TREBALL DE FI DE CARRERA

TÍTOL DEL TFC: Estudi de la plataforma ZigBit Amp de MeshNetics

TITULACIÓ: Enginyeria Tècnica de Telecomunicació, especialitat Telemàtica

AUTOR: Adrià López Molina

DIRECTOR: Lluís Casals Ibáñez
Carles Gómez Montenegro

DATA: 05 de Juliol de 2010
Títol: Estudi de la plataforma ZigBit Amp de MeshNetics

Autor: Adrià López Molina

Director: Lluís Casals Ibáñez
Carles Gómez Montenegro

Data: 05 de Juliol de 2010

Resum

Actualment, hi ha un gran nombre d’aplicacions que integren xarxes de sensors sense fils i utilitzen ZigBee com a protocol de xarxa. Entre aquestes podem trobar xarxes automatitzades en edificis, sistemes de seguretat de la llar, instal·lacions domètiques a habitatges, xarxes de control industrial, perifèrics d’ordinador, etc.

Totes elles requereixen un protocol que les hi proporcioni un gran cicle de vida dels dispositius i una transferència de dades a baixa velocitat, ja que només es tracta de transmissions de control o paquets amb baixes necessitats d’amplada de banda elevat.

L’estàndard ZigBee proporciona totes aquestes característiques als sistemes que integra. A més, a diferència d’altres protocols sense fils ofereix una baixa complexitat, requereix un nombre mínim de recursos i com a punt fort, un conjunt d’estàndards d’especificacions.

Aquest projecte final de carrera té com a principal objectiu l’estudi de la plataforma de desenvolupament ZigBit Amp de MeshNetics, que implementa el protocol ZigBee, i l’avaluació de les prestacions en tres de les seves capes de la pila, com són la capa física, la d’accés al medi i la de xarxa.
Overview

Currently, there are a wide variety of applications that integrate wireless sensor networks using ZigBee as the network protocol. Automated networks in buildings, home security systems, home automation installations in private networks, industrial control, computer peripherals, etc. are some of them.

All they require is a protocol that provides a large lifetime of devices and data transfer at low speed, since it only transfers control data or packages with low bandwidth needs.

The ZigBee standard provides all these features to the systems that integrates. In addition, unlike other wireless protocols offers low complexity, requiring a minimum number of resources and a set of standard specifications.

This final project is based on the study of the MeshNetics ZigBit's Amp platform, that implements the ZigBee protocol, and on the analysis of the performance of three layers of its stack, such as physical layer, medium access control layer and network layer.
ÍNDICE

INTRODUCCIÓ ... 1

CAPÍTOL 1. TECNOLOGIA ZIGBEE .. 2

1.1. Visió General .. 2
 1.1.1. Arquitectura de capes .. 3
 1.1.2. Tipus de dispositius i funcionalitats .. 4
 1.1.3. Topologies ... 5

1.2. Capa Física (PHY) ... 6
 1.2.1. Propietats bàsiques ... 6
 1.2.1.1. Cicle de treball .. 6
 1.2.1.2. Modulació .. 7
 1.2.1.3. Bandes espectrals de treball i assignació de canals 7
 1.2.2. Estructura de les trames ... 9
 1.2.3. Link Quality Indicator (LQI) ... 9

1.3. Capa d’Enllaç (MAC) .. 10
 1.3.1. Models de transmissió de la capa MAC ... 10
 1.3.1.1. Model de transmissió amb trames de senyalització (beacon) 10
 1.3.1.2. Model de transmissió sense trames de senyalització (beaconless) ... 11
 1.3.2. Estructura de les trames ... 12
 1.3.3. Tipus de trames ... 13
 1.3.3.1. Trames de senyalització (beacons) .. 13
 1.3.3.2. Trames de dades ... 14
 1.3.3.3. Trames ACK (Reconexiement) .. 14
 1.3.3.4. Trames MAC ... 14

1.4. Capa de Xarxa (NWK) ... 15
 1.4.1. Topologia jeràrquica (en arbre) i en estrella .. 16
 1.4.2. Topologia Mesh .. 17
 1.4.3. Enrutament (Routing) ... 18
 1.4.4. Descobriment de ruta ... 19
 1.4.4.1. Enrutament des d’origen (Source Routing) 20
 1.4.5. Manteniment de ruta i reparació ... 20
 1.4.6. Format dels paquets .. 21

CAPÍTOL 2. PLATAFORMA MESHNETICS ZIGBIT AMP 24

2.1. Hardware ... 24
 2.1.1. Especificacions generals del Hardware .. 24
 2.1.2. Components destacats de la placa MeshBean Amp 26
 2.1.2.1. Mòdul ZigBit Amp ... 26
 2.1.2.2. Sensors ... 27
 2.1.2.3. Càlcul de LQI ... 28
 2.1.2.4. Pont USB a interfície UART ... 29
 2.1.2.5. UID (Unique Identifier) ... 29

2.2. Software ... 30
 2.2.1. Especificacions del Software de la plataforma ... 30
 2.2.2. Software addicional utilitzat ... 31
 2.2.2.1. WSN Demo .. 32
 2.2.2.2. National Instruments Labview ... 33
 2.2.2.3. Daintree Sensor Network Analyzer (SNA) .. 34
CAPÍTOL 3. EXPERIMENTS I RESULTATS... 36

3.1. Experiments de Capa Física i Capa MAC... 36
 3.1.1. Resultats dels experiments de capa física .. 40
 3.1.2. Resultats dels experiments de capa MAC ... 42

3.2. Experiments de Capa de Xarxa .. 43
 3.2.1. Escenari 1. Estudi del retard d’incorporació a la xarxa 44
 3.2.1.1. Retard d’incorporació del Router ZigBee .. 45
 3.2.1.2. Retard d’incorporació del End Device ZigBee 46
 3.2.2. Escenari 2. Estudi del retard redescobriment de ruta si un node cau 46
 3.2.3. Escenari 3. Estudi del retard per tornar a formar la xarxa 50
 3.2.4. Escenari 4. Estudi del retard per canviar la ruta al coordinador 52

CAPÍTOL 4. CONCLUSIONS I LÍNIES FUTURES.. 53

4.1. Conclusions ... 53

4.2. Línies futures .. 54

BIBLIOGRAFIA ... 55
INTRODUCCIÓ

ZigBee és un estàndard de comunicacions sense fils destinat a aplicacions de baix cost i baix consum, com per exemple les instal·lacions domètiques, les xarxes de sensors, les xarxes de control industrial, les estacions meteorològiques, els perifèrics de PC, etc. Va néixer de la diversitat de protocols propietaris dels fabricants buscant una solució per als tipus d’aplicacions mencionades. D’aquesta manera, ZigBee s’erigeix com una especificació comú a tot tipus de desenvolupament per a les aplicacions que necessitin les característiques anomenades anteriorment.

El protocol es basa en les capes física i d’accés al medi (MAC) que defineix l’estàndard IEEE 802.15.4, ja que tenen el mateix objectiu i estan adreçades a aplicacions de baix consum treballant sota el tipus de xarxa LR-PAN (Low Rate – Personal Area Network), que té com a objectiu la transmissió de poc volum de dades en una zona local determinada.

El fet de buscar aplicacions de baix consum per sobre de qualsevol altre factor, porta a tenir aplicacions amb cicles de treball molt baix i poca electrònica en l’elaboració dels dispositius. El cicle de treball reduït comporta la minimització del temps de transmissió i funcionament dels nodes, factors que provocaran que hi hagi baixa latència i una ràpida connexió dels dispositius a la xarxa, a més d’augmentar considerablement el número de dispositius que poden estar presents a la mateixa.

Aquest projecte consisteix en l’estudi de la plataforma ZigBit Amp de MeshNetics, que implementa el protocol ZigBee, fent un repàs de totes les seves capes dintre del model de referència i tenint una clara idea de la funció que cadascuna desenvolupa en l’especificació. Posteriorment les característiques i el funcionament hagin estat estudiats, es planteja l’avaluació d’una plataforma que treballa sobre el mateix model de comunicació sense fils.

Al primer capítol es detallen les capes física i d’accés al medi sobre les que treballa ZigBee que pertanyen a l’estàndard IEEE 802.15.4, el qual té els mateixos objectius d’aplicacions que el propi protocol. A part de les capes baixes, també es detallen les capes pròpies definides per ZigBee, la de xarxa i la d’aplicació, que s’erigeixen com les capes altes de l’especificació.

A partir del segon capítol s’introduceix la plataforma de desenvolupament objecte d’estudi. En concreto, la plataforma estudiada és l’anomenada MeshNetics ZigBit Amp, la qual treballa sobre uns microcontroladors desenvolupats per Atmel, en concret els ATMega1281. És en aquest capítol on es mostren les principals característiques de la mateixa i on s’indiquen tant el hardware com el software emprats.

Al tercer capítol es mostren les proves a les quals ha estat sotmesa la plataforma, tant a les capes física, d’accés al medi i de xarxa. Finalment és al capítol 4 on es fa un recull de les conclusions i línies futures en funció dels resultats obtinguts.
CAPÍTOL 1. TECNOLOGIA ZIGBEE

1.1. Visió General

ZigBee és el nom de l’especificació d’un conjunt de protocols d’alt nivell de comunicació sense fils definits per la ZigBee Alliance, els quals tenen l’objectiu de treballar en enllaços ràdio de baix consum. Aquest enllaç ràdio està definit per l’estàndard IEEE 802.15.4, la primera versió del qual va ser aprovada l’any 2003.

