiando una de ellas de signo, se obtiene un vector ortogonal.

Como en todo tensor, existirán unas DIRECCIONES PRINCIPALES, que son aquellas para las cuales el VECTOR DE INERCIA asociado a las mismas, es colineal, es decir:

La proyección del vector inercia y el módulo concuerdan en tales circunstancias, por lo que:

\[|\Psi_{x_0}^*| = I_{x_0} \]
Ello implica:
\[\Psi_{x_0} = \hat{n}_{x_0} \cdot I_{x_0} \]

\[
\begin{bmatrix}
I_x - P_{x_4} & 0 \\
- P_{x_4} & I_y - I_{x_0}
\end{bmatrix}
\begin{bmatrix}
\hat{n}_{x_0}^x \\
\hat{n}_{x_0}^y
\end{bmatrix} =
\begin{bmatrix}
I_{x_0} \hat{n}_{x_0}^x \\
I_{x_0} \hat{n}_{x_0}^y
\end{bmatrix}
\]

(3.3.40)

Como (3.3.40) es un sistema de ecuaciones lineales homogéneas, para que posea una solución distinta de la impropia o trivial \((\hat{n}_{x_0}^x, \hat{n}_{x_0}^y) = (0, 0)\), es preciso que el rango sea inferior a dos, y por lo tanto se podrá establecer que el determinante siguiente sea nulo:

\[
\begin{vmatrix}
I_x - I_{x_0} & - P_{x_4} \\
- P_{x_4} & I_y - I_{x_0}
\end{vmatrix} = 0
\]

Desarrollando:
\[
I_{x_0}^2 - (I_x + I_y) I_{x_0} + I_x I_y - P_{x_4}^2 = 0
\]

(3.3.50)

El que el momento de inercia principal venga determinado por una ecuación de 2º grado, implica la existencia de dos valores y por lo tanto de dos direcciones principales que puede demostrarse que son entre sí ortogonales.

Dado que los momentos de inercia principales deben ser una característica de la figura analizada, fijado el origen de ejes, los coeficientes \(d_1\) y \(d_2\) de la ecuación (3.3.5) deben ser independientes del sistema de referencia.
Si las direcciones principales son ortogonales, y el vector asociado a ellas son colineales con las mismas, implica que las citadas DIRECCIONES PRINCIPALES SON CONJUGADAS DE INERCIÓN.

Ello implica que la matriz asociada al TENSOR DE INERCIÓN, cuando este, está referido a sus DIRECCIONES PRINCIPALES es:

\[
\begin{bmatrix}
I_{x_0} & 0 \\
0 & I_{y_0}
\end{bmatrix}
\]

Si dicha matriz debe verificar los invariantes con la matriz del tensor referido a los ejes \(x \) y \(y \), podemos establecer:

\[
\begin{bmatrix}
I_x & -P_{x_0} \\
-P_{x_0} & I_y
\end{bmatrix} \begin{bmatrix}
I_{x_0} & 0 \\
0 & I_{y_0}
\end{bmatrix}
\]

\[
\begin{cases}
I_{x_0} + I_{y_0} = J_1 \quad (= I_x + I_y) \\
I_{x_0} \cdot I_{y_0} = J_2 \quad (= |I_x - P_{x_0}| = I_x I_y - P_{x_0}^2)
\end{cases}
\]

Resolviendo el sistema, en efecto se alcanza la ecuación (3.3.05).

Conociendo los valores principales, pueden calcularse las direcciones principales mediante (3.3.04), en la que debe verificarse que las dos filas son proporcionales, en cuyo caso se tendrá la certeza de la correcta resolución de la ecuación (3.3.05), que se denomina ecuación secular o cantidad...
Así pues, debe cumplirse:

\[
\frac{I_x - I_{x_0}}{-P_{x_4}} = \frac{-P_{x_4}}{I_x - I_{x_0}}
\]

Comprobado el punto anterior puede eliminarse una de las dos ecuaciones de (3.3.84.), y podremos establecer simplemente:

\[
\begin{bmatrix}
I_x - I_{x_0} & -P_{x_4}
\end{bmatrix}
\begin{bmatrix}
x_{x_0}^o
x_{y_0}^o
\end{bmatrix}
= 0
\quad (3.3.80)
\]

