CAPÍTULO 1: SUMARIO
CAPÍTULO 1: SUMARIO ..3

CAPÍTULO 2: INSTALACIÓN DE ILUMINACIÓN ...7

2.1. SOFTWARE LUX:IEP v8 ..10
2.2. RESULTADOS ...11
2.2.1. Luminarias ...14

CAPÍTULO 3: INSTALACIÓN DE SEGURIDAD CONTRA INCENDIOS ...17

3.1. CARACTERIZACIÓN ..19
3.1.1. METODOLOGÍA DE CÁLCULO ..20
3.2. REQUISITOS CONSTRUCTIVOS ..23
3.2.1. Sectorización ...23
3.2.1.1. Determinación de coeficiente Ci ..25
3.2.1.2. Valores de densidad de carga y riesgo de activación asociado ..26
3.2.1.3. Nivel de riesgo de cada sector ..27
3.2.1.4. Nivel de riesgo intrínseco del edificio ...30
3.2.2. Evacuación del establecimiento ..30
3.2.3. Ventilación y eliminación de humos y gases de la combustión en los edificios industriales31
3.2.4.1. Estabilidad al fuego de los elementos constructivos portantes ..33
3.2.4.2. Resistencia al fuego de elementos constructivos de cerramientos ..33
3.3. REQUISITOS DE LA INSTALACIÓN ...34
3.3.1. Sistemas automáticos de detección de incendio ..34
3.3.2. Sistemas manuales de alarma de incendio ..35
3.3.3. Sistemas de comunicación de alarma ..35
3.3.4. Sistemas de abastecimientos de agua contra incendios ..36
3.3.5. Sistemas de hidrantes exteriores ..39
3.3.6. Extintores de Incendio ..39
3.3.7. Sistemas de bocas de incendio equipadas ..42
3.3.8. Sistema de columna seca ..43
3.3.9. Sistemas de rociadores automáticos de agua ..43
3.3.10. Sistemas de agua pulverizada ...43
3.3.11. Sistemas de espuma física ...43
3.3.12. Sistemas de extinción por polvo ..43
3.3.13. Sistemas de extinción por agentes extintores gaseosos ..43
3.3.14. Sistemas de alumbrado de emergencia ..43
3.3.15. Señalización ..47

CAPÍTULO 4: INSTALACIÓN ELÉCTRICA ..49

4.1. DESCRIPCIÓN DE LA INSTALACIÓN ..50
4.2. POTENCIA PREVISTA PARA LA INSTALACIÓN ..51
4.3. INSTALACIÓN INTERIOR ...56
4.4. DISPOSITIVOS DE PROTECCIÓN ...58
4.5. LÍNEAS DE DISTRIBUCIÓN Y ACOMETIDA ..59
4.6. RESUMEN DE CÁLCULOS ..61
4.7. COMPENSACIÓN DE ENERGÍA REACTIVA ..63
4.7.1. Cálculo de la instalación ..64

CAPÍTULO 5: INSTALACIÓN DE AGUA ..67

5.1. AGUA FRIA ...68
5.1.1. Dimensionamiento de la Instalación ..70
5.2. AGUA CALIENTE SANITARIA ...73
5.2.1. Dimensionamiento de la Instalación ..74

-4-
Proyecto de las instalaciones de una nave industrial y estudio de la implementación de energías alternativas

5.3. INSTALACIÓN CONTRIBUCIÓN SOLAR MINIMA PARA ACS ... 76
 5.3.1. Datos de entrada .. 77
 5.3.3. Sistema de acumulación .. 79
 5.3.4. Sistema de termotransferencia .. 79
 5.3.5. Circuito Hidráulico .. 80
 5.3.6. Sistema de regulación y control .. 82
 5.3.7. Demandas y contribuciones solares .. 83
 5.3.8. Resumen ... 83

CAPÍTULO 6: INSTALACIÓN DE VENTILACIÓN ... 85
 6.1. TALLER NAVE 1 ... 87
 6.1.1. Planta Baja ... 87
 6.1.2. Planta Superior ... 87
 6.2. TALLER NAVE 2 ... 97
 6.3. LAVABOS .. 106
 6.3.1. Lavabo Nave 1 ... 106
 6.3.2. Lavabo Nave 2 ... 107
 6.4. VESTUARIOS ... 108
 6.4.1. Vestuario Nave 1 ... 108
 6.4.2. Vestuario Nave 2 ... 108
 6.5. COMEDOR .. 108
 6.6. OFICINAS .. 109
 6.6.1. Despacho .. 109
 6.6.2. Oficina .. 109

CAPÍTULO 7: ENERGÍAS ALTERNATIVAS .. 113
 7.1. GENERALIDADES ... 114
 7.1.1. Consumo eléctrico diario .. 114
 7.1.2. Necesidades Energéticas ... 114
 7.2. ENERGÍA SOLAR FOTOVOLTAICA ... 116
 7.2.2. Cálculo del número de paneles Solares .. 119
 7.2.3. Cálculo de la potencia nominal del inversor .. 120
 7.2.4. Cálculo de la separación de filas de paneles según el IDEA ... 120
 7.2.5. Cálculo de la energía generada ... 121
 7.2.6. Reducción de las emisiones de CO2 ... 123
 7.2.7. Coste de la instalación fotovoltaica ... 123
 7.3. ENERGÍA EÓLICA .. 124
 7.3.1. Emplazamiento ... 124
 7.3.2. Estudio del Potencial eólico .. 125
 7.3.3. Selección del aerogenerador ... 132
 7.3.4. Otros componentes de la instalación ... 136
 7.3.5. Reducción de emisiones .. 136
 7.3.6. Coste de la instalación eólica ... 137
 7.4. CONCLUSIONES .. 138
CAPÍTULO 2: INSTALACIÓN DE ILUMINACIÓN

La instalación de iluminación se lleva a cabo con el objetivo proporcionar a cada lugar o puesto de trabajo unas condiciones lumínicas suficientes para el buen desarrollo de la actividad dentro del establecimiento. Según el real decreto 486/1997 de 14 de abril, por el que se establecen las disposiciones mínimas de seguridad y salud en los lugares de trabajo. La iluminación de cada zona o parte de un lugar de trabajo deberá adaptarse a las características de la actividad que se efectúe en ella, teniendo en cuenta:

a) Los riesgos para la seguridad y salud de los trabajadores dependientes de las condiciones de visibilidad.

b) Las exigencias visuales de las tareas desarrolladas.
Los niveles mínimos de iluminación de los lugares de trabajo en este caso en particular serán los establecidos en las siguientes tablas tal y como se presenta en el anteproyecto.

TABLA 1.1. Iluminancias según zonas.

<table>
<thead>
<tr>
<th>Tareas y clases de local</th>
<th>Iluminancia media en servicio (lux)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mínimo</td>
</tr>
<tr>
<td>Zonas generales de edificios</td>
<td></td>
</tr>
<tr>
<td>Zonas de circulación, pasillos</td>
<td>50</td>
</tr>
<tr>
<td>Escaleras, escaleras móviles, roperos, lavabos, almacenes y archivos</td>
<td>100</td>
</tr>
<tr>
<td>Centros docentes</td>
<td></td>
</tr>
<tr>
<td>Aulas, laboratorios</td>
<td>300</td>
</tr>
<tr>
<td>Bibliotecas, salas de estudio</td>
<td>300</td>
</tr>
<tr>
<td>Oficinas</td>
<td></td>
</tr>
<tr>
<td>Oficinas normales, mecanografiado, salas de proceso de datos, salas de conferencias</td>
<td>450</td>
</tr>
<tr>
<td>Grandes oficinas, salas de delineación, CAD/CAM/CAE</td>
<td>500</td>
</tr>
<tr>
<td>Comercios</td>
<td></td>
</tr>
<tr>
<td>Comercio tradicional</td>
<td>300</td>
</tr>
<tr>
<td>Grandes superficies, supermercados, salones de muestras</td>
<td>500</td>
</tr>
<tr>
<td>Industria (en general)</td>
<td></td>
</tr>
<tr>
<td>Trabajos con requerimientos visuales limitados</td>
<td>200</td>
</tr>
<tr>
<td>Trabajos con requerimientos visuales normales</td>
<td>500</td>
</tr>
<tr>
<td>Trabajos con requerimientos visuales especiales</td>
<td>1000</td>
</tr>
<tr>
<td>Viviendas</td>
<td></td>
</tr>
<tr>
<td>Dormitorios</td>
<td>100</td>
</tr>
<tr>
<td>Cuartos de aseo</td>
<td>100</td>
</tr>
<tr>
<td>Cuartos de estar</td>
<td>200</td>
</tr>
<tr>
<td>Cocinas</td>
<td>100</td>
</tr>
</tbody>
</table>
Proyecto de las instalaciones de una nave industrial y estudio de la implementación de energías alternativas

Tabla 1.2. Iluminancias recomendadas para actividades.

<table>
<thead>
<tr>
<th>TIPO DE TAREA Y ACTIVIDAD</th>
<th>Em lux</th>
<th>UGRL</th>
<th>Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estampación en caliente y soldadura</td>
<td>300</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>Talleres de estirado de hilos y tubos, conformado en frio</td>
<td>300</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>Mecanización de chapa (espesor > 5 mm)</td>
<td>200</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>Mecanización de chapa (espesor < 5 mm)</td>
<td>300</td>
<td>22</td>
<td>60</td>
</tr>
</tbody>
</table>

Siempre que sea posible, los lugares de trabajo tendrán una iluminación natural, que deberá complementarse con una iluminación artificial cuando la primera, por sí sola, no garantice las condiciones de visibilidad adecuadas. En tales casos se utilizará preferentemente la iluminación artificial general, complementada a su vez con una localizada cuando en zonas concretas se requieran niveles de iluminación elevados.

El nivel de iluminación de una zona en la que se ejecute una tarea se medirá a la altura donde ésta se realice; en el caso de las zonas de trabajo en maquinaria en el taller se dispondrá a una altura de 1 metro sobre el suelo, en el caso de zonas de uso general a 85 cm. del suelo y en el de las vías de circulación a nivel del suelo.

Recordemos que la iluminación de los lugares de trabajo deberá cumplir, además, en cuanto a su distribución y otras características, las siguientes condiciones:

a) La distribución de los niveles de iluminación será lo más uniforme posible.

b) Se procurará mantener unos niveles y contrastes de luminancia adecuados a las exigencias visuales de la tarea, evitando variaciones bruscas de luminancia dentro de la zona de operación y entre ésta y sus alrededores.

c) Se evitarán los deslumbramientos directos producidos por la luz solar o por fuentes de luz artificial de alta luminancia. En ningún caso éstas se colocarán sin protección en el campo visual del trabajador.

d) Se evitarán, asimismo, los deslumbramientos indirectos producidos por superficies reflectantes situadas en la zona de operación o sus proximidades.

e) No se utilizarán sistemas o fuentes de luz que perjudiquen la percepción de los contrastes, de la profundidad o de la distancia entre objetos en la zona de trabajo, que produzcan una impresión visual de intermitencia o que puedan dar lugar a efectos estroboscópicos.
Por tanto, se dispondrá por lo general un iluminancia media de 300 lux para las zonas de taller, 100 lux para pasillos y zonas de circulación, 500 lux para la oficina, y 150 para lavabos y comedor.

2.1. SOFTWARE LUX:IEP v8

Este software permite crear proyectos de iluminación profesionales y está abierto a las luminarias de los fabricantes. Un software hecho por planificadores para planificadores. Utilizado por varios cientos de miles de diseñadores de iluminación en todo el mundo. Y cada día son más.

Con LUX:IEP v8, se puede crear de la manera más simple e intuitiva, mundos virtuales. Con la ayuda de este programa se desarrollará la iluminación de la nave industrial.
2.2. RESULTADOS

En las tablas que se muestran a continuación se exponen por diferentes zonas el nombre de la luminaria instalada, la familia, zona, el número de luminarias instaladas, el número de lámparas por luminaria y la potencia que corresponde.

Tabla 1.3. Cuadro resumen de luminarias TALLER 1 planta baja.

<table>
<thead>
<tr>
<th>NOMBRE DE LUMINARIA</th>
<th>FAMILIA</th>
<th>ZONA</th>
<th>Núm. DE LUMINARIAS</th>
<th>Núm. DE LÁMPARAS POR LUMINARIA</th>
<th>POTENCIA POR LÁMPARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN20 1XME250 E40 IN GY 9007 GTF</td>
<td>IN 20</td>
<td>Zona de 6m de altura</td>
<td>4</td>
<td>1</td>
<td>250 W</td>
</tr>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>Zona de 3m de altura</td>
<td>19</td>
<td>2</td>
<td>18 W</td>
</tr>
</tbody>
</table>

\[\Sigma P = 1684 \text{ W}\]

Para conocer a qué circuito corresponde cada luminaria y como se distribuyen consultar los planos nº 9 y nº10 del documento de planos.

Tabla 1.4. Cuadro resumen de luminarias TALLER 1 planta superior.

<table>
<thead>
<tr>
<th>NOMBRE DE LUMINARIA</th>
<th>FAMILIA</th>
<th>ZONA</th>
<th>Núm. DE LUMINARIAS</th>
<th>Núm. DE LÁMPARAS POR LUMINARIA</th>
<th>POTENCIA POR LÁMPARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>ALtillo TALLER 1</td>
<td>14</td>
<td>2</td>
<td>18 W</td>
</tr>
</tbody>
</table>

\[\Sigma P = 504 \text{ W}\]
Tabla 1.5. Cuadro resumen de luminarias COMEDOR, VESTUARIOS Y LAVABO de Nave 1.

<table>
<thead>
<tr>
<th>NOMBRE DE LUMINARIA</th>
<th>FAMILIA</th>
<th>ZONA</th>
<th>Núm. DE LUMINARIAS</th>
<th>Núm. DE LÁMPARAS POR LUMINARIA</th>
<th>POTENCIA POR LÁMPARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>COMEDOR Y PASILLO</td>
<td>3</td>
<td>2</td>
<td>18 W</td>
</tr>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>VESTUARIOS</td>
<td>1</td>
<td>2</td>
<td>18 W</td>
</tr>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>LAVABOS</td>
<td>1</td>
<td>2</td>
<td>18 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Σ P=</td>
<td></td>
<td>180 W</td>
</tr>
</tbody>
</table>

Tabla 1.6. Cuadro resumen de luminarias TALLER 2.

<table>
<thead>
<tr>
<th>NOMBRE DE LUMINARIA</th>
<th>FAMILIA</th>
<th>ZONA</th>
<th>Núm. DE LUMINARIAS</th>
<th>Núm. DE LÁMPARAS POR LUMINARIA</th>
<th>POTENCIA POR LÁMPARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN20 1XME250 E40 IN GY 9007 GTF</td>
<td>IN 20</td>
<td>Zona de 6m de altura</td>
<td>3</td>
<td>1</td>
<td>250 W</td>
</tr>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>Zona de 6m de altura</td>
<td>3</td>
<td>2</td>
<td>18 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Σ P=</td>
<td></td>
<td>858 W</td>
</tr>
</tbody>
</table>
Tabla 1.7. Cuadro resumen de luminarias OFICINA Y VESTUARIO NAVE 2 planta baja.

<table>
<thead>
<tr>
<th>NOMBRE DE LUMINARIA</th>
<th>FAMILIA</th>
<th>ZONA</th>
<th>Núm. DE LUMINARIAS</th>
<th>Núm. DE LÁMPARAS POR LUMINARIA</th>
<th>POTENCIA POR LÁMPARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>DESPACHO</td>
<td>1</td>
<td>2</td>
<td>18 W</td>
</tr>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>VESTUARIOS</td>
<td>2</td>
<td>2</td>
<td>18 W</td>
</tr>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>ACCESO Y ESCALERAS</td>
<td>2</td>
<td>2</td>
<td>18 W</td>
</tr>
</tbody>
</table>

\[\Sigma P = 180 \text{ W} \]

Tabla 1.8. Cuadro resumen de luminarias OFICINA planta superior.

<table>
<thead>
<tr>
<th>NOMBRE DE LUMINARIA</th>
<th>FAMILIA</th>
<th>ZONA</th>
<th>Núm. DE LUMINARIAS</th>
<th>Núm. DE LÁMPARAS POR LUMINARIA</th>
<th>POTENCIA POR LÁMPARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL3P 2XFD36</td>
<td>FL3P</td>
<td>OFICINA</td>
<td>4</td>
<td>2</td>
<td>18 W</td>
</tr>
</tbody>
</table>

\[\Sigma P = 144 \text{ W} \]

Tabla 1.9. Cuadro resumen de luminarias PATIOS NAVE 1 Y 2 EXTERIOR.

<table>
<thead>
<tr>
<th>NOMBRE DE LUMINARIA</th>
<th>FAMILIA</th>
<th>ZONA</th>
<th>Núm. DE LUMINARIAS</th>
<th>Núm. DE LÁMPARAS POR LUMINARIA</th>
<th>POTENCIA POR LÁMPARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR17MB 1xQE400 E40</td>
<td>PR17MB</td>
<td>PATIO NAVE 1</td>
<td>2</td>
<td>1</td>
<td>400 W</td>
</tr>
<tr>
<td>PR17MB 1xQE400 E40</td>
<td>PR17MB</td>
<td>PATIO NAVE 2</td>
<td>2</td>
<td>1</td>
<td>400 W</td>
</tr>
</tbody>
</table>

\[\Sigma P = 1600 \text{ W} \]
2.2.1. Luminarias

A continuación se muestran las fichas técnicas de la luminarias que se van a utilizar en esta nave.

FL3P 2XFD36

Datos Generales y Comerciales

<table>
<thead>
<tr>
<th>Tipo de producto</th>
<th>Interiores - de Techo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplicación</td>
<td>Oficinas</td>
</tr>
<tr>
<td>Modelo</td>
<td>FL3 2x18</td>
</tr>
<tr>
<td>Producto</td>
<td>FL3P 2xFD36, G13 WH6010 PPF</td>
</tr>
<tr>
<td>Fabricante</td>
<td>IEP</td>
</tr>
<tr>
<td>Código</td>
<td>5330224</td>
</tr>
<tr>
<td>Código E.A.N.</td>
<td>6431715012859</td>
</tr>
<tr>
<td>Colores</td>
<td>RAL 9010</td>
</tr>
<tr>
<td>Disponibilidad en el Almacén</td>
<td></td>
</tr>
<tr>
<td>Peso Neto [kg]</td>
<td>3,2</td>
</tr>
<tr>
<td>Peso Bruto [kg]</td>
<td>3,4</td>
</tr>
<tr>
<td>Precio por Unidad [Euro]</td>
<td>60</td>
</tr>
<tr>
<td>Volumen [m³]</td>
<td>0,013</td>
</tr>
<tr>
<td>Dimensiones [mm]</td>
<td>665x170x110</td>
</tr>
</tbody>
</table>

Detalles Eléctricos

<table>
<thead>
<tr>
<th>Clase de Aislamiento</th>
<th>N.</th>
<th>2 FD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado IP Luminaria</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Tensión [V]</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Tipo de Casquillo</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Potencia [W]</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Normas y Certificaciones

CEI EN 60068-1, CEI EN 60068-2-1
Proyecto de las instalaciones de una nave industrial y estudio de la implementación de energías alternativas

IN20 1XME250 E40 IN GY 9007 GTF

Datos Generales y Comerciales
- **Tipo de producto:** interiores - Industriales
- **Aplicación:** Producción
- **Modelo:** IN20
- **Producto:** IN20 1XME250 E40 IN GY9007 GTF
- **Fabricante:** IEP
- **Código:** 5080821
- **Código E.A.N.:**
- **Colores:** Grey - Graphite
- **Disponibilidad en el Almacén:**
- **Peso Neto [kg]:** 4,5
- **Peso Bruto [kg]:** 5,2
- **Precio por Unidad [Euro]:** 97
- **Volumen [m³]:** 0,023
- **Dimensiones [mm]:** 155x262 (563x526)

Detalles Eléctricos
- **Clase de Aislamiento:** I
- **Grado IP: Luminaria:** 65, 20
- **Tensión [V]:** 230, 230
- **Tipo de Casquillo:** E40, E40
- **Potencia [W]:** 250, 250

Normas y Certificaciones
CEI EN 60598-1, CEI EN 60598-2-1

Notas
Pedir de forma independiente el Cuerpo (Incluye Canecarro), el Reflector y Cierne
Reflector Aluminio D52mm - 5080862 / Cierne D52mm - 5080871
PR17MB 1xQE400 E40

Datos Generales y Comerciales

<table>
<thead>
<tr>
<th>Tipo de producto</th>
<th>Exteriores - Proyectores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplicación</td>
<td>Deporte</td>
</tr>
<tr>
<td>Modelo</td>
<td>PR17</td>
</tr>
<tr>
<td>Producto</td>
<td>PR17MB 1xQE400 E40 SO4C</td>
</tr>
<tr>
<td></td>
<td>GY7001 GTF G2</td>
</tr>
<tr>
<td>Fabricante</td>
<td>IEP</td>
</tr>
<tr>
<td>Código</td>
<td>5070323</td>
</tr>
<tr>
<td>Código E.A.N.</td>
<td>8431715004847</td>
</tr>
<tr>
<td>Colores</td>
<td>DARK GREY</td>
</tr>
<tr>
<td>Disponibilidad en el Almacén</td>
<td></td>
</tr>
<tr>
<td>Peso Neto [kg]</td>
<td>14,1</td>
</tr>
<tr>
<td>Peso Bruto [kg]</td>
<td>16,5</td>
</tr>
<tr>
<td>Precio por Unidad [Euro]</td>
<td>365</td>
</tr>
<tr>
<td>Volumen [m³]</td>
<td>0,104</td>
</tr>
<tr>
<td>Dimensiones [mm]</td>
<td>500x492x198</td>
</tr>
</tbody>
</table>

Detalles Electricos

<table>
<thead>
<tr>
<th>Clase de Aislamiento</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado IP Luminaria</td>
<td>65 05</td>
</tr>
<tr>
<td>Tensión [V]</td>
<td>230</td>
</tr>
<tr>
<td>Tipo de Casquillo</td>
<td>E40</td>
</tr>
<tr>
<td>Potencia [W]</td>
<td>400</td>
</tr>
</tbody>
</table>

Normas y Certificaciones

CEI EN 60598-1, CEI EN 60598-2-1, CEI EN 60598-2-5

Notas

Distribución Extensiva
Cuerpo en PETP + PV
Recambio vidrio 4107/961
CAPÍTULO 3:
INSTALACIÓN DE
SEGURIDAD
CONTRA INCENDIOS

Este capítulo tiene por objeto establecer y definir los requisitos que deben satisfacer y las condiciones que deben cumplir los establecimientos e instalaciones de uso industrial para su seguridad en caso de incendio, para prevenir su aparición y para dar la respuesta adecuada, en caso de producirse, limitar su propagación y posibilitar su extinción, con el fin de anular o reducir los daños o pérdidas que el incendio pueda producir a personas o bienes.

Las actividades de prevención del incendio tendrán como finalidad limitar la presencia del riesgo de fuego y las circunstancias que pueden desencadenar el incendio.

Las actividades de respuesta al incendio tendrán como finalidad controlar o luchar contra el incendio, para extinguirlo, y minimizar los daños o pérdidas que pueda generar.
En este capítulo se llevan a cabo los cálculos a partir del seguimiento de la información extraída del reglamento de seguridad contra incendios en establecimientos industriales recogida en la memoria descriptiva.

Haciendo un seguimiento del reglamento y para el buen desarrollo de los cálculos se establece que:

- Se aplicará el reglamento de seguridad contra incendios en establecimientos industriales ya que se trata de una industria tal y como se define en el artículo 3.1 de la Ley 21/1992, de 16 de julio, de Industria.

- No se aplicará el Código Tecnico de la Edificación, porque no se superan las condiciones de superficie expuestas en la compatibilidad reglamentaria de dicho reglamento.

A continuación se expone lo referente a:

CONDICIONES Y REQUISITOS QUE DEBEN SatisfaceR LOS ESTABLECIMIENTOS INDUSTRIALES En RELACIÓN CON SU SEGURIDAD CONTRA INCENDIOS.
3.1. CARACTERIZACIÓN

Los establecimientos industriales se caracterizarán por:
 a) Su configuración y ubicación con relación a su entorno.
 b) Su nivel de riesgo intrínseco.

Cuando la caracterización de un establecimiento industrial o una parte de este no coincida exactamente con alguno de los tipos definidos en los apartados 2.1 y 2.2 del reglamento, se considerará que pertenece al tipo con que mejor se pueda equiparar o asimilar justificadamente.

Aunque el establecimiento industrial esté formado por 2 naves colindantes una de ellas con un lateral libre con una distancia superior a los 3 metros se dispondrá como si se tratara todo el conjunto de las 2 naves como un solo establecimiento y se tratará por el reglamento de la forma más restrictiva.

Teniendo en cuenta lo comentado y a partir de las diversas configuraciones y ubicaciones que pueden tener los establecimientos industriales se considera que en este proyecto se da la situación de edificio de **Tipo A en Horizontal:**

El establecimiento industrial ocupa parcialmente un edificio que tiene, además, otros establecimientos, ya sean estos de uso industrial ya de otros usos.

Figura 2.1 Establecimiento industrial Tipo A Horizontal
3.1.1. METODOLOGÍA DE CÁLCULO

Para los tipos A, B y C se considera sector de incendio el espacio del edificio cerrado por elementos resistentes al fuego durante el tiempo que se establezca en cada caso.

El nivel de riesgo intrínseco de cada sector o área de incendio se evaluará calculando la siguiente expresión, que determina la densidad de carga de fuego, ponderada y corregida, de dicho sector o área de incendio:

\[Q_s = \sum_i \left(\frac{G_i q_i C_i}{A} \right) K R_a \left[\frac{MJ}{m^2} \right] \delta \left[\frac{Mcal}{m^2} \right] \]

donde:

\(Q_s \) = densidad de carga de fuego, ponderada y corregida, del sector o área de incendio, en MJ/m² o Mcal/m².

\(G_i \) = masa, en kg, de cada uno de los combustibles (i) que existen en el sector o área de incendio (incluidos los materiales constructivos combustibles).

\(q_i \) = poder calorífico, en MJ/kg o Mcal/kg, de cada uno de los combustibles (i) que existen en el sector de incendio.

\(C_i \) = coeficiente adimensional que pondera el grado de peligrosidad (por la combustibilidad) de cada uno de los combustibles (i) que existen en el sector de incendio.

\(R_a \) = coeficiente adimensional que corrige el grado de peligrosidad (por la activación) inherente a la actividad industrial que se desarrolla en el sector de incendio, producción, montaje, transformación, reparación, almacenamiento, etc.

Cuando existen varias actividades en el mismo sector, se tomará como factor de riesgo de activación el inherente a la actividad de mayor riesgo de activación, siempre que dicha actividad ocupe al menos el 10 % de la superficie del sector o área de incendio.

\(A \) = superficie construida del sector de incendio o superficie ocupada del área de incendio, en m².

Los valores del coeficiente de peligrosidad por combustibilidad, \(C_i \), de cada combustible pueden deducirse de la tabla 1.1, del Catálogo CEA de productos y mercancías, o de tablas similares de reconocido prestigio cuyo uso debe justificarse.

Los valores del coeficiente de peligrosidad por activación, \(R_a \), pueden deducirse de la tabla 1.2 del reglamento.

Los valores del poder calorífico \(q_i \), de cada combustible, pueden deducirse de la tabla 1.4 del reglamento.