L’IEEE 802.15.4 va ser dissenyat amb la finalitat de permetre la comunicació en xarxes d’àrea personal sense fils (WPAN) entre dispositius amb baix nivell de potència i baixa velocitat (Low Rate - WPAN). Aquesta especificació té com a principal objectiu les aplicacions que, a banda de no requerir amples de banda elevats sí que necessiten comunicacions fiables amb una baixa taxa d’enviament de dades i la maximització de la vida útil dels seus dispositius (xarxes de sensors, domòtica, control d’aparcaments, etc.), ja que s’assumeix que empraran una bateria com a principal font d’energia.

A diferència d’altres protocols de comunicació sense fils on s’intenta assolir el màxim ample de banda possible sense reparar en consum de potència, l’IEEE 802.15.4 busca assolir tot el contrari. A continuació, a la taula 1.1, es mostra una petita comparativa on es poden veure les particularitats dels protocols sense fils Wifi, Bluetooth i el propi 802.15.4.

Taula 1.1: Quadre comparatiu de diferents tecnologies sense fils.

<table>
<thead>
<tr>
<th></th>
<th>Freqüència</th>
<th>Ample de Banda</th>
<th>Consum de Potència</th>
<th>Rang de Transmissió</th>
<th>Avantatges</th>
<th>Aplicacions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wifi</td>
<td>2,4 GHz</td>
<td>Fins 54 Mbps</td>
<td>400 mA (20 mA repòs)</td>
<td>100 m</td>
<td>Velocitat, Flexibilitat</td>
<td>WWW, @, Video</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>2,4 GHz</td>
<td>1-3 Mbps</td>
<td>40 mA (0,2 mA repòs)</td>
<td>10 m</td>
<td>Substitut del cable, Interoperabilitat</td>
<td>Wireless USB, mòbils</td>
</tr>
<tr>
<td>IEEE 802.15.4</td>
<td>868 MHz, 915 MHz, 2,4 GHz</td>
<td>250 Kbps</td>
<td>1,8 mA (5,1 µA repòs)</td>
<td>100 m</td>
<td>Robustesa, Consum, Cost, Flexibilitat, Escalabilitat</td>
<td>Control Remot, Monitorització, Control i Localització</td>
</tr>
</tbody>
</table>

L’IEEE 802.15.4 utilitza la banda lliure ISM (Industrial, Scientifical & Medical) i pot treballar a tres freqüències diferents: 868 MHz (a Europa), 915 MHz (a EEUU) i 2.4 GHz (a tot el Món). Aquesta última és la principal escollida pels desenvolupadors ja que el seu rang de funcionament és global. La senzillesa i...
el baix cost són dues de les principals característiques a l’hora de desenvolupar qualsevol tipus de node que implementi l’estàndard.

Aquest protocol treballa a baixes velocitats en comparació amb altres estàndards de comunicacions sense fils: 250 kbps (a 2.4 GHz), 40 kbps (a 915 MHz) i 20 kbps (a 868 MHz). Un altre objectiu fonamental de l’especificació és aconseguir la màxima durada de la bateria dels dispositius que l’implementin, podent arribar fins i tot a anys amb bateries de voltatges comuns (1,5V. Bateries AA).

D’aquesta manera, l’estàndard IEEE 802.15.4 defineix la capa física i la subcapa MAC per a les xarxes anomenades anteriorment LR-WPAN, mentre que ZigBee Alliance, aprofitant i basant-se en les capes inferiors definides per l’IEEE 802.15.4, treballa en capes superiors i defineix la capa de suport d’aplicació (la capa d’aplicació la defineix l’usuari), la capa de xarxa i els serveis de seguretat.

Taula 1.2: Quadre comparatiu del model OSI amb IEEE 802.15.4 i ZigBee.

<table>
<thead>
<tr>
<th>Model ISO/OSI de 7 capes</th>
<th>Model IEEE 802</th>
<th>Estructuració ZigBee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplicació</td>
<td>Capes Altres</td>
<td>Suport a l’aplicació</td>
</tr>
<tr>
<td>Presentació</td>
<td></td>
<td>ZigBee</td>
</tr>
<tr>
<td>Sessió</td>
<td></td>
<td>Xarxa</td>
</tr>
<tr>
<td>Transport</td>
<td>Control lògic de l’enllaç</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium Access Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control d’Accés al Medi (MAC)</td>
<td>IEEE 802.15.4</td>
</tr>
<tr>
<td>Enllaç de dades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Física</td>
<td>Física</td>
<td>Física (PHY)</td>
</tr>
</tbody>
</table>

1.1.1. Arquitectura de capes

Cadascuna de les capes que formen la pila de protocols de ZigBee desenvolupen un conjunt específic de serveis per a les capes immediatament superiors. L’entitat de dades proporciona el servei de transmissió de dades i l’entitat d’administració proporciona tots els altres serveis necessaris.

Cada entitat de servei exposa una interfície a la capa immediatament superior a través del Punt d’Accés al Servei o *Service Access Point* (SAP) i cada SAP proporciona les primitives de servei per aconseguir la funcionalitat requerida.

Com ja s’ha comentat a l’apartat 1.1, l’IEEE 802.15.4 defineix la capa física (PHY) i la subcapa de control d’accés al medi (MAC), mentre que ZigBee basant-se en les capes inferiors definides per l’IEEE 802.15.4 defineix la capa de xarxa (NWK) i l’estructura de la capa d’aplicació, que consisteix en la subcapa de suport d’aplicació (APS) i els objectes de dispositius ZigBee o *ZigBee Device Objects* (ZDO). D’aquesta manera, el fabricant que defineix la
capa d’aplicació utilitza l’entorn de treball i estructura de la capa d’aplicació definida per ZigBee i comparteix l’APS i els serveis de seguretat amb el ZDO.

La subcapa MAC controla l’accés al canal de l’enllaç ràdio emprant el mecanisme CSMA-CA, a més de tenir altres responsabilitats com la transmissió de les trames Beacon, la sincronització i el proporcionar un mecanisme de transmissió segur.

A continuació, a la figura 1.1 es mostra l’esquema de l’arquitectura de capes que defineix ZigBee.

A la imatge es poden diferenciar clarament les capes definides per l’IEEE 802.15.4, per la ZigBee Alliance i per l’usuari o el fabricant. A més, es pot veure la comunicació entre capes, mitjançant les entitats de dades i d’administració, les quals utilitzen els SAP per a poder accedir a les capes superiors.

1.1.2. Tipus de dispositius i funcionalitats

Segons el paper que desenvolupen a la xarxa, es defineixen tres tipus de dispositius ZigBee.

- **Coordinador (ZC):** és el tipus de dispositiu més complet i ha d’estar present a la xarxa. Les seves funcions són les d’encarregar-se de controlar la xarxa i els camins (o rutes) que han de seguir els dispositius per connectar-se entre ells.
• **Router (ZR):** interconnecta dispositius separats a la topologia de la xarxa, a més d’ofereix un nivell d’aplicació per a l’execució de codi d’usuari.

• **Dispositiu Final (ZED):** dispositiu amb la funcionalitat necessària per comunicar-se amb el seu node pare (coordinador o router), però no pot transmetre informació destinada a altres dispositius. D’aquesta manera, un dispositiu final pot romandre ‘dormit’ la major part del temps augmentant la vida útil de les seves bateries. Aquest tipus de node té una requeriments mínims de memòria i, per tant, de és de molt més baix cost.

Completant la definició dels tipus de node ZigBee, es poden distingir dos tipus de dispositius a nivell de IEEE 802.15.4: els dispositius *Full Function Device* (FFD) i els *Reduced Function Device* (RFD).

• **FFD:** dispositius capaços d’organitzar i coordinar l’accés al medi d’altres dispositius a la mateixa xarxa. També coneguts com nodes actius, poden funcionar com a Coordinador o Router ZigBee gràcies a la memòria addicional i a la capacitat de computar (ZR o ZC).

• **RFD:** dispositius amb un baix consum d’energia, de baix cost i simplicitat. També coneguts com nodes passius, tenen capacitat i funcionalitat limitades i no pas la complexitat dels FFD. Són, per exemple els sensors/actuadors de la xarxa (ZED). No tenen capacitat d’enrutat.

1.1.3. **Topologies**

ZigBee, en concret la capa de xarxa, suporta tres tipus de topologies de xarxa: estrella, mesh i arbre.

• **Xarxa en estrella:** en aquesta topologia la comunicació s’estableix entre els nodes (RFD o FFD) i el node central anomenat *PAN Coordinator* (coordinador ZigBee). Un cop es connecten els nodes en estrella s’escull quin serà el node coordinador, el qual proporciona un identificador de xarxa (PAN ID) que ha de diferir de qualsevol altre xarxa dintre del rang de cobertura d’aquest propi node. Aquest node central, serà el que autoritzi la transmissió de dades als demés nodes, tots connectats directament a ell mateix. Exemple: aplicacions domòtiques.