Desarrollando:

\[n_{x_0}^o (I_x - I_{x_0}) - P_{x_4} n_{y_0}^o = 0\]

\[
\frac{n_{y_0}^o}{n_{x_0}^o} = \frac{I_x - I_{x_0}}{-P_{x_4}} = \tan \alpha_{x_0}^o
\quad (3.3.90)
\]

Análogamente:

\[
\frac{I_x - I_{y_0}}{-P_{x_4}} = \tan \alpha_{y_0}^o
\quad (3.3.100)
\]

Lo que nos proporciona una nueva comprobación, ya que \(\alpha_{x_0}^o\) y \(\alpha_{y_0}^o\) deben diferir en 90° al ser \(X_0\) e \(Y_0\) ortogonales tal como ya hemos indicado.

En el caso de TENSORES PLANOS, como es el caso del TENSOR DE INERCIA, es factible determinar las DIRECCIONES principales mediante una interpretación de la expresión (3.3.8) que ahora exponemos.

Si el producto de (3.3.8) debe ser nulo, significa que si definimos un vector con las componentes \((I_x - I_{x_0}, -P_{x_4})\) este debe ser ortogonal con el \(n_{x_0}^o\), puesto que puede interpretarse que (3.3.80) es el producto escalar de dos vectores.

\[
\nabla \cdot \left(I_x - I_{x_0}, -P_{x_4} \right) = \left[I_x - I_{x_0}, -P_{x_4} \right] \begin{bmatrix} n_{x_0}^o \\ n_{y_0}^o \end{bmatrix} = 0
\]

\[
\nabla \cdot n_{x_0}^o = 0 \quad \Rightarrow \quad \nabla \perp n_{x_0}^o
\]
Como el eje Y_0 también debe ser ortogonal con X_0, y en consecuencia con N_{X_0}, resultará:

$$
\text{Si } V \cdot N_{X_0} = 0 \implies V \perp N_{X_0} \implies V \text{ colineal con } Y_0
$$

Todo lo expuesto, no es más que un resumen de la teoría de tensores adaptada a un tensor definido en el plano y en particular al tensor de inercia.

Como tal tensor, a los momentos de inercia se les podrá aplicar:

* **EL CÍRCULO DE MOHR**

* **EL CÍRCULO DE LAND**

* **ELIPSE DE LAME**

* **CÓNICA INDICADORA**

Basta con aplicar lo expuesto con carácter general, teniendo en cuenta que en el caso del tensor de inercia, la forma bilineal es el menos producto de inercia, por lo cual el eje de ordenadas que para estas construcciones se representaba hacia abajo y se asociaba a la forma bilineal, ahora se dibujará de forma ordinaria y se utilizará para la representación del producto de inercia.

Repasemos la sistemática.
EL CÍRCULO DE MOHR. Si conocemos I_x, I_y y P_{xy} utilizamos el eje de abscisas para representar los momentos de inercia, y el eje de ordenadas para los productos de inercia, mediante esto que se fijará, para que sea factible efectuar la representación gráfica que a continuación describimos.

Se representarán con origen 0, dos segmentos OP_x y OP_y indicativos de los momentos de inercia I_x e I_y respectivamente. (situados sobre el eje de abscisas).

Siempre, con origen P_y, se dibujará un segmento orientado según el eje de ordenadas, que simbolizaremos por P_yO y que representará el PRODUCTO DE INERCIA, por lo que se dibujará hacia arriba si este es positivo, y hacia abajo si dicho producto es negativo. El extremo de este segmento se denominará POLO (P_0).

El centro del CÍRCULO DE MOHR es el punto intermedio entre P_y y P_x, que simbolizaremos por G.

El radio de dicho círculo será \overline{PO}, por lo cual puede estar...
Si deseamos calcular el momento de inercia respecto a un cierto eje n, basta con trazar desde el polo P_0, una paralela a dicho eje, la cual cortará al círculo de Mohr en otro punto P_n, cuya abscisa representará el momento de inercia con respecto al citado eje.