El nivel de riesgo intrínseco de un edificio o un conjunto de sectores y/o áreas de incendio de un establecimiento industrial, a los efectos de la aplicación del
Proyecto de las instalaciones de una nave industrial y estudio de la implementación de energías alternativas

reglamento, se evaluará calculando la siguiente expresión, que determina la densidad de carga de fuego, ponderada y corregida, Q_e, de dicho edificio industrial.

$$Q_e = \frac{\sum_i Q_{s,i} A_i}{\sum_i A_i} \left[\frac{MJ}{m^2} \right] \cdot \left[\frac{Mcal}{m^2} \right]$$

Donde:
- Q_e = densidad de carga de fuego, ponderada y corregida, del edificio industrial, en MJ/m² o Mcal/m².
- $Q_{s,i}$ = densidad de carga de fuego, ponderada y corregida, de cada uno de los sectores o áreas de incendio, (i), que componen el edificio industrial, en MJ/m² o Mcal/m².
- A_i = superficie construida de cada uno de los sectores o áreas de incendio, (i), que componen el edificio industrial, en m².

En la Tabla 2.1 se exponen los valores de densidad de carga de fuego media de algunos elementos que se pueden encontrar en la nave industrial. Los valores serán extraídos del reglamento.

Tabla 2.1. Valores de densidad de carga de fuego media de diversos procesos industriales de almacenamiento de productos y riesgo de activación asociado, Ra.

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>FABRICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_s</td>
</tr>
<tr>
<td></td>
<td>MJ/m²</td>
</tr>
<tr>
<td>Acero</td>
<td>40</td>
</tr>
<tr>
<td>Alambre metálico no aislado</td>
<td>80</td>
</tr>
<tr>
<td>Aparatos Eléctricos</td>
<td>400</td>
</tr>
<tr>
<td>Aparatos Mecánicos</td>
<td>400</td>
</tr>
<tr>
<td>Archivos</td>
<td>4200</td>
</tr>
<tr>
<td>Oficina</td>
<td>600</td>
</tr>
<tr>
<td>Muebles de Madera</td>
<td>500</td>
</tr>
</tbody>
</table>
Evaluada la densidad de carga de fuego ponderada, y corregida de un sector o área de incendio, (Qs), de un edificio industrial (Qe) según cualquiera de los procedimientos expuestos en los apartados anteriores, respectivamente, el nivel de riesgo intrínseco del sector o área de incendio, del edificio industrial, o del establecimiento industrial, se deduce de la tabla 1.3 del reglamento (Tabla 2.2. Nivel de Riesgo intrínseco expuesta a continuación).

Tabla 2.2. Nivel de Riesgo intrínseco

<table>
<thead>
<tr>
<th>Nivel de riesgo intrínseco</th>
<th>Densidad de carga de fuego ponderada y corregida</th>
<th>Mcal/m²</th>
<th>MJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Qs 100</td>
<td>Qs < 425</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100 < Qs 200</td>
<td>425 < Qs 850</td>
<td></td>
</tr>
<tr>
<td>Medio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>200 < Qs 300</td>
<td>850 < Qs 1275</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>300 < Qs 400</td>
<td>1275 < Qs 1700</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>400 < Qs 800</td>
<td>1700 < Qs 3400</td>
<td></td>
</tr>
<tr>
<td>Alto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8005 < Qs 1600</td>
<td>3400 < Qs 6800</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1600 < Qs 3200</td>
<td>6800 < Qs 13600</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3200 < Qs</td>
<td>13600 < Qs</td>
<td></td>
</tr>
</tbody>
</table>
3.2. REQUISITOS CONSTRUCTIVOS

A continuación se presentan los requisitos constructivos a tener en cuenta por la instalación contra incendios.

3.2.1. Sectorización

Todo establecimiento industrial constituirá, al menos, un sector de incendio cuando adopte las configuraciones de tipo A, tipo B o tipo C, o constituirá un área de incendio cuando adopte las configuraciones de tipo D o tipo E. La máxima superficie construida admisible de cada sector de incendio será la que se indica en la tabla 2.3.

<table>
<thead>
<tr>
<th>Riesgo intrínseco del sector de incendio</th>
<th>Configuración del establecimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TIPO A (m²)</td>
</tr>
<tr>
<td>Bajo (1)-(2)-(3)</td>
<td>(2) (3) (5)</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>Medio (2)-(3)</td>
<td>(2) (3)</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
</tr>
<tr>
<td>Alto (3)</td>
<td>NO ADMITIDO</td>
</tr>
<tr>
<td>6</td>
<td>2000</td>
</tr>
<tr>
<td>7</td>
<td>1500</td>
</tr>
<tr>
<td>8</td>
<td>NO ADMITIDO</td>
</tr>
</tbody>
</table>
De este modo la sectorización en este establecimiento industrial será:

Sector 1 (586 m²)
Formado por:
- Taller de Nave 1 planta baja (351 m²).
- Taller de Nave 1 planta superior (157,5 m²).
- Taller Nave 2 (77,5 m²).

Sector 2 (57,4 m²)
Formado por:
- Escaleras de acceso a piso superior Nave 1 (5,4 m²).
- Lavabos Nave 1 (11 m²).
- Vestuarios Nave 1 (11 m³).
- Comedor Nave 1 (30,4 m²).

Sector 3 (54 m²)
Formado por:
- Escaleras de acceso a oficina Nave 2 (4 m²).
- Vestuarios Nave 2 (12 m³).
- Despacho Nave 2 (11 m²).
- Oficina Nave 2 (27 m²).
3.2.1.1. Determinación de coeficiente \(C_i \).

Tabla 2.4. Valores del coeficiente de peligrosidad por combustibilidad, \(C_i \).

<table>
<thead>
<tr>
<th>Sector</th>
<th>Zona</th>
<th>(C_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector 1</td>
<td>Taller Nave 1 planta Baja</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>Taller Nave 1 Planta Superior</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>Taller Nave 2</td>
<td>1,3</td>
</tr>
<tr>
<td>Sector 2</td>
<td>Escaleras de acceso a piso superior Nave 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lavabos Nave 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Vestuarios Nave 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Comedor Nave 1</td>
<td>1</td>
</tr>
<tr>
<td>Sector 3</td>
<td>Escaleras de acceso a oficina Nave 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Vestuarios Nave 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Despacho Nave 2</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>Oficina Nave 2</td>
<td>1,3</td>
</tr>
</tbody>
</table>
3.2.1.2. Valores de densidad de carga y riesgo de activación asociado

Tabla 2.5. Valores de densidad de carga de fuego media por zonas

<table>
<thead>
<tr>
<th>Sector</th>
<th>Zona</th>
<th>Actividad</th>
<th>Categoría</th>
<th>(Q_{si}) (MJ/m²)</th>
<th>(Q_{si}) (Mcal/m²)</th>
<th>Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTOR 1</td>
<td>Taller Nave 1 planta Baja</td>
<td>Artículo金属icos soldadura ligera</td>
<td>Fabricación y Venta</td>
<td>300</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Taller Nave 1 Planta Superior</td>
<td>Artículo金属icos, fresado</td>
<td>Fabricación y Venta</td>
<td>200</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Taller Nave 2</td>
<td>Artículo金属icos soldadura</td>
<td>Fabricación y Venta</td>
<td>80</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>SECTOR 2</td>
<td>Escaleras de acceso a piso superior Nave 1</td>
<td>Área de Paso</td>
<td>Fabricación y Venta</td>
<td>40</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lavabos Nave 1</td>
<td>Artículo金属icos de Cerámica</td>
<td>Fabricación y Venta</td>
<td>200</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Comedor</td>
<td>Restaurante</td>
<td>Fabricación y venta</td>
<td>300</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Vestuarios Nave 1</td>
<td>Artículo金属icos de Cerámica</td>
<td>Fabricación y Venta</td>
<td>200</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>SECTOR 3</td>
<td>Escaleras de acceso a oficina Nave 2</td>
<td>Área de Paso</td>
<td>Fabricación y Venta</td>
<td>40</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Vestuarios Nave 2</td>
<td>Artículo金属icos de Cerámica</td>
<td>Fabricación y Venta</td>
<td>200</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Despacho Nave 2</td>
<td>Oficina Técnica</td>
<td>Fabricación y Venta</td>
<td>600</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Oficina Nave 2</td>
<td>Oficina Comercial</td>
<td>Fabricación y venta</td>
<td>600</td>
<td>192</td>
<td>1.5</td>
</tr>
</tbody>
</table>
3.2.1.3. Nivel de riesgo de cada sector

Sector 1 (586 m²)

Tabla 2.6. Nivel de riesgo intrínseco Sector 1.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Actividad</th>
<th>Superficie (m²)</th>
<th>Qsi (MJ/ m²)</th>
<th>Ci</th>
<th>Ra</th>
<th>Qs (MJ/ m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taller Nave 1 planta Baja</td>
<td>Artículos metálicos selladura ligera</td>
<td>351</td>
<td>300</td>
<td>1,3</td>
<td>1</td>
<td>233,6</td>
</tr>
<tr>
<td>Taller Nave 1 Planta Superior</td>
<td>Artículos metálicos, fresado</td>
<td>157,5</td>
<td>200</td>
<td>1,3</td>
<td>1</td>
<td>69,88</td>
</tr>
<tr>
<td>Taller Nave 2</td>
<td>Artículos metálicos selladura</td>
<td>77,5</td>
<td>80</td>
<td>1,3</td>
<td>1</td>
<td>13,75</td>
</tr>
</tbody>
</table>

\[\Sigma Qs (MJ/ m²) \quad 317,23 \]

El nivel de riesgo intrínseco del sector 1 es Bajo con valor 1 ya que se encuentra en Qs<425.
Tabla 2.7. Nivel de riesgo intrínseco Sector 2.

Sector 2 (57,4 m²)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Actividad</th>
<th>Superficie (m^2)</th>
<th>Qsi (MJ/ m^2)</th>
<th>Ci</th>
<th>Ra</th>
<th>Qs (MJ/ m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escaleras de acceso a piso</td>
<td>Área de Paso</td>
<td>5,4</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>3,76</td>
</tr>
<tr>
<td>Lavabos Nave 1</td>
<td>Artículos de Cerámica</td>
<td>11</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>38,33</td>
</tr>
<tr>
<td>Comedor</td>
<td>Restaurante</td>
<td>30,4</td>
<td>300</td>
<td>1</td>
<td>1</td>
<td>158,88</td>
</tr>
<tr>
<td>Vestuarios Nave 1</td>
<td>Artículos de Cerámica</td>
<td>11</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>38,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ΣQs (MJ/ m^2)</td>
</tr>
</tbody>
</table>

El nivel de riesgo intrínseco del sector 2 es **Bajo** con valor 1 ya que se encuentra en $Qs<425$.

-28-
Tabla 2.8. Nivel de riesgo intrínseco Sector 3.

Sector 3 (54 m²)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Actividad</th>
<th>Superficie (m²)</th>
<th>Qsi (MJ/ m²)</th>
<th>Ci</th>
<th>Ra</th>
<th>Qs (MJ/ m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escaleras de acceso a oficina Nave 2</td>
<td>Área de Paso</td>
<td>4</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>2,96</td>
</tr>
<tr>
<td>Vestuarios Nave 2</td>
<td>Artículos de Cerámica</td>
<td>12</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>44,44</td>
</tr>
<tr>
<td>Despacho Nave 2</td>
<td>Oficina Técnica</td>
<td>11</td>
<td>600</td>
<td>1,3</td>
<td>1</td>
<td>158,88</td>
</tr>
<tr>
<td>Oficina Nave 2</td>
<td>Oficina Técnica</td>
<td>27</td>
<td>600</td>
<td>1,3</td>
<td>1,5</td>
<td>585</td>
</tr>
<tr>
<td>Σ Qs (MJ/ m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>791,28</td>
</tr>
</tbody>
</table>

El nivel de riesgo intrínseco del sector 3 es **Bajo** con valor 2 ya que se encuentra en 425<Qs<850.
3.2.1.4. Nivel de riesgo intrínseco del edificio

El nivel de riesgo intrínseco de un edificio o un conjunto de sectores y/o áreas de incendio de un establecimiento industrial, a los efectos de la aplicación del reglamento, se evaluará calculando la siguiente expresión, que determina la densidad de carga de fuego, ponderada y corregida, Qe, de dicho edificio industrial.

\[
Q_e = \frac{\sum_i Q_{a_i} A_i}{\sum_i A_i} \left[\frac{MJ}{m^2} \right] \delta \left[\frac{Mcal}{m^2} \right]
\]

Por lo tanto tenemos que:

\[
Q_e = \frac{(586\cdot317,23)+(57,4\cdot239,3)+(54\cdot 791,28)}{697,4} = 347,52 \left[\frac{MJ}{m^2} \right]
\]

El nivel de riesgo intrínseco de la nave industrial o del conjunto de sectores de incendio es Bajo con valor 1 ya que se encuentra en Qe<425.

3.2.2. Evacuación del establecimiento

La evacuación de los establecimientos industriales que estén ubicados en edificios de tipo A (según el anexo I) debe satisfacer las condiciones expuestas a continuación. La referencia en su caso a los artículos que se citan de la Norma básica de la edificación: condiciones de protección contra incendios en los edificios se entenderá a los efectos de definiciones, características generales, cálculo, etc., cuando no se concreten valores o condiciones específicas.

1. Elementos de la evacuación: origen de evacuación, recorridos de evacuación, altura de evacuación, rampas, ascensores, escaleras mecánicas, rampas y pasillos móviles y salidas se definen de acuerdo con el artículo 7 de la NBE-CPI/96, apartado 7.1, subapartados 7.1.1, 7.1.2, 7.1.3, 7.1.4, 7.1.5 y 7.1.6, respectivamente.

2. Número y disposición de las salidas: además de tener en cuenta lo dispuesto en el artículo 7 de la NBE-CPI/96, apartado 7.2, se ampliará lo siguiente:

 • Los establecimientos industriales clasificados, de acuerdo con el anexo I del reglamento, como de riesgo intrínseco alto deberán disponer de dos salidas alternativas.

3. Para actividades de producción o almacenamiento clasificadas como riesgo bajo nivel 1, en las que se justifique que los materiales implicados sean
exclusivamente de clase A y los productos de construcción, incluidos los revestimientos, sean igualmente de clase A, podrá aumentarse la distancia máxima de recorridos de evacuación hasta 100 m.

Esta última suposición nos asegura la evacuación.

Se colocaran planos de evacuación en todos los sectores de incendio. El plano se adjunta en el documento de planos.

El plano será de un material foto luminiscente e irá dentro de un marco específico para este fin que será proporcionado por la casa Prodein S.L. Las características son las siguientes:

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANOS DE EVACUACIÓN FOTOLUMINISCENTES</td>
<td></td>
</tr>
<tr>
<td>MAPA3</td>
<td>Tamaño 420 x 297mm.</td>
</tr>
</tbody>
</table>

- Normalizados con símbolo gráfica según norma UNE-23.032-83 para planes de evacuación.
- Indican los accesos a las salidas de emergencia y la ubicación del material de lucha contra incendios.

<table>
<thead>
<tr>
<th>MARCOS PARA PLANOS DE EVACUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEA3</td>
</tr>
</tbody>
</table>

Los marcos de aluminio para planos de evacuación combinan un práctico diseño y facilidad para el montaje, asegurando una perfecta adaptación a las condiciones del local/edificio.

3.2.3. Ventilación y eliminación de humos y gases de la combustión en los edificios industriales.

No será necesario sistema de evacuación de humos.
3.2.4. Exigencias de comportamiento al fuego de los productos de construcción

Las exigencias de comportamiento al fuego de los productos de construcción se definen determinando la clase que deben alcanzar, según la norma UNE-EN 13501-1 para aquellos materiales para los que exista norma armonizada y ya esté en vigor el mercado CE.

Los **productos utilizados como revestimiento** o acabado superficial deben ser:

- En suelos: CFL-s1 (M2) o más favorable.
- En paredes y techos: C-s3 d0(M2), o más favorable.
- Los lucernarios que no sean continuos o instalaciones para eliminación de humo que se instalen en las cubiertas serán al menos de clase D-s2d0 (M3) o más favorable.
- Los materiales de los lucernarios continuos en cubierta serán B-s1d0 (M1) o más favorable.
- Los materiales de revestimiento exterior de fachadas serán C-s3d0 (M2) o más favorables.

Productos incluidos en paredes y cerramientos:

Cuando un producto que constituya una capa contenida en un suelo, pared o techo sea de una clase más desfavorable que la exigida al revestimiento correspondiente, según el apartado 3.1, la capa y su revestimiento, en su conjunto, serán, como mínimo, EI 30 (RF-30).

Acerca de otros **productos:**

Los productos situados en el interior de falsos techos o suelos elevados, tanto los utilizados para aislamiento térmico y para acondicionamiento acústico como los que constituyan o revistan conductos de aire acondicionado o de ventilación, etc., deben ser de clase C-s3 d0 (M1) o más favorable. Los cables deberán ser no propagadores de incendio y con emisión de humo y opacidad reducida.

La justificación de que un producto de construcción alcanza la clase de reacción al fuego exigida se acreditará mediante ensayo de tipo o certificado de conformidad a normas UNE, emitidos por un organismo de control que cumpla los requisitos establecidos en el Real Decreto 2200/1995, de 28 de diciembre.

Conforme los distintos productos deban contener con carácter obligatorio el marcado CE, los métodos de ensayo aplicables en cada caso serán los definidos en las normas UNE –EN y UNE-EN ISO. La clasificación será conforme con la norma UNE-EN 13501-1.

Los productos de construcción pétreos, cerámicos y metálicos, así como los vidrios, morteros, hormigones o yesos, se considerarán de clase A 1 (M0).
3.2.4.1. Estabilidad al fuego de los elementos constructivos portantes

La estabilidad al fuego de los elementos estructurales con función portante y escaleras que sean recorrido de evacuación no tendrá un valor inferior al indicado en la tabla siguiente:

Tabla 2.9. Estabilidad al fuego de los elementos constructivos en cada sector

<table>
<thead>
<tr>
<th>Sector de Incendio</th>
<th>Edificio Tipo A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector 1</td>
<td>Riesgo Bajo</td>
</tr>
<tr>
<td>Planta Baja</td>
<td>R 120 (EF – 120)</td>
</tr>
<tr>
<td>Planta sobre Rasante</td>
<td>R 90 (EF – 90)</td>
</tr>
<tr>
<td>Sector 2</td>
<td>Riesgo Bajo</td>
</tr>
<tr>
<td>Planta sobre Rasante</td>
<td>R 90 (EF – 90)</td>
</tr>
<tr>
<td>Sector 3</td>
<td>Riesgo Bajo</td>
</tr>
<tr>
<td>Planta Baja</td>
<td>R 120 (EF – 120)</td>
</tr>
<tr>
<td>Planta sobre Rasante</td>
<td>R 90 (EF – 90)</td>
</tr>
</tbody>
</table>

3.2.4.2. Resistencia al fuego de elementos constructivos de cerramientos

El nivel de resistencia al fuego de los elementos constructivos de cerramiento con los que cuenta la nave han sido facilitados por el cliente puesto que la nave no es de obra nueva. Por tanto, las paredes interiores entre los distintos sectores serán de RF 120. En el interior de cada sector se dispondrá un RF 90.

Las puertas de paso entre dos sectores de incendio tendrán una resistencia al fuego, al menos, igual a la mitad de la exigida al elemento que separe ambos sectores de incendio, o bien a la cuarta parte de aquella cuando el paso se realice a través de un vestíbulo previo. Las puertas serán:

- Entre Sector 1 y Sector 2 en la planta superior de la nave 1 la puerta será RF 90.
- Entre Sector 1 y Sector 3 en la planta Baja de la nave 2 la puerta será RF 90.
3.3. REQUISITOS DE LA INSTALACIÓN

Todos los aparatos, equipos, sistemas y componentes de las instalaciones de protección contra incendios de los establecimientos industriales, así como el diseño, la ejecución, la puesta en funcionamiento y el mantenimiento de sus instalaciones, cumplirán lo preceptuado en el Reglamento de instalaciones de protección contra incendios, aprobado por el Real Decreto 1942/1993, de 5 de noviembre, y en la Orden de 16 de abril de 1998, sobre normas de procedimiento y desarrollo de aquel.

Las condiciones y requisitos que deben cumplir las instalaciones de protección contra incendios de los establecimientos industriales, en relación con su seguridad contra incendios, serán los establecidos de acuerdo con la caracterización que resulte del apartado anterior.

3.3.1. Sistemas automáticos de detección de incendio

Se instalarán sistemas automáticos de detección de incendios. Son los que se muestran a continuación:

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. 12345</td>
<td>Detector óptico-fotoelectérico</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS GENERALES
- Funcionamiento controlado por microprocesador.
- Eliminación por software de falsas alarmas.
- Alta inmunidad a radiofrecuencias.
- Autochequeo de funcionamiento permanente.
- Tecnología SMD.
- Sistema de protección anti-insectos rígido (ABS) incorporado en una sola pieza.
- Sistema concentrador de humos.
- Desensamblaje sin tornillos para mantenimiento (Repuestos disponibles)
- Tamaño reducido.
- Incluyendo base.
- Removable.
- Salida para piloto de acción remota.
- Conexiónado a dos hilos.
- Cambio automático de polaridad.
- Suplemento para tubo viejo (Opcional)

CARACTERÍSTICAS TÉCNICAS
- Alimentación: 24 v. CC.
- Instalación a dos hilos sin polaridad.
- Consumo en reposo: 100 μA.
- Consumo en alarma: 80 mA.
- Consumo piloto acción remota: 100 mA. máx.
- Temperatura de trabajo: -10°C a +80°C.
- Grado de humedad relativa 97% máx.
- Material ABS termorresistente.
- Color blanco.
- Diámetro máx. de tubo: 22 mm.
- Distancia entre los lados de sujeción: 68,5 mm.
- Volumen cabeza + zócalo: 104 cm³.
- Peso cabeza + zócalo: 71 grs.
3.3.2. Sistemas manuales de alarma de incendio

Se instalarán sistemas manuales de alarma de incendio en los sectores de incendio de este establecimiento industrial aunque no sean obligatorios. La colocación de los mismos será la dispuesta en los planos de protección contra incendios.

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFE-L/B</td>
<td>Pulsador de incendio romper el cristal, alarma para empotrar.</td>
</tr>
</tbody>
</table>

3.3.3. Sistemas de comunicación de alarma

Se instalarán sistemas de comunicación de alarma aunque no sean obligatorios. Se colocará uno en cada nave.

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA-02</td>
<td>Sirena interior bitoral de Incendio</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS GENERALES
- Fabricada bajo norma UNE-EN-ISO 9002.
- Funcionamiento piezoeléctrico.
- Piloto de señalización de la activación.
- Base de conexinado que facilita la instalación.
- Construida en ABS de inyección de color rojo.
- Compatibile con todas las centrales del mercado.
- Posibilidad de instalarse directamente en zona de pulsadores.
- Alimentación: 12 v.- 24 v. c.c.
- Bajo consumo: 76 mA.
- Potencia sonora a 1 m. ± 95 DB.
- Piloto de encendido intermitente.
- Cambio automático de potencia.
- Medidas: Diámetro Max. 116; Altura total: 64; Peso: 125 gr.
La gestión de las señales recibidas de los pulsadores así como el envío de las señales de salida a las alarmas acústicas las llevará a cabo una central de incendio, concretamente:

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPB</td>
<td>Central de incendio microprocesada</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS GENERALES
- Diseñada conforme a la norma en 54 partes 2 y 4 de 1998.
- Sencilla instalación.
- Tecnología SMD.
- Autoconfiguración de la central en el arranque.
- Salida de alarma individual por zona.
- Salida general de alarma.
- Salida general de avería.
- Tres niveles de acceso.
- Fácil ampliación de los módulos mediante conectores (sin cables).
- Filtros en líneas de zona contra partículas.
- Compatible con la mayoría de los detectores del mercado.
- Cerradura eléctrica.
- Detección de pérdida total de suministro de energía eléctrica.
- Posibilidad de incorporar extintores.

CARACTERÍSTICAS TÉCNICAS
- Potencia de fuente de alimentación: 50 w. (2A)
- Imáx de salida general de alarma: 0,5 A.
- Imáx de salida alarma por zona: 6,5 A.
- Medidas y peso:
 - Altura: 380 mm.
 - Ancho: 313 mm.
 - Fondo: 100 mm.
 - Peso: 6 Kg.
- Capacidad para 2 baterías de 12 y 7Ah.

3.3.4. Sistemas de abastecimientos de agua contra incendios

Será necesaria la instalación de sistema de abastecimiento de agua para suministrar el agua a las Bocas de Incendio Equipadas.

La conexión de la red de abastecimiento de agua contra incendios será una conexión típica a red alimentada por los dos lados, ya que de este modo está asegurada la presión y la continuidad del cabal por las dos partes en caso de fallo de algún ramal de suministro.

La conexión es la siguiente:

<table>
<thead>
<tr>
<th>Nº</th>
<th>DENOMINACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Válvula con indicación de obertura</td>
</tr>
<tr>
<td>2</td>
<td>Válvula con retención</td>
</tr>
<tr>
<td>3</td>
<td>Filtro con acumulador intercambiable</td>
</tr>
</tbody>
</table>
El cálculo de la instalación de abastecimiento hasta las BIE´s se realiza partiendo de las condiciones de trabajo de éstas. Para garantizar el buen desarrollo de la acción contra el fuego en caso de producirse las BIE´s necesitarán un cabal de 1,6 m/s y una presión de 20 m.c.a. Conociendo los tramos de la instalación se lleva a cabo el cálculo. La instalación de las tuberías es subterránea hasta entrar en el edificio donde irán sujetas a la pared a una altura de 3 metros hasta llegar a las BIE´s.

Para el dimensionamiento de la instalación hay que tener en cuenta las perdidas de carga que se producen tanto en tramos rectos debido al rozamiento o en los elementos que obstaculizan el paso del fluido en forma de perdidas de carga singulares.

Perdidas de carga singulares

Se estimarán las siguientes perdidas para los distintos elementos.

- Perdida en la manguera de la BIE= 0,7 m.c.a
- Perdida en llave de paso de la BIE=0,4 m.c.a
- Codo a 90º de Ø 54 mm= 0.8 m.c.a
- Te = 1.7 m.c.a
- Llaves de paso=0.5 m.c.a
- Válvula con retención=0,5 m.c.a

Los tramos son los siguientes:

TRAMO A-C

Q= 1,6 l/s
L= 14 m.
Δh=(3-1,2)m=1,8 m.
P residual en A= 2 kg/cm²
Ø Tubería = 54 mm

Perdidas de carga singulares A-C

\[P_{A-C} = (1+0,5+3x0.8+0.5)=4,4 \text{ m.c.a}\]
TRAMO B-C

Q= 1,6 l/s
L= 22 m.
Δh=(3-1,2)m=1,8 m.
P residual en B= 2 kg/cm²
Ø Tubería = 54 mm

Perdidas de carga singulares B-C

\[P_{B-C} = (1+0,5+3\times0.8+0.5)=4,4 \text{ m.c.a} \]

TRAMO C-D

Q= 3,2 l/s
L= 10 m.
Δh=0
Ø Tubería = 76 mm

Perdidas de carga singulares C-D

\[P_{C-D} = (1,7+2\times0,5+2\times0.5)=3,7 \text{ m.c.a} \]

El cálculo por tramos de la pérdida de carga en conductos es el siguiente:

| Tabla 2.10. Cálculo de instalación de abastecimiento de agua a las BIE’s |
|---------------------------|---|---|---|---|---|---|---|
| ID Tramo | Q (l/s) | K | V max (m/s) | D | D Norm (mm) | V real (m/s) | Longitud (m) | J (m.c.a) | ΔP (m.c.a) |
| B-C | 1.6 | 1 | 1 | 45.14 | 54 | 0.77 | 22 | 0.015 | 0.319 |
| A-C | 1.6 | 1 | 1 | 45.14 | 54 | 0.77 | 14 | 0.015 | 0.203 |
| C-D | 3.2 | 1 | 1 | 63.83 | 76 | 0.76 | 10 | 0.009 | 0.131 |

El tramo más desfavorable es B-D. La perdida de carga total en este tramo será:

\[P_{B-D} = P_{B-C} + P_{C-D} + Δh + (0.319+0.131)=4,4+3,7+1,8+ (0.319+0.131)=10,35 \text{ m.c.a.} \]
Teniendo en cuenta que contamos con una presión de suministro de 30 m.c.a se puede dar por válido ya que la presión residual en la punta de la lanza será aproximadamente de 20 m.c.a.