![Fig. 1.2: Xarxa Estrella.](image)
- **Xarxa mesh:** en aquesta topologia també existeix el rol del node coordinador de la xarxa (PAN) però no amb les mateixes funcions rellevants. A diferència de la topologia en estrella, qualsevol dispositiu pot comunicar-se amb qualsevol altre mentre ambdós estiguin a la mateixa àrea de cobertura o bé, utilitzant altres nodes per arribar al destí, degut a que tenen la mateixa prioritat a l’hora de transmetre. Aquesta topologia permet múltiples salts entre el node origen i el destí, motiu pel qual requereix de protocols d’enrutament. Exemple: control industrial.

![Fig. 1.3: Xarxa mesh.](image)

- **Xarxa en arbre:** també anomenada *Cluster Tree* és una combinació entre les dues topologies anteriors. Es pot considerar com un cas especial de topologia peer-to-peer on s’interconnecten diferents dispositius FFD i RFD formant una jerarquia d’arbre. Poden existir varis nodes coordinadors a una determinada zona (routers) a més del node central coordinador de la xarxa (*PAN Coordinator*), situat al nivell més alt.

![Fig. 1.4: Topologia Cluster Tree.](image)

1.2. **Capa Física (PHY)**

En aquest punt es descriuren les principals característiques i parts de la capa física de l’estàndard IEEE 802.15.4.

1.2.1. **Propietats bàsiques**

1.2.1.1. **Cicle de treball**

Els principals objectius de l’estàndard ZigBee són que el consum sigui molt baix i que els sistema tingui un baix cost.
La solució que determina l’estàndard radica en emprar modulacions senzilles, de relativament baixa velocitat, reduir el cicle de treball i que els terminals passin la major del temps desactivats, aconseguint d’aquesta manera un baix consum.

1.2.1.2. Modulació

ZigBee utilitza modulacions relativament fàcils d’implementar. Quants menys bit per símbol tingui la modulació (mantenint constant la distància entre símbols en la constel·lació de fase i quadratura), menor serà la potència necessària per transmetre sense errors en comparació amb una altra modulació amb més bits per símbol. D’aquesta manera es busca un dels principals objectius del protocol com és consumir poc.

A continuació es mostren les modulacions utilitzades a cada banda de treball de ZigBee.

- 868/915 MHz: modulació BPSK.
- 2,4 GHz: modulació O-QPSK.

Aquestes modulacions acompleixen les premisses de simplicitat i facilitat d’implementació. A més, s’utilitza una seqüència d’eixamplament d’espectre (anomenat DSSS – “Direct Sequence Spread Spectrum”) que millora considerablement la qualitat de la transmissió el optimitzar la capacitat de rebre correctament el senyal.

1.2.1.3. Bandes espectrals de treball i assignació de canals

A continuació, a la taula 1.3 es mostren les bandes de treball de l’estàndard IEEE 802.15.4 i les característiques de cadascuna d’elles.

Taula 1.3: Bandes de treball IEEE 802.15.4.

<table>
<thead>
<tr>
<th>Banda</th>
<th># Canals</th>
<th>Taxa (bits)</th>
<th>Taxa (símbols)</th>
<th>Modulació</th>
</tr>
</thead>
<tbody>
<tr>
<td>868–868,6 MHz</td>
<td>1</td>
<td>20 Kb/s</td>
<td>20 Ksímbols/s</td>
<td>BPSK</td>
</tr>
<tr>
<td>902-928 MHz</td>
<td>10</td>
<td>40 Kb/s</td>
<td>40 Ksímbols/s</td>
<td>BPSK</td>
</tr>
<tr>
<td>2400-2483,5 MHz</td>
<td>16</td>
<td>259 Kb/s</td>
<td>62,5 Ksímbols/s</td>
<td>O-QPSK</td>
</tr>
</tbody>
</table>
Escollir una banda o una altra radica en la localització geogràfica i en el mercat al qual es destini l’aplicació, tenint en compte que no tots els països tenen totes les bandes proposades lliures. Seguidament a la taula 1.4 es mostra l’assignació de canals segons la banda de freqüència i la disponibilitat geogràfica.

Taula 1.4: Assignació de canals IEEE 802.15.4.

<table>
<thead>
<tr>
<th>Banda</th>
<th>Canal</th>
<th>Freqüència Central (MHz)</th>
<th>Disponibilitat geogràfica</th>
<th>Limitacions</th>
</tr>
</thead>
<tbody>
<tr>
<td>868 MHz</td>
<td>0</td>
<td>868,3</td>
<td>Europa</td>
<td>Transmissions han de tenir un cicle de treball menor al 1%. No limitacions de potència.</td>
</tr>
<tr>
<td>915 MHz</td>
<td>1</td>
<td>906</td>
<td>Alguns canals lliures a EEUU, Austràlia, Nova Zelanda i alguns països de Sud Amèrica</td>
<td>No està limitada ni en cicle de treball ni en potència de transmissió.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>910</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>912</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>914</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>916</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>918</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>920</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>922</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4 GHz</td>
<td>11</td>
<td>2405</td>
<td>Tot el Món</td>
<td>No està limitada ni en cicle de treball no en potència de transmissió.</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2410</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2415</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2420</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2425</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2430</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2435</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2440</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2445</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2450</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2455</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2460</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2465</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2470</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2475</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2480</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2.2. **Estructura de les trames**

L’estructura de cada paquet de la transmissió determinada per la capa física rep el nom de PPDU o “*Physical layer Protocol Data Unit*”. Les trames de capes superiors es van encapsulant dins les trames de nivells inferiors, per tant, la PPDU és l’últim encapsulat abans d’accedir al canal i transmetre.

A continuació a la figura 1.5 es mostra l’estructura de la PPDU.

<table>
<thead>
<tr>
<th>Capçalera de sincronització PPDU (SHR)</th>
<th>Capçalera PPDU (PHR)</th>
<th>Cos PPDU PSDU (MPDU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 bytes</td>
<td>1 byte</td>
<td>0-127 bytes</td>
</tr>
</tbody>
</table>

Fig. 1.5: Estructura PPDU.

- **Capçalera de sincronització PPDU (5 bytes):**
 - Preàmbul (4 bytes): permet sincronitzar el receptor amb el transmissor.
 - **SFD (“Start Frame Delimiter”) (1 byte):** delimita l’inici de la trama i permet al receptor establir l’inici del paquet.

- **Capçalera PPDU (1 byte):** informació de longitud del paquet (7 bits, el bit més significant està reservat). Longitud màxima de 128 bytes.

- **Cos PPDU (0-127 bytes):** porta les dades útils de la PPDU, dades de les capes superiors (PSDU - “*Physical layer Service Data Unit*”).

1.2.3. **Link Quality Indicator (LQI)**

LQI és un paràmetre que proporcionen les capes física i MAC de l’estàndard IEEE 802.15.4 i que integra el dispositiu ZigBee. Recull el valor de la qualitat de l’enllaç i de la potència en la recepció de cada paquet i pot adquirir valors entre 0 i 255, els quals s’associen amb la menor i major qualitat respectivament. En particular per la plataforma d’estudi del treball, ho fa mitjançant la fórmula que hi figura a l’apartat 2.1.2.3 del següent capítol.
1.3. Capa d’Enllaç (MAC)

1.3.1. Models de transmissió de la capa MAC

Es defineixen dos modes de funcionament de la xarxa segons treballi amb estructura de supertrama o no (amb la topologia en estrella es poden implementar alhora ambdós mecanismes).

1.3.1.1. Model de transmissió amb trames de senyalització (beacon)

En aquest cas, un node que vulgui iniciar una transmissió cap al coordinador, ha d’esperar que aquest li envii una trama de senyalització i, posteriorment, començar a transmetre segons el mètode de funcionament de supertrama.

La supertrama consisteix en un conjunt de fins a 16 slots reservats per a les transmissions dels nodes, precedits per una trama de senyalització transmesa pel coordinador de la xarxa que transmet la informació de quins nodes han de trasmetre a cada slot mitjançant el seu identificador i dins de quin slot ho han de fer. Un cop el node té assignat l’slot, és lliure de transmetre tot el que vulgui en el temps que té assignat.

A més, cal que l’estructura de supertrama implementi un mecanisme de sincronització.

Fig. 1.8: Funcionament utilitzant trames de senyalització.

- *Contention Access Period:* període de temps en el qual tots els nodes poden accedir al medi mitjançant CSMA-CA.

- *Contention Free Period:* període de temps de la supertrama on es reserva un cert nombre de GTS (*Guaranteed Time Slots*) per a certs nodes (un GTS és 1/16 de la duració total de la supertrama). Fins a un màxim de 16, es poden assignar i reservar slots per a qualsevol node.

D’aquesta manera el node, si no té un GTS assignat, ha de transmetre en el *Contention Access Period* seguint el mecanisme CSMA-CA, fins a garantir-se un GTS en cas de necessitar-lo. Si el node tingués el GTS assignat, simplement hauria d’esperar el moment indicat després de rebre la trama de
senyalització per a començar a transmetre. La transmissió es valida amb l’ACK enviat des del coordinador (si el node ho requereix).

![Diagrama 1.9: Transmissió de dades del node al coordinador.]

En sentit contrari, tenint en compte que ara la transmissió es vol fer des del coordinador cap a un node, el primer enviarà a la trama de senyalització la informació necessària per avisar al terminal que començarà a enviar-li dades. El node, per la seva part, esperarà el seu torn per transmetre i enviarà una trama per informar que està preparat per a la transmissió (amb la trama de petició de dades). En cas de què aquest últim ho requereixi, el coordinador li enviarà un ACK i finalment procedirà a transmetre les dades. Per tancar la transmissió, el node transmetrà un ACK.