La ordenada del punto P_n, representará el producto de inercia respecto a dos ejes ortogonales n y m, tales que el sentido del m es el que le correspondería como rotación del eje y, cuando el x coincidiese con el n.
El vector inercia $\vec{\Phi}_n$ asociado a una dirección n, puede construirse conociendo que la proyección del mismo sobre n es el momento de inercia I_n, y la proyección sobre m proporciona Φ_{nm}; por lo tanto, si $\Phi_{nm} > 0$, se situará sobre el semieje negativo del segmento Φ_{nm}. Así pues:

Conocido el vector inercia $\vec{\Phi}_n$, puede obtener fácilmente el producto de inercia respecto a dos ejes $\vec{\Phi}_{m}$, puesto que bastará proyectarlo sobre el eje $\vec{\Phi}_n$, y el citado producto será dicho producto cambiado de signo.

En el caso de la figura, si $\Phi_{mv} < 0$.
El círculo de Mohr permite calcular fácilmente las direcciones y los momentos de inercia PRINCIPALES, ya que si ser ejes ORTOGONALES que poseen producto de inercia nulo, el punto \(P_o \) debe tener ORDENADA NULA, por lo que las direcciones principales se obtendrán uniendo el PUNTO \(P_o \) o POLO con los dos puntos de corte del círculo DE MOHR con el eje de abscisas, y los momentos de inercia principales serán las abscisas de dichos puntos de corte, tal como indicamos en la figura siguiente.
EL CÍRCULO DE LAND

Es similar al círculo de Mohr, pero a diferencia de este permite obtener el producto de inercia respecto a dos ejes cualesquiera, sin necesidad de construcción gráfica auxiliar.

El eje \(X \) se utilizará como eje de representación para \(I_y \) e \(I_x \), y el eje \(Y \), para el producto de inercia \(P_{xy} \), tal como indicamos en la figura.

(Siempre se sitúa PRIMERO el segmento \(OP_y \) indicativo de \(I_y \), y a continuación el segmento \(OP_x \) representativo de \(I_x \)).

\(P_{xy} \) se situará en el semiespacio superior si \(P_{xy} > 0 \), y en caso contrario en el interior.

El centro del círculo de LAND, es el arco capaz de \(OP_x \).

El círculo de LAND debe contener el punto principal o polo \(P_0 \).

Para obtener el momento de inercia respecto a un eje, se traza el mismo, el cual cortará el círculo de LAND en un punto \(P_n \), que tendrá como diámetro asociado uno que simbolizaremos por \(D_n \), sobre el que proyectaremos el polo \(P_0 \), obteniendo un punto \(P_{0,n} \), resultando que el segmento \(P_{0,n} \) será a la escala elegida indicativo de \(I_n \)
Para obtener el producto de inercia respecto a dos ejes n y m, se trazan los mismos, los cuales cortarán al círculo de LANO en dos puntos Pn y Pm, que definirán una recta Rnm. El producto de inercia Pnm es la mínima distancia del polo Pn a la recta Pnm.

El signo de Pnm, puede determinarse si analizamos la posición del polo con respecto a la secante Rnm, tal como se indica en la figura siguiente; puesto si Pn está situado en la zona rayada, Pnm tendrá signo opuesto al de Pxn, y en caso contrario tendrá signo.

Zonas de cambio de signo
La determinación del eje conjugado de inercia de un n, es inmediata utilizando el círculo de Lando, puesto que para que el producto de inercia sea nulo es preciso que la distancia del polo a la secante sea cero, es decir, que la secante contenga el polo, por lo que si conocemos un eje n, su conjugado se obtendrá determinando el punto F_n de corte del círculo con dicho eje n, y uniendo este punto con el polo, P_0, mediante una recta R_m, que cortará al círculo en otro punto F_m que unido con el origen define el eje m conjugado de inercia del n.

La obtención de los ejes principales se efectuará atendiendo que deben ser conjugados y ortogonales, por lo que la secante R_m debe ser un diámetro, por lo que determinaremos dicha secante uniendo P_0 con el centro, y los puntos de corte del diámetro con el círculo, unidos con el origen nos proporcionarán las direcciones principales X_0, Y_0.
EJEMPLO 3.1.1.