3.3.5. Sistemas de hidrantes exteriores

No será necesario el sistema de hidratantes exteriores.

3.3.6. Extintores de Incendio

Se instalarán extintores de incendio portátiles en todos los sectores de incendio de los establecimientos industriales.

El agente extintor utilizado será seleccionado de acuerdo con la tabla I-1 del apéndice 1 del Reglamento de Instalaciones de protección contra incendios, aprobado por el Real Decreto 1942/1993, de 5 de noviembre.

No se permite el empleo de agentes extintores conductores de la electricidad sobre fuegos que se desarrollan en presencia de aparatos, cuadros, conductores y otros elementos bajo tensión eléctrica superior a 24 V. La protección de estos se realizará con extintores de dióxido de carbono, o polvo seco BC o ABC, cuya carga se determinará según el tamaño del objeto protegido con un valor mínimo de cinco kg de dióxido de carbono y seis kg de polvo seco BC o ABC.

El emplazamiento de los extintores portátiles de incendio permitirá que sean fácilmente visibles y accesibles, estarán situados próximos a los puntos donde se estime mayor probabilidad de iniciarse el incendio y su distribución será tal que el recorrido máximo horizontal, desde cualquier punto del sector de incendio hasta el extintor, no supere 15 m.
Tabla 2.11. Situación, tipo y cantidad de extintores a instalar

<table>
<thead>
<tr>
<th>Zona</th>
<th>Clase de Fuego</th>
<th>Agente Extintor</th>
<th>Eficacia</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taller Nave 1 planta Baja</td>
<td>C</td>
<td>CO₂</td>
<td>89B 21A-113B-C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>ABC</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Taller Nave 1 Planta Superior</td>
<td>C</td>
<td>CO₂</td>
<td>89B 21A-113B-C</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>ABC</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Taller Nave 2</td>
<td>C</td>
<td>CO₂</td>
<td>89B</td>
<td>1</td>
</tr>
<tr>
<td>Acceso a comedor Nave 1</td>
<td>A</td>
<td>ABC</td>
<td>21A-113B-C</td>
<td>1</td>
</tr>
<tr>
<td>Vestuarios Nave 2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Despacho Nave 2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oficina Nave 2</td>
<td>A</td>
<td>ABC</td>
<td>21A-113B-C</td>
<td>1</td>
</tr>
</tbody>
</table>

En las zonas del Sector 3 de incendio no se instalará ningún extintor ya que la zona estará cubierta por una BIE.
Los extintores de polvo del tipo ABC serán los siguientes:

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6X</td>
<td>Extintor 6 kg, POLVO A-B-C</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS GENERALES
- Presión incorporada.
- Acabado en pintura Epoxy de alta calidad.
- Válvula de disparo rápido.
- Manómetro externo, lo que permite una comprobación rápida eficaz y fiable de la presión.
- Válvula de comprobación de presión interna.
- Incorpora manguera de caucho con revestimiento de poliamida trenzada negra.

CARACTERÍSTICAS TÉCNICAS
- Agente extintor: Polvo A-B-C.
- Eficacia: 2 IA-113B-C.
- Agente impulsor: Ne.
- Peso cargado: 9,30 Kg.
- Peso vacío: 3,30 Kg.
- Altura: 520 mm.
- Diámetro: 150 mm.
- Presión de prueba: 23 Kgs/cm².
- Temperatura de utilización: -20°C/+60°C.

Los extintores de CO₂ serán los siguientes:

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 5000</td>
<td>Extintor 5 kg, CO₂</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS GENERALES
- Extintor portátil de incendios permanentemente presurizado de dióxido de carbono, recargable, en botella de acero alisado de una sola pieza.
- Utilizable en fuegos A, B, y C (incluso en presencia de tensión eléctrica).
- No utilizable en fuegos D y en materiales reactivos (Na, K, Mg).
- Color rojo RAL 3000.

CARACTERÍSTICAS TÉCNICAS
- Presión de diseño: 250 bar.
- Presión de prueba: 230 bar.
- Presión de servicio máximo: 190 bar.
- Eficacia: 89%.
- Carga (tolerancia: +0% -5%): 5 kg.
- Temperatura de servicio: -20/30°C.
- Presión tardío disco de seguridad: 190bars ±10%.

Dimensiones:
- Altura: 748 mm.
- Diámetro: 139,7 mm.
- Espesor nominal: 4,5 mm.
- Volumen: 7,3 litros.
- Tara: 11,8 kg.
- Peso total: 16,8 kg.
- Grado de llenado: 0,68 kg/l.
3.3.7. Sistemas de bocas de incendio equipadas

Se instalarán sistemas de bocas de incendio equipadas.

Se instalarán **BIE DN 25 mm** en los siguientes casos.

Tabla 2.12. Situación y cantidad de BIE’s a instalar por zona

<table>
<thead>
<tr>
<th>Sector</th>
<th>Zona</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector 1</td>
<td>Taller Nave 1 planta Baja</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Taller Nave 1 Planta Superior</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Taller Nave 2</td>
<td>1</td>
</tr>
<tr>
<td>Sector 2</td>
<td>Escaleras de acceso a piso superior Nave 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Lavabos Nave 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vestuarios Nave 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Comedor Nave 1</td>
<td>-</td>
</tr>
<tr>
<td>Sector 3</td>
<td>Escaleras de acceso a oficina Nave 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vestuarios Nave 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Despacho Nave 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Oficina Nave 2</td>
<td>-</td>
</tr>
</tbody>
</table>

La BIE situada en Taller 2 estará dispuesta de tal forma que pueda cubrir la mayor parte del **Sector 3**.

Las BIE’s serán las siguientes:

- Puerta con metacrilato.
- Carrete fijo en chapa 1 mm, pintado en rojo RAL 3000 de Ø 525, no abatible.
- Manguera semirígida diámetro 25 mm. y longitud 20 m. modelo satu.
- Válvula de esfera con salida a 180°, con rosca de 1”.
- Lanza modelo LZV 25 de 25m, triple efecto, chorro pulverizador, cóncica y cierre, rosca de exteriormente para su conexión a la manguera.
- Entrada mediante barra fija de aluminio.
3.3.8. **Sistema de columna seca**

No se instalarán sistemas de columna seca.

3.3.9. **Sistemas de rociadores automáticos de agua**

No se instalarán sistemas de rociadores automáticos de agua.

3.3.10. **Sistemas de agua pulverizada**

No se instalarán sistemas de agua pulverizada.

3.3.11. **Sistemas de espuma física**

No se instalarán sistemas de espuma física.

3.3.12. **Sistemas de extinción por polvo**

No se instalarán sistemas de extinción por polvo.

3.3.13. **Sistemas de extinción por agentes extintores gaseosos**

No se instalarán sistemas de extinción por agentes extintores gaseosos.

3.3.14. **Sistemas de alumbrado de emergencia**

Se instalará sistema de alumbrado de emergencia.

La instalación de los sistemas de alumbrado de emergencia cumplirá las siguientes condiciones:

a) Será fija, estará provista de fuente propia de energía y entrará automáticamente en funcionamiento al producirse un fallo del 70 % de su tensión nominal de servicio.

b) Mantendrá las condiciones de servicio durante una hora, como mínimo, desde el momento en que se produzca el fallo.

c) Proporcionará una iluminancia de un lux, como mínimo, en el nivel del suelo en los recorridos de evacuación.
d) La iluminancia será, como mínimo, de cinco lux en los espacios definidos en el apartado 16.2 del anexo del reglamento.

e) La uniformidad de la iluminación proporcionada en los distintos puntos de cada zona será tal que el cociente entre la iluminancia máxima y la mínima sea menor que 40.

f) Los niveles de iluminación establecidos deben obtenerse considerando nulo el factor de reflexión de paredes y techos y contemplando un factor de mantenimiento que comprenda la reducción del rendimiento luminoso debido al envejecimiento de las lámparas y a la suciedad de las luminarias.

Los resultados obtenidos con el programa emerglight son los que se muestran en el anexo correspondiente a la Iluminación de Emergencia.

El resumen de las luminarias de emergencia necesarias para cumplir con la normativa es el siguiente:

TABLA 2.13. Resumen de luminarias de emergencia por zona.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Zona</th>
<th>Nº de Luminarias</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector 1</td>
<td>Taller Nave 1 planta Baja</td>
<td>16</td>
<td>NT 65/ 435</td>
</tr>
<tr>
<td></td>
<td>Taller Nave 1 Planta Superior</td>
<td></td>
<td>Luc 1h Combinada</td>
</tr>
<tr>
<td></td>
<td>Taller Nave 2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Sector 2</td>
<td>Escaleras de acceso a piso superior Nave 1</td>
<td>3</td>
<td>NT 65/ 435</td>
</tr>
<tr>
<td></td>
<td>Lavabos Nave 1</td>
<td></td>
<td>Luc 1h Combinada</td>
</tr>
<tr>
<td></td>
<td>Vestuarios Nave 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comedor Nave 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acceso a Comedor</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sector 3</td>
<td>Escaleras de acceso a oficina Nave 2</td>
<td>3</td>
<td>NT 65/ 435</td>
</tr>
<tr>
<td></td>
<td>Vestuarios Nave 2</td>
<td>1</td>
<td>Luc 1h Combinada</td>
</tr>
<tr>
<td></td>
<td>Despacho Nave 2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oficina Nave 2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Serán necesarias un total de 46 luminarias de emergencia que estarán situadas como muestra el anexo de iluminación de emergencia.
Las características del modelo de luminaria elegido son las que se muestran a continuación:

NT 65/ 435 Lum 1h Combinada

Datos Generales y Comerciales

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de producto</td>
<td>Interiores - Emergencia</td>
</tr>
<tr>
<td>Aplicación</td>
<td>---</td>
</tr>
<tr>
<td>Modelo</td>
<td>NT</td>
</tr>
<tr>
<td>Producto</td>
<td>Luminaria de emergencia,</td>
</tr>
<tr>
<td></td>
<td>fluorescente combinada 2 tubos</td>
</tr>
<tr>
<td>Fabricante</td>
<td>legrand</td>
</tr>
<tr>
<td>Código</td>
<td>61834</td>
</tr>
<tr>
<td>Código E.A.N.</td>
<td>841297618342</td>
</tr>
<tr>
<td>Colores</td>
<td>BLANCO</td>
</tr>
<tr>
<td>Disponibilidad en el Almacén</td>
<td>Inmediata</td>
</tr>
</tbody>
</table>

Detalles Eléctricos

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase de Aislamiento</td>
<td>1</td>
</tr>
<tr>
<td>Grado IP</td>
<td>65</td>
</tr>
<tr>
<td>Tensión [V]</td>
<td>230</td>
</tr>
</tbody>
</table>

Parámetros Fotométricos

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase Bz</td>
<td>---</td>
</tr>
<tr>
<td>Clase UTE</td>
<td>---</td>
</tr>
<tr>
<td>Clase DIN</td>
<td>---</td>
</tr>
</tbody>
</table>

Normas y Certificaciones

NBE CPI 96, UNE 20 392-93, UNE EN 60 598.2.22

Características de la gama NT 65

- Fabricadas según normas de obligado cumplimiento: UNE - EN 60 598.2.22 y UNE 20 392 - 93, NBE CPI 96
- Producto certificado por AENOR, con marca N
- Luminarias no permanentes y combinadas
- Alimentación: 230 V ±10%, 50/60 Hz
• Aptas para ser montadas sobre superficies inflamables.
• Tiempo de carga: 24 horas
• Utilizar telemando para:
• Puesta en reposo
• Test de prueba de funcionamiento con tensión de red
• Bornas de telemando protegidas contra conexión accidental a 230 V
• Protección de red mediante dispositivo electrónico automático (sin fusible).
• Material de la envolvente autoextinguible
• Acumuladores de Ni-Cd de alta temperatura
• 2 leds de alta luminosidad y larga duración (100.000 horas) de vida media para minimizar el mantenimiento
• Cuando los dos leds se apagan simultáneamente, indica:
• Ausencia de tensión
• Los acumuladores no cargan
• Material de la base de las luminarias en chapa de embutición
• 2 entradas para 20 mm de diámetro (1 lateral y 1 superior)
• Suministrada con un tapón y un prensaestopas
• Características propias de la referencia
• Ref.: 618 34
• Fluorescentes combinados 2 tubos lineales
• 1 tubo encendido permanentemente + 1 tubo de emergencia
• IP 65
• Lúmenes: 435
• Autonomía: 1 h
• Lámparas de emergencia: 2 x 8 W
3.3.15. Señalización.

Se procederá a la señalización de las salidas de uso habitual o de emergencia, así como la de los medios de protección contra incendios de utilización manual, cuando no sean fácilmente localizables desde algún punto de la zona protegida, teniendo en cuenta lo dispuesto en el Reglamento de señalización de los centros de trabajo, aprobado por el Real Decreto 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo.

Las señales relativas a los equipos de lucha contra incendios serán de forma rectangular o cuadrada. El pictograma será blanco sobre fondo rojo (el rojo deberá cubrir como mínimo el 50% de la superficie de la señal).
Las señales de salvamento o socorro serán de forma rectangular o cuadrada. El pictograma será blanco sobre fondo verde (el verde deberá cubrir como mínimo el 50% de la superficie de la señal).

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>2</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>3</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>4</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>5</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>6</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>7</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>8</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>9</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>10</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>11</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>12</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>13</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>14</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>15</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>16</td>
<td>Tamaño 21 x 31cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>17</td>
<td>Tamaño 100 x 14cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>18</td>
<td>Tamaño 40 x 10cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>19</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
<tr>
<td>20</td>
<td>Tamaño 297 x 21cm, 0,4 mm de grosor.</td>
</tr>
</tbody>
</table>

MEDIDAS:
- 420 x 420 mm.
- 297 x 297 mm.
- 210 x 210 mm.
CAPÍTULO 4:
INSTALACIÓN ELÉCTRICA

El objeto de esta instalación es la de poder obtener la correspondiente aprobación de los “Servicios de Industria de la Generalitat de Catalunya”. Es preciso determinar la potencia requerida por la nave y dotarla de un conjunto de elementos que permitan transportar y distribuir la energía eléctrica, desde el punto de suministro hasta los equipos que la utilicen de una forma segura.
4.1. DESCRIPCIÓN DE LA INSTALACIÓN

La instalación a efectuar seguirá las exigencias del vigente Reglamento Electrotécnico de Baja Tensión.

La legislación específica correspondiente con este capítulo es la que se muestra en el apartado “NORMAS Y REGLAMENTOS” del “DOCUMENTO nº 2: MEMORIA DESCRIPTIVA.

La instalación consta de un cuadro general de distribución, con una protección general y protecciones en los circuitos derivados. Se instalarán 3 subcuadros:

- Subcuadro 1. Planta Baja Nave 1 y 2.
- Subcuadro 2. Oficinas Nave 2.

Su composición queda reflejada en el esquema unifilar correspondiente, en el documento de planos.
4.2. POTENCIA PREVISTA PARA LA INSTALACIÓN

La tabla expuesta a continuación muestra la potencia requerida por cada línea de iluminación. Las líneas de iluminación, definidas como “L.I.” son las siguientes:

Tabla 4.1. Líneas de iluminación. Requerimientos de potencia.

<table>
<thead>
<tr>
<th>DENOMINACIÓN LINEA ILUMINACIÓN</th>
<th>LUMINARIAS</th>
<th>P (Kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.I.1 NAVE 1 PLANTA BAJA</td>
<td>11 x FL3P 2XFD36</td>
<td>0.396</td>
</tr>
<tr>
<td>L.I.2 NAVE 1 PLANTA BAJA</td>
<td>8 x FL3P 2XFD36</td>
<td>0.288</td>
</tr>
<tr>
<td>L.I.3 NAVE 1 PLANTA BAJA</td>
<td>4 x IN20 1XME250</td>
<td>1.000</td>
</tr>
<tr>
<td>L.I.4 NAVE 2 PLANTA BAJA</td>
<td>3 x FL3P 2XFD36 3 x IN20 1XME250</td>
<td>0.858</td>
</tr>
<tr>
<td>L.I.5 NAVE 2 PB Y PS (OFICINAS)</td>
<td>8 x FL3P 2XFD36</td>
<td>0.288</td>
</tr>
<tr>
<td>L.I.6 TALLER</td>
<td>11 x FL3P 2XFD36</td>
<td>0.396</td>
</tr>
<tr>
<td>L.I.7 NAVE 1 PLANTA SUPERIOR</td>
<td>8 x FL3P 2XFD36</td>
<td>0.288</td>
</tr>
<tr>
<td>L.I.8 NAVE 1 Y 2 EXTERIOR</td>
<td>4 x PR17MB 1xQE400</td>
<td>1.6</td>
</tr>
<tr>
<td>L.I.9 EMERGENCIA NAVE 1</td>
<td>29 x NT 65/ 435 16W</td>
<td>0.464</td>
</tr>
<tr>
<td>L.I.10 EMERGENCIA NAVE 2</td>
<td>15 x NT 65/ 435 16W</td>
<td>0.240</td>
</tr>
<tr>
<td>POTENCIA TOTAL DEMANDADA POR TOMAS DE FUERZA</td>
<td></td>
<td>5.818</td>
</tr>
</tbody>
</table>

Es importante para el cálculo y el correcto dimensionamiento de la instalación recordar que en una misma línea de iluminación se podrán instalar un número máximo de 12 puntos de luz.
La tabla 4.2 muestra la potencia de los elementos presentes en la nave necesarios para desarrollar la actividad laboral.

Tabla 4.2. Requerimientos de potencia de máquinas y otros usos.

<table>
<thead>
<tr>
<th>Cargas</th>
<th>Denominación</th>
<th>P. unitaria (KW)</th>
<th>Cant.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motores</td>
<td>Compresor de Aire</td>
<td>4,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Plegadora</td>
<td>4,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Taladro vertical</td>
<td>2,00</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Tronzadora</td>
<td>2,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mola</td>
<td>1,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cizalla</td>
<td>0,75</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CNC 3 Dimensiones</td>
<td>19,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Prensa</td>
<td>2,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Bomba Hidráulica</td>
<td>0,736</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ventilador CMT/6-400/165 3</td>
<td>3,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Extractor CHTH/6-630</td>
<td>3,70</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sierra de cinta</td>
<td>0,736</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Torno</td>
<td>1,50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fresadora</td>
<td>1,50</td>
<td>1</td>
</tr>
<tr>
<td>Otros usos</td>
<td>CN Aros</td>
<td>8,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Soldadora por resistencia pequeña</td>
<td>16,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Soldadora por resistencia grande</td>
<td>40,00</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Soldadora por puntos</td>
<td>20,00</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Máquina Multiusos</td>
<td>2,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aire acondicionado</td>
<td>2,9</td>
<td>1</td>
</tr>
</tbody>
</table>
Las máquinas que precisen mucha potencia tendrán circuito particular para cada emplazamiento dentro de la nave. En cambio el resto de máquinas de menor potencia podrán conectarse a las tomas de fuerza repartidas con tal fin.

La potencia prevista para las tomas de fuerza monofásicas indicadas con la letra “M” sobre plano, será de 3450W, mientras que para las de trifásicas indicadas con la letra “T” será de 5600W. A estas potencias se aplicarán los correspondientes factores de utilización y de simultaneidad previstos.

En algunos casos los factores de utilización y de simultaneidad correspondientes a las tomas de fuerza serán bajos ya que por el tipo de actividad, el desarrollo de la misma y teniendo en cuenta que la maquinaria cuenta con líneas individuales no se prevé exceso de demanda en esos circuitos.

El diámetro mínimo de los conductores de estas líneas será de 2,5mm².

Tabla 4.3. Requerimientos de las Tomas de Fuerza por zonas y por tipo.

<table>
<thead>
<tr>
<th>TOMAS DE FUERZA POR ZONA</th>
<th>CANTIDAD TOMAS Y TIPO</th>
<th>FACTOR DE UTILIZACIÓN</th>
<th>FACTOR DE SIMULTANEIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVE 1 PLANTA BAJA</td>
<td>M x 9= 31.050 W</td>
<td>Fu=0,7</td>
<td>Fs=0,7</td>
</tr>
<tr>
<td></td>
<td>T x 6= 33.600 w</td>
<td>Fu=0,6</td>
<td>Fs=0,6</td>
</tr>
<tr>
<td>NAVE 1 PLANTA SUPERIOR TALLER</td>
<td>M x 2= 6.900 W</td>
<td>Fu=0,8</td>
<td>Fs=0,4</td>
</tr>
<tr>
<td></td>
<td>T x 1= 5.600 w</td>
<td>Fu=0,5</td>
<td>Fs=1</td>
</tr>
<tr>
<td>NAVE 1 COMEDOR Y VESTUARIO</td>
<td>M x 3= 10.350 W</td>
<td>Fu=0,5</td>
<td>Fs=0,7</td>
</tr>
<tr>
<td>NAVE 2 PLANTA BAJA TALLER</td>
<td>M x 3= 10.350 W</td>
<td>Fu=0,8</td>
<td>Fs=0,8</td>
</tr>
<tr>
<td></td>
<td>T x 1= 5.600 w</td>
<td>Fu=0,8</td>
<td>Fs=0,8</td>
</tr>
<tr>
<td>NAVE 2 OFICINAS Y VESTUARIO</td>
<td>M x 4= 13.800 W</td>
<td>Fu=0,4</td>
<td>Fs=0,4</td>
</tr>
</tbody>
</table>
La distribución de las líneas de las tomas de fuerza y de las máquinas se llevará a cabo en bandejas ancladas a la pared del taller. Las líneas de las tomas de fuerza, definidas como “L.F.” son las siguientes:

Tabla 4.4. Líneas de tomas de fuerza.

<table>
<thead>
<tr>
<th>DENOMINACIÓN DE LÍNEAS DE TOMAS DE FUERZA</th>
<th>POTENCIA (W)</th>
<th>Fu x Fs</th>
<th>P. TOTAL DEMANDADA POR LINEA (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.F.1 NAVE 1 PLANTA BAJA (T)</td>
<td>31.050</td>
<td>0,49</td>
<td>15.215</td>
</tr>
<tr>
<td>L.F.2 NAVE 1 PLANTA BAJA (T)</td>
<td>33.600</td>
<td>0,36</td>
<td>12.096</td>
</tr>
<tr>
<td>L.F.3 NAVE 1 PLANTA SUPERIOR TALLER (M)</td>
<td>6.900</td>
<td>0,32</td>
<td>2.208</td>
</tr>
<tr>
<td>L.F.4 NAVE 1 PLANTA SUPERIOR TALLER (T)</td>
<td>5.600</td>
<td>0,5</td>
<td>2.800</td>
</tr>
<tr>
<td>L.F.5 NAVE 1 COMEDOR Y VESTUARIO (M)</td>
<td>10.350</td>
<td>0,35</td>
<td>3.623</td>
</tr>
<tr>
<td>L.F.6 NAVE 2 PLANTA BAJA TALLER (M)</td>
<td>10.350</td>
<td>0,64</td>
<td>6.624</td>
</tr>
<tr>
<td>L.F.7 NAVE 2 PLANTA BAJA TALLER (T)</td>
<td>5.600</td>
<td>0,64</td>
<td>3.584</td>
</tr>
<tr>
<td>L.F.8 NAVE 2 OFICINAS Y VESTUARIO (M)</td>
<td>13.800</td>
<td>0,16</td>
<td>2.208</td>
</tr>
</tbody>
</table>

| POTENCIA TOTAL DEMANDADA POR TOMAS DE FUERZA | 48.358 |
Por último definir las máquinas que irán conectadas directamente al cuadro ya sea por alto requerimiento de potencia o bien por deseo del solicitante; éstas tendrán por tanto circuito propio. Las líneas de las maquinas, definidas como “L.M.” son las siguientes:

Tabla 4.5. Líneas de Máquinas.

<table>
<thead>
<tr>
<th>DENOMINACIÓN DE LÍNEAS DE MÁQUINAS</th>
<th>POTENCIA (W)</th>
<th>Fu xFs</th>
<th>P. TOTAL DEMANDADA POR LINEA (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.M.1 BOMBA HIDRÁULICA (M)</td>
<td>736</td>
<td>1</td>
<td>0.736</td>
</tr>
<tr>
<td>L.M.2 CN AROS (T)</td>
<td>8.000</td>
<td>0.8</td>
<td>6.400</td>
</tr>
<tr>
<td>L.M.3 CNC 3D (T)</td>
<td>19.000</td>
<td>0.8</td>
<td>15.200</td>
</tr>
<tr>
<td>L.M.4 SOLDADORAS POR RESISTENCIA PEQ. (T)</td>
<td>16.000</td>
<td>0.8</td>
<td>12.800</td>
</tr>
<tr>
<td>L.M.5 SOLDADORAS POR RESISTENCIA GRAN. (T)</td>
<td>80.000</td>
<td>0.8</td>
<td>64.000</td>
</tr>
<tr>
<td>L.M.6 SOLDADORA POR PUNTOS (T)</td>
<td>40.000</td>
<td>0.8</td>
<td>32.000</td>
</tr>
<tr>
<td>L.M.7 COMPRESOR (T)</td>
<td>4.000</td>
<td>0.7</td>
<td>2.800</td>
</tr>
<tr>
<td>L.M.8 VENTILADOR CMT/6-400/165 3 (T)</td>
<td>3.00</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>L.M.9 EXTRACTOR CHT/6-630 (T)</td>
<td>3.700</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>L.M.10 AIRE ACONDICIONADO (M)</td>
<td>2.900</td>
<td>1</td>
<td>2.9</td>
</tr>
</tbody>
</table>

POTENCIA TOTAL DEMANDADA LÍNEAS DE MÁQUINAS 133.21
4.3. INSTALACIÓN INTERIOR.

La instalación interior se llevará a cabo mediante conductores aislados en tubos en montaje superficial, lo que aparece en la tabla siguiente como montaje “B”, o bien en cables unipolares con contacto mutuo en bandeja perforada, lo que corresponde con el montaje “F”.