![Diagrama 1.10: Transmissió de dades del coordinador cap al node.]

1.3.1.2. *Model de transmissió sense trames de senyalització (beaconless)*

Seguint aquest model de transmissió per tal de que un node qualsevol pugui enviar trames de dades, haurà d’accedir al medi seguint el mecanisme CSMA-CA. El coordinador, per la seva part, serà l’encarregat de respondre amb un ACK si el node ho requereix.

![Diagrama 1.11: Transmissió de dades del node al coordinador.]

En sentit contrari, si el terminal en comptes d’enviar vol rebre dades des del coordinador, enviarà una trama de petició de dades. Un cop la rebi el coordinador, respondrà amb un ACK si el node ho requereix i començarà a
transmetre les dades. Per finalitzar la transmissió el node enviarà un ACK conforme ha rebut les dades.

Fig. 1.12: Transmissió de dades del coordinador cap al node.

1.3.2. Estructura de les trames

Les trames MAC s’encapsulen dins els paquets de la capa física (al cos PPDU o PSDU) a l’hora de ser transmeses (MPDU – MAC layer Protocol Data Unit).

L’estructura d’aquestes és la següent.

Fig. 1.13: Estructura de trama MAC amb capçalera al detall [2].

- **Capçalera (3–23 bytes):**

 - **Camp de control de trama (Frame control) (2 bytes):** especifica el tipus de trama (3 bits). També indica si el transmissor espera trama de confirmació (trama ACK). Detall a continuació.

Fig. 1.14: Camp de control de trama de capçalera MAC al detall [2].
1.3.3. **Tipus de trames**

1.3.3.1. **Trames de senyalització (beacons)**

Aquest tipus de trama s’utilitza en el mode de transmissió on està permesa la reserva d’slots temporals per als usuaris (veure mecanisme al punt 1.3.1). A més, apareixen al moment de formar la xarxa, al control se sincronisme, etc. En aquest tipus de trames podem diferenciar els següents camps (recordem que el camp que varia és el de dades útils MAC segons el tipus de trama).

<table>
<thead>
<tr>
<th>Capçalera MAC</th>
<th>Dades Útils MAC</th>
<th>Cua MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control de Trama</td>
<td>Número de seqüència</td>
<td>Camps d’adreces</td>
</tr>
</tbody>
</table>

Fig. 1.15: Trama de senyalització.

- **Especificació de supertrama (2 bytes):** configuració de la supertrama.

- **Adreces pendents d’especificació (longitud variable):** nombre i tipus d’adreces que hi ha al camp de la llista d’adreces.

- **Llista d’adreces (longitud variable):** llista amb les adreces dels nodes que tenen informació pendent de ser enviada al coordinador, als quals aquest ha d’enviar dades en funció de les peticions.

- **Dades útils de la supertrama (longitud variable):** informació de tots els dispositius de la xarxa dins el radi d’abast (si és necessari).
1.3.3.2. **Trames de dades**

El cos de la trama MAC está destinat a guardar la informació provinent de capes superiors que s'hauran de transmetre un cop encapsulades en un PPDU.

<table>
<thead>
<tr>
<th>Capçalera MAC</th>
<th>Cos MAC</th>
<th>Cua MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control de Trama</td>
<td>Número de seqüència</td>
<td>Camps d'adreces</td>
</tr>
</tbody>
</table>

Fig. 1.16: Trama de Dades MAC.

1.3.3.3. **Trames ACK (Reconeixement)**

Les trames ACK són d’una longitud fixa de 5 bytes i tenen la funció de confirmar la recepció de la trama correctament, si la trama rebuda ho sol·licita. No tenen ni camp d’adreces a la capçalera ni cos, per tal de minimitzar el tràfic a la xarxa. El receptor de la trama la identifica si esperava rebre una trama ACK i si el número de seqüència d’aquesta és correcte.

<table>
<thead>
<tr>
<th>Capçalera MAC</th>
<th>Cos MAC</th>
<th>Cua MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control de Trama</td>
<td>Número de seqüència</td>
<td>Dades (5 bytes)</td>
</tr>
</tbody>
</table>

Fig. 1.17: Trama ACK.

1.3.3.4. **Trames MAC**

Les trames MAC tenen com l’objectiu de transmetre els controls de la capa MAC d’un node a un altre. La formen dos camps: el primer, indica l'identificador de la comanda, al segon es transporten les dades de la comanda.

<table>
<thead>
<tr>
<th>Capçalera MAC</th>
<th>Dades Útils MAC</th>
<th>Cua MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control de Trama</td>
<td>Número de seqüència</td>
<td>Camps d'adreces</td>
</tr>
</tbody>
</table>

Fig. 1.18: Trama de comandes capa MAC.
1.4. Capa de Xarxa (NWK)

La capa de xarxa de ZigBee proporciona dos tipus de servei: el servei de dades i el servei de gestió o administració. L’entitat de dades de la capa de xarxa o *Network Layer Data Entity* (NLDE) és la responsable de les transmissions de dades. Al servei de dades s’accedeix mitjançant el punt d’accés al servei de NLDE o *NLDE Service Acces Point* (SAP). D’altra banda, la gestió de la xarxa ZigBee està suportada per l’entitat de dades de la pròpia capa o *Network Layer Management Entity* (NLME), la qual pot ésser utilitzada per la capa superior mitjançant el punt d’accés al servei NLME-SAP (*Network Layer Management Entity – Service Access Point*). Els tipus de servei i els accessos a la capa de xarxa de ZigBee es poden veure gràficament a la següent figura (figura 1.23).

![Diagrama de la capa de xarxa ZigBee](image)

Fig. 1.23: Serveis capa de xarxa ZigBee [2].

En concret la capa de xarxa d’un coordinador Zigbee, assigna les adreces de xarxa de 16 bits a cada node, a més d’assignar les adreces MAC IEEE 802.15.4 curtes, de 16 bits també, si un dispositiu la necessita un cop s’ha afegit a la xarxa. Aquestes dues d’adreces de 16 bits, de xarxa i capa MAC IEEE 802.15.4, hauran de ser les mateixes, ja que serviran com l’únic identificador dels dispositius a la xarxa i evitaran possibles conflictes d’adreçament dins la mateixa, a part de permetre la comunicació entre capes del mateix dispositiu.

La capa de xarxa també limita la distància màxima que un paquet pot recórrer dins la xarxa. Aquesta distància està definida pel nombre de salts màxims que pot fer la trama al llarg de la xarxa i es guarda al paràmetre ‘radi de la xarxa”, que es va decrementant en una unitat a cada salt que fa la trama. Un cop la trama hagi fet un salt més dels màxims que té permesos, aquesta es descartarà i no es seguirà retransmetent per la xarxa.

Els mecanismes de comunicació que ens podem trobar a una xarxa ZigBee poden ser de tres tipus:

- **Broadcast**: el missatge enviat és entregat a tots els dispositius de la xarxa, suposant que tots tenen la mateixa PAN ID (no és un broadcast que pugui abastar altres xarxes, es limita a la PAN des d’on sigui enviat
el missatge). L’adreça destí del paquet es fixa al valor 0xffff, el qual vol dir que els destinataris són tots els dispositius de la mateixa PAN.

- **Multicast**: el missatge és enviat a un grup específic de la xarxa, on els nodes estan identificats per una mateixa adreça multicast de grup de 16 bits.

- **Unicast**: el missatge és enviat des del transmissor fins a un únic node de destí.

![Fig. 1.24: Mecanismes de comunicació](image)

1.4.1. **Topologia jeràrquica (en arbre) i en estrella**

La topologia en arbre (mostrada a la figura 1.25), comença al coordinador ZigBee actuant des del punt més alt. Un coordinador o router ZigBee pot treballar com a un dispositiu ‘pare’ acceptant connexions d’altres nodes a la xarxa, anomenats nodes ‘fills’ (per exemple els dispositius finals ZigBee, que no disposen de capacitats d’enrutament). Els missatges enviats a un fill com a destí, seran enrutats pel seu pare.

La profunditat de la xarxa és un paràmetre que defineix el màxim número de salts que es requereixen per una trama per a assolir el cim de l’arbre i arribar al coordinador ZigBee, únicament utilitzant enllaços pare/fill. Per tant, el punt de partida és el coordinador, que té profunditat igual a zero, seguint pels seus fills amb profunditat igual a 1, i així successivament.

![Fig. 1.25: Relacions pare-fill a una xarxa en arbre](image)
L’estàndard Zigbee ofereix un mecanisme d’assignació d’adreces als dispositius a una xarxa en arbre (conegut com *default distributed address allocation* o assignació d’adreces distribuïda per defecte). En aquest mecanisme, el coordinador proporciona a cada pare potencial un subgrup d’adreces de xarxa, que seran les que seran assignades als dispositius fills. El propi coordinador és el que determina el nombre màxims de fills permesos per cada pare. Tot això es duu a terme en base al valor del paràmetre lògic *nwkUseTreeAddrAlloc*, on si pren el valor cert (1 lògic) admet el mecanisme i si pren el valor fals (0 lògic) desactiva el mecanisme i permet a l’usuari assignar les adreces, per mitjà de la capa d’aplicació ZigBee.