Obténgase de la sección croquizada en las Figs. 1.17.5. y 1.17.8.:

19) El momento de inercia con respecto al eje U que contiene el C. de G., así como al extremo superior izquierdo, del ala superior. 29) El producto de inercia con respecto al mencionado eje U, y al eje W que conteniendo también el C. de G. pasa por el extremo inferior derecho, del ala inferior. (Véase Fig. 3.1.1.).

SOLUCION

De acuerdo con los resultados obtenidos en el EJEMPLO 1.17.1., sabemos que:

\[I_G^x = 250798 \]
\[I_G^y = 61902 \]

En el EJEMPLO 1.21.1., calculamos:

\[P_{xG}^yA = -88740 \]

Ahora precisamos determinar las proyecciones de los segmentos unidad que situemos sobre los ejes U y W, para lo cual, nos basaremos en que ya conocemos las proyección de los segmentos no unitarios \(\overline{CA} \) y \(\overline{CB} \):

\[\overline{CA}_x = -22.7 \]
\[\overline{CA}_y = 22.58 \]
\[\overline{CB}_x = 17.3 \]
\[\overline{CB}_y = -32.42 \]
Calculemos las longitudes de dichos segmentos \(\overline{CA} \) y \(\overline{CB} \):

\[
\overline{CA} = \sqrt{\frac{CA_x^2 + CA_y^2}{CA_x^2 + CA_y^2}} = \sqrt{\frac{(-22.7)^2 + (22.58)^2}{17.3^2 + (-32.42)^2}} = 32.0179 \\
\overline{CB} = \sqrt{\frac{CB_x^2 + CB_y^2}{CB_x^2 + CB_y^2}} = \sqrt{\frac{17.3^2 + (-32.42)^2}{19254}} = 36.7470
\]

Las proyecciones de los segmentos unidad, serán las de los segmentos \(\overline{CA} \) y \(\overline{CB} \), pero 32.0179 y 36.747 veces menores. A partir, como dichos segmentos unidad, se situarán sobre las direcciones positivas de los ejes respectivos, resultarán que habrá que cambiar el signo de ambas proyecciones en los dos casos.

Consecuentemente:

\[
U_x = -\frac{CA_x}{\overline{CA}} = -\frac{-22.7}{32.0179} = 0.7089 = U_x \\
U_y = -\frac{CA_y}{\overline{CA}} = -\frac{22.58}{32.0179} = -0.7052 = U_y \\
W_x = -\frac{CB_x}{\overline{CB}} = -\frac{-17.3}{36.747} = -0.4707 = W_x \\
W_y = -\frac{CB_y}{\overline{CB}} = -\frac{-32.42}{36.747} = 0.8822 = W_y
\]

Con lo que se dispone de todos los datos precisos para aplicar la formulación correspondiente:

\[
I_U = \begin{bmatrix} U_x & U_y \end{bmatrix} \begin{bmatrix} I_{xx} & -P_{xy} & \bar{y}_g \\ -P_{yx} & I_{yy} & \bar{y}_g \\ \bar{y}_g & \bar{y}_g & I_{zz} \end{bmatrix} \begin{bmatrix} U_x \\ U_y \end{bmatrix} = \begin{bmatrix} 0.7089 & -0.7052 \end{bmatrix} \begin{bmatrix} 250798 & 88740 & 0.7089 \\ 88740 & 61902 & -0.7052 \end{bmatrix} \begin{bmatrix} 0.7089 \\ -0.7052 \end{bmatrix} = \begin{bmatrix} 68095 = I_U \end{bmatrix}
\]

\[
P_{UW} = \begin{bmatrix} W_x & W_y \end{bmatrix} \begin{bmatrix} I_{xx} & -P_{xy} & \bar{y}_g \\ -P_{yx} & I_{yy} & \bar{y}_g \\ \bar{y}_g & \bar{y}_g & I_{zz} \end{bmatrix} \begin{bmatrix} W_x \\ W_y \end{bmatrix} = \begin{bmatrix} -0.4707 & 0.8822 \end{bmatrix} \begin{bmatrix} 250798 & 88740 & 0.7089 \\ 88740 & 61902 & -0.7052 \end{bmatrix} \begin{bmatrix} -0.4707 \\ 0.8822 \end{bmatrix} = \begin{bmatrix} 37244 = P_{UW} \end{bmatrix}
\]

Como el producto de la matriz cuadrada por la matriz columna ya se resolvió, podemos establecer que:

\[
P_{UW} = \begin{bmatrix} -0.4707 & 0.8822 \end{bmatrix} \begin{bmatrix} 115211 \end{bmatrix} = 0,4707 \times 115211 - 0,8822 \times 19254 = 37244 = P_{UW}
\]
EJEMPLO 3.1.2.