Tabla 4.6. Montaje, tipo, y longitud de conductor para cada línea

<table>
<thead>
<tr>
<th>DENOMINACIÓN DE LINEA</th>
<th>MONTAJE</th>
<th>TIPO</th>
<th>L. (m)</th>
<th>CONDUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.I.1 NAVE 1 PLANTA BAJA</td>
<td>B</td>
<td>3</td>
<td>26</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.2 NAVE 1 PLANTA BAJA</td>
<td>B</td>
<td>3</td>
<td>23</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.3 NAVE 1 PLANTA BAJA</td>
<td>B</td>
<td>3</td>
<td>22</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.4 NAVE 2 PLANTA BAJA</td>
<td>B</td>
<td>3</td>
<td>36</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.5 NAVE 2 PB Y PS (OFICINAS)</td>
<td>B</td>
<td>3</td>
<td>20</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.6 NAVE 1 PLANTA SUPERIOR TALLER</td>
<td>B</td>
<td>3</td>
<td>25</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.7 NAVE 1 PLANTA SUPERIOR</td>
<td>B</td>
<td>3</td>
<td>25</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.8 NAVE 1Y 2 EXTERIOR</td>
<td>B</td>
<td>3</td>
<td>15</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.9 EMERGENCIA NAVE 1</td>
<td>B</td>
<td>3</td>
<td>90</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.I.10 EMERGENCIA NAVE 2</td>
<td>B</td>
<td>3</td>
<td>90</td>
<td>2 X 1,5 + 1,5 XLPE</td>
</tr>
<tr>
<td>L.F.1 NAVE 1 PLANTA BAJA</td>
<td>B</td>
<td>3</td>
<td>50</td>
<td>2 X 25 + 25 XLPE</td>
</tr>
<tr>
<td>L.F.2 NAVE 1 PLANTA BAJA</td>
<td>F</td>
<td>4</td>
<td>50</td>
<td>3 X 6 + 6 XLPE</td>
</tr>
<tr>
<td>L.F.3 NAVE 1 PLANTA SUPERIOR TALLER</td>
<td>B</td>
<td>3</td>
<td>10</td>
<td>2 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.F.4 NAVE 1 PLANTA SUPERIOR TALLER</td>
<td>F</td>
<td>4</td>
<td>6</td>
<td>3 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.F.5 NAVE 1 COMEDOR Y VESTUARIO</td>
<td>B</td>
<td>3</td>
<td>13</td>
<td>2 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.F.6 NAVE 2 PLANTA BAJA TALLER</td>
<td>B</td>
<td>3</td>
<td>18</td>
<td>2 X 4 + 4 XLPE</td>
</tr>
<tr>
<td>L.F.7 NAVE 2 PLANTA BAJA TALLER</td>
<td>F</td>
<td>4</td>
<td>13</td>
<td>3 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.F.8 NAVE 2 OFICINAS Y VESTUARIO</td>
<td>B</td>
<td>3</td>
<td>12</td>
<td>2 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.M.1 BOMBA HIDRÁULICA</td>
<td>B</td>
<td>3</td>
<td>10</td>
<td>2 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.M.2 CN AROS</td>
<td>F</td>
<td>4</td>
<td>12</td>
<td>3 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.M.3 CNC 3D</td>
<td>F</td>
<td>4</td>
<td>37</td>
<td>3 X 4 + 4 XLPE</td>
</tr>
<tr>
<td>L.M.4 SOLDADORAS POR RESISTENCIA PEQ</td>
<td>F</td>
<td>4</td>
<td>35</td>
<td>3 X 4 + 4 XLPE</td>
</tr>
<tr>
<td>L.M.5 SOLDADORAS POR RESISTENCIA GRAN</td>
<td>F</td>
<td>4</td>
<td>32</td>
<td>3 X 16 + 16 XLPE</td>
</tr>
<tr>
<td>L.M.6 SOLDADORA POR PUNTOS</td>
<td>F</td>
<td>4</td>
<td>25</td>
<td>3 X 10 +10 XLPE</td>
</tr>
<tr>
<td>L.M.7 COMPRESOR</td>
<td>F</td>
<td>4</td>
<td>30</td>
<td>3 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.M.8 VENTILADOR CMT/6-400/165 3</td>
<td>F</td>
<td>4</td>
<td>32</td>
<td>3 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.M.9 EXTRACTOR CHT/6-630</td>
<td>F</td>
<td>4</td>
<td>25</td>
<td>3 X 2,5 + 2,5 XLPE</td>
</tr>
<tr>
<td>L.M.10 AIRE ACONDICIONADO</td>
<td>B</td>
<td>3</td>
<td>15</td>
<td>2 X 2,5 + 2,5 XLPE</td>
</tr>
</tbody>
</table>
Lo que se muestra en la tabla como “tipo” corresponde a:

- Tipo 3: 2 x XLPE
- Tipo 4: 3 x XLPE

Algunos de los cables como son los que dan servicio a las máquinas van montados sobre bandeja perforada. La bandeja elegida para la nave 1 será de 150mm de ancho por 50mm de ala con lo que se obtiene una sección útil de 7500 mm². Con esta bandeja queda cubierta la situación más desfavorable situada en la pared donde se encuentran las máquinas de soldadura. Para la Nave 2 será suficiente con una bandeja de 100X50. Las características de las bandejas son las siguientes:

ALA 50

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>A</th>
<th>e</th>
<th>STD</th>
<th>Pesada</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRP-50-Z</td>
<td>50</td>
<td>0,71</td>
<td>0,89</td>
<td>1,6</td>
</tr>
<tr>
<td>TRP-100-Z</td>
<td>100</td>
<td>0,71</td>
<td>0,89</td>
<td>1,6</td>
</tr>
<tr>
<td>TRP-150-Z</td>
<td>150</td>
<td>0,71</td>
<td>0,89</td>
<td>1,6</td>
</tr>
<tr>
<td>TRP-200-Z</td>
<td>200</td>
<td>0,71</td>
<td>0,89</td>
<td>1,6</td>
</tr>
<tr>
<td>TRP-250-Z</td>
<td>250</td>
<td>0,71</td>
<td>0,89</td>
<td>1,6</td>
</tr>
<tr>
<td>TRP-300-Z</td>
<td>300</td>
<td>0,71</td>
<td>0,89</td>
<td>1,6</td>
</tr>
<tr>
<td>TRP-450-Z</td>
<td>450</td>
<td>0,89</td>
<td>1,24</td>
<td>1,6</td>
</tr>
<tr>
<td>TRP-600-Z</td>
<td>600</td>
<td>0,89</td>
<td>1,24</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Para solicitar bandejas en chapa pesada agregar al código 16, ejemplo: TRP-150-16-Z

Según requerimiento se puede proveer la bandeja ciega, sin perforaciones.

También serán necesarios elementos de sujección y anclaje y tramos curvos.
4.4. DISPOSITIVOS DE PROTECCIÓN

Todas las líneas estarán protegidas por pequeños interruptores automáticos (PIA’s), por interruptores diferenciales y por interruptores de control de potencia tal como se muestra en el plano del esquema unifilar.

Tabla 4.7. Dispositivos de protección de las líneas

<table>
<thead>
<tr>
<th>DENOMINACIÓN DE LÍNEA</th>
<th>P (KW)</th>
<th>I. DIFERENCIAL</th>
<th>PIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.I.1 NAVE 1 PLANTA BAJA</td>
<td>0.396</td>
<td>40/II/0,03</td>
<td>10/II</td>
</tr>
<tr>
<td>L.I.2 NAVE 1 PLANTA BAJA</td>
<td>0.288</td>
<td></td>
<td>10/II</td>
</tr>
<tr>
<td>L.I.3 NAVE 1 PLANTA BAJA</td>
<td>1.000</td>
<td></td>
<td>10/II</td>
</tr>
<tr>
<td>L.I.4 NAVE 2 PLANTA BAJA</td>
<td>0.858</td>
<td></td>
<td>10/II</td>
</tr>
<tr>
<td>L.I.8 NAVE 1 Y 2 EXTERIOR</td>
<td>1.600</td>
<td></td>
<td>10/II</td>
</tr>
<tr>
<td>L.I.9 EMERGENCIA NAVE 1</td>
<td>0.464</td>
<td></td>
<td>10/II</td>
</tr>
<tr>
<td>L.I.10 EMERGENCIA NAVE 2</td>
<td>0.240</td>
<td></td>
<td>10/II</td>
</tr>
<tr>
<td>L.F.1 NAVE 1 PLANTA BAJA</td>
<td>15.20</td>
<td>25/IV/0,3</td>
<td>25/IV</td>
</tr>
<tr>
<td>L.F.2 NAVE 1 PLANTA BAJA</td>
<td>12.10</td>
<td>25/IV/0,3</td>
<td>25/IV</td>
</tr>
<tr>
<td>L.F.6 NAVE 2 PLANTA BAJA TALLER</td>
<td>6.60</td>
<td>40/II/0,03</td>
<td>16/II</td>
</tr>
<tr>
<td>L.F.7 NAVE 2 PLANTA BAJA TALLER</td>
<td>3.60</td>
<td>40/IV/0,03</td>
<td>10/IV</td>
</tr>
<tr>
<td>L.M.1 BOMBA HIDRÁULICA</td>
<td>0.74</td>
<td>40/II/0,03</td>
<td>10/II</td>
</tr>
<tr>
<td>L.M.2 CN AROS</td>
<td>6.40</td>
<td>40/IV/0,03</td>
<td>16/II</td>
</tr>
<tr>
<td>L.M.3 CNC 3D</td>
<td>15.20</td>
<td>40/IV/0,03</td>
<td>40/IV</td>
</tr>
<tr>
<td>L.M.4 SOLDADORAS POR RESISTENCIA PEQ.</td>
<td>12.80</td>
<td>40/IV/0,03</td>
<td>25/IV</td>
</tr>
<tr>
<td>L.M.5 SOLDADORAS POR RESISTENCIA GRAN.</td>
<td>64.00</td>
<td>160/IV/0,3</td>
<td>160/IV</td>
</tr>
<tr>
<td>L.M.6 SOLDADORA POR PUNTOS</td>
<td>32.00</td>
<td>63/IV/0,03</td>
<td>63/IV</td>
</tr>
<tr>
<td>L.M.8 VENTILADOR CMT/6-400/165 3</td>
<td>3.00</td>
<td>40/IV/0,03</td>
<td>10/IV</td>
</tr>
<tr>
<td>L.M.9 EXTRACTOR CHT/6-630</td>
<td>3.70</td>
<td>40/IV/0,03</td>
<td>10/IV</td>
</tr>
<tr>
<td>L.M.10 AIRE ACONDICIONADO</td>
<td>2.90</td>
<td>40/II/0,03</td>
<td>16/II</td>
</tr>
<tr>
<td>L.I.5 NAVE 2 PB Y PS (OFICINAS)</td>
<td>0.288</td>
<td>40/II/0,03</td>
<td>10/II</td>
</tr>
<tr>
<td>L.F.8 NAVE 2 OFICINAS Y VESTUARIO</td>
<td>2.20</td>
<td></td>
<td>16/II</td>
</tr>
<tr>
<td>L.M.10 AIRE ACONDICIONADO</td>
<td>2.90</td>
<td></td>
<td>16/II</td>
</tr>
<tr>
<td>L.I.6 NAVE 1 PLANTA SUPERIOR TALLER</td>
<td>0.396</td>
<td>40/IV/0,03</td>
<td>10/II</td>
</tr>
<tr>
<td>L.I.7 NAVE 1 PLANTA SUPERIOR</td>
<td>0.288</td>
<td></td>
<td>10/II</td>
</tr>
<tr>
<td>L.F.3 NAVE 1 PLANTA SUPERIOR TALLER</td>
<td>2.20</td>
<td>40/IV/0,03</td>
<td>16/II</td>
</tr>
<tr>
<td>L.F.5 NAVE 1 COMEDOR Y VESTUARIO</td>
<td>3.60</td>
<td></td>
<td>25/II</td>
</tr>
<tr>
<td>L.F.4 NAVE 1 PLANTA SUPERIOR TALLER</td>
<td>2.80</td>
<td>40/IV/0,03</td>
<td>10/IV</td>
</tr>
<tr>
<td>L.M.7 COMPRESOR</td>
<td>2.80</td>
<td></td>
<td>10/IV</td>
</tr>
</tbody>
</table>
4.5. LÍNEAS DE DISTRIBUCIÓN Y ACOMETIDA

La línea general de alimentación será del tipo B, conductor aislado en tubo empotrado en obra. Para las acometidas y las derivaciones las caídas de tensión máximas admisibles serán de 0,5% y 1% respectivamente. La instalación está distribuida en 3 subcuadros tal y como se observa en el plano correspondiente al esquema unifilar.

Tabla 4.8. Resumen de cálculo de los subcuadros

<table>
<thead>
<tr>
<th>Subcuadros</th>
<th>P (kW)</th>
<th>S (KVA)</th>
<th>I Total</th>
<th>L. (m)</th>
<th>Sección L max</th>
<th>sección cdt</th>
<th>Sección elegida</th>
<th>Conductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-SUBC. PLANTA BAJA</td>
<td>192.3</td>
<td>219.8</td>
<td>317.3</td>
<td>1</td>
<td>150</td>
<td>8.58</td>
<td>150</td>
<td>3x150+150</td>
</tr>
<tr>
<td>2-SUBC. OFICINAS</td>
<td>5.4</td>
<td>6.2</td>
<td>27.1</td>
<td>11</td>
<td>2.5</td>
<td>9.20</td>
<td>10</td>
<td>2x10+10</td>
</tr>
<tr>
<td>3-SUBC. NAVE 1 PLANTA SUPERIOR</td>
<td>12.1</td>
<td>14.4</td>
<td>20.7</td>
<td>10</td>
<td>2.5</td>
<td>10.79</td>
<td>16</td>
<td>3x16+16</td>
</tr>
</tbody>
</table>

Según los cálculos desarrollados en la hoja de Excel la sección de la línea general de alimentación sería 3x120+120 teniendo en cuenta que la derivación individual tiene una longitud de 3 m y está enterrada bajo tubo. Esta sección deja poco margen para futuras ampliaciones así que finalmente se instalará 3x150+150

La derivación será del tipo media tensión (MT), de designación UNE RHZ1 12/20 Kv, de 3x150 mm² de sección, con conductor de cobre, aislamiento de polietileno reticulado (XLPE), pantalla metálica de hilos de cobre de 16 mm² de sección y cubierta exterior de poliolefina termoplástica (Z1), enterrado.

No se instalará *interruptor general automático* (IGA) debido a que la intensidad supera los 63 A.

El conjunto de medida será del tipo TMF10 para suministro trifásico individual superior a 15 kW, para medida indirecta, potencia entre 139 y 277 kW (entre 200 A y 400 A), tensión de 400 V, formado por conjunto de cajas modulares de doble aislamiento de poliéster reforzado con fibra de vidrio de medidas totales 630x1260x171 mm, con base de fusibles de 630 A.

La potencia máxima a contratar a la empresa suministradora será de 218 kW.

Todos los elementos correspondientes a la instalación eléctrica estarán correctamente indicados en el esquema unifilar incluido dentro del documento de planos. En el siguiente apartado se observa el modelo de cálculo utilizado.
4.6. RESUMEN DE CÁLCULOS
4.7. COMPENSACIÓN DE ENERGÍA REACTIVA

La energía reactiva es aquella que existe a causa del trasiego de energía activa entre la fuente y la carga. Generalmente está asociada a los campos magnéticos internos de los motores y transformadores. Se mide en KVARh. Como esta energía provoca sobrecarga en las líneas transformadoras y generadoras, sin producir un trabajo útil, es necesario neutralizarla o compensarla.

Este apartado pretende ofrecer al cliente una propuesta para dar solución al inconveniente de la energía reactiva. Mediante la instalación de condensadores se obtienen algunas ventajas. Estas son:

- **Reducción de los recargos**: Las compañías eléctricas aplican recargos o penalizaciones al consumo de energía reactiva con objeto de incentivar su corrección. Reducción de las caídas de tensión. La instalación de condensadores permite reducir la energía reactiva transportada disminuyendo las caídas de tensión en la línea.

- **Reducción de las caídas de tensión**: La instalación de condensadores permite reducir la energía reactiva transportada disminuyendo las caídas de tensión en la línea.

- **Disminución de las pérdidas**: Al igual que en el caso anterior, la instalación de condensadores permite reducir las pérdidas por efecto Joule que se producen en los conductores y transformadores.

Existen varios modos de instalación de los condensadores que varían en función de su situación dentro de la instalación.

En este caso se emplearía una **compensación global**. La principal ventaja que ofrece este tipo de compensación es que suprime las penalizaciones por un consumo excesivo de energía reactiva, con lo que se disminuyen las pérdidas energéticas y por consiguiente las pérdidas económicas. Por el contrario la corriente reactiva (Ir) está presente en la instalación desde el nivel 1 hasta los receptores con lo que las pérdidas por efecto Joule no quedan disminuidas (KWh).

El modelo es el siguiente:
4.7.1. Cálculo de la instalación

Para conocer la potencia del condensador en kVAR a instalar por kW de carga para elevar el factor de potencia inicial, se usará el método del cálculo por tabla. Los datos necesarios son:

- **Cos φ medio inicial** = 0,87
- **Cos φ objetivo** = 0,98
- **Potencia activa media de la instalación** = 197,7 kW

Con estos datos se puede proceder al **cálculo por tabla**.

<table>
<thead>
<tr>
<th>Antes de la compensación</th>
<th>Potencia del condensador en kVAR a instalar por kW de carga para elevar el factor de potencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>tg φ cos φ</td>
<td>tg φ cos φ</td>
</tr>
<tr>
<td>0,75</td>
<td>0,59</td>
</tr>
<tr>
<td>0,86</td>
<td>0,66</td>
</tr>
<tr>
<td>0,88</td>
<td>0,69</td>
</tr>
<tr>
<td>0,96</td>
<td>0,70</td>
</tr>
<tr>
<td>0,105</td>
<td>0,82</td>
</tr>
<tr>
<td>0,200</td>
<td>0,81</td>
</tr>
<tr>
<td>0,300</td>
<td>0,82</td>
</tr>
<tr>
<td>0,317</td>
<td>0,83</td>
</tr>
<tr>
<td>0,334</td>
<td>0,84</td>
</tr>
<tr>
<td>0,354</td>
<td>0,86</td>
</tr>
<tr>
<td>0,375</td>
<td>0,88</td>
</tr>
<tr>
<td>0,396</td>
<td>0,93</td>
</tr>
<tr>
<td>0,405</td>
<td>0,99</td>
</tr>
<tr>
<td>0,477</td>
<td>1,46</td>
</tr>
</tbody>
</table>

Consultando la tabla se obtiene un factor = 0,337.

Multiplicando este factor por la potencia activa de la instalación (197,7 kVAR) se obtiene la potencia reactiva a instalar:

66,62 (kVAR)

Alcanzando un **cos φ** = 0,98 mejoraríamos el coeficiente de recargo de la tarifa eléctrica del modo que se muestra a continuación. El coeficiente de recargo (Kr) se obtiene a partir del cos φ medio de la instalación según la siguiente fórmula:

$$Kr \% = (17 / \cos^2 \varphi) - 21$$

Por tanto para un cos φ = 0,87 corresponde un Kr (%) = 1,46, mientras que con un cos φ = 0,98 se obtiene un Kr (%) = -3,3. A partir de cos φ = 0,9 el recargo se convierte en bonificación con lo que mediante la compensación obtendríamos una
bonificación en la tarifa correspondiente al 3.3% sobre la potencia contratada y la potencia consumida.

La batería de condensadores a instalar será la inmediatamente superior a 66,62 (kVAR).
Por tanto se trata de una batería de condensadores trifásica de 400 V y frecuencia de 50 Hz, de 70,0 kVAR de potencia reactiva, de 4 etapas 10+3x20 kVAR, de funcionamiento automático, con regulador de energía reactiva con pantalla de cristal líquido para la visualización del estado de funcionamiento, con condensadores autoprotegidos, contactores con resistencias de preinserción y armario metálico con grado de protección IP-21 para instalación mural.

El precio de este elemento es de 1.634,14 € con lo teniendo en cuenta el coste de la energía reactiva se estima que la batería de condensadores estaría amortizada en menos de 1 año.
Este elemento está incluido en el presupuesto.
CAPÍTULO 5:
INSTALACIÓN DE AGUA

El objetivo de este apartado es dotar a la nave industrial con la instalación de agua. Para ello se seguirá el capítulo 4 (Suministro de Agua) del documento Básico de salubridad del Código Técnico de la Edificación.

El suministro de agua abastecerá todos los puntos del edificio donde sea necesario.
5.1. AGUA FRIA

La instalación suministrará a los aparatos y equipos del equipamiento higiénico los caudales que figuran en la tabla 2.1. del CTE-DB-HS-4. Estos caudales serán distintos para agua caliente y para agua fría. Se han resumido en el cuadro siguiente:

Tabla 5.1. Caudales mínimos instantáneos por elemento

<table>
<thead>
<tr>
<th>TIPO DE APARATO</th>
<th>Caudal min. instantáneo (l/s) Agua Fría</th>
<th>Caudal mín. instantáneo (l/s) ACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavamanos</td>
<td>0,05</td>
<td>0,03</td>
</tr>
<tr>
<td>Inodoro con cisterna</td>
<td>0,1</td>
<td>-</td>
</tr>
<tr>
<td>Grifo aislado</td>
<td>0,15</td>
<td>0,10</td>
</tr>
<tr>
<td>Urinario con cisterna</td>
<td>0,04</td>
<td>-</td>
</tr>
<tr>
<td>Fregadero doméstico</td>
<td>0,20</td>
<td>0,10</td>
</tr>
</tbody>
</table>

En los puntos de consumo la presión mínima será:

a) 100 kPa para grifos comunes;

b) 150 kPa para fluxores y calentadores.

La presión en cualquier punto de consumo no superará los 500 kPa.

Según los parámetros de la tabla antes anterior obtenemos los parámetros de cálculo para cada punto de consumo. Para poder llevar a cabo el cálculo de una forma ordenada es importante nombrar los tramos de la instalación.

A continuación se muestra el esquema de la instalación donde se puede ver como se distribuyen los tramos y los caudales instantáneos necesarios en cada punto de consumo.
Figura 6.1. Esquema de distribución agua fría

Se estudiará la pérdida de carga en cada tramo, teniendo en cuenta las pérdidas en la tubería, accesorios, pérdida de presión debido a la altura de la instalación y la presión residual en los elementos finales. Como dato de partida, tenemos que la compañía de aguas suministra 20 m.c.a.
5.1.1. Dimensionamiento de la Instalación

El dimensionamiento de la instalación de fontanería se realiza con una hoja de cálculo en Excel en la que se definen los tramos, el caudal que pasa por dichos tramos, los puntos de consumo, la velocidad máxima del agua, la longitud de tubería y la diferencia de altura entre principio y fin de tramo. En esta diferencia de altura, además de las alturas geométricas, se tendrán en cuenta las perdidas de carga debidas a los accesorios de la instalación que serán calculadas previamente. Con estos parámetros y teniendo en cuenta que serán tubos de cobre se obtiene el diámetro normalizado a instalar.

Las pérdidas de carga de los accesorios para cada uno de los tramos variarán en función del caudal y del diámetro de paso del agua. Estas pérdidas serán introducidas en la hoja de cálculo como ΔH junto con la diferencias de alturas geométricas. Las pérdidas estimadas son las siguientes:

- Tramo A-B. Grifo a la salida: 0.3 m.c.a
 2 Codos a 90°: 0,2 x 2=0,4 m.c.a
 1 Derivación en T: 0.3 m.c.a

- Tramo B-C. 1 Derivación en T: 0.3 m.c.a

- Tramo C-D. 1 Derivación en T: 0.3 m.c.a

- Tramo D-E. 1 Derivación en T: 0.3 m.c.a

- Tramo E-F. 1 Derivación en T: 0.3 m.c.a

- Tramo F-G. Grifo a la salida: 0.3 m.c.a
 2 Codos a 90°: 0,4 m.c.a

- Tramo F-H. 1 Codo a 90° : 0,4 m.c.a
 1 Derivación en T: 0.3 m.c.a
 1 llave de paso: 0,3 m.c.a

- Tramo H-I. Grifo a la salida: 0.3 m.c.a

- Tramo H-J. 1 Derivación en T: 0.3 m.c.a

- Tramo K-L. Grifo a la salida: 0.3 m.c.a
 1 Derivación en T: 0.3 m.c.a

- Tramo L-M. Llave a la salida:0,2 m.c.a

- Tramo M-J. Llave a la salida: 0.2 m.c.a
 1 llave de paso: 0,3 m.c.a

- Tramo J-N. 1 contador: 0.8 m.c.a
 2 llaves de paso: 0.5 m.c.a
1 llave General: 0.3 m.c.a
1 Válvula de retención: 0.2 m.c.a

De este modo siguiendo el esquema del apartado anterior se obtienen las presiones en los distintos puntos de la tubería de distribución donde las diferentes tés de derivación conducen el agua hasta los puntos de consumo. La tabla se presenta en 3 partes debido a las ramificaciones de la instalación.

Tabla 5.2. Resumen de cálculo del dimensionamiento de instalación de agua fría. Tramo N-J.

<table>
<thead>
<tr>
<th>ID Tramo</th>
<th>Q (l/s)</th>
<th>K</th>
<th>V máx (m/s)</th>
<th>D Cálculo (mm)</th>
<th>D Norm (mm)</th>
<th>V real (m/s)</th>
<th>Longitud (m)</th>
<th>H (m.c.a)</th>
<th>ΔP (m.c.a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-J</td>
<td>1.3</td>
<td>0.16</td>
<td>1.3</td>
<td>14.47</td>
<td>18</td>
<td>1.21</td>
<td>4</td>
<td>25</td>
<td>0.606</td>
</tr>
<tr>
<td>J-H</td>
<td>1.05</td>
<td>0.19</td>
<td>1.3</td>
<td>14.07</td>
<td>18</td>
<td>1.14</td>
<td>1</td>
<td>22.794</td>
<td>0.137</td>
</tr>
<tr>
<td>H-F</td>
<td>0.9</td>
<td>0.22</td>
<td>1.1</td>
<td>15.26</td>
<td>22</td>
<td>0.64</td>
<td>9</td>
<td>21.627</td>
<td>0.313</td>
</tr>
<tr>
<td>F-E</td>
<td>0.7</td>
<td>0.27</td>
<td>1.3</td>
<td>13.54</td>
<td>16</td>
<td>1.22</td>
<td>1</td>
<td>15.614</td>
<td>0.167</td>
</tr>
<tr>
<td>E-D</td>
<td>0.5</td>
<td>0.33</td>
<td>1.3</td>
<td>12.78</td>
<td>15</td>
<td>1.26</td>
<td>1</td>
<td>15.148</td>
<td>0.193</td>
</tr>
<tr>
<td>D-C</td>
<td>0.3</td>
<td>0.45</td>
<td>1.1</td>
<td>12.46</td>
<td>15</td>
<td>1.01</td>
<td>1</td>
<td>14.654</td>
<td>0.132</td>
</tr>
<tr>
<td>C-B</td>
<td>0.2</td>
<td>0.71</td>
<td>1.2</td>
<td>12.25</td>
<td>15</td>
<td>1.07</td>
<td>1</td>
<td>14.222</td>
<td>0.145</td>
</tr>
<tr>
<td>B-A</td>
<td>0.1</td>
<td>1.00</td>
<td>1</td>
<td>11.28</td>
<td>14</td>
<td>0.88</td>
<td>3.5</td>
<td>13.777</td>
<td>0.405</td>
</tr>
</tbody>
</table>

Presión residual en el último elemento A 14.372

Tabla 5.3. Resumen de cálculo del dimensionamiento de instalación de agua fría. Tramo G-F.