En quant a la retransmissió de paquets, dins la xarxa en arbre, per nodes intermediats entre el transmissor i el receptor es considera que retransmetran el paquet si aquest els hi ve des d’un camí (o *path*) vàlid, determinat per les següents condicions:

- La trama és rebuda des d’un dels nodes fills i l’origen de la mateixa és un node descendent d’aquest fill.
- La trama és rebuda del node pare i l’origen de la mateixa no és un descendent d’aquest pare.

La topologia en estrella es pot considerar un cas especial de topologia en arbre, on únicament existeix un node pare (coordinador) i els demés nodes (dispositius finals, no routers) estan a profunditat 1 del primer. La comunicació és directa entre fills i pare.

1.4.2. **Topologia Mesh**

A la topologia mesh, a diferència de la topologia en arbre, no hi ha relacions jeràrquiques. Qualsevol dispositiu dins la xarxa mesh pot comunicar-se amb qualsevol altre node de la xarxa directament o prenent avantatge dels dispositius amb capacitat d’enrutament per a que retransmetin el missatge en el seu nom.

A les xarxes mesh el camí entre l’origen i el destí de la comunicació es crea sota demanda, és a dir, es crea en base a les condicions actuals de la xarxa i no és un camí fix, ja que pot canviar donat que hi hagin canvis a la mateixa i sigui oportú utilitzar un altre camí per a realitzar la comunicació. Aquesta capacitat de crear i modificar les rutes dinàmicament d’aquest tipus de xarxa, incrementa la fiabilitat de les connexions sense fils. Si, per alguna raó, el node origen no es pot comunicar amb el node destí utilitzant la ruta prèviament establerta a una anterior transmissió, els dispositius amb capacitats d’enrutament a la xarxa poden cooperar per a trobar un camí alternatiu entre ells. Aquest aspecte es tractarà amb més detall al punt de descobriment de ruta i al de manteniment i reparació.
1.4.3. Enrutament (Routing)

L’enrutament o routing en anglès, és el procés pel qual es seleciona el camí pel qual els paquets seran retransmesos fins al seu destí. El encarregats de descobrir i mantenir les rutes són el coordinador i els routers ZigBee. D’altra banda, els dispositius finals ZigBee no poden realitzar tasques de descobriment de ruta, per tant seran el coordinador i els routers els que ho faran en nom seu, als mecanismes d’enrutament a xarxes mesh i jeràrquiques.

La longitud d’un camí és un paràmetre que es defineix com el número d’enllaços que hi figuren en aquest. A l’exemple de la figura 1.26, hi ha dos camins, un de longitud igual a 4 i l’altre de longitud igual a 6 (l₁, ..., l₄ són els enllaços del primer camí).

![Fig. 1.26: Anàlisi del cost del camí [3].](image)

Per a decidir el camí òptim es tenen en compte paràmetres com la qualitat de l’enllaç, el número de salts i la conservació d’energia. Per simplificar aquest procés d’anàlisi, cada enllaç entre dos nodes té associat un ‘cost’, determinat per la probabilitat d’èxit d’entrega de paquets. Com major sigui la probabilitat de que un paquet es transmeti amb èxit, menor serà el cost de l’enllaç. La probabilitat de que un paquet s’entregui amb èxit pot ser calculada de diferents maneres, i el protocol ZigBee permet que s’utilitzi qualsevol d’aquestes en funció de la que trobi més apropiada per a l’aplicació en concret. Encara i això, l’estimació inicial de la probabilitat d’entrega de paquets amb èxit està basada en la mitja de LQI, valor guardat per a cada paquet rebut indicant la qualitat de l’enllaç. A valors més elevats de LQI, major probabilitat d’entrega satisfactòria dels paquets.

El camí amb menor cost serà la millor opció per enrutar els paquets, ja que tenen la major probabilitat d’entrega amb èxit dels paquets transmesos.

El coordinador i els routers ZigBee creen i mantenien les anomenades taules d’enrutament o routing tables, utilitzades per a determinar el següent salt quant s’està enrutant un missatge a un destí en particular. A més d’aquesta taula, també tenen l’anomenada taula de descobriment de ruta o route discovery table, que l’utilitzen durant el descobriment de noves rutes. Aquesta darrera conté els costs dels camins, l’adreça del node que sol·licita la ruta i l’adreça de l’últim dispositiu que ha retransmès el missatge al propi node que conté la taula. La principal diferència entre ambdues taules és que la primera, la taula
d'enrutament és permanent i la segona, la taula de descobriment de ruta és temporal i expira en cert temps fixat per la xarxa de sensors.

Un dispositiu de la xarxa ZigBee a més manté la taula de veïns o *neighbor table*, la qual conté informació sobre els nodes que té el dispositiu al seu rang de transmissió. Aquesta taula és actualitzada cada cop que el node rep un paquet de qualsevol dels seus veïns i és molt útil quan aquest necessita trobar un router a prop o reassociar-se a la xarxa.

1.4.4. **Descobriment de ruta**

El descobriment de ruta s’explicarà basant-se en el següent exemple. Veure la figura 1.27.

![Fig. 1.27: Descobriment de ruta entre A (origen) i F (destí) [3].](image)

La imatge ens mostra un descobriment de ruta unicast (origen i un únic destí), on el node A vol trobar el destí F. A comença el descobriment de ruta enviant la comanda *route request* via broadcast (a tots els nodes dintre de la seva cobertura), que conté l’identificador de la petició de ruta (*route request identifier*), l’adreça del node destí i el cost del camí. L’identificador de petició de ruta és una seqüència de 8 bits que incrementa el seu valor en 1 unitat cada vegada que la capa de xarxa demana una petició de ruta i el cost del camí s’utilitza per acumular el cost total del camí de cada ruta, on el seu valor inicial (just quan A envia la comanda broadcast) és zero.

La comanda broadcast és rebuda per cadascun dels dispositius situats en el rang d’abast de ràdio i escoltant del mateix canal que el node A. A la figura 1.27 (a), els nodes B i C reben la comanda broadcast de petició de ruta i envien una confirmació (ACK) al node A. En el cas que A no rebés les confirmacions, retransmetria la comanda tantes vegades com indiqui la configuració de la xarxa.

En el cas que el node que rebi la comanda de petició de ruta sigui un dispositiu final ZigBee, aquesta serà descartada ja que aquest tipus de node no té capacitats d’enrutament (a l’exemple no hi ha cap dispositiu final, B i C són routers ZigBee). Si el node B té capacitat d’enrutament (la seva taula d’enrutament no està plena), afegix el cost del camí entre A i B al camp de cost del camí de la comanda de petició d’enrutament i retransmet la mateixa via
El cas que B no tingués la comanda de petició de ruta ni el node A a la seva taula de descobriment de ruta, actualitzaria la mateixa. El router C realitzaria el mateix procés.

Els missatges broadcast de B i C arribarien als nodes D i E (figura 1.27 (b)). Aquests retransmeten de nou les peticions de ruta mitjançant broadcast, assumint que ambdós nodes tenen capacitats de routing.

El broadcasting consecutiu es repeteix fins a arribar al node F (destí), que utilitzarà el cost total acumulat del camí, guardat per a cada petició de ruta rebuda, i escollirà al millor camí per a estableix la ruta entre ells mateix i A. El node F podrà escollir entre D o E com el seu següent salt en la transmissió de la comanda de resposta de ruta (route reply command) per finalment respondre a l’origen, el node A. Si per exemple el següent salt escollit per F fos D, aquet node utilitzaria la seva taula de descobriment de ruta per a trobar el salt següent a la transmissió de la comanda de resposta de ruta enviada de tornada cap al node A.

La ruta des del node A (origen) cap al node F (destí) s’anomenarà forward route. En canvi la ruta inversa, des del node F fins al node A rebrà el nom de backward route. Ambdues rutes (anada i tornada) poden ser idèntiques o no (anada i tornada simètriques o asimètriques), en funció de la configuració de cert paràmetre de la xarxa.

1.4.4.1. Enrutament des d’origen (Source Routing)

La capa de xarxa ZigBee permet l’ús del mecanisme Source Routing, on l’origen de la transmissió crea la llista de tots els nodes que actuaran de retransmissors i els inclou a la trama que ell mateix envia. D’aquesta manera, quan un dispositiu de la xarxa rep la trama, mira l’adreça del següent node de la llista de retransmissors inclosa. Amb aquest mecanisme s’estalvia temps de processament dels nodes intermediis, ja que la ruta de la transmissió la defineix el node origen de la mateixa.

1.4.5. Manteniment de ruta i reparació

Després que una ruta hagi estat descoberta i utilitzada per a retransmetre missatges, poden haver-hi accidents que provoquin que la ruta no sigui capaç de retransmetre’s fins al destí. Les raons poden tenir l’origen en la pròpia xarxa (per exemple que un router es deconnecti) o en l’entorn (per exemple que un objecte s’interposi entre dos nodes i no permeti la comunicació). Tenint en compte la quantitat d’esforç requerit per a crear o reparar una ruta, és recomanable iniciar el procediment de reparació de ruta tan aviat com la mateixa falli al enviar els missatges al destí.
Fig. 1.28: Reparació de ruta a una xarxa Mesh [3].

La figura 1.28 mostra un exemple de reparació de ruta a una xarxa mesh. L’enllaç entre els nodes A i B es trenca i es requereix una reparació de la ruta. El procediment per reparar la ruta és similar al de descobriment de ruta, excepte a que el node A serà el que inicii el descobriment en comptes del node d’origen. El node A utilitzarà la seva adreça com a l’adreça del node origen quant enviï mitjançant broadcast la trama de la comanda de petició de ruta per trobar una nova ruta fins al node destí. Tant la reparació com el descobriment de ruta utilitzen la comanda de petició de ruta o route request command.