De la sección utilizada en ejemplos anteriores, entre ellos en el 3.1.1., obténgase el eje conjugado de inercia del eje U.

SOLUCION: De los ejemplos anteriores se desprenden parte de los datos croquizados en la Fig. 3.1.2., así como los siguientes:

- $I_x = 250798$
- $I_y = 61902$
- $P_{xy} = -88740$
- $U_x = 0.7089$
- $U_y = -0.7052$

Las componentes del vector Φ^*, asociado a la dirección U, son:

\[
\begin{bmatrix}
\Phi_x \\
\Phi_y \\
\end{bmatrix} = \begin{bmatrix}
I_x & -P_{xy} \\
-P_{xy} & I_y \\
\end{bmatrix} \cdot \begin{bmatrix}
U_x \\
U_y \\
\end{bmatrix} = \begin{bmatrix}
250798 & 88740 \\
88740 & 61902 \\
\end{bmatrix} \cdot \begin{bmatrix}
0.7089 \\
-0.7052 \\
\end{bmatrix}
\]

valores que ya habían sido, en realidad calculados en el ejemplo 3.1.1.

El eje conjugado es perpendicular a Φ^*, por lo que será colineal con el vector Ψ, que vamos a definir, de forma que sea ortogonal con el mencionado vector Φ:

\[
\Psi = (-19254, 115211) = (\Psi_x, \Psi_y)
\]

El ángulo θ que formará este vector con el eje X, lo podemos obtener de la forma siguiente:

\[
tag. \theta' = \frac{\Psi_y}{\Psi_x} = \frac{115211}{-19254} = -5.98 \quad (\theta = -80.51^\circ) \quad (\text{ver fig. 3.1.3.})
\]
Si deseásemos calcular las proyecciones de un segmento unidad situado sobre \(W \), obtendríamos la longitud \(\overrightarrow{CD} \), en primer lugar:

\[
\overrightarrow{CD}_x = 1 \\
\overrightarrow{CD}_y = -5.98 \\
\overrightarrow{CD} = \sqrt{1^2 + 5.98^2} = 6.06
\]

\[
W_x = \frac{\overrightarrow{CD}_x}{\overrightarrow{CD}} - \frac{1}{6.06} = 0.1648 \\
W_y = \frac{\overrightarrow{CD}_y}{\overrightarrow{CD}} = \frac{-5.98}{6.06} = -0.9863
\]

Así pues: \(\overrightarrow{W} (0.1648, -0.9863) \)

EJEMPLO 3.1.3.

Determinación de los momentos de inercia principales y centrales de la figura tratada en los ejemplos 3.1.1. y 3.1.2.

SOLUCIÓN:

Sabemos que:

\[
l_{x_G} = 250798 \\
l_{y_G} = 61902 \\
p_{x_Gy_G} = -88740
\]

Por lo tanto, los invariantes valdrán:

\[
l_{x_G} + l_{y_G} = 250798 + 61902 = 312700
\]

\[
\begin{vmatrix}
l_{x_G} & -p_{x_Gy_G} \\
-p_{x_Gy_G} & l_{y_G}
\end{vmatrix} = \begin{vmatrix} 250798 & -88740 \\ -88740 & 61902 \end{vmatrix} = 250798 \cdot 61902 - 88740 = 7650.10^6
\]

Consecuentemente, los momentos de inercia principales y centrales, deben verificar la invarianza de dichos valores, manteniendo nulo su producto de inercia (ya que a la vez son ejes conjugados de inercia).
Por lo tanto:
\[
\begin{align*}
I_{x_0} + I_{y_0} &= 312700 \\
I_{x_0} + 0 &= 7650 \cdot 10^6 \\
0 + I_{y_0} &= 7650 \cdot 10^6
\end{align*}
\]