<table>
<thead>
<tr>
<th>ID Tramo</th>
<th>Q (l/s)</th>
<th>K</th>
<th>V máx (m/s)</th>
<th>D Cálculo (mm)</th>
<th>D Norm (mm)</th>
<th>V real (m/s)</th>
<th>Longitud (m)</th>
<th>H (m.c.a)</th>
<th>ΔP (m.c.a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-F</td>
<td>0.2</td>
<td>1</td>
<td>1.5</td>
<td>13.0294</td>
<td>16</td>
<td>1.2992</td>
<td>2</td>
<td>21.67</td>
<td>0.137</td>
</tr>
</tbody>
</table>

Presión residual en el elemento F 23.3
Tabla 5.4. Dimensionamiento instalación de fontanería. Tramo M-L.

<table>
<thead>
<tr>
<th>ID Tramo</th>
<th>Q (l/s)</th>
<th>K</th>
<th>V máx (m/s)</th>
<th>D Cálculo (mm)</th>
<th>D Norm (mm)</th>
<th>V real (m/s)</th>
<th>Longitud (m)</th>
<th>H (m.c.a)</th>
<th>ΔP (m.c.a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-J</td>
<td>0.25</td>
<td>0.44721</td>
<td>1</td>
<td>11.9312</td>
<td>14</td>
<td>0.9886</td>
<td>20</td>
<td>22.8</td>
<td>2.813085</td>
</tr>
<tr>
<td>L-M</td>
<td>0.15</td>
<td>0.70711</td>
<td>1.5</td>
<td>9.4885</td>
<td>12</td>
<td>1.3505</td>
<td>2</td>
<td>19.78691</td>
<td>0.609896</td>
</tr>
<tr>
<td>K-L</td>
<td>0.05</td>
<td>1</td>
<td>1.5</td>
<td>6.5147</td>
<td>12</td>
<td>0.6366</td>
<td>2</td>
<td>18.97702</td>
<td>0.163567</td>
</tr>
</tbody>
</table>

Presión residual en el elemento L 18.21345
5.2. AGUA CALIENTE SANITARIA

Esta pequeña empresa no tiene grandes requerimientos de ACS. Solamente será necesaria en la zona de comedor, lavabo y vestuario de la planta superior de la Nave 1. Como se expone a continuación en el siguiente apartado existe una contribución solar mínima que incorpora un interacumulador de 150 litros de capacidad que seguido de una unidad auxiliar de calentador instantáneo permitiendo de esta manera aportar agua caliente a 60° en los puntos de consumo que lo requieran cumpliendo con la normativa.

El interacumulador y el calentador estarán situados en el vestuario y desde el calentador se distribuye el ACS hacia la ducha y al grifo del lavabo anexo al vestuario.

En este apartado se dimensiona la distribución desde que sale del calentador hasta los puntos de consumo ya mencionados.

Como se observa en el plano n° 15 del “ESQUEMA ACS”, el agua del acumulador representado por la circunferencia azul pasa al calentador instantáneo, representado por la circunferencia roja, para ser distribuida a 60° a los puntos de consumo. Tal y como hemos visto en el apartado anterior los caudales serán los que se muestran en la figura siguiente.

![Figura 6.2. Esquema de distribución de ACS](image-url)
5.2.1. Dimensionamiento de la Instalación

Se procederá el cálculo del mismo modo que en el apartado anterior. Las pérdidas de carga en los tramos serán las siguientes:

- Tramo D-U. 3 llaves de paso: 0.75 m.c.a
 Paso por acumulador y calentador: 2,5 m.c.a
- Tramo U-V. Grifo a la salida: 0.3 m.c.a
- Tramo U-W. Grifo a la salida: 0.3 m.c.a

Con estas pérdidas de carga y partiendo de la presión en el punto D de la distribución de agua fría se desarrolla el cálculo en Excel.

En el documento de Anexos está recogida la tabla de Excel completa del cálculo de la distribución de agua tanto fría como caliente. A continuación se muestran cuadros resumen.

Tabla 5.5. Resumen de cálculo del dimensionamiento de instalación de ACS. Tramo D-U.

<table>
<thead>
<tr>
<th>ID Tramo</th>
<th>Q (l/s)</th>
<th>K</th>
<th>V máx (m/s)</th>
<th>D Cálculo (mm)</th>
<th>D Norm (mm)</th>
<th>V real (m/s)</th>
<th>Longitud (m)</th>
<th>H (m.c.a)</th>
<th>ΔP (m.c.a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-U</td>
<td>0.16</td>
<td>0.707</td>
<td>1.5</td>
<td>9.79</td>
<td>12</td>
<td>1.4405</td>
<td>2</td>
<td>14.6</td>
<td>0.682</td>
</tr>
<tr>
<td>U-V</td>
<td>0.1</td>
<td>1</td>
<td>1.5</td>
<td>9.21</td>
<td>12</td>
<td>1.2732</td>
<td>1.2</td>
<td>9.66</td>
<td>0.330</td>
</tr>
</tbody>
</table>

Presión residual en el elemento V: 10.63

Tabla 6.5. Resumen de cálculo del dimensionamiento de instalación de ACS. Tramo U-W.

<table>
<thead>
<tr>
<th>ID Tramo</th>
<th>Q (l/s)</th>
<th>K</th>
<th>V máx (m/s)</th>
<th>D Cálculo (mm)</th>
<th>D Norm (mm)</th>
<th>V real (m/s)</th>
<th>Longitud (m)</th>
<th>H (m.c.a)</th>
<th>ΔP (m.c.a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-W</td>
<td>0.06</td>
<td>1</td>
<td>1.2</td>
<td>7.97</td>
<td>12</td>
<td>0.763</td>
<td>4</td>
<td>9.7</td>
<td>0.450</td>
</tr>
</tbody>
</table>

Presión residual en el elemento W: 10.94
Podemos ver que las presiones residuales en los grifos se encuentran entre 100 y 500 kPa.

El calentador que recibe el agua del acumulador solar será proporcionado por la casa Saunier duval y sus características técnicas son:

<table>
<thead>
<tr>
<th>MODELO</th>
<th>CAPACIDAD</th>
<th>POTENCIA</th>
<th>TENSION</th>
<th>TIEMPO DE CALIENTE</th>
<th>CONSUMO</th>
<th>PESO</th>
<th>Ø</th>
<th>DIMENSIONES (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD 150V</td>
<td>150</td>
<td>3,000</td>
<td>220</td>
<td>120 min.</td>
<td>1,50</td>
<td>3/4</td>
<td>185</td>
<td>615</td>
</tr>
</tbody>
</table>

[Diagrama de una instalación industrial]

-75-
5.3. INSTALACIÓN CONTRIBUCIÓN SOLAR MINIMA PARA ACS

1. Esta Sección es aplicable a los edificios de nueva construcción y rehabilitación de edificios existentes de cualquier uso en los que exista una demanda de agua caliente sanitaria y/o climatización de piscina cubierta.

2. La contribución solar mínima determinada en aplicación de la exigencia básica que se desarrolla en esta Sección, podrá disminuirse justificadamente en los siguientes casos:

 a) cuando se cubra ese aporte energético de agua caliente sanitaria mediante el aprovechamiento de energías renovables, procesos de cogeneración o fuentes de energía residuales procedentes de la instalación de recuperadores de calor ajenos a la propia generación de calor del edificio;

 b) cuando el cumplimiento de este nivel de producción suponga sobrepasar los criterios de cálculo que marca la legislación de carácter básico aplicable;

 c) cuando el emplazamiento del edificio no cuente con suficiente acceso al sol por barreras externas al mismo;

 d) en rehabilitación de edificios, cuando existan limitaciones no subsanables derivadas de la configuración previa del edificio existente o de la normativa urbanística aplicable;

 e) en edificios de nueva planta, cuando existan limitaciones no subsanables derivadas de la normativa urbanística aplicable, que imposibiliten de forma evidente la disposición de la superficie de captación necesaria;

 f) cuando así lo determine el órgano competente que deba dictaminar en materia de protección histórico-artística.

3. En edificios que se encuentren en los casos b), c) d), y e) del apartado anterior, en el proyecto, se justificará la inclusión alternativa de medidas o elementos que produzcan un ahorro energético térmico o reducción de emisiones de dióxido de carbono, equivalentes a las que se obtendrían mediante la correspondiente instalación solar, respecto a los requisitos básicos que fije la normativa vigente, realizando mejoras en el aislamiento térmico y rendimiento energético de los equipos.

El cálculo de la aportación solar mínima de ACS se realizará con el software de solever que realiza el cálculo a partir de la normativa del Documento Básico HE Ahorro de Energía.

A continuación se muestra el proceso de cálculo realizado con solever.
5.3.1. Datos de entrada

Los datos que yo asigno:

<table>
<thead>
<tr>
<th>Tipo de edificación</th>
<th>Fábricas y Talleres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo unitario</td>
<td>15 litros/ciudad</td>
</tr>
<tr>
<td>Nº de usuarios</td>
<td>8.0 Personas</td>
</tr>
<tr>
<td>Consumo diario</td>
<td>120.0 litros/día</td>
</tr>
<tr>
<td>Temperatura de preparación</td>
<td>60°C</td>
</tr>
</tbody>
</table>

Por la situación de la nave:

<table>
<thead>
<tr>
<th>Datos climáticos</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation horizontal [W/m²]</td>
<td>8196</td>
<td>10026</td>
<td>13606</td>
<td>18170</td>
<td>21272</td>
<td>22734</td>
<td>22356</td>
<td>18956</td>
<td>15196</td>
<td>11764</td>
<td>6906</td>
<td>5962</td>
</tr>
<tr>
<td>Radiation at 45° [W/m²/day]</td>
<td>10342</td>
<td>14776</td>
<td>18224</td>
<td>19401</td>
<td>19129</td>
<td>19301</td>
<td>19513</td>
<td>18210</td>
<td>16944</td>
<td>16156</td>
<td>11081</td>
<td>10645</td>
</tr>
<tr>
<td>Temperature agua fría [°C]</td>
<td>12.0</td>
<td>13.2</td>
<td>14.4</td>
<td>15.6</td>
<td>16.8</td>
<td>18.0</td>
<td>19.2</td>
<td>18.0</td>
<td>16.6</td>
<td>15.6</td>
<td>14.4</td>
<td>13.2</td>
</tr>
<tr>
<td>Temperature ambiente [°C]</td>
<td>0.4</td>
<td>0.9</td>
<td>1.23</td>
<td>1.46</td>
<td>1.77</td>
<td>2.16</td>
<td>2.44</td>
<td>2.21</td>
<td>2.17</td>
<td>17.5</td>
<td>13.6</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Temperatura mínima histórica: -20 °C
Porcentaje de glicol: 50.0 %
Zona geográfica: III

5.3.2. Sistema de captación

Se ha seleccionado el siguiente captador S-200 cuyas características son apropiadas para la aplicación seleccionada. La superficie de captación es de 2.21 m² y por tanto el número de captadores del modelo seleccionado será de 1. Para la determinación de esta cantidad se ha tenido en cuenta las especificaciones del apartado 3.3.3.1 y 2 del HE-4 del CTE.

Las características del captador seleccionado son las siguientes:

<table>
<thead>
<tr>
<th>Datos del captador</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie bruta (m²)</td>
<td>2.51</td>
</tr>
<tr>
<td>Superficie de absorción (m²)</td>
<td>2.21</td>
</tr>
<tr>
<td>Dimensiones (mm)</td>
<td>1250×2018×100</td>
</tr>
<tr>
<td>Peso en vacío (kg)</td>
<td>65.0</td>
</tr>
<tr>
<td>Capacidad (l)</td>
<td>1.72</td>
</tr>
<tr>
<td>N° máximo por batería</td>
<td>8</td>
</tr>
<tr>
<td>Temperatura de estancamiento (°C)</td>
<td></td>
</tr>
<tr>
<td>Presión máxima (bar)</td>
<td></td>
</tr>
<tr>
<td>Ganancia óptica</td>
<td>0.773</td>
</tr>
<tr>
<td>Coeficiente de pérdidas de 1° orden (W/m²)</td>
<td>3.184</td>
</tr>
<tr>
<td>Coeficiente de pérdidas de 2° orden (W/m²)</td>
<td>0.031</td>
</tr>
<tr>
<td>Contrapeso de certificación</td>
<td></td>
</tr>
</tbody>
</table>
Los captadores se instalarán en tejado plano con la siguiente configuración: 1 batería de 1 captador teniendo en cuenta que:

- Se debe prestar especial atención en la estanqueidad y durabilidad de las conexiones del captador.

- Los captadores se dispondrán en filas constituidas, preferentemente, por el mismo número de elementos. Las filas de captadores se pueden conectar entre sí en paralelo, en serie o en serie-paralelo, debiéndose instalar válvulas de cierre, en la entrada y salida de las distintas baterías de captadores y entre las bombas, de manera que puedan utilizarse para aislamiento de estos componentes en labores de mantenimiento, sustitución, etc. Además se instalará una válvula de seguridad por fila con el fin de proteger la instalación.

- Dentro de cada fila los captadores se conectarán en serie o en paralelo. El número de captadores que se pueden conectar en paralelo tendrá en cuenta las limitaciones del fabricante. En el caso de que la aplicación sea exclusivamente de ACS se podrán conectar en serie hasta 10 m2 en las zonas climáticas I y II, hasta 8 m2 en la zona climática III y hasta 6 m2 en las zonas climáticas IV y V.

- La conexión entre captadores y entre filas se realizará de manera que el circuito resulte equilibrado hidráulicamente recomendándose el retorno invertido frente a la instalación de válvulas de equilibrado.

La inclinación de los captadores respecto a la horizontal es de 45° y su desviación azimutal es de 0°. Estas orientaciones provocan unas pérdidas de 0.8% las cuales deben cumplir el punto 2.1.8 del HE-4 del CTE y se resume en la siguiente tabla:

<table>
<thead>
<tr>
<th>Caso</th>
<th>Orientación e inclinación</th>
<th>Sombras</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>10%</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>Superposición</td>
<td>20%</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>Integración</td>
<td>40%</td>
<td>20%</td>
<td>50%</td>
</tr>
</tbody>
</table>

5.3.3. **Sistema de acumulación**

Según los datos de consumo de ACS calculados, se ha optado por instalar un interacumulador de 150 litros ya que la demanda total de ACS a 60°C es de 120.0 litros/día.

Las características más importantes del acumulador serán las siguientes:

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Interacumulador CV-150-M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie de intercambio</td>
<td>2.21 m²</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>Vinificado</td>
</tr>
<tr>
<td>Temperatura máx. acumulador</td>
<td>90°C</td>
</tr>
<tr>
<td>Presión máx. acumulador</td>
<td>8 Bar</td>
</tr>
<tr>
<td>Temperatura máx. serpén</td>
<td>8 Bar</td>
</tr>
<tr>
<td>Presión máx. serpén</td>
<td>25 Bar</td>
</tr>
</tbody>
</table>

5.3.4. **Sistema de termotransferencia**

a) Intercambiador

Por su posición en la instalación, los intercambiadores pueden ser interiores o exteriores. Los parámetros que definen a un intercambiador son básicamente el rendimiento y la eficacia de intercambio.

Para las instalaciones con intercambiador de calor interno, es decir con interacumulador, se ha de comprobar según el punto 3.3.4 del HE-4 del CTE que el cociente entre la superficie de intercambio y la superficie total instalada sea mayor de 0,15.

Para aquellas instalaciones en las que se monten interacumuladores, el cociente entre la superficie de intercambio y el área total de captación debe ser menor de 0.15, en este caso en particular es de 0.27 el cual cumple con lo dictado por la norma.

b) Fluído caloportador

La temperatura mínima histórica en Barcelona, es de -20 °C, por tanto se considera zona con riesgo de heladas. El porcentaje en peso de propilenglicol que debe tener el fluído caloportador será del 50.0%, el cual se mezclará con agua desionizada.
5.3.5. Circuito Hidráulico

a) Tubería
Las tuberías utilizadas para realizar este cálculo son de Cu ya que se ha tenido en cuenta el ábaco de pérdidas de carga para este material.

Circuito hidráulico

<table>
<thead>
<tr>
<th>Caudal total</th>
<th>88.4 l/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud total (ida+retorno)</td>
<td>6 m</td>
</tr>
<tr>
<td>Diámetro tubería</td>
<td>12.0 x 10.0 mm</td>
</tr>
</tbody>
</table>

b) Aislamiento
Es un elemento fundamental en la instalación cuya finalidad es la disminuir las posibles pérdidas caloríficas tanto en los colectores, el acumulador y las conducciones.

Los valores más importantes para la elección apropiada del aislamiento son: el coeficiente de conductividad, la gama te temperaturas, su resistencia, su fácil colocación y el coste.

El espesor del aislamiento debe cumplir las normas indicadas en el RITE, en la IT 1.2.4.2.

c) Vaso de expansión
El volumen total del circuito hidráulico es de 2.7 litros, por lo tanto se ha calculado un vaso de expansión específico para instalaciones solares de Vaso expansion energía solar 5 SMF.

La presión de carga del mismo será igual a la presión de trabajo con la que se cargue el circuito primario.

d) Válvulas de paso
Son los elementos encargados de interrumpir total o parcialmente el paso del fluido a través de las conducciones. Los diferentes tipos de las válvulas son de asiento, compuerta, de bola o esfera y de mariposa.

e) Válvula de seguridad
Su función es la de limitar la presión en el circuito y así proteger los componentes del mismo. En nuestro caso los puntos más delicados son el campo solar y el vaso de expansión, por lo que se debe de marcar a una presión inferior a la máxima soportada por los citados elementos. Se utilizarán válvulas de seguridad, taradas a 6 kg/cm2 para el circuito primario y de 8 kg/cm2 para el circuito de consumo.
El fluido evacuado por la válvula de seguridad irá conducido hacia un tanque que almacenará el propilenglicol y así evite posibles accidentes. En el circuito primario es necesario colocar una por batería.

f) Válvulas antirretorno
Encargadas de permitir el paso del fluido en un sentido e impedirlo en el contrario. Fundamentalmente las hay de dos tipos, de clapeta y de obús, siendo estas últimas poco aconsejables para el circuito primario debido a su elevada pérdida de carga.

g) Válvulas de equilibrado
Se montarán válvulas de equilibrado en la impulsión de la bomba y en las baterías de captadores si no se ha usado retorno invertido como método de equilibrado.

h) Grifo de vaciado
Su uso se pone de manifiesto cuando es necesario vaciar el circuito, ya sea el primario o el secundario por labores de mantenimiento o reposición del algún elemento del circuito.

i) Sistema de llenado
Puede ser manual o automático.
En el segundo caso, se propone un sistema de llenado automático compuesto por una bomba de multietapa regulada por dos presostatos (uno de mínima y otro de máxima) los cuales presurizarán el circuito hidráulico en caso de vaciado.

j) Purgador
El purgador tiene como función evacuar los gases contenidos en el fluido caloportador, los cuales pueden dar lugar a la formación de bolsas que impiden la correcta circulación del fluido, además de provocar corrosiones. Para su correcto funcionamiento hay que colocar el purgador en el punto más alto de la instalación.

k) Sistema de bombeo
El tipo de bomba a instalar será de de cuerpo simple.
Los parámetros de trabajo para la bomba serán los siguientes:

<table>
<thead>
<tr>
<th>Circuito hidráulico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal total</td>
</tr>
<tr>
<td>Pérdida de carga</td>
</tr>
</tbody>
</table>
Se ha optado por la instalación de un kit hidráulico Estación de bombeo doble 7000 con las siguientes características:

Estación de bombeo con grupo de seguridad, completa, premontada sobre caja aislante probada para instalaciones solares térmicas con conexión para impulso y retorno de circuito primario, posibilidad de conexión de un sistema de expansión en el grupo de seguridad.

Se compone de:

- Bomba de circulación.
- Dos llaves de corte con termómetros y válvulas antiretorno incorporadas.
- Caudalímetro con cierre, ajuste y grifo de llenado y vaciado lateral.
- Válvula de seguridad de 6 bares.
- Salida 3/4 " a sistema de expansión.
- Manómetro 10 bares.
- Llaves y bocas de llenado y vaciado.
- Sistema de anclaje en pared.
- Aislamiento.
- Juego de sujeción para vaso de expansión.

5.3.6. Sistema de regulación y control

El modelo utilizado es el Centralita DC-22, especialmente diseñado para instalaciones solares térmicas, cuyas funciones fundamentales son las siguientes:

Ser la central de cómputo y almacenamiento de información.
Generar y enviar las órdenes a los elementos eléctricos externos.
Visualizar en pantalla la temperatura de los puntos vitales de la instalación.
Realizar el control diferencial de temperatura entre la salida de los captadores, y el sistema de acumulación.

Se programará de forma que ponga las bombas en marcha si la diferencia de temperatura entre el captador y el punto más bajo del acumulador desciende por debajo de los 8º C, y parará cuando la diferencia de dichas temperaturas sea inferior a 3º C.

La diferencia de temperaturas entre los puntos de arranque y parada del termostato diferencial no será menor de 2º C.
5.3.7. **Demandas y contribuciones solares**

La energía y los ahorros producidos por la instalación son:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Demanda</th>
<th>Ahorro</th>
<th>Cobertura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td>89.8</td>
<td>40.1</td>
<td>44.0%</td>
</tr>
<tr>
<td>Feb</td>
<td>158.1</td>
<td>68.1</td>
<td>43.1%</td>
</tr>
<tr>
<td>Mar</td>
<td>170.6</td>
<td>85.1</td>
<td>49.9%</td>
</tr>
<tr>
<td>Abr</td>
<td>160.7</td>
<td>94.9</td>
<td>59.0%</td>
</tr>
<tr>
<td>May</td>
<td>161.6</td>
<td>102.2</td>
<td>63.2%</td>
</tr>
<tr>
<td>Jun</td>
<td>152.0</td>
<td>100.9</td>
<td>66.4%</td>
</tr>
<tr>
<td>Jul</td>
<td>133.5</td>
<td>93.0</td>
<td>73.4%</td>
</tr>
<tr>
<td>Ago</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Sep</td>
<td>136.8</td>
<td>86.0</td>
<td>62.0%</td>
</tr>
<tr>
<td>Oct</td>
<td>163.1</td>
<td>87.1</td>
<td>52.5%</td>
</tr>
<tr>
<td>Nov</td>
<td>165.1</td>
<td>47.3</td>
<td>28.7%</td>
</tr>
<tr>
<td>Dic</td>
<td>175.1</td>
<td>44.2</td>
<td>25.2%</td>
</tr>
<tr>
<td>Total</td>
<td>1670.0</td>
<td>854.0</td>
<td>51.7%</td>
</tr>
</tbody>
</table>

Cobertura exigida CTE: 70.0%
Rendimiento: 27.6%

Se han considerado las pérdidas en el cálculo debido a la desviación de la orientación respecto a la óptima y a la desviación de los captadores respecto al sur. Por otro lado también se tienen en cuenta las pérdidas por sombreado.
Para este tipo de instalación las pérdidas máximas por orientación e inclinación son del 10% y por sombreado de 10% y la suma de ambas no debe superar 15%.

5.3.8. Resumen

- Localidad: Polinyá
- Zona geográfica: III
- Energía auxiliar: Electricidad
- Contribución solar mínima según CTE: 70.0%
- Contribución solar bruta: 52.5%
- Pérdidas por orientación e inclinación: 0.8%
- Pérdidas por sombreado: 0.0%
- Contribución solar bruta - pérdidas : 51.7%
- Rendimiento : 27.6%

Teniendo en cuenta el apartado 2.1 del HE-4 del CTE podemos determinar que con esta configuración, el aporte solar es del 51.7% de las necesidades totales de la edificación, llegando objetivo de la demanda según se requiere en la HE4 para la zona geográfica, consumo y energía auxiliar de la instalación.

5.3.9. Materiales

Elementos necesarios para la instalación de contribución solar mínima de ACS.

<table>
<thead>
<tr>
<th>Sección</th>
<th>Artículo (código)</th>
<th>Cantidad</th>
<th>Coste Unitario</th>
<th>Coste Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captador</td>
<td>S-200 (30900006)</td>
<td>1</td>
<td>618.70</td>
<td>618.70</td>
</tr>
<tr>
<td>Interacumulador</td>
<td>Interacumulador CV-150-M1 (30960002)</td>
<td>1</td>
<td>744.54</td>
<td>744.54</td>
</tr>
<tr>
<td>Círculo hidráulico</td>
<td>Vaso expansion energía solar 5 SMF (30930001)</td>
<td>1</td>
<td>21.22</td>
<td>21.22</td>
</tr>
<tr>
<td></td>
<td>Estación de bombeo doble 7000 (30900067)</td>
<td>1</td>
<td>408.00</td>
<td>408.00</td>
</tr>
<tr>
<td></td>
<td>Propilenglicol puro 5 kg (30900900)</td>
<td>1</td>
<td>45.80</td>
<td>45.80</td>
</tr>
<tr>
<td></td>
<td>Centranita DC-22 (30900059)</td>
<td>1</td>
<td>195.00</td>
<td>195.00</td>
</tr>
<tr>
<td>Elementos estructurales</td>
<td>CUBIERTA PLANA 1XPANELES (30900301)</td>
<td>1</td>
<td>201.86</td>
<td>201.86</td>
</tr>
</tbody>
</table>

TOTAL (IVA no incluido) 2236.12

Los elementos de la tabla serán incluidos en el presupuesto.
CAPÍTULO 6: INSTALACIÓN DE VENTILACIÓN

Esta instalación tiene como objeto primario la ventilación de las diferentes zonas de la nave industrial con el fin de mantener la calidad y el movimiento del aire en los lugares de trabajo, en condiciones convenientes para la protección de la salud de los trabajadores. Complementariamente contribuye al bienestar físico y a la mejora del rendimiento en la actividad desarrollada.

El hombre sólo puede vivir en una atmósfera cuyas características se encuentren dentro de límites restringidos.

De este modo, podemos definir la ventilación como aquella técnica que permite sustituir el aire ambiente interior de un local, considerado inconveniente por falta de pureza, temperatura inadecuada o humedad excesiva, por otro exterior de mejores características.
El cálculo del caudal volumétrico de la ventilación general por el método de las renovaciones por hora, utilizado para ventilación forzada y natural, está basado en que por comparación con instalaciones que funcionan correctamente, se sabe que en función de su actividad fabril, el caudal de aire que se debe evacuar es una función directa de su volumen. En la mayoría de los tratados de ventilación se publican unas tablas que dan, a partir del dato de una actividad industrial, el número de renovaciones por hora que se debe lograr para ventilar correctamente ese local. Es decir que el caudal necesario para la ventilación es el resultado de multiplicar el número de veces que se obtiene de la tabla mencionada multiplicado por el volumen del local:

\[Q = \text{N° de renovaciones} \times \text{hora}. \quad (m^3/h) \]

donde: **N° de renovaciones por hora** (renov / h) se obtiene de la TABLA 5.1, y **V**: Volumen del local (m³)

Tabla 6.1 N° de renovaciones/hora de aire en función de la zona

<table>
<thead>
<tr>
<th>Zona</th>
<th>Número de renovaciones del aire (renov / hora)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comedor laboral</td>
<td>4 - 6</td>
</tr>
<tr>
<td>Taller</td>
<td>5 - 10</td>
</tr>
<tr>
<td>Talleres de soldadura (caso que no existan sistemas de extracción localizada)</td>
<td>15 - 25</td>
</tr>
<tr>
<td>Lavabos</td>
<td>13 - 15</td>
</tr>
<tr>
<td>Oficinas</td>
<td>5 - 6</td>
</tr>
</tbody>
</table>

En el presente proyecto no se realizarán los cálculos de ventilación de la oficina, puesto que se instalarán aparatos de aire acondicionado y además en la zona de vestuarios la renovación se efectuará por medios naturales, entendiendo como tal las oberturas de puertas y ventanas.
6.1. TALLER NAVE 1

6.1.1. Planta Baja

Siguiendo la norma UNE 100-011 se escoge para este taller 15 m3/h·m2 ya que el proceso de soldadura que se realiza en esta zona de trabajo es el de soldadura por resistencia consistente en unir las piezas por la generación de calor pasando corriente a través de la resistencia causada por el contacto entre dos o más superficies de metal. Por tanto no se producen gases extremadamente perjudiciales pero si que se extraerá el caudal necesario para mantener la calidad del aire. Hay que tener en cuenta que la puerta de la nave está abierta parcial o totalmente durante toda la jornada de trabajo. El caudal a extraer será:

\[351m^2 \cdot 15 \frac{m^3}{h \cdot m^2} = 5265 \frac{m^3}{h}\]

Se dispondrá una canalización recta con rejillas de acero galvanizado de la casa Madel, concretamente modelo BMC, ubicadas sobre las soldadoras por resistencia. La extracción se realizará de forma conjunta con la planta superior.