Després de consecutives peticions de ruta broadcast, la nova ruta s’establirà entre els nodes origen i destí. En el cas que A no pogués iniciar la reparació de ruta per qualsevol raó, en viaria una trama unicast fins al node origen d’error de ruta (route error) i seria aquest últim qui tornaria a iniciar el procés de descobriment de ruta (punt 1.4.4).

1.4.6. Format dels paquets

A continuació a la figura 1.29 es mostra el format general de trama de la capa de xarxa.

Fig. 1.29: Format general de trama capa de xarxa [3].
- **Frame Control:**
 - **Frame Type:** determina si la trama és de dades o de comandes.
 - **Protocol Version:** indica la versió de protocol ZigBee.
 - **Discover Route:** determina la opció d’enrutament per a la trama.
 - **Multicast Flag:** si està actiu, la trama s’enviarà emprant multicast.
 - **Security:** pren valor 1 si la seguretat de la capa de xarxa està activada.
 - **Source Route:** igual a 1 si la subtrama de source route està inclosa.
 - **Destination & Source IEEE Address:** si són iguals a 1, les adreces IEEE de 64 bits estan incloses a la trama.

- **Destination & Source Address:** adreces de xarxa de 16 bits.

- **Radius:** determina el número màxim de salts que es permeten a la trama per viatjar a través de la xarxa.

- **Sequence Number:** Ajuda a realitzar un seguiment de les seqüències transmeses per un node.

- **Destination & Source IEEE Address:** contenen les adreces IEEE de 64 bits (si el flag de **Frame Control** està actiu).

- **Multicast Control:** només existeix si la trama és multicast.
 - **Multicast Mode:** member mode o nonmember mode.
 - **Nonmember Radius:** limita el nombre de vegades que una trama multicast pot ser retransmesa per nodes que no són membres del grup.
 - **Max Nonmember Radius:** el seu contingut es copia al camp anterior cada vegada que la trama és retransmesa (rebroadcast).

- **Source Route Subframe:** conté la subtrama de l’enrutament de font (source route) si el camp del frame control està actiu.

Les trames de dades i de comandes es mostren a la figura 1.30.
Fig. 1.30: Paquet de Dades (a) i Paquet de Comandes (b) de capa de xarxa [3].
CAPÍTOL 2. PLATAFORMA MESHNETICS ZIGBIT AMP

Un cop revisades les tecnologies del protocol ZigBee, es presenta en aquest punt la plataforma d’estudi del projecte MeshNetics ZigBit Amp, a més de les especificacions del equips hardware i software emprats.

2.1. Hardware

2.1.1. Especificacions generals del Hardware

La placa MeshBean Amp està destinada a l’avaluació de funcionament del mòdul OEM ZigBit Amp, el qual li proporciona connectivitat Wireless per a poder ser reconeguda com un node dins d’una xarxa ZigBit. Aquesta placa és el dispositiu principal d’estudi del projecte. Incorpora els diferents sensors i mòduls de processament de dades necessaris per a l’avaluació del protocol ZigBee integrat a la mateixa.

Aquest dispositiu pot ser configurat per a operar en tres modes diferents dintre de la xarxa ZigBit:

- Coordinador
- Router
- Dispositiu final (end device)

La configuració dels modes de funcionament i la seva elecció es fa mitjançant tres interruptors presents a la placa (DIP Switches) i a partir de les aplicacions integrades.

La taula 2.1 mostra les característiques principals d’aquest dispositiu. A la figura 2.1 podem veure la integració dels diferents components a la placa de desenvolupament MeshBean Amp.

Taula 2.1: Especificacions de la placa MeshBean Amp

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfície ràdio (RF)</td>
<td></td>
</tr>
<tr>
<td>Estàndard</td>
<td>IEEE 802.15.4-2003 2.4GHz</td>
</tr>
<tr>
<td>Banda de freqüència</td>
<td>2400 – 2483,5 MHz ISM</td>
</tr>
<tr>
<td>Espai freqüencial entre canals</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Canals</td>
<td>16 canals</td>
</tr>
<tr>
<td>Potència de Transmissió (TX)</td>
<td>De 0 dBm a +20 dBm</td>
</tr>
<tr>
<td>Sensibilitat de Recepció (RX)</td>
<td>-104 dBm [PER= 1%]</td>
</tr>
<tr>
<td>Velocitat de dades</td>
<td>250 Kbps</td>
</tr>
</tbody>
</table>
Impedància Nominal TX / RX
- 50 Ohms (Sortida RF desequilibrada)

Transceotor RF
- AT86RF230

Antena
- 2.4GHz 3.2dBi Pulse W1037 Omni directional Antenna

Unitat Micro controlador (MCU)

<table>
<thead>
<tr>
<th>Caràcteristica</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro controlador</td>
<td>ATmega1281V</td>
</tr>
<tr>
<td>RAM</td>
<td>8K Bytes</td>
</tr>
<tr>
<td>Memòria Flash</td>
<td>128K Bytes</td>
</tr>
<tr>
<td>EEPROM</td>
<td>4K Bytes</td>
</tr>
<tr>
<td>Rendiment</td>
<td>Fins 4 MIPS de processament a 4MHz de rellotge</td>
</tr>
</tbody>
</table>

Potència

<table>
<thead>
<tr>
<th>Caràcteristica</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modes d’alimentació</td>
<td>Dues bateries AA, connexió USB o adaptador AC/DC</td>
</tr>
</tbody>
</table>
| Consum de potència | Sleep Mode → <6 µA
TX Mode → 50 mA
RX Mode → 23 mA |
| Protecció sobretensió | Si |
| Protecció de polaritat inversa | Si |
| Rang de voltatge | 3.0V → 3.6V |
| Supervisor de voltatge | Si |

Altres característiques i components

<table>
<thead>
<tr>
<th>Caràcteristica</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>Digitals: Lluminositat ambient / Temperatura aire ambient</td>
</tr>
</tbody>
</table>
| LEDs | 3 LEDs programables (colors)
LED d’alimentació externa |
| Interruptors (Switches) | 3 DIP (Dual In-line Package) Switches |
| Botons | 2 botons programables |
| Mides | 60 x 63 x 24 mm |
| Rang de temperatura operatiu | -40°C → +85°C
(Menor degradació de l’estabilitat del rellotge entre -20°C i +70°C) |
| Màxim abast | Fins a 4 Km d’abast lineals a l’exterior |
2.1.2. Components destacats de la placa MeshBean Amp

2.1.2.1. Mòdul ZigBit Amp

Cada placa MeshBean inclou un mòdul ZigBit Amp integrat. Aquest és un mòdul OEM que treballa sobre l’estàndard 2.4GHz 802.15.4/ZigBee i destaca per ser ultra-compacte, treballar amb potències elevades amb respecte altres plataformes ZigBee (com per exemple TelosB, on la potència màxima configurable és la mínima potència de treball d’aquest mòdul), tenir un ampli abast i una molt alta sensibilitat. Cada mòdul ZigBit Amp es basa sobre la plataforma Z-Link 2.4GHz d’Atmel i inclou un microcontrolador ATmega1281V i un transceptor RF AT86RF230. A més, el dispositiu inclou un connector d’antena U.FL, permetent l’ús d’una antena externa RP-SMA.

Taula 2.2: Característiques microcontrolador ATmega1281V

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memòria Flash</td>
<td>128 KBytes</td>
</tr>
<tr>
<td>Memòria RAM</td>
<td>8 KBytes</td>
</tr>
<tr>
<td>Memòria EEPROM</td>
<td>4 KBytes</td>
</tr>
<tr>
<td>Freqüència de treball</td>
<td>4 KBytes</td>
</tr>
</tbody>
</table>
2.1.2.2. Sensors

La placa conté dos sensors, els quals estan connectats en paral·lel a través del bus I^2C.

- Sensor de llum ambient: model TAOS TSL2550T.

Taula 2.3: Característiques del sensor de llum TSL2550T de TAOS.

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>MIN</th>
<th>MAX</th>
<th>UNITAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltatge de subministrament</td>
<td>2,7</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Voltatge de sortida</td>
<td>-0,3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Intensitat de sortida</td>
<td>-10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Rang de temperatures d’operabilitat</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Intensitat entrada/sortida del bus intern (SMBus)</td>
<td>-1</td>
<td>20</td>
<td>mA</td>
</tr>
</tbody>
</table>

Taula 2.4: Valors de sortida per fonts de llum conegudes.

<table>
<thead>
<tr>
<th>Font de llum</th>
<th>Luminància (LUX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florescent</td>
<td>297</td>
</tr>
<tr>
<td>Llum de dia</td>
<td>201</td>
</tr>
<tr>
<td>Material incandescent</td>
<td>42</td>
</tr>
</tbody>
</table>

- Sensor de temperatura: model National Semiconductors LM73CIMK.

Taula 2.5: Característiques del sensor de temperatura LM73CIMK.