Sustituyendo en la primera:
\[
I_{y_0} = \frac{7650 \cdot 10^6}{I_{x_0}}
\]

\[
I_{x_0} + \frac{7650 \cdot 10^6}{I_{x_0}} = 312700
\]

\[
l^2_{x_0} - 312700 l_{x_0} + 7650 \cdot 10^6 = 0
\]

Recordando que la ecuación:
\[
x^2 + bx + c = 0
\]

tiene como raíces:
\[
x = \frac{-b \pm \sqrt{(b)^2 - 4ac}}{2a}
\]

resultará:
\[
\begin{align*}
I_{x_0} &= 156350 + \sqrt{156350^2 - 7650 \cdot 10^6} = 156350 + 129596 \\
I_{y_0} &= \frac{7650 \cdot 10^6}{156350 + 129596} = 285946
\end{align*}
\]

Luego los momentos de inercia principales son:
\[
\begin{align*}
I_{x_0} &= 285946 \\
I_{y_0} &= 26754
\end{align*}
\]

Posteriormente, veremos cómo determinamos la orientación de los ejes correspondientes.

EJEMPLO 3.1.4

Calcúlen las direcciones principales, conocidos los datos utilizados y obtenidos en el EJEMPLO 3.1.3.

SOLUCION: Sabíamos que:
\[
\begin{align*}
I_{x_g} &= 250793 \\
I_{y_g} &= 61902 \\
P_{x_gy_g} &= -88740
\end{align*}
\]

De cuyos valores, se obtuvieron los momentos de inercia principales:
\[
I_{x_0} = 285946 \\
I_{y_0} = 26754
\]

La matriz asociada al sistema, es:
\[
\begin{bmatrix}
250793 & 88740 \\
88740 & 61902
\end{bmatrix}
\]

\[
\begin{align*}
\begin{bmatrix}
I_{x_0} & -P_{x_0y_0} \\
-P_{x_0y_0} & I_{y_0}
\end{bmatrix}
\end{align*}
\]
Para la obtención del eje \(X_0 \), restemos \(l_{y_0} \):

\[
\begin{bmatrix}
 l_{x_0} & -l_{y_0} & -P_{x_0}y_g \\
 -P_{x_0}y_g & l_{y_0} & -l_{y_0}
\end{bmatrix} = \begin{bmatrix}
 224044 & 88740 \\
 88740 & 35148
\end{bmatrix}
\]

Como las filas definen vectores colineales a \(X_0 \), para obtener el ángulo que forma \(X_0 \) con \(X \), nos bastará con una simple división entre las componentes:

\[
\begin{align*}
tag \cdot \theta &= \frac{88740}{224044} = 0.3960 \\
tag \cdot \theta &= \frac{35148}{88740} = 0.3960
\end{align*}
\]

\[\theta = 21^\circ, 36'\]

El eje \(Y_0 \), vendrá definido por una tangente recíproca y con signo opuesto:

\[
tag \cdot \beta = -\frac{1}{\tag \cdot \theta} = -2.5247 \Rightarrow \beta = -682.23'
\]

Obsérvese (fig. 3.1.5.), que el eje \(Y_0 \), al que se le había asignado momento de inercia mínimo, sigue en consecuencia, la dirección en que se alarga la figura.
Fig. 3.1.4

Fig. 3.1.6

$P_{uW} = 38000 \text{ cm}^4$

$I_u = 68000 \text{ cm}^4$
EJEMPLO 3.1.6. Conocidos los momentos de inercia:

\[I_{x_0} = 250798 \]
\[I_{y_0} = 61902 \]
\[P_{x_0y_0} = -89740 \]

Obténgase de la figura croquisada (fig. 3.1.11.)

12) El momento de inercia con respecto al eje U que contiene el C. de G., así como el punto A, (extremo superior izquierdo, del ala superior).

20) El producto de inercia con respecto al mencionado eje U, y al eje W, que contiene el C. de G. pasa por B, extremo inferior derecho, del ala inferior.

30) Eje conjugado de inercia de U.

40) Determinación de los ejes y momentos de inercia principales.

SOLUCION.

La solución está graficada en las siguientes figuras:
Fig. 3.1.14.

ESCALA DE MOMENTOS DE INERCIA

0 0.5 \times 10^5 10^5 \text{ cms}^4

Fig. 3.1.16.