6.1.2. Planta Superior

Esta planta no está aislada del resto de la nave puesto que la pared interior no existe como tal sino es que es un muro hasta 1 m de altura para evitar las caídas a distinto nivel. Por tanto la circulación de aire está garantizada. De todos modos se extraerá la cantidad de 8 m3/h·m2.

\[202.5m^2 \cdot 8 \frac{m^3}{h \cdot m^2} = 1620m^3 / h\]
SOLUCIÓN PROPUESTA

VISTA EN ALZADO CONDUCTO ASPIRACIÓN NAVE 1 PLANTA BAJA Y SUPERIOR

![Diagrama de alzado](image1)

VISTA EN PLANTA CONDUCTO ASPIRACIÓN NAVE 1 PLANTA SUPERIOR

![Diagrama de planta](image2)

Se puede ver la solución propuesta con más claridad en el plano correspondiente a la ventilación de la Nave 1.

La zona de la planta baja se distribuye en 4 tramos hasta el codo que sube hacia la planta superior donde se unen los dos conductos mediante una te con reducción. Se une el caudal para salir impulsado hacia el exterior por el tejado.
El estudio de los tramos es el siguiente:

TRAMO A-B
- Longitud = 5,4 m.
- Caudal = 1317 m\(^3\)/h
- \(\phi\) = 315 mm

Perdidas de Carga
- 5,4 m. \(\times\) 0,08 mm c.d.a/m = 0,44 mm c.d.a
- Pdc de la rejilla de aspiración (L=600, H=125, Afree=0,047 m\(^2\)).

En la rejilla según la fórmula “\(Q (m^3/h) = Vfmed (m/s) \times Afree (m^2) \times 3600\)”, obtenemos una velocidad del aire en la entrada de: \(Vf = 7,78 \text{ m/s}\).

Según las tablas de este modelo la perdida de carga es de 9 mm c.d.a.

TRAMO B-C
- Longitud = 6 m.
- Caudal = 2916 m\(^3\)/h
- \(\phi\) = 315 mm

Perdidas de Carga
- 6 m. \(\times\) 0,35 mm c.d.a/m = 2,1 mm c.d.a
- Pdc de la rejilla de aspiración (L=600, H=125, Afree=0,047 m\(^2\)) = 9 mm c.d.a

TRAMO C-D
- Longitud = 5 m.
- Caudal = 3951 m\(^3\)/h
- \(\phi\) = 400mm
Perdidas de Carga

- 5 m. x 0.22 mm c.d.a/m= 1.1 mm c.d.a
- \(P_{dc} \) de la rejilla de aspiración (\(L=600, H=125, A_{free}=0,047 \text{ m}^2 \))=9 mm c.d.a
- \(P_{dc} \) debido al aumento de sección de \(\varnothing 315\text{mm} \) a \(\varnothing 400\text{mm} \). Aplicando el método de coeficiente “n”, siendo en este caso \(n=0,15 \) debido las dimensiones del codo y con una presión dinámica \(P_d=4,73 \text{ mm c.d.a} \).

\(P_{dc} \) (ampliación)=0,15 x 4,73 =0,7 mm c.d.a.

TRAMO D-E

- Longitud= 5,6 m.
- Caudal=5832 m\(^3\)/h
- \(\varnothing 400\text{mm} \)

Perdidas de Carga

- 5,6 m. x 0,35 mm c.d.a/m= 1,96 mm c.d.a
- \(P_{dc} \) de la rejilla de aspiración (\(L=600, H=125, A_{free}=0,047 \text{ m}^2 \))=9 mm c.d.a.
- \(P_{dc} \) (1 codo \(\varnothing 400 \text{ mm} \))= 2,6 mm c.d.a

Codos a 90° (r=d)

[Diagrama de codos a 90°]
TRAMO F-G

- Longitud= 5,4 m.
- Caudal= 810 m³/h
- ϕ 250mm

Perdidas de Carga

- 5,4 m. x 0,11 mm c.d.a/m= 0,6 mm c.d.a
- Pdc de la rejilla de aspiración (L=600, H=75, Afree=0,025 m²)= 8 mm c.d.a.
- Pdc (1 codo ϕ250 mm)= 2,6 mm c.d.a

TRAMO G-E

- Longitud= 2 m.
- Caudal= 1620 m³/h
- ϕ 250mm

Perdidas de Carga

- 2 m. x 0,35 mm c.d.a/m= 1,96 mm c.d.a
- Pdc de la rejilla de aspiración (L=600, H=75, Afree=0,025 m²)= 8 mm c.d.a.

TRAMO E-H

- Longitud= 0,5 m.
- Caudal= 6888 m³/h
- ϕ 400 mm

Perdidas de Carga

- 0,5 m. x 0,7 mm c.d.a/m= 0,35 mm c.d.a
- Pdc de la Té con reducción a 90° 250-400= 3 mm.c.d.a
El cálculo se ha realizado en función de la velocidad en cada uno de los tramos del conducto general. El cuadro resumen presenta los resultados:

Tabla 6.2. Resumen por tramos de ventilación Nave 1

<table>
<thead>
<tr>
<th>TRAMO</th>
<th>LONGITUD</th>
<th>CAUDAL</th>
<th>VELOCIDAD</th>
<th>DIÁMETRO</th>
<th>PERDIDA DE CARGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>5,4 m.</td>
<td>1317 m³/h</td>
<td>4,7 m/s</td>
<td>315 mm</td>
<td>9.44 mm c.d.a</td>
</tr>
<tr>
<td>B-C</td>
<td>6 m.</td>
<td>2634 m³/h</td>
<td>9,4 m/s</td>
<td>315 mm</td>
<td>11,1 mm c.d.a</td>
</tr>
<tr>
<td>C-D</td>
<td>5,4 m.</td>
<td>3951 m³/h</td>
<td>8,7 m/s</td>
<td>400 mm</td>
<td>10,8 mm c.d.a</td>
</tr>
<tr>
<td>D-E</td>
<td>5,6 m.</td>
<td>5268 m³/h</td>
<td>9,2 m/s</td>
<td>400 mm</td>
<td>13,42 mm c.d.a</td>
</tr>
<tr>
<td>F-G</td>
<td>5,4 m.</td>
<td>810 m³/h</td>
<td>7,2 m/s</td>
<td>250 mm</td>
<td>11,2 mm c.d.a</td>
</tr>
<tr>
<td>G-E</td>
<td>2 m.</td>
<td>1620 m³/h</td>
<td>9,2 m/s</td>
<td>250 mm</td>
<td>10 mm c.d.a</td>
</tr>
<tr>
<td>E-H</td>
<td>0,5 m.</td>
<td>6888 m³/h</td>
<td>16,2 m/s</td>
<td>400 mm</td>
<td>3,35 mm c.d.a</td>
</tr>
</tbody>
</table>

La perdida de carga total para esta instalación se calcula en **69,31 mm c.d.a.**
Para cubrir estas prestaciones de 6888 m³/h y 69,31 mm c.d.a. de pérdida de carga, el ventilador de la casa SOLER & PALAU será:

CTHT/6-630

De la familia de centrífugos de tejado CTHT-B MAX TEMP.

Por el modo en que se ha desarrollado la instalación y por las características que ofrece este ventilador esta instalación se podría decir que cumple un doble objetivo: por un lado extraer el aire de baja calidad debido a la actividad laboral y por otro en caso de incendio nos permitiría extraer los humos de forma segura.
Las características técnicas del ventilador son las siguientes:

CENTRIFUGOS DE TEJADO
CTHT-B MAX TEMP
CTHT/6-630

<table>
<thead>
<tr>
<th>Descripción:</th>
<th>Código: 5136052700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gama de ventiladores de techo centrífugos. La temperatura de funcionamiento es entre -40°C y +120°C, excepto los modelos CTHB/4-180 y CTHB/4-225 que pueden funcionar hasta +200°C. Toda la gama está certificada como 400º 2h por el laboratorio CTICM (Francia), según los PV nº 92E284, 93E008, 93E082 y 93E279. Los motores son de inducción, trifásicos 400V, 50Hz o monofásicos 230V 50Hz. Los rodetes son centrífugos, de alambres inclinados hacia atrás, en acero galvanizado (modelos 140 - 400) o en acero pintado (450 - 630), equilibrados dinámicamente. Las embocaduras son en acero galvanizado. Los sombreros son en Aluminio repulsado. Los modelos 140 - 400 son de velocidad regulable. Toda la gama está equipada con motores IP-55 y Clase F. Bajo pedido se pueden suministrar motores trifásicos 230/400V 50 Hz o de dos velocidades Dahlander para los modelos 450, 500 y 630.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aplicación:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* Ventilación general</td>
<td></td>
</tr>
<tr>
<td>* Extracciones industriales</td>
<td></td>
</tr>
<tr>
<td>* Cocinas profesionales</td>
<td></td>
</tr>
<tr>
<td>* Extracción de humo en caso de incendio</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensiones (mm):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 1580</td>
<td>B: 1065</td>
</tr>
<tr>
<td>C: 1100</td>
<td>D: 710</td>
</tr>
<tr>
<td>E: 840</td>
<td>F: 14</td>
</tr>
<tr>
<td>G:</td>
<td>H:</td>
</tr>
<tr>
<td>I:</td>
<td>J:</td>
</tr>
<tr>
<td>K:</td>
<td>L:</td>
</tr>
<tr>
<td>M:</td>
<td>N:</td>
</tr>
<tr>
<td>O:</td>
<td>P:</td>
</tr>
<tr>
<td>Q:</td>
<td>R:</td>
</tr>
<tr>
<td>S:</td>
<td>T:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datos básicos:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje V:</td>
<td>400</td>
</tr>
<tr>
<td>Pot. abs. máx. kW:</td>
<td>3.70</td>
</tr>
<tr>
<td>Peso (Kg):</td>
<td>156.0</td>
</tr>
<tr>
<td>Nivel ruido dB(A):</td>
<td>93.5</td>
</tr>
<tr>
<td>Frecuencia Hz:</td>
<td>50</td>
</tr>
<tr>
<td>InL abs. máx. A:</td>
<td>7.8</td>
</tr>
<tr>
<td>Velocidad RPM:</td>
<td>960</td>
</tr>
<tr>
<td>Caudal máx. (m3/h):</td>
<td>22000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Espectro sonoro:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia:</td>
<td>63 125 250 500 1000 2000 4000 8000</td>
</tr>
<tr>
<td>OUTLET:</td>
<td>67.9 79.2 84.7 87.8 87.8 85.9 82.6 77.2</td>
</tr>
</tbody>
</table>
La curva característica del ventilador proporcionada por el fabricante:

La curva resistente de la instalación es la curva que relaciona la perdida de carga de la instalación con el caudal que pasa por ella. Para hallar la curva resistente del sistema se emplea la siguiente ecuación:

$$\left(\frac{Q_1}{Q_0} \right)^2 = \frac{P_1}{P_0}$$

Donde Q_0 y P_0 son las condiciones de la instalación y Q_1 y P_1 son las condiciones que se pueden dar en la instalación. Por tanto si tenemos que $Q_0=6888$ m3/h y $P_0=69,31$ mm c.d.a., dejando P_1 en función de Q_1:

$$P_1 = \left(\frac{Q_1}{6888} \right)^2 \times 69,31$$
La curva resistente es:

![CURVA RESISTENTE DE LA INSTALACIÓN](image)

Para hallar el punto de trabajo del ventilador hay que superponer las dos gráficas, la curva característica del ventilador y curva resistente de la instalación y de este modo el punto de trabajo del ventilador será el punto donde interseccionen las dos curvas.

![Interacción](image)

El punto de trabajo se encuentra en \(Q = 6959 \, \text{m}^3/\text{h} \) y \(P_{dc} = 70.8 \, \text{mm c.d.a} \).
Por otro lado, las rejillas que se instalarán para la extracción de aire serán unas rejillas de aluminio para conductos circulares suministradas por el fabricante MADEL. Debido a las diferencias entre los caudales que tienen que recoger y al diámetro del conducto donde van instaladas, las rejillas de la planta baja y la planta superior son distintas. A continuación se presentan los cálculos relacionados con las rejillas.

Las rejillas instaladas serán:

- L=600 y H=125 en planta baja para un diámetro del conducto de 315 y 400 mm.
- L=600 y H=75 en planta superior para un diámetro del conducto de 250 mm.

![Diagrama BMC](image)

SECCIÓN LIBRE DE SALIDA DEL AIRE m².

<table>
<thead>
<tr>
<th>H</th>
<th>L</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.018</td>
<td>0.020</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0.031</td>
<td>0.039</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>0.060</td>
<td>0.076</td>
<td>0.087</td>
<td></td>
</tr>
</tbody>
</table>

REJILLAS BMC L=600 y H=125

Para extraer un caudal de 1317 m³/h. Con la fórmula del caudal conocemos la velocidad del aire en la entrada.

\[
Q \text{ (m}^3/\text{h)} = Vfmed \text{ (m/s)} \times Afree \text{ (m}^2) \times 3600
\]

\[
1317 \text{ (m}^3/\text{h)} = Vfmed \text{ (m/s)} \times 0.047 \text{ (m}^2) \times 3600
\]

\[
Vfmed = 7.78 \text{ m/s}
\]

REJILLAS BMC L=600 y H=75

Para extraer un caudal de 810 m³/h. Del mismo modo que antes:

\[
Q \text{ (m}^3/\text{h)} = Vfmed \text{ (m/s)} \times Afree \text{ (m}^2) \times 3600
\]

\[
810 \text{ (m}^3/\text{h)} = fmed \text{ (m/s)} \times 0.025 \text{ (m}^2) \times 3600
\]

\[
Vfmed = 9 \text{ m/s}
\]
6.2. TALLER NAVE 2

Para la realización de los trabajos de soldadura eléctrica que se desarrollan en esta zona será necesario un sistema que no solamente evite que los humos no se dispersen por la nave, sino que no afecte a los operarios que trabajaban en cada uno de los puntos de soldadura, por ello se dispondrán dos bancos de soldadura de 1,5 m. de longitud y una profundidad de 0,60 m.

Tal como se puede observar en la ilustración de la figura 6.1, estos bancos tienen una captación frontal que capta los humos de soldadura antes de que asciendan.

![Fig. 6.1. Ventilación para soldadura sobre banco fijo](image)

En el caso de tomar la velocidad en el conducto de 5 m/s:

Pérdida en la entrada = 1,78·PD_{rendija} + 0,25·PD_{conducto}

Para calcular las necesidades de cada uno de los bancos de soldadura, se aplica la fórmula estandarizada para estos casos:

\[\text{Longitud mesa en m} \times 0,54 \text{m}^3/\text{seg.} \]

Aplicando la fórmula en este caso, tenemos que:

\[1,5 \text{m} \times 0,54 \times 3600 = 2916 \text{m}^3/\text{h} \]

La anchura de las rendijas de captación, para generar una velocidad de 5 m/s a la entrada, según se indica en la figura, se obtiene aplicando la fórmula:

\[S = \frac{Q}{V \times 3600} \]

En este caso:

\[S = \frac{2916}{(5 \times 3600 \times 2 \text{ rendijas})} = 0,081 \text{m}^2 \]
Sabiendo que el largo de la mesa es de 1,5m y las dos rendijas han de cubrir los 810cm², cada una de ellas tendrá 2,7 cm de alto.

Para contrastar la solución, tomando la velocidad en el conducto de 15 m/s:

Pérdida en la entrada= 1,78·PD_{rendija}+0,25·PD_{conducto}

Para calcular las necesidades de cada uno de los bancos de soldadura, se aplica la fórmula estandarizada para estos casos:

| Longitud mesa en m·x 0,54m³/seg. |

Aplicando la fórmula en este caso, tenemos que:

\[1,5\text{m} \times 0,54 \times 3600=2916\text{m}^3 / h \]

La anchura de las rendijas de captación, para generar una velocidad de 5 m/s a la entrada, según se indica en la figura, se obtiene aplicando la fórmula:

\[S = \frac{Q}{V \times 3600} \]

En este caso:

\[S=2916 / (15 \times 3600 \times 2 \text{ rendijas}) = 0,027\text{m}^2 \]

Sabiendo que el largo de la mesa es de 1,5m y las dos rendijas han de cubrir los 270cm², cada una de ellas tendrá 1,8 cm de alto.
SOLUCIÓN PROPUESTA

La extracción se llevará a cabo por el tejado.
Las rendijas de la campana de captación por tanto serán de 150 x 2,7 cm, y la velocidad de captación de 5 m/s.

![Diagrama de instalación industrial](image)

Para que esta instalación funcione correctamente se deberán diseñar los conductos de tal modo que la velocidad de circulación del aire por los mismos sea constante en torno a los 10-13 m/s. Por lo tanto, los conductos que parten de cada uno de los bancos y de la campana, serán de 315 mm. de diámetro y se conectarán al conducto principal que irá incrementando su sección a medida que se vayan incorporando los caudales de cada toma.

Para poder prescribir el ventilador más adecuado, es necesario determinar la pérdida de carga que se genera en la instalación por los diferentes accidentes de la misma: campanas, curvas, reducciones, injertos, salida, etc.

TRAMO A-B

- Longitud= 6 m.
- Caudal=2916 m³/h
- Ø 315 mm
Perdidas de Carga

- 6 m. x 0.44 mm c.d.a/m = 2.6 mm c.d.a
- Pdc (1 codo Ø315 mm) = 2 mm c.d.a

Codos a 90° (r=d)

- Perdida en la entrada = 1,78·PD_{rendija} + 0,25·PD_{conducto} =

 =1,78·1,53+0,25·10,35=5,31 mm c.d.a

TRAMO A'-B

- Longitud = 1,5 m.
- Caudal = 2916 m³/h
- ø 315 mm

Perdidas de Carga

- 1,5 m. X 0.53 mm c.d.a/m = 0.8 mm c.d.a
- Perdida en la entrada = 1,78·PD_{rendija} + 0,25·PD_{conducto} =

 =1,78·1,53+0,25·10,35=5,31 mm c.d.a

TRAMO B-C

- Longitud = 2,5 m.
- Caudal = 5832 m³/h
- ø 400 mm
Perdidas de Carga

- 2,5 m. x 0,58 mm c.d.a/m= 1.44 mm c.d.a
- Pdc (1 Té cónica a 90º). Aplicando el método del coeficiente “n”:

Con una velocidad del aire de 10,4 m/s, se obtiene una presión dinámica de 3,22 mm c.d.a. Por tanto, Pdc=\(Pd \times n\)= 3,22 x 0,925= 2,98 mm c.d.a.

Tes cónicas a 90°

\[
\begin{align*}
L &= d + 2(D - D') + 50 \\
H &= 50 \\
e &= 50
\end{align*}
\]

\[d = \varnothing 315 \text{ mm} \]
\[D' = \varnothing 315 \text{ mm} \]
\[D = \varnothing 400 \text{ mm} \]

TRAMO C-D

- Longitud= 2,5m.
- Caudal=5832 m³/h
- \(\varnothing 400\text{mm} \)

Perdidas de Carga

- 2,5m. x 0,48 mm c.d.a/m= 1,2 mm c.d.a
- Pdc (al paso por boca del ventilador)= 5 mm c.d.a
- Pdc Sombrerete= 4, 21 mm c.d.a

El cálculo se ha realizado en función de la velocidad en cada uno de los tramos del conducto general. El cuadro resumen presenta los resultados:
Tabla 6.3. Resumen por tramos de extracción Nave 2

<table>
<thead>
<tr>
<th>TRAMO</th>
<th>LONGITUD</th>
<th>CAUDAL</th>
<th>VELOCIDAD</th>
<th>DIÁMETRO</th>
<th>PERDIDA DE CARGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>6 m.</td>
<td>$2916\text{m}^3/\text{h}$</td>
<td>10,4 m/s</td>
<td>315 mm</td>
<td>9.91 mm c.d.a</td>
</tr>
<tr>
<td>A'-B</td>
<td>1,5 m.</td>
<td>$2916\text{m}^3/\text{h}$</td>
<td>10,4 m/s</td>
<td>315 mm</td>
<td>6,11 mm c.d.a</td>
</tr>
<tr>
<td>B-C</td>
<td>2,5 m.</td>
<td>$5832\text{m}^3/\text{h}$</td>
<td>12,9 m/s</td>
<td>400 mm</td>
<td>4,42 mm c.d.a</td>
</tr>
<tr>
<td>C-D</td>
<td>2,5 m.</td>
<td>$5832\text{m}^3/\text{h}$</td>
<td>12,9 m/s</td>
<td>400 mm</td>
<td>10,41 mm c.d.a</td>
</tr>
</tbody>
</table>

La pérdida de carga total para esta instalación se calcula en **30.85 mm c.d.a.**
Para cubrir estas prestaciones de $5832 \text{m}^3/\text{h}$ y 30,85 mm c.d.a. de pérdida de carga, el ventilador de la casa SOLER & PALAU será:

CMT/6-400/165 3

Por otro lado, se instalarán unas rejillas de aluminio que permitirán la entrada de aire desde el exterior, situadas en la cara opuesta a los bancos de soldadura. Serán suministradas por el fabricante MADEL y las dimensiones son $L=1000\text{mm}$ y $H=75\text{mm}$. Se colocarán sobre la puerta de taller de la Nave 2, a una altura de 4,5 m.
Características del ventilador según fabricante:

CENTRIFUGO INDUSTRIAL
CMT Serie 355 - 400
CMT/6-400/165-3

Código: 6130125100

- Descripción:
 Gama de ventiladores centrífugos, de baja y media presión y simple oído, diseñados para un funcionamiento de hasta 150 °C.
 Las volutas están construidas en chapa de acero y protegidas con pintura poliéster. Los rotores son de aplanas inclinadas hacia adelante, construidos en chapa de acero galvanizado y equilibrados dinámicamente.
 Los motores son asincronos con rotor de jaula de ardilla:
 - Trifásicos 220/380V/50Hz
 - IP-55
 - Clase F
 - Rodamientos de bolas desgasea permanente
 Bajo demanda pueden suministrarse aparatos con motores antiexplosivos de seguridad aumentada o antideflagrantes

- Aplicación:
Pueden utilizarse en todos aquellos tipos de instalación en que se requiera vencer importantes pérdidas de carga.
* Procesos industriales
* Ventilación de máquinas
* Cocinas industriales
* Instalaciones de soldadura

- Dimensiones (mm):

- Datos básicos:

<table>
<thead>
<tr>
<th>Víctima</th>
<th>220/380</th>
<th>Pot. abs. máx. kW</th>
<th>3.00</th>
<th>Peso (Kg):</th>
<th>60.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel ruido dB(A)</td>
<td>87.0</td>
<td>Frecuencia Hz</td>
<td>50</td>
<td>Int. abs. máx. A</td>
<td>10.74/6.2</td>
</tr>
<tr>
<td>Velocidad RPM</td>
<td>020</td>
<td>Caudal máx. (m3/h)</td>
<td>7560</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Espectro sonoro:

<table>
<thead>
<tr>
<th>Potencia</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>6000</th>
<th>Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>inlet</td>
<td>65.0</td>
<td>69.0</td>
<td>74.0</td>
<td>80.0</td>
<td>83.0</td>
<td>81.0</td>
<td>75.0</td>
<td>86.0</td>
<td>dB(A)</td>
</tr>
</tbody>
</table>
Las curvas características de los ventiladores de la gama CMT Serie 3 de 6 polos son:

La curva resistente de la instalación es la curva que relaciona la perdida de carga de la instalación con el caudal que pasa por ella. Para hallar la curva resistente del sistema se emplea la siguiente ecuación:

$$\left(\frac{Q_1}{Q_0}\right)^2 = \frac{P_1}{P_0}$$

Donde Q_0 y P_0 son las condiciones de la instalación y Q_1 y P_1 son las condiciones que se pueden dar en la instalación. Por tanto si tenemos que $Q_0=5832$ m³/h y $P_0=30,85$ mm c.d.a., dejando P_1 en función de Q_1:

$$P_1 = \left(\frac{Q_1}{5832}\right)^2 \times 30,85$$
De este modo la curva característica de la resistente de la instalación es:

![CURVA RESISTENTE](image)

Para hallar el punto de trabajo del ventilador hay que superponer las dos gráficas, la curva característica del ventilador y curva resistente de la instalación.

![CURVA DE CAUDAL Y RESISTENTE](image)

El punto de trabajo se encuentra en $Q=6612$ m3/h y $P=39.7$ mm c.d.a.
6.3. LAVABOS

6.3.1. Lavabos Nave 1

La situación de estos lavabos en la planta superior facilita en gran medida la extracción del aire ya que éste se evacuará mediante un conducto totalmente vertical sin codos hasta la cubierta exterior de la nave industrial. Se protegerá la salida al exterior con un sombrerete antilluvia para evitar la entrada del agua o de cualquier otro animal u objeto. Se estima un volumen conjunto de 9 m³ para estos lavabos que aunque estén claramente diferenciados se comunican por la parte superior. De este modo se podrá instalar un único extractor en el centro de los dos lavabos para cumplir con la ventilación requerida. El conducto de extracción de Ø125mm entre el extractor y el sombrerete será totalmente vertical y de unos 30 cms. de largo. Será tubo helicoidal circular de chapa galvanizada suministrada por la empresa SALVADOR ESCODA. El sombrerete también será de metal galvanizado. El modelo de extractor elegido es EDM-200C será suministrado por SOLER & PALAU y sus características son las siguientes:

![Características técnicas](image)

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Velocidad (v.p.m.)</th>
<th>Potencia absorbida descarga libre (W)</th>
<th>Tensión (V) 50 Hz</th>
<th>Caudal en descarga libre (m³/h)</th>
<th>Nivel presión sonora (dB(A))</th>
<th>Peso (kg)</th>
<th>Aislamiento/ Protección</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDM-200</td>
<td>2500</td>
<td>25</td>
<td>220-240</td>
<td>180</td>
<td>46</td>
<td>0.9</td>
<td>IP44</td>
</tr>
</tbody>
</table>

![Curva característica](image)
6.3.2. Lavabo Nave 2

La situación de este Lavabo en la planta baja pero con una de sus paredes exterior permite situar el extractor sobre el vidrio de la ventana por lo que no será necesario ningún tipo de canalización. El modelo elegido es el EDM-100C 12V, que permite extraer 85m³/h. Los modelos V incorporan todos los elementos necesarios para instalar en cristal.

<table>
<thead>
<tr>
<th>Características técnicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
</tr>
<tr>
<td>EDM-100</td>
</tr>
<tr>
<td>EDM-100S 12V</td>
</tr>
<tr>
<td>EDM-100C 12V</td>
</tr>
</tbody>
</table>

Dimensiones (mm)

![Diagrama de dimensiones y curvas de rendimiento](image)
6.4. VESTUARIOS

6.4.1. Vestuario Nave 1

Este vestuario está comunicado directamente con el comedor debido a que la pared que separa a los dos espacios no llega hasta el techo. De este modo y por la situación de estos no será necesaria la ventilación forzada ya que se aseguran unas buenas condiciones.