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>Rang d’operabilitat</th>
<th>Valor/Precisió</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltatge de subministrament</td>
<td>2.7V – 5.5V</td>
<td></td>
</tr>
<tr>
<td>Intensitat de subministrament</td>
<td>Sensor operatiu</td>
<td>320 µA (típic)</td>
</tr>
<tr>
<td></td>
<td>Sensor apagat</td>
<td>1.9 µA (típic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 µA (máx)</td>
</tr>
<tr>
<td>Rang de temperatures</td>
<td>-10 °C a 80 °C</td>
<td>±1.0 °C</td>
</tr>
<tr>
<td>Resolució</td>
<td></td>
<td>0.25 °C a 0.03125 °C</td>
</tr>
<tr>
<td>Temps de conversió</td>
<td>11 bits (0.25 °C)</td>
<td>14 ms (máx)</td>
</tr>
<tr>
<td></td>
<td>14 bits (0.03125 °C)</td>
<td>112 ms (máx)</td>
</tr>
</tbody>
</table>
2.1.2.3. Càlcul de LQI

El mòdul integrat a la placa ZigBit Amp, segons indiquen els scripts de configuració i fonts del fabricant del mòdul ZigBee, calcula el valor de LQI (Link Quality Indicator) seguint les següents expressions (2.1 i 2.2).

\[
LQI_{\text{mitja}} = [(31/32) \times LQI_{\text{mitja_anterior}}] + 4 \times LQI_{\text{nou}} \tag{2.1}
\]

\[
LQI = \frac{LQI_{\text{mitja}}}{128} \tag{2.2}
\]

Segons es pot veure, el càlcul de LQI consta de dues parts. A la primera (2.1), es calcula la nova mitja de LQI (LQI_{\text{mitja}}) a partir de la mitja anterior de LQI (LQI_{\text{mitja_anterior}}) i del nou valor de LQI mesurat (LQI_{\text{nou}}). Quan arriba un nou valor LQI_{\text{nou}} es compara amb el valor de la mitja LQI (LQI_{\text{mitja}}), però com estan en diferents unitats, el nou valor s’ha de multiplicar per 128 (desplaçar 7 bits a l’esquerra dintre dels 16 bits on s’emmagatzema). La comparació dóna com a resultat un error, el qual podriem utilitzar, però dóna cert soroll de sortida, causa per la qual es limita la possible correcció al valor mitjà (LQI_{\text{mitja}}) dividint-lo per 32 (o el mateix, desplaçant-ho 5 bits a la dreta dels 16 bits on es guarda). D’aquesta manera, el valor no canvia massa ràpid en quant a valors que el vagin actualitzant. És a dir, els valors més baixos d’entrada donen el temps de resposta ràpida, en canvi els valors més alts tenen una resposta de resultats més suau i lenta degut a varies iteracions. Per exemple, quan la mitja inicial és igual a zero i l’entrada és constantment 255, la sortida s’estabilitzarà a 255 passades unes 200 iteracions.

Posteriorment, com es pot veure a l’expressió 2.2 el valor de LQI_{\text{mitja}} calculat es divideix entre 128. Aquest 128 correspon al desplaçament de 7 bits a la dreta dintre dels 16 bits que defineixen el valor de la mitja de LQI (LQI_{\text{mitja}}) al codi de configuració del dispositiu (firmware), ja que internament el valor promig s’emmagatzema en forma de promig ‘real’ multiplicat per 128, i fent aquest càlcul no es perd precisió (divisió per 128). Si hi ha algun valor mesurat que excedeixi el valor màxim de 255 de LQI fixat per la plataforma, el valor de sortida de LQI serà aquest mateix, 255 (previ pas per una sentència condicional, al codi). Aquest valor final de LQI és el que s’envia a l’equip per mitjà del port COM al qual està connectat el node.
Els valors màxim i mínim de LQI admesos pel propi mòdul es poden veure a la taula 2.6, segons datasheet.

Taula 2.6: Valors màxim i mínim de LQI.

<table>
<thead>
<tr>
<th>LQI màxim</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQI mínim</td>
<td>100</td>
</tr>
</tbody>
</table>

2.1.2.4. **Pont USB a interfície UART**

La placa porta instal·lat el pont de interfície USB a interfície UART CP2102 del fabricant Silicon Labs. Aquest té la funció de permetre la conversió de la interfície USB 2.0 a qualsevol port UART, permetent a l'hora la connexió mitjançant RS-232 al dispositiu. D'aquesta manera, al connectar la placa MeshBean al PC, el sistema reconeix el port com un port COM (el primer que estigui lliure).

2.1.2.5. **UID (Unique Identifier)**

Per establir una única direcció MAC al dispositiu, la placa fa servir l'identificador UID (Unique Identifier) únic (de 8 bytes de longitud), pre-programat de fàbrica. Aquest identificador és únic i no pot ser modificat. És una de les maneres per la qual podem identificar el dispositiu a la xarxa de sensors.
2.2. Software

2.2.1. Especificacions del Software de la plataforma

Cada ZigBit Amp inclou el firmware ZigBeeNet Networking que habilita i permet els productes basats en mòduls OEM establir processos com l’auto-sanació i l’autoorganització a les xarxes mesh. Està dissenyat especialment per permetre un ús senzill de les aplicacions que gestionen, controlen i monitoritzen les dades a la xarxa de sensors. A més, incorpora un mecanisme d’enrutament propietari que optimitza el tràfic de la xarxa i redueix el consum de potència. El software ofereix una API per gestionar la xarxa i el consum de potència (incluent l’intercanvi de dades), la formació de la xarxa i la unió dels nodes a la mateixa (join), l’identificador de la xarxa (PAN ID), la selecció de canal, etc.

La pila de protocols ZigbeeNet s’ajusta a l’estàndard IEEE 802.15.4 i a les especificacions ZigBee. El programari que l’implementa està composat per cinc mòduls principals:

- **Pila eZeeNet**: compleix amb l’especificació ZigBee, pot ser fàcilment configurable com a dispositiu final (end-device), router o coordinador. Interfícies fàcils d’utilitzar simplifiquen operacions bàsiques de la xarxa, intercanvi de dades, formació de xarxa/unió de nodes, gestió de selecció de canal d’ID de la PAN, control de potència de transmissió, etc.

- **Pila de suport de mòdul**: aquest mòdul incorpora la gestió de la memòria EEPROM del mòdul ZigBit Amp i el planificador de tasques associat.

- **eZeeNet Framework**: l’entorn de treball eZeeNet i l’API proporciona a les aplicacions d’usuari múltiples interfícies per a accedir als recursos i serveis de la xarxa, gestionar paràmetres eZeeNet, etc. A més, aquest framework facilita la interfície al nivell d’aplicació ZigBee, amb API’s per a comunicacions que poden simplificar l’entorn de la xarxa de transport per a la transmissió de dades.

- **SerialNet**: és un mòdul independent que ofereix el control sobre la major part de funcionalitats de la placa a través del port UART o qualsevol altra interfície de comunicació, utilitzant un conjunt estandaritzat de comandes AT. Aquest servei li dona la capacitat única de control remot ‘over-the-air’ a la funcionalitat de la placa sense el desenvolupament d’un codi personalitzat.

- **HAL**: és una interfície entre la placa i els perifèrics. HAL proporciona l’aplicació de l’usuari amb una clara i simple API per a accedir fàcilment als perifèrics, evitant conflictes amb la pila eZeeNet.
2.2.2. Software addicional utilitzat

En aquest apartat es descriuen les principals característiques i el funcionament de les diferents eines de software addicionals utilitzades en l’avaluació de la plataforma Meshnetics ZigBit Amp, objecte d’estudi del projecte.
2.2.2.1. WSN Demo

L’aplicació WSN Demo està basada en l’API del software de la plataforma eZeeNet, esmentada anteriorment i s’ha fet servir per monitoritzar les proves de xarxa de la plataforma ZigBii Amp. Està composta de dues parts ben diferenciades:

- **WSN embedded firmware**: firmware que proporciona les funcionalitats de coordinador, router o dispositiu final dins la xarxa de sensors a les plaques *MeshBean Amp*. Gràcies a aquest software intern, les plaques esdevenen nodes ZigBee.

 El funcionament és molt senzill. Al cicle de treball, els routers i els dispositius finals lleigeixen les mesures dels sensors de llum i temperatura que incorporen, a més del seu nivell de bateria, i les envien cap al coordinador en paquets. La configuració dels nodes és la següent:

 o **Coordinador**: rep els paquets des dels dispositius finals i els routers, i els envia juntament amb les seves mesures, a través del port COM al qual està connectat al PC.

 o **Router**: envia les mesures que pren dels seus sensors cap al coordinador a raó d’una mesura segon.

 o **Dispositiu final**: consumeix molt poca potència ja que roman la major part del temps adormit i s’aixeca cada 10 segons per enviar les seves mesures cap al coordinador.

- **WSN Monitor**: entorn gràfic que s’executa al PC i mostra les dades enviades per part del coordinador (a través del port COM) de tota la xarxa de sensors, mostrant la topologia per pantalla en temps real. Informa de les mesures de temperatura, llum i bateria de cada node, a part de mostrar els paràmetres d’avaluació de l’enllaç entre ells com són el LQI i el RSSI. A més, permet canviar valors dels nodes de la xarxa tal i com la màscara del canal i els *timeouts*, i permet resetear qualsevol d’ells. A la figura 2.4 podem veure com és l’aparença de la interfície gràfica que es mostra al PC.
2.2.2.2. **National Instruments Labview**

Labview és una eina gràfica que s’executa al PC i està destinada a la realització de proves, control i disseny d’aplicacions. Treballa en base a ‘Instruments Virtuals’ o VI’s, que són programes dissenyats mitjançant diagrames de blocs i recullen les dades provinents del port COM del PC. Tenen aquesta denominació ja que simulen instruments físics de laboratori, com ara per exemple un oscil·loscopi. L’instrument virtual consta de dues parts: el panell frontal, on es van llegint gràficament les mesures que entren pel port, i el diagrama de blocs, on es defineix realment el funcionament del programa.