6.4.2. Vestuario Nave 2

Este vestuario presenta una ventana al exterior por lo que no se instalará ningún tipo de ventilación forzada.

6.5. COMEDOR

El comedor no dispone de cocina y como ya se ha comentado anteriormente el vestuario de la Nave 1 y el comedor formarían un solo espacio, en cuanto a ventilación se refiere, y al garantizarse la calidad del aire no requieren ningún tipo de ventilación adicional.
6.6. OFICINAS

6.6.1. Despacho

Este espacio se emplea para guardar archivos y solamente es ocupado por una persona en espacios de tiempo poco prolongados por lo que se dispondrá ventilación natural de la forma que se define a continuación. La superficie es de 11 m².

Según normativa se obtiene el siguiente caudal necesario:

\[11 \text{ l/s} \times 11 \text{ m}^2 = 11 \text{ l/s} \]

\[11 \text{ l/s} \times \frac{1 \text{ m}^3}{1000 \text{ l}} \times \frac{3600 \text{ s}}{1 \text{ h}} = 39,6 \text{ m}^3/\text{h} \]

En este espacio se instalará un ventilador helicoidal para pared de la serie HV-STYLVENT de la casa SOLER & PALAU, concretamente HV-230 A. De fácil montaje y elegante diseño. Dispone de rejilla exterior antilluvia y persiana accionada por motorreductor. Modelo con posición de ventilación natural, reversibilidad (para extracción e impulsión), (2 velocidades, y luces piloto de funcionamiento. Accionamiento automático a través de control remoto.

Características:

<table>
<thead>
<tr>
<th>MODELO</th>
<th>Velocidad (r.p.m.)</th>
<th>Potencia abs. (W)</th>
<th>Tensión Absolv. (A)</th>
<th>Caudal (m³/h)</th>
<th>N.P.S.³ m (dB(A))</th>
<th>Dimensiones mm</th>
<th>Precio €</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Explotación</td>
<td></td>
<td></td>
<td>Extracción</td>
<td></td>
<td>L A H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rápida</td>
<td></td>
<td></td>
<td>Velocidad Rápida</td>
<td>600</td>
<td>300 164 325</td>
<td>129,33</td>
</tr>
<tr>
<td></td>
<td>Lenta</td>
<td></td>
<td></td>
<td>Velocidad Lenta</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extracción</td>
<td></td>
<td></td>
<td>Impulsión</td>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rápida</td>
<td></td>
<td></td>
<td>Velocidad Rápida</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lenta</td>
<td></td>
<td></td>
<td>Velocidad Lenta</td>
<td>37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Se instalará según el plano adjunto a una altura de 20 cms. bajo el techo.
En función de la norma UNE 100-011 sobre criterios de ventilación se establece que para oficinas el caudal de aire exterior en l/s es:

- 10 l/s por persona
- 1 l/s por m²

Se calculará de los dos modos y se efectuará la ventilación siguiendo el modo más restrictivo. La oficina cuenta con una superficie de 27 m², y la ocupación habitual es de dos personas.

10 l/s x 2 personas = 20 l/s
1 l/s x 27m² = 27 l/s

\[
27 \text{ l/s} \times \frac{1 \text{ m}^3}{1000 \text{ l}} \times \frac{3600 \text{ s}}{1 \text{ h}} = 97,2 \text{ m}^3/\text{h}
\]

El caso más restrictivo corresponde al que tiene que ver con la superficie.

En esta oficina se colocará un aparato climatizador que nos aporte el caudal necesario de aire exterior. Teniendo en cuenta las cargas térmicas se estima la potencia en **2,5 Kw**. El caudal necesario será cubierto ampliamente con el aparato elegido.

El modelo a instalar será el **XPOWER PLUS SENSATION 100B** de la marca Carrier. Incorpora tecnología inverter DC. Ajuste de la distribución del aire: 6 posiciones diferentes de caudal de aire y una función exclusiva, el Twin Swing. Confort y silencio: gracias al nuevo sistema de distribución del aire y a la tecnología Inverter, el nivel de ruido queda reducido a un susurro. Línea compacta: con una estética de panel plano que facilita la instalación en cualquier ambiente.

Las características técnicas según fabricante son las que se muestran a continuación.
XPOWER PLUS SENSATION 100B

<table>
<thead>
<tr>
<th>X-POWER PLUS SENSATION</th>
<th>100B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad frigorífica Nominal</td>
<td>kW/(Kcal/h)</td>
</tr>
<tr>
<td>Capacidad frigorífica Min.</td>
<td>kW/(Kcal/h)</td>
</tr>
<tr>
<td>Capacidad frigorífica Max.</td>
<td>kW/(Kcal/h)</td>
</tr>
<tr>
<td>Consumo eléctrico Nominal</td>
<td>kW</td>
</tr>
<tr>
<td>E.E.R. (Eficiencia en frío)</td>
<td>WW</td>
</tr>
<tr>
<td>Clase Energetica (Frio)</td>
<td>A</td>
</tr>
<tr>
<td>C.E.A (Consumo eléctrico anual)</td>
<td>kWh</td>
</tr>
<tr>
<td>Capacidad calorífica Nominal</td>
<td>kW/(Kcal/h)</td>
</tr>
<tr>
<td>Capacidad calorífica Min.</td>
<td>kW/(Kcal/h)</td>
</tr>
<tr>
<td>Capacidad calorífica Max.</td>
<td>kW/(Kcal/h)</td>
</tr>
<tr>
<td>Consumo eléctrico Nominal</td>
<td>kW</td>
</tr>
<tr>
<td>C.O.P.</td>
<td>WW</td>
</tr>
<tr>
<td>Clase Energetica (Calor)</td>
<td>C</td>
</tr>
</tbody>
</table>

Unidad Interior

<table>
<thead>
<tr>
<th>Deshumidificación</th>
<th><2XPP100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal de aire nominal (B/M/A)</td>
<td>m³/h</td>
</tr>
<tr>
<td>Nivel presión sonora (B/M/A) (Frío)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Nivel presión sonora (B/M/A) (Calor)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Nivel presión sonora (B/M/A) (Calor)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Dimensiones (AlxAnxPr)</td>
<td>mm</td>
</tr>
<tr>
<td>Peso</td>
<td>kg</td>
</tr>
<tr>
<td>Tensión de alimentación</td>
<td>V-ph-Hz</td>
</tr>
</tbody>
</table>

Unidad Exterior

<table>
<thead>
<tr>
<th>Tipo de compresor</th>
<th>Rotativo Gameo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexima longitud de tubería</td>
<td>m</td>
</tr>
<tr>
<td>Maxima diferencias de altura</td>
<td>m</td>
</tr>
<tr>
<td>Sistema de precargado</td>
<td>m</td>
</tr>
<tr>
<td>Caudal de aire</td>
<td>m³/h</td>
</tr>
<tr>
<td>Nivel presión sonora (Frío)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Nivel presión sonora (Calor)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Nivel presión sonora (Calor)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Dimensiones (AlxAnxPr)</td>
<td>mm</td>
</tr>
<tr>
<td>Peso</td>
<td>kg</td>
</tr>
<tr>
<td>Conexiones Fitas</td>
<td>Pulg</td>
</tr>
<tr>
<td>Tensión de alimentación</td>
<td>V-ph-Hz</td>
</tr>
</tbody>
</table>
CAPÍTULO 7: ENERGÍAS ALTERNATIVAS

El objetivo de este capítulo es el de presentar dos modelos de energías alternativas que se podrían emplear para el desarrollo de la actividad de esta empresa. Estos modelos son el de la energía fotovoltaica y el de la energía eólica. El alcance de este capítulo no pretende ser el de la instalación como en los capítulos anteriores sino más bien una comparativa entre los dos modelos para ver que tipo de energía nos es más favorable en función de nuestras características.
7.1. GENERALIDADES

Con el fin de dimensionar de la manera más correcta posible el sistema de captación solar y eólico, es necesario establecer el consumo diario aproximado en el proceso industrial que se trata en este proyecto.

7.1.1. Consumo eléctrico diario

En el capítulo de la instalación eléctrica ha quedado remarcado que la potencia total de la instalación es de 197700 W. Si estimamos un consumo máximo de esta potencia para un periodo de trabajo de 8 horas diarias la energía necesaria será de 1581600 Wh/día o lo que es lo mismo de 5693,76 MJ/día.

Tabla 7.1. Consumo eléctrico diario

<table>
<thead>
<tr>
<th>Potencia instalada (W)</th>
<th>Tiempo (h/día)</th>
<th>Energía (Wh/día)</th>
<th>Energía (MJ/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>197700</td>
<td>8</td>
<td>1581600</td>
<td>5693,76</td>
</tr>
</tbody>
</table>

7.1.2. Necesidades Energéticas

Haciendo referencia al consumo de corriente eléctrica se ha de tener en cuenta algunas perdidas como pueden ser la de los cableados de la instalación y en sus conexiones, el consumo interno de los reguladores o perdidas en los paneles solares debidas a la acumulación de suciedad en la superficie de captación o bien por la degradación con el paso del tiempo.

Debido a esos motivos y con el fin de prevenir una falta de energía por un cálculo muy ajustado se aplicará un factor de seguridad (Fs) que se estima en un 15%.

El consumo medio diario en corriente alterna de la instalación se puede calcular a partir de la siguiente expresión:

\[E_{ca} = E_1 \cdot \left(1 + \frac{F_s}{100}\right) \]

Donde:

Eca es el consumo medio diario en corriente alterna expresado en Wh/día,
F_s es el factor de seguridad en %, y,
E₁ es el consumo teniendo en cuenta la eficiencia del inversor, expresado en Wh/dia i que corresponde con la siguiente expresión.

\[
E₁ = \frac{E}{\eta_i} \cdot 100
\]

Donde:
- E es el consumo total, expresado en Wh/dia,
- \(\eta_i \) es el rendimiento del inversor en %, y,
- E₁ es el consumo teniendo en cuenta la eficiencia del inversor, expresado en Wh/dia.

Tabla 7.2. Consumo medio diario aplicando F_s y \(\eta_i \)

<table>
<thead>
<tr>
<th>Consumo Total E</th>
<th>1581,6 (kWh)/dia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficiencia del inversor</td>
<td>94 %</td>
</tr>
<tr>
<td>TOTAL E₁</td>
<td>1676,5 (kWh)/dia</td>
</tr>
<tr>
<td>Factor de seguridad de la Instalación</td>
<td>15 %</td>
</tr>
<tr>
<td>Consumo medio diario corriente alterna E_{ca}</td>
<td>1928 (kWh)/dia</td>
</tr>
</tbody>
</table>

Para el dimensionamiento de las instalaciones se empleará el E_{ca} =1928 (kWh)/dia o lo que es lo mismo 6940,8 MJ/dia.
7.2. ENERGÍA SOLAR FOTOVOLTAICA

Para dimensionar la instalación solar fotovoltaica hay que conocer la energía solar captada por ésta. Existen diferentes sistemas de captación solares como pueden ser sistema de captación fijo, sistema de seguimiento de un eje estacional o seguidor de doble eje. Aunque en un proyecto real habría que estudiar y comparar la energía máxima obtenida por cada uno de los sistemas de captación en éste estudio solo se tendrá en cuenta el sistema de captación fijo.

Debido a que no es posible encontrar datos de la radiación solar en la población de Polinyà se asimilarán los datos de la ciudad de Barcelona y no se tendrán en cuenta las pequeñas diferencias que se puedan dar en la implantación de los captadores solares en Polinyà.

7.2.1. Sistema de captación Fija.

Los datos energéticos referentes a la ciudad de Barcelona serán extraídos del Atlas de radiación solar de Catalunya. De entre las diferentes inclinaciones y las diferentes orientaciones se buscará aquella que proporcione la captación máxima anual. Observando las tablas expuestas en el capítulo 6 del documento de anexos observamos que la posición que ofrece la obtención máxima de energía es la de la orientación al Sur, es decir orientación 0°, e inclinación de 35°.

Tabla 7.3. Radiación solar diaria media en Barcelona para superficies inclinadas.

<table>
<thead>
<tr>
<th>Inclinación (°)</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Anual (MJ/m²·año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.8</td>
<td>9.65</td>
<td>13.88</td>
<td>18.54</td>
<td>22.25</td>
<td>24.03</td>
<td>23.37</td>
<td>20.42</td>
<td>16.05</td>
<td>11.4</td>
<td>7.73</td>
<td>6.04</td>
<td>5489.7</td>
</tr>
<tr>
<td>5</td>
<td>7.7</td>
<td>10.56</td>
<td>14.72</td>
<td>19.15</td>
<td>22.58</td>
<td>24.21</td>
<td>23.63</td>
<td>20.93</td>
<td>16.85</td>
<td>12.32</td>
<td>8.66</td>
<td>6.94</td>
<td>5735.2</td>
</tr>
<tr>
<td>10</td>
<td>8.56</td>
<td>11.41</td>
<td>15.47</td>
<td>19.67</td>
<td>22.78</td>
<td>24.25</td>
<td>23.74</td>
<td>21.31</td>
<td>17.54</td>
<td>13.17</td>
<td>9.55</td>
<td>7.8</td>
<td>5947.5</td>
</tr>
<tr>
<td>30</td>
<td>11.43</td>
<td>14.07</td>
<td>17.52</td>
<td>20.54</td>
<td>22.32</td>
<td>23.02</td>
<td>22.86</td>
<td>21.71</td>
<td>19.23</td>
<td>15.73</td>
<td>12.47</td>
<td>10.71</td>
<td>6442.4</td>
</tr>
<tr>
<td>55</td>
<td>13.36</td>
<td>15.4</td>
<td>17.67</td>
<td>18.85</td>
<td>18.95</td>
<td>18.77</td>
<td>18.97</td>
<td>19.29</td>
<td>18.68</td>
<td>16.61</td>
<td>14.32</td>
<td>12.78</td>
<td>6199.4</td>
</tr>
<tr>
<td>60</td>
<td>13.49</td>
<td>15.37</td>
<td>17.38</td>
<td>18.16</td>
<td>17.92</td>
<td>17.6</td>
<td>17.84</td>
<td>18.44</td>
<td>18.22</td>
<td>16.59</td>
<td>14.42</td>
<td>12.95</td>
<td>6034.7</td>
</tr>
<tr>
<td>70</td>
<td>13.49</td>
<td>15.03</td>
<td>16.44</td>
<td>16.46</td>
<td>15.7</td>
<td>15.14</td>
<td>15.48</td>
<td>16.43</td>
<td>16.97</td>
<td>16.03</td>
<td>14.33</td>
<td>13.05</td>
<td>5612.4</td>
</tr>
</tbody>
</table>

En la tabla siguiente se observa más claramente la opción favorable de 35°.
Tabla 7.4. Radiación solar media orientación Sur e inclinación 35° en Barcelona.

<table>
<thead>
<tr>
<th>RADIACIÓN MEDIA</th>
<th>MJ/m²·día</th>
<th>MJ/m²·mes</th>
<th>kWh/m²·mes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>11,97</td>
<td>371,07</td>
<td>103,075</td>
</tr>
<tr>
<td>Febrero</td>
<td>14,52</td>
<td>406,56</td>
<td>112,933333</td>
</tr>
<tr>
<td>Marzo</td>
<td>17,77</td>
<td>550,87</td>
<td>153,019444</td>
</tr>
<tr>
<td>Abril</td>
<td>20,45</td>
<td>613,5</td>
<td>170,416667</td>
</tr>
<tr>
<td>Mayo</td>
<td>21,9</td>
<td>678,9</td>
<td>188,583333</td>
</tr>
<tr>
<td>Junio</td>
<td>22,43</td>
<td>672,9</td>
<td>186,916667</td>
</tr>
<tr>
<td>Julio</td>
<td>22,34</td>
<td>692,54</td>
<td>192,372222</td>
</tr>
<tr>
<td>Agosto</td>
<td>21,48</td>
<td>665,88</td>
<td>184,966667</td>
</tr>
<tr>
<td>Septiembre</td>
<td>19,36</td>
<td>580,8</td>
<td>161,333333</td>
</tr>
<tr>
<td>Octubre</td>
<td>16,13</td>
<td>500,03</td>
<td>138,897222</td>
</tr>
<tr>
<td>Noviembre</td>
<td>13,01</td>
<td>390,3</td>
<td>108,416667</td>
</tr>
<tr>
<td>Diciembre</td>
<td>11,28</td>
<td>349,68</td>
<td>97,1333333</td>
</tr>
<tr>
<td>Total Anual</td>
<td>6473,03</td>
<td>1798,06389</td>
<td></td>
</tr>
</tbody>
</table>

Para poder dimensionar de forma correcta el número de paneles solares necesarios hay que tener en cuenta el mes en que se presenta la menor radiación media. Se observa que el mes en el que menos radiación se capta es en Diciembre teniendo una media diaria de 3,133 kWh/m²·día.

Para elegir el captador que nos aporte la mayor relación de W/m² se han recogido en la tabla siguiente algunos modelos de captadores de diferentes marcas.

Tabla 7.5. Relación de Vatios pico con superficie para diferentes modelos de captadores solares.

<table>
<thead>
<tr>
<th>MARCA</th>
<th>MODELO</th>
<th>POTENCIA NOMINAL (W)</th>
<th>Sup. (m²)</th>
<th>POTENCIA/ m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isofoton</td>
<td>IS-75/12</td>
<td>75</td>
<td>0,68</td>
<td>110,29</td>
</tr>
<tr>
<td>Viessmann</td>
<td>Vitovolt 200 SD2</td>
<td>175</td>
<td>1,28</td>
<td>136,72</td>
</tr>
<tr>
<td>Conergy</td>
<td>175M</td>
<td>175</td>
<td>1,31</td>
<td>133,59</td>
</tr>
<tr>
<td>Photowatt</td>
<td>PW1250</td>
<td>135</td>
<td>1,01</td>
<td>133,66</td>
</tr>
<tr>
<td>Photowatt</td>
<td>PW1650</td>
<td>175</td>
<td>1,34</td>
<td>130,6</td>
</tr>
<tr>
<td>BP Solar</td>
<td>BP 3165</td>
<td>165</td>
<td>1,26</td>
<td>78,43</td>
</tr>
</tbody>
</table>
Como se observa en la tabla, el que ofrece la mejor relación potencia-superficie es el modelo Vitovolt 200 SD2 de la casa Viessmann por lo tanto estos serán los paneles elegidos.

Por lo tanto con la media diaria de radiación y los datos del panel solar elegido se calcula una captación de 4,01024 kWh/día por cada panel.

<table>
<thead>
<tr>
<th>Marca comercial: Viessman</th>
<th>Modelo: Vitovolt 200 SD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datos Técnicos:</td>
<td>Imagen:</td>
</tr>
<tr>
<td>Potencia nominal: 175 W</td>
<td></td>
</tr>
<tr>
<td>Eficiencia: 14,3%</td>
<td></td>
</tr>
<tr>
<td>Tensión nominal: 24 V</td>
<td></td>
</tr>
<tr>
<td>Tensión máxima: 35,2 V</td>
<td></td>
</tr>
<tr>
<td>Intensidad máxima: 4,95 A</td>
<td></td>
</tr>
<tr>
<td>Intensidad de cortocircuito: 5,2 A</td>
<td></td>
</tr>
<tr>
<td>Tensión de circuito abierto: 44,2 V</td>
<td></td>
</tr>
</tbody>
</table>

Materiales de Construcción: Estructura de vidrio laminado. Caja de poliéster blanco. 72 células monocristalinas.

Dimensiones:
7.2.2. **Cálculo del número de paneles Solares**

Para poder determinar correctamente el nombre de módulos fotovoltaicos necesarios para la instalación es preciso conocer la potencia que aporta cada uno. Los fabricantes acostumbran a expresar la potencia en valores de potencia pico, de la cual el 90% se estima potencia real (Pr) a la que trabaja el panel.

El número de módulos necesarios (Np) se calcula a partir de la siguiente fórmula:

\[
N_p = \frac{E_{ca}}{R_m \cdot P_{max} \cdot 0.9} = \frac{R_f}{P_r}
\]

Donde:

- \(N_p\) es el número de paneles fotovoltaicos a instalar,
- \(E_{ca}\) representa el consumo de energía total en Wh/día,
- \(R_m\) es la media mensual de la radiación diaria recibida, kWh/día por cada panel,
- \(P_{max}\) es la potencia pico del módulo fotovoltaico expresada en W, y
- \(P_r\) representa la potencia real en W.

De este modo el número de paneles fotovoltaicos necesarios será de **3053**.

Por otro lado, la potencia total a instalar (Pt) será:

\[
P_t = N_p \cdot P_{max}
\]

La potencia Fotovoltaica total instalada es de **534275 W**.
7.2.3. **Cálculo de la potencia nominal del inversor**

En este apartado se calcula la potencia nominal que tendría que tener el inversor para que trabaje la mayor parte en su punto máximo de rendimiento. Se utilizará un factor de sobredimensionamiento \((F_S)\) de 1,1, que es la relación entre la potencia fotovoltaica instalada \(P_{FV}\) y la potencia nominal del inversor \(P_n\), tal y como se muestra a continuación:

\[
F_S = \frac{P_{FV}}{P_n}
\]

Teniendo en cuenta que el número de paneles fotovoltaicos es de 3053 con una potencia pico de 175 W y una potencia fotovoltaica instalada en esta alternativa de 534275 W, a partir de la ecuación presentada anteriormente podemos extraer que la potencia nominal del inversor corresponde a 485704,55 W. Con el fin de formar grupos de paneles de igual cantidad para cada inversor se dispondrán 5 inversores de 100 kW.

Por lo tanto para cada inversor corresponderán 611 paneles con un número total de 3055 paneles solares. Cada inversor gestionará 106925 W que aplicando el factor de sobredimensionamiento la potencia nominal del inversor tendría que ser de 97204,55 W.

7.2.4. **Cálculo de la separación de filas de paneles según el IDEA**

Con el fin de estimar la superficie total de terreno necesaria para el emplazamiento de los paneles se sigue el cálculo especificado por el instituto para la diversificación y ahorro de la energía. Para el cálculo de la separación mínima propone lo siguiente:

\[
d = \frac{h}{\tan(61° - \text{latitud})}
\]

La separación entre la parte posterior de una fila y el comienzo de la siguiente no será inferior a la obtenida por la expresión anterior, aplicando \(h\) a la diferencia de alturas entre la parte alta de una fila y la parte baja de la siguiente, efectuando todas las medidas de acuerdo con el plano que contiene a las bases de los módulos.

El valor de \(h\) se determina con la siguiente ecuación:

\[
h = L_p \cdot \sin \beta
\]

Donde:

- \(L_p\) es la longitud del panel que según el fabricante Viessmann para el modelo de panel seleccionado vale 1.580 mm.
El valor de β será el ángulo que se ha fijado para la recepción máxima de radiación. Éste será de 35°.

Aplicando las ecuaciones antes descritas se obtiene un valor de h de 906,25 mm. Con una la latitud del lugar de estudio de 41,45° la separación mínima entre filas d es de 2566,3 mm.

![Figura 7.1. Vista esquemática de los paneles](image)

En resumen los paneles se colocarían orientados al sur con una inclinación de 35°. A partir de los cálculos de la separación de las filas se podría decir que cada panel ocupa una superficie de aproximadamente 3 m² teniendo en cuenta la separación lateral entre paneles con lo que se estima una superficie total de terreno de 9165 m².

7.2.5. Cálculo de la energía generada

En este apartado se pretende determinar de un modo estimativo la producción anual de la instalación. Para ello es preciso conocer algunos factores que intervienen en el proceso de la producción:

- Energía solar. Depende principalmente de la inclinación y orientación de la superficie total, pero también de la situación geográfica.
- Superficie total. Es la superficie de un panel multiplicada por el número de paneles de la instalación.
- Perdidas de potencia en los paneles debidas a la suciedad y a la temperatura exterior. Éstas pueden variar entre un 0% i un 10% después de un día de lluvia con fango. El rendimiento de los paneles también varía ya que se calcula en condiciones óptimas de temperatura y ambiente. Como valor medio de perdidas de potencia debidas a la suciedad y a la temperatura exterior se toma el 5%.
- Rendimiento teórico de los paneles. Para el modelo seleccionado el rendimiento es de 14,3%.
- Rendimiento del inversor. El rendimiento de los inversores seleccionados es del 97%. Con todo y con eso nunca trabajan en el punto óptimo y por tanto se considera un rendimiento promedio del 94%.

- Perdidas por caída de tensión. Debido al efecto Joule al pasar la corriente por el circuito eléctrico, se producen perdidas en forma de calor. Otras perdidas se producen al pasar la corriente por los elementos de seguridad y control. Se consideran unas perdidas máximas del 1,5%.

- Radiación neta: Es la energía captada por la superficie total, esta será la misma que la radiación captada ya que están perfectamente situados por tal de que no existan perdidas por sombras.

- Energía generada: Es aquella energía que se vende a la red eléctrica.

- Índice de producción: Es la relación entre la radiación disponible y la energía que se vende a la red eléctrica.

La energía solar fue calculada anteriormente y la energía vendida es la que se muestra a continuación.

Tabla 7.6. Factores que intervienen en la producción de energía eléctrica

<table>
<thead>
<tr>
<th>Factores</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de módulos Fotovoltaicos</td>
<td>3055 paneles</td>
</tr>
<tr>
<td>Superficie de los paneles (m²)</td>
<td>1,28</td>
</tr>
<tr>
<td>Superficie total de los paneles (m²)</td>
<td>3910,4</td>
</tr>
<tr>
<td>Radiación solar total anual (kWh/m²)</td>
<td>1.798,07</td>
</tr>
<tr>
<td>Radiación neta (kWh/m²)</td>
<td>1.798,07</td>
</tr>
<tr>
<td>Radiación total (kWh)</td>
<td>7.031.173</td>
</tr>
<tr>
<td>Rendimiento de los paneles (%)</td>
<td>14,30</td>
</tr>
<tr>
<td>Pérdidas de potencia en los paneles (%)</td>
<td>5,00</td>
</tr>
<tr>
<td>Energía generada (kWh)</td>
<td>955.184,85</td>
</tr>
<tr>
<td>Rendimiento del inversor (%)</td>
<td>97</td>
</tr>
<tr>
<td>Pérdidas por caída de tensión (%)</td>
<td>1,50</td>
</tr>
<tr>
<td>Energía vendida (kWh)</td>
<td>912.631,37</td>
</tr>
</tbody>
</table>
7.2.6. Reducción de las emisiones de CO₂

Mediante la utilización de energías alternativas como en este caso se reduce la utilización de los combustibles fósiles en la generación de energía con lo que se reduce la contaminación de los gases que son enviados a la atmósfera.

Según los datos del “Plan de Fomento de Energías Renovables” (PFER), Anexo 1, cada kWh producido con carbón produce unas emisiones de 977 g de CO₂, y si es con gas natural en ciclos combinados, 394 g de CO₂ por kWh generado. La producción eléctrica nacional incluye tecnologías poco contaminantes en gases de efecto invernadero (nuclear e hidráulica) con lo que el kWh producido en España causa unas emisiones medias de 400 g de CO₂.

Para estimar los Kg de dióxido de carbono que se dejan de emitir a la atmósfera mediante energía solar es necesario conocer la energía eléctrica que produce la instalación, que en el presente proyecto es de 912.631,37 kWh/año. Considerando que cada kWh producido sea equiparado a 400 g de CO₂, las reducciones en emisiones de CO₂ para este caso son de **365.052,55 Kg de CO₂** en el periodo de un año.

7.2.7. Coste de la instalación fotovoltaica

El coste estimado para la instalación fotovoltaica es el siguiente.

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>UNIDADES</th>
<th>COSTE UNITARIO (€)</th>
<th>COSTE TOTAL (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulos fotovoltaicos Vitovolt 200 SD2 175 Wp</td>
<td>3.055</td>
<td>760,5</td>
<td>2.323.327,5</td>
</tr>
<tr>
<td>Inversores Ingecon Sun 100</td>
<td>5</td>
<td>28.000</td>
<td>140.000</td>
</tr>
<tr>
<td>Accesorios instalación de paneles i cableado</td>
<td>3.055</td>
<td>5</td>
<td>15.275</td>
</tr>
<tr>
<td>Cableado (estimación)</td>
<td>1</td>
<td>200.000</td>
<td>200.000</td>
</tr>
<tr>
<td>Montaje y puesta en marcha (estimación)</td>
<td>1</td>
<td>200.000</td>
<td>200.000</td>
</tr>
<tr>
<td>COSTE TOTAL (SIN IVA)</td>
<td></td>
<td></td>
<td>2.878.602,5</td>
</tr>
</tbody>
</table>
7.3. ENERGÍA EÓLICA

La otra posibilidad para dar solución a esta actividad estudiada en este proyecto es la de la energía eólica.

La capacidad que tiene una instalación eólica para producir energía va estrictamente ligada al estudio del viento y al aprovechamiento que se hace de éste. Estas instalaciones siguen un esquema muy parecido al que siguen las instalaciones fotovoltaicas.

El aerogenerador es el encargado de transformar la energía del viento en energía eólica. La instalación puede estar formada por uno o varios aerogeneradores del mismo modelo conectados entre sí. La corriente producida es corriente continua y se emplea un inversor para transformarla en corriente alterna.

Los datos del consumo eléctrico para el dimensionamiento serán los mismos que para la instalación fotovoltaica, los calculados en el apartado 7.1. Generalidades.

7.3.1. Emplazamiento

A la hora de elegir el emplazamiento de la instalación se ha de tener en cuenta además de la situación de la nave, la situación de la estación meteorológica más cercana para poder recoger los datos necesarios.

La estación meteorológica más cercana a la Nave de este proyecto situada en Polinyà es la de Sabadell.

Tabla 7.8. Coordenadas geográficas de la estación meteorológica de Sabadell.

<table>
<thead>
<tr>
<th>Nombre de la Estación</th>
<th>UTMx</th>
<th>UTMy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estación meteorológica automática de Sabadell (Vallés Occidental)</td>
<td>422518</td>
<td>4602172</td>
</tr>
</tbody>
</table>

La altitud a la que se sitúa la estación es de 258 m.

Dado que el viento es muy cambiante según la zona el estudio del potencial eólico se hará tomando los datos de la estación ya que son conocidos aunque este no sea el lugar exacto final del emplazamiento de la instalación.
7.3.2. Estudio del Potencial eólico

Como ya se ha dicho desconociendo el error que se pueda cometer y ya que esto no es un estudio total puesto que no se van a estudiar todas las posibilidades se tomarán los datos de la estación meteorológica antes mencionada para el desarrollo del cálculo.

Lo primero que hay que hacer es obtener los datos del viento a partir de los datos de velocidad y dirección del viento registrados por la estación meteorológica. El registro se lleva a cabo empleando un anemómetro situado a 10 metros sobre la superficie del suelo para evitar posibles obstáculos que puedan influir en la precisión de toma de datos.

El anemómetro ha de estar conectado a un ordenador para ir registrando los datos con una frecuencia normalmente de unos diez minutos. De este modo se han recogido los datos durante un año. Para la obtención de datos más precisos se recomienda hacer el estudio de los datos durante un periodo de tres años para obtener unos resultados más precisos ya que pueden existir cambios de un año a otro.

La distribución de velocidades muestra las velocidades medias del viento para cada mes del año y la media anual. La media mensual de la velocidad del viento medida a 10 metros de altura se muestra a continuación.

<table>
<thead>
<tr>
<th>ESTACIÓN</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabadell</td>
<td>1,6</td>
<td>1,9</td>
<td>1,6</td>
<td>2,3</td>
<td>2,0</td>
<td>1,9</td>
<td>2,1</td>
<td>1,9</td>
<td>1,8</td>
<td>2,2</td>
<td>Sin datos</td>
<td>1,7</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Con el tratamiento de los datos en el periodo de un año se ha obtenido una velocidad media a 10 metros de altura es de 1,9 m/s.

La distribución de direcciones muestra la dirección del viento dominante para cada mes del año y la anual. La dirección dominante del viento se muestra a continuación.

<table>
<thead>
<tr>
<th>ESTACIÓN</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabadell</td>
<td>SW</td>
<td>NE</td>
<td>E</td>
<td>E</td>
<td>SE</td>
<td>SE</td>
<td>E</td>
<td>SE</td>
<td>E</td>
<td>E</td>
<td>Sin datos</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

En el área de investigación se tiene un periodo de calma del viento del 7,04% según los datos del “Servei Meteorològic de Catalunya”.

La dirección predominante del viento es E, que corresponde al viento de levante.
Una vez se tienen los datos se procede al cálculo del potencial eólico.

Las velocidades del viento son fuertemente influenciadas por la rugosidad de la superficie del área circundante. Por ello es importante definir bien que tipo de rugosidad nos encontramos ya que cuanto mayor sea la rugosidad del terreno mayor será la ralentización que sufra el viento. Obviamente, los bosques y las grandes ciudades ralentizan mucho el viento, mientras que las pistas de hormigón de los aeropuertos sólo lo ralentizan ligeramente. Las superficies de agua son incluso más lisas que las pistas de hormigón, y tendrán por tanto menos influencia sobre el viento, mientras que la hierba alta y los arbustos ralentizan el viento de forma considerable. El hecho de que el perfil del viento se mueva hacia velocidades más bajas conforme nos acercamos al nivel del suelo suele llamarse cizallamiento del viento. Para poder describir de la manera más precisa posible el perfil de velocidades que seguirá el viento es necesario definir la rugosidad.

Tabla 7.11. Tipos de rugosidades del terreno.

<table>
<thead>
<tr>
<th>Clase de rugosidad</th>
<th>Longitud de rugosidad (m)</th>
<th>Índice de energía (%)</th>
<th>Tipo de paisaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,0002</td>
<td>100</td>
<td>Superficie del agua.</td>
</tr>
<tr>
<td>0,5</td>
<td>0,0024</td>
<td>73</td>
<td>Terreno completamente abierto con una superficie lisa, p.ej., pistas de hormigón en los aeropuertos, césped cortado, etc.</td>
</tr>
<tr>
<td>1</td>
<td>0,03</td>
<td>52</td>
<td>Área agrícola abierta sin cercados ni setos y con edificios muy dispersos. Sólo colinas suavemente redondeadas.</td>
</tr>
<tr>
<td>1,5</td>
<td>0,055</td>
<td>45</td>
<td>Terreno agrícola con algunas casas y setos resguardantes de 8 metros de altura con una distancia aproximada de 1250 m.</td>
</tr>
<tr>
<td>2</td>
<td>0,1</td>
<td>39</td>
<td>Terreno agrícola con algunas casas y setos resguardantes de 8 metros de altura con una distancia aproximada de 500 m.</td>
</tr>
<tr>
<td>2,5</td>
<td>0,2</td>
<td>31</td>
<td>Terreno agrícola con muchas casas, arbustos y plantas, o setos resguardantes de 8 metros de altura con una distancia aproximada de 250 m.</td>
</tr>
<tr>
<td>3</td>
<td>0,4</td>
<td>24</td>
<td>Pueblos, ciudades pequeñas, terreno agrícola, con muchos o altos setos resguardantes, bosques y terreno accidentado y muy desigual.</td>
</tr>
</tbody>
</table>
Proyecto de las instalaciones de una nave industrial y estudio de la implementación de energías alternativas

<table>
<thead>
<tr>
<th>Clase</th>
<th>Long. (m)</th>
<th>0.0002</th>
<th>0.0024</th>
<th>0.03</th>
<th>0.055</th>
<th>0.1</th>
<th>0.4</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>7.31</td>
<td>6.87</td>
<td>6.28</td>
<td>6.10</td>
<td>5.91</td>
<td>5.38</td>
<td>4.71</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>7.27</td>
<td>6.83</td>
<td>6.23</td>
<td>6.05</td>
<td>5.85</td>
<td>5.32</td>
<td>4.64</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>7.23</td>
<td>6.79</td>
<td>6.17</td>
<td>5.99</td>
<td>5.79</td>
<td>5.25</td>
<td>4.56</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>7.18</td>
<td>6.74</td>
<td>6.11</td>
<td>5.93</td>
<td>5.73</td>
<td>5.18</td>
<td>4.48</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>7.14</td>
<td>6.68</td>
<td>6.05</td>
<td>5.86</td>
<td>5.66</td>
<td>5.10</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>7.09</td>
<td>6.62</td>
<td>5.98</td>
<td>5.79</td>
<td>5.58</td>
<td>5.01</td>
<td>4.29</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>7.03</td>
<td>6.56</td>
<td>5.9</td>
<td>5.7</td>
<td>5.49</td>
<td>4.92</td>
<td>4.18</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>6.97</td>
<td>6.48</td>
<td>5.81</td>
<td>5.61</td>
<td>5.4</td>
<td>4.81</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>6.89</td>
<td>6.4</td>
<td>5.71</td>
<td>5.51</td>
<td>5.29</td>
<td>4.69</td>
<td>3.92</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>6.81</td>
<td>6.3</td>
<td>5.60</td>
<td>5.39</td>
<td>5.17</td>
<td>4.55</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6.71</td>
<td>6.19</td>
<td>5.47</td>
<td>5.25</td>
<td>5.02</td>
<td>4.38</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6.59</td>
<td>6.05</td>
<td>5.3</td>
<td>5.08</td>
<td>4.84</td>
<td>4.13</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6.44</td>
<td>5.87</td>
<td>5.09</td>
<td>4.86</td>
<td>4.61</td>
<td>3.92</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6.22</td>
<td>5.62</td>
<td>4.79</td>
<td>4.55</td>
<td>4.28</td>
<td>3.55</td>
<td>2.62</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.84</td>
<td>5.19</td>
<td>4.28</td>
<td>4.01</td>
<td>3.72</td>
<td>2.92</td>
<td>1.90</td>
<td></td>
</tr>
</tbody>
</table>

Figura 7.2. Velocidades del viento para diferentes alturas

Dado que no se conoce totalmente el emplazamiento de la instalación se adoptará la opción más desfavorable en cuanto a rugosidad del terreno. Se elige la rugosidad de clase 4 y una longitud de rugosidad de 1,6 m.

Para el cálculo de las velocidades del viento se emplea el software de la “Danish wind industry association”. Las velocidades obtenidas son las siguientes.

Las velocidades se pueden representar en un perfil de velocidades. Para este caso el perfil de velocidades obtenido es el siguiente:
La variación del viento en un emplazamiento típico suele describirse utilizando la llamada Distribución de Weibull en una de sus variantes. Se trata de la distribución de Weibull – Rayleigh. La distribución de Rayleigh es una variante de la de Weibull en el caso concreto en que el parámetro K es igual a 2.

Los fabricantes de aerogeneradores proporcionan gráficas de rendimiento de sus máquinas usando la distribución de Rayleigh.

La distribución de probabilidades de velocidad del viento sigue la siguiente ecuación:

\[
f(v) = \frac{K}{C} \cdot \left(\frac{v}{C}\right)^{K-1} \cdot \exp\left[-\left(\frac{v}{C}\right)^{K-1}\right]
\]

Donde K y C son:

\[
K = \left(\frac{\sigma}{\bar{v}}\right)^{-1.086} \quad \text{[adimensional]} \quad C = \frac{\bar{v}}{\Gamma \cdot \left(1 + \frac{1}{K}\right)} \quad \text{[m/s]}
\]

Donde \(\sigma\) y \(\bar{v}\) son la varianza y la velocidad del viento respectivamente.
Los datos disponibles son la velocidad media del viento, el parámetro k, el parámetro C, el número de horas durante las cuales se han tomado los datos y la altitud sobre el nivel del mar, dato necesario para determinar el potencial eólico del emplazamiento ya que la cantidad de energía cinética contenida en el viento, depende de la densidad del mismo y esta a su vez depende de la altitud. En este trabajo se tomará un valor constante de densidad de aire en 1,225 kg/m3. La distribución de Weibull se puede apreciar a continuación.

![Gráfica de la distribución de Weibull](image)

Figura 7.4. Gráfica de la distribución de Weibull

El área bajo la curva vale exactamente 1, ya que la probabilidad de que sople el viento a cualquier velocidad incluyendo el cero, ha de ser el 100%. La línea negra marca la mitad de la distribución de velocidades, lo que significa que la mitad del tiempo el viento soplará a menos de 3,5 m/s y la otra mitad lo hará a más de 3,5 m/s.

Como se puede observar no se trata de una distribución simétrica por lo que a veces se podrán dar velocidades del viento altas aunque esto es muy raro que ocurra. La velocidad más común estará alrededor de 3 m/s.

La Potencia media del viento (Equilibrado de la distribución de potencia)

La razón por la cual nos interesan las velocidades del viento es por el contenido energético que transportan. La potencia varía con la velocidad. Tomando la distribución de Weibull para las velocidades del viento, hay que encontrar la velocidad del viento a la cual se obtiene la mediana de la distribución de potencia. En este caso aunque los vientos fuertes son poco frecuentes intervienen con una gran cantidad de energía.
La ley de Betz (El frenado ideal del viento)

Cuanto mayor sea la energía cinética que un aerogenerador extraiga del viento, mayor será la ralentización que sufrirá el viento que deja el aerogenerador. Si intentamos extraer toda la energía del viento, el aire saldría con una velocidad nula, es decir, el aire no podría abandonar la turbina. En ese caso no se extraería ninguna energía en absoluto, ya que obviamente también se impediría la entrada de aire al rotor del aerogenerador.

En el otro caso extremo, el viento podría pasar a través del aerogenerador sin ser para nada estorbado. En este caso tampoco habríamos extraído ninguna energía del viento.

Así pues, podemos asumir que debe haber alguna forma de frenar el viento que esté entremedio de estos dos extremos, y que sea más eficiente en la conversión de la energía del viento en energía mecánica útil. Resulta que hay una respuesta a esto sorprendentemente simple: un aerogenerador ideal ralentizaría el viento hasta 2/3 de su velocidad inicial. Para entender el porqué, tendremos que usar la ley física fundamental para la aerodinámica de los aerogeneradores: la ley de Betz.

Esta ley dice que sólo puede convertirse menos de 16/27 (el 59 %) de la energía cinética en energía mecánica usando un aerogenerador. Una primera valoración de la potencia que se puede obtener en un emplazamiento y un aerogenerador conocido se puede conocer a partir de siguiente ecuación:

\[P = \eta_0 \cdot \varphi \cdot A \cdot v^3 \]

El primer término es el rendimiento global teniendo en cuenta el coeficiente de potencia \(C_p \), que es el coeficiente que evalúa el rendimiento parcial del paso de energía del viento real a la que puede ser captada por las palas del aerogenerador. También depende del rendimiento de la transmisión encargada de multiplicar la velocidad que acostumbra a ser una relación de 1/8 y por último del rendimiento del aerogenerador:

\[\eta_0 = C_{pR} \cdot \eta_{IR} \cdot \eta_{eR} \]

, a velocidad nominal

El segundo término de la ecuación de la potencia corresponde a la densidad del aire y el tercero es el área de barrida del aerogenerador. Un dato muy interesante es observar cómo la potencia depende del cubo de la velocidad, por lo cual hace falta ser muy cuidadoso con los cálculos de las velocidades medianas, puesto que un pequeño error supondría un error muy grande en la evaluación del potencial energético del emplazamiento del aerogenerador. De todas formas el fabricante ya especifica la potencia nominal del aerogenerador en base a la velocidad nominal del mismo y se encuentran evaluados todos los términos de rendimientos, por lo cual la potencia final \(P = P_{eR} \), que es la potencia
nominal media (que a partir de ahora será P_{er}) y todavía puede existir una cierta variación debida a la densidad del aire, como la velocidad escogida por el cálculo es la media y está cogida a 10 m de altura sobre el nivel del suelo y a sabiendas de que la altura del generador está a 40 m, y que a esta altura la velocidad es mayor. Por ello es importante conocer el perfil de velocidades presentado anteriormente.
7.3.3. **Selección del aerogenerador**

La selección del aerogenerador se hará teniendo en cuenta que la producción anual de energía eléctrica sea prácticamente igual a la que se demanda durante un año por la nave. Además entre todos aquellos que cumplan ese requisito se buscará el que tenga la mejor relación de producción y precio.

Suponiendo que el consumo estimado es de 1928 kWh/día, durant 365 días que tiene el año, el consumo anual estimado será de 703720 kWh/any. Aunque no se trabaje durante los 365 días del año se estudiará como si así fuese. Eso permitiría sobredimensionar la instalación con el fin de poder inyectar a la red una mayor cantidad de energía.

En la tabla 7.12 se presentan los aerogeneradores estudiados que podrían dar solución a la demanda.

Tabla 7.12. Designación, marca y producción anual de algunos aerogeneradores

<table>
<thead>
<tr>
<th>DESIGNACIÓN</th>
<th>MARCA</th>
<th>PRODUCCIÓN ANUAL (kWh/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74 – 1600 kW</td>
<td>Ecotècnia</td>
<td>867.127</td>
</tr>
<tr>
<td>80 – 1600 kW</td>
<td>Ecotècnia</td>
<td>1.003.489</td>
</tr>
<tr>
<td>E – 70 / 2300 kW</td>
<td>Enercon</td>
<td>937.070</td>
</tr>
<tr>
<td>E – 82 / 2000 kW</td>
<td>Enercon</td>
<td>1.249.922</td>
</tr>
<tr>
<td>FL 1500</td>
<td>Fuhrlander</td>
<td>809.653</td>
</tr>
<tr>
<td>FL 2500</td>
<td>Fuhrlander</td>
<td>1.115.600</td>
</tr>
<tr>
<td>G51 – 850 kW</td>
<td>Gamesa</td>
<td>353.713</td>
</tr>
<tr>
<td>G58 – 850 kW</td>
<td>Gamesa</td>
<td>463.209</td>
</tr>
<tr>
<td>G80 – 2000 kW</td>
<td>Gamesa</td>
<td>1.013.443</td>
</tr>
<tr>
<td>S 77 / 1500 kW</td>
<td>Nordex</td>
<td>775.580</td>
</tr>
<tr>
<td>N 80 / 2000 kW</td>
<td>Nordex</td>
<td>881.254</td>
</tr>
<tr>
<td>WINDENERGY 2.5 MW</td>
<td>Windenergy</td>
<td>1.125.930</td>
</tr>
</tbody>
</table>
En resumen de aquellos generadores que son válidos por sus aportes energéticos se seleccionará aquel que tenga la mejor relación de producción precio.

Tabla 7.13. Resumen de los generadores óptimos.

<table>
<thead>
<tr>
<th>DESIGNACIÓN</th>
<th>MARCA</th>
<th>PRODUCCIÓN ANUAL (kWh/año)</th>
<th>PRECIO UNIDAD (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 77 / 1500 kW</td>
<td>Nordex</td>
<td>775.580</td>
<td>1.567.500</td>
</tr>
<tr>
<td>74 – 1600 kW</td>
<td>Ecotècnia</td>
<td>867.127</td>
<td>1.575.000</td>
</tr>
<tr>
<td>FL 1500</td>
<td>Fuhrlander</td>
<td>809.653</td>
<td>1.622.500</td>
</tr>
<tr>
<td>E – 70 / 2300 kW</td>
<td>Enercon</td>
<td>937.070</td>
<td>1.732.500</td>
</tr>
</tbody>
</table>

Después de analizar los precios de cada aerogenerador y la relación de energía consumida y producida, se establece que la mejor opción para la instalación sería la del aerogenerador de la marca **ECOTÈCNIA, modelo 74**, con una potencia de 1600 kW.

Aunque la producción energética de la turbina sea claramente superior a la necesaria anualmente, su precio es óptimo y además permite compensar posibles aumentos de la demanda energética.

![Figura 7.5. Curva de potencia del aerogenerador ECOTÈCNIA 74 – 1600 kW](image-url)
Las características técnicas del aerogenerador de la marca ECOTÈCNIA modelo 74-1.6 kW son las siguientes:

<table>
<thead>
<tr>
<th>Clase aerogenerador según IEC-1400-1</th>
<th>II - A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal</td>
<td>1670 kW</td>
</tr>
<tr>
<td>Diámetro del rotor</td>
<td>74 m</td>
</tr>
<tr>
<td>Orientación del rotor</td>
<td>Barlovento</td>
</tr>
<tr>
<td>Número de palas</td>
<td>3</td>
</tr>
<tr>
<td>Alturas estándar del buje</td>
<td>60 m - 70 m - 80 m</td>
</tr>
<tr>
<td>Sistema de control de potencia</td>
<td>Velocidad variable con cambio de paso independiente en cada pala</td>
</tr>
<tr>
<td>Rango de velocidades</td>
<td>10 r.p.m. - 19 r.p.m.</td>
</tr>
<tr>
<td>Velocidad del viento de conexión y parada (media 10')</td>
<td>3 m/s y 25 m/s</td>
</tr>
<tr>
<td>Rango de temperaturas de operación</td>
<td>-10 °C a +40 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase aerogenerador según IEC-1400-1</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad media anual de viento para la que es apta</td>
<td>8,5 m/s</td>
</tr>
<tr>
<td>Velocidad máx. (media 10')</td>
<td>42,5 m/s</td>
</tr>
<tr>
<td>Velocidad de ráfaga extrema (IEC)</td>
<td>59,5 m/s</td>
</tr>
<tr>
<td>Velocidad de conexión</td>
<td>3 m/s</td>
</tr>
<tr>
<td>Velocidad de parada</td>
<td>25 m/s</td>
</tr>
<tr>
<td>Velocidad de parada instantánea</td>
<td>34 m/s</td>
</tr>
<tr>
<td>Intensidad turbulencia</td>
<td>A</td>
</tr>
<tr>
<td>Velocidad vertical del viento durante toda la vida operativa del aerogenerador (IEC)</td>
<td>8°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientación</td>
</tr>
<tr>
<td>Diámetro del rotor</td>
</tr>
<tr>
<td>Potencia nominal</td>
</tr>
<tr>
<td>Número de palas</td>
</tr>
<tr>
<td>Superficie barrida</td>
</tr>
<tr>
<td>Densidad de potencia</td>
</tr>
<tr>
<td>Rango de velocidades de giro</td>
</tr>
<tr>
<td>Velocidad de punta de pala</td>
</tr>
<tr>
<td>Fabricante de las palas</td>
</tr>
<tr>
<td>Tipo de palas</td>
</tr>
</tbody>
</table>

Para conocer más datos sobre el aerogenerador consultar el apartado 6.2 del Anexo.
A partir del programa de cálculo de la Asociación Danesa de la Industria Eólica, introduciendo los valores de las características del emplazamiento y del aerogenerador, así como los valores de la curva de potencia del aerogenerador, se obtiene la gráfica de la densidad de potencia que se puede observar a continuación:

![Gráfica de densidad de potencia del aerogenerador en el emplazamiento](image)

Figura 7.5. Gráfica de densidad de potencia del aerogenerador en el emplazamiento

Por lo tanto con una velocidad media del viento de 3,76 m/s, la potencia de entrada será de 62 W/m² de área de rotor, con una máxima potencia de entrada a 6 m/s. La potencia de salida de la turbina es de 23 W/m² de área del rotor con una energía producida de 202 kWh/m²/año. Por lo tanto, se tendrá una producción energética de **867.127 kWh/año** por cada aerogenerador. El factor de carga es del 6%.
7.3.4. Otros componentes de la instalación

INVERSOR

El aerogenerador ya incorpora un convertidor de potencia en la góndola que convierte y rectifica la potencia generada en el rotor.

SUBESTACIÓN TRANSFORMADORA

Después del convertidor toda la energía va a un transformador que eleva la tensión (30 kV) a media tensión (220 kV) para poder conectarla a la red. Si no existiese el transformador la tensión inyectada a la red sería en baja tensión lo que provocaría que las perdidas fuesen muy grandes. En la estación transformadora hay un ordenador que gestiona el software de control del aerogenerador proporcionado por el fabricante de la máquina.

7.3.5. Reducción de emisiones

Del mismo modo que en la instalación fotovoltaica con este tipo de energía se reducen las emisiones de CO₂ enviadas a la atmósfera. Considerando que cada kWh producido corresponde a 400 g de CO₂ y teniendo en cuenta una producción anual de 867.127 kWh/año la reducción en emisiones de CO₂ se establece en **346.850,4 kg** de CO₂ al año.
Coste de la instalación eólica

El coste estimado de la instalación eólica es el siguiente.

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>UNIDADES</th>
<th>COSTE UNITARIO (€)</th>
<th>COSTE TOTAL (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerogenerador Ecotecnia 74 – 1600 kW, con estructura y suporte, inversor, subestación transformadora con software, todo incluido.</td>
<td>1</td>
<td>1.575.000</td>
<td>1.575.000</td>
</tr>
<tr>
<td>Cableado de 30 kV del aerogenerador a la subestación transformadora y cableado de 220 kV de la subestación a la red eléctrica (estimación).</td>
<td>1</td>
<td>300.000</td>
<td>300.000</td>
</tr>
<tr>
<td>Montaje y puesta en marcha (estimación)</td>
<td>1</td>
<td>562.500</td>
<td>562.500</td>
</tr>
</tbody>
</table>

COSTE TOTAL (SIN IVA)
2.437.500
7.4. CONCLUSIONES

El presupuesto total de la instalación fotovoltaica asciende a 2.878.602,5 C, mientras que el de la instalación eólica es de 2.437.500 C. Es preciso remarcar que estos costes pueden verse afectados en gran medida por elementos omitidos o por la estimación de los costes de algunos elementos. Mediante los cálculos realizados en este estudio no se podría seleccionar una opción u otra por el valor del coste.

Por otro lado la energía vendida a la red por la instalación fotovoltaica es poco más alta, 912.631,37 kWh/año, que la vendida por la instalación eólica 867.127 kWh/año. Estos valores tampoco nos ayudarían a la elección en este estudio, pero si pensamos en el precio de venta de la energía es ahí donde encontramos la gran diferencia para una y otra alternativa. El precio al cual se vende la energía fotovoltaica es de 41 cC/kWh frente a los 7,3228 cC/kWh en que se vende la energía eólica. Este hecho decanta la balanza por la elección de la fotovoltaica ya que en un periodo de 25 años nos aportaría mucho mayor beneficio que la eólica aunque esto nos oblige a un desembolso mayor en el primer momento. Otro punto importante de análisis hubiese sido lo referente a las subvenciones estatales que no se han analizado en este estudio.

Otro aspecto comparativo estudiado es el de la reducción de emisiones de CO2. Como era de esperar la a lo largo de un periodo de 25 años la instalación fotovoltaica reduciría la emisión en 9.126.313,75 kg y la eólica 8.671.260 kg. La fotovoltaica tendría de este modo otro punto a favor ya que es la que más reduciría las emisiones puesto que es la instalación que más energía vende a la red.