Aquest software s’ha fet servir per a analitzar les mesures de la capa física i MAC de la plataforma ZigBit Amp. El VI utilitzat s’anomena ‘range_tool.vi’ i el proporciona el kit de desenvolupament Meshnetics ZigBit Amp. Té la tasca de recollir mesures com les taxes de trama, els errors de bit i de trama i els valors de LQI i RSSI de l’enllaç. A les figura 2.5 es pot veure com seria l’entorn gràfic del panell de control del VI emprat.
2.2.2.3. **Daintree Sensor Network Analyzer (SNA)**

El *Sensor Network Analyzer* de la companyia Daintree és un *sniffer* que permet capturar i descodificar paquets IEEE 802.15.4 i ZigBee. Mitjançant un hardware addicional subministrat, un node que a la vegada que fa d’*sniffer* pot actuar com un node la xarxa, tot mostrant a l’aplicació instal·lada al PC els diferents paquets transmesos de tota la xarxa ZigBee per tots els nodes participants.

Aquest kit d’anàlisi s’ha utilitzat per a realitzar les proves de xarxa ZigBee, ja que per exemple, permet establir marques temporals entre les transmissions de paquets i, per tant, permet conèixer els temps de formació de xarxa, d’unió dels nodes a la mateixa, etc.

A les figures 2.7 i 2.8 es poden veure l’aplicació gràfica del Daintre SNA i el hardware complementari de l’*sniffer*, respectivament.

Fig. 2.5: Panell de control de *range_tool.vi* a LabView.
Fig. 2.7: Interfície gràfica del Daintree SNA.

Fig. 2.8: Hardware addicional del Daintree SNA.
CAPÍTOL 3. EXPERIMENTS I RESULTATS

A continuació es veuran els experiments realitzats i els resultats obtinguts amb la plataforma d’estudi MeshNetics ZigBit Amp, emprant els equips hardware i software descrits al capítol anterior. Consisteixen en l’avaluació de les capes física, MAC i de xarxa de la pila de protocols ZigBee que integren els dispositius.

3.1. Experiments de Capa Física i Capa MAC

Els experiments de capa física i capa MAC consisteixen en una sèrie de mesures per avaluar les prestacions de les capes física i MAC de la plataforma Meshnetics Zigbit Amp.

Les proves d’abast dels nodes, s’han realitzat en cinc escenaris diferents, incloent entorns exteriors (outdoor) i en entorns interiors (indoor). Aquestes mesures han estat preses a la potència mínima a la que poden treballar els sensors, que és de 0 dB (1 mW). Com a dada interessant a tenir en compte, el radi d’abast màxim que poden cobrir aquests mòduls de ZigBee és de 4 km a potència màxima (20dB - 100 mW), segons datasheet i també segons proves realitzades en entorns adequats.

En resum, les condicions en les quals han estat fetes les mesures, i els equips que s’han utilitzat per realitzar-les són:

- 2 mòduls ZigBit Amp (ZDM-A1281-PN) de MeshNetics amb amplificador de potència de sortida i antena externa, muntats sobre 2 plaques MeshBean Amp també de MeshNetics.

- Mòduls de ZigBee treballant sobre capa física i MAC de l’estàndard 802.15.4. Desactivades les capes superiors ZigBee.

- Antena Omnidireccional Exterior/Interior a 2,4 GHz i guany de 5,5 dBi fixada al connector SMA.

- Mòdul receptor connectat a ordinador portàtil mitjançant cable USB 2.0, emulant una connexió serial (port COM) gràcies al pont USB-UART que porta integrat la placa MeshBean Amp. Alimentat via USB.

- Mòdul transmissor alimentat amb dues bateries AA-LR6 de 1,5V.

- Senyal de RF transmesa al canal 0x14 (canal 20: 2450 MHz) dintre de l’espectre de freqüències de la banda de 2,4 GHz. Ha estat escollit aquest previ escaneig de xarxes sense fils de la zona d’avaluació, per evitar possibles interferències entre transmissions de la banda de 2,4 GHz.
- Potència de transmissió de sortida al mínim (0 dBm – 1mW).

- Transmissions de 10000 paquets formats per una seqüència pseudo-aleatòria de 1024 bits, per a cada distància mesurada.

- Firmware RangeMesurement Tool proveït pel kit de desenvolupament Meshnetics ZigBit Amp pujat a les plaques MeshBean Amp. Té la funció d’habilitar als nodes a realitzar les proves d’abast i, a més, de fer-los treballar sense les capes superiors de ZigBee.

- Software utilitzat al PC connectat al receptor:

 o National Instruments LabView

 - Port: COM9
 - Velocitat de transmissió: 38400 bps
 - Bits de dades: 8 bits
 - Paritat: NO
 - Bits de parada: 1 bit
 - Control de flux: NO

- Paràmetres calculats per a cada mesura (segons Software utilitzat):

 - FR (Frame Rate): taxa de paquets transmesos.
 - BERshort-term (Bit Error Rate): taxa de bits erronis puntual.
 - BERcumulative: taxa de bits erronis acumulada.
 - FERshort-term (Frame Error Rate): taxa de paquets erronis puntual.
 - FERcumulative: taxa de paquets erronis acumulada.
 - LQI: indicador de qualitat de l’enllaç (no té unitat).
 - RSSI: intensitat del senyal rebut en dBm.

- Escenaris i condicions:

 o Outdoor (3 escenaris):

 - Bosc dens.
 - Sòl de terra de sorra, ple de pinassa.
 - Temperatura de 15°C.
 - Horari: 18:00h
 - Fileres d’arbres. Separació entre fileres de 2m.

 - Campus EPSC (passeig d’entrada, entre edificis).
 - Sòl d’asfalt.
 - Temperatura de 12°C.
 - Horari: 21:00h
 - Edificis a les bandes del passeig. Separació de 18m.

 - Platja de Castelldefels.
 - Sòl de sorra.
- Temperatura de 9 ºC.
- Horari: 22:00h
- Distància Mar – Passeig Marítim de 100m. aprox.

 - **Indoor (2 escenaris):**
 - Casa unifamiliar de 255 m2.
 - Parets de guix.
 - Temperatura de 17 ºC.
 - Horari: 18:30h
 - Edifici EPSC.
 - Parets de formigó armat.
 - Temperatura d’uns 19 ºC aprox.
 - Horari: 19:00h

- Instruments per prendre les mesures:
 - Totes les mesures de distàncies inferiors a 200 m han estat preses recolzant els sensors sobre uns cavallets de fusta d’aproximadament 1,5 m d'alçada.
 - Les mesures de distàncies superiors a 200 m han estat preses recolzant els sensors sobre alçades superiors o iguals als 2 m (depèn de l’escenari un recurs o altre), per minimitzar tot el possible els efectes de la Zona de Fresnel, que són capaços de minimitzar la potència del senyal i canviar la polarització (per a mesures majors de 350 m la Zona de Fresnel és d’uns 5 m, 2.5 m per sota i 2.5 m per dalt).

- Instruments per mesurar les distàncies:
 - **Outdoor:** software Google Earth.
 - **Indoor:** cinta mètrica, plànols de l’habitatge i càlculs trigonomètrics.

A cada escenari d’estudi, s’han pres diverses mesures a diferents distàncies entre nodes per a poder obtenir valors suficients per extreure conclusions sobre l’enllaç ràdio. A la taula 3.1 es mostra un resum dels escenaris i de les distàncies on s’ha realitzat les mesures.
Taula 3.1: Distàncies per escenari on s’han pres les mesures.

<table>
<thead>
<tr>
<th>INDOOR</th>
<th>1 m</th>
<th>5 m</th>
<th>15 m</th>
<th>15 m (amb obstacles entre nodes)</th>
<th>20 m (amb obstacles entre nodes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casa unifamiliar de 255m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edifici EPSC</td>
<td>50 m</td>
<td>75 m</td>
<td>90 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTDOOR</th>
<th>10 m</th>
<th>50 m</th>
<th>75 m</th>
<th>100 m</th>
<th>125 m</th>
<th>150 m</th>
<th>200 m</th>
<th>250 m</th>
<th>300 m</th>
<th>350 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosc dens</td>
<td></td>
</tr>
<tr>
<td>Campus EPSC</td>
<td></td>
</tr>
<tr>
<td>Platja de Castelldefels</td>
<td></td>
</tr>
</tbody>
</table>

Amb les mesures de camp, s’ha pogut comprovar que l’abast màxim, en quant a transmissió òptima d’informació, que tenen les plaques MeshBean Amp és de 100 m en entorns interiors i d’uns 300 m en entorns exteriors, aproximadament. Recordar el fet que els nodes treballen a la potència mínima de transmissió, per tant obtenim unes dades amb més precisió i més fiables.

En base a les mesures preses per a cada distància, a cada escenari, els paràmetres utilitzats per fer l’avaluació de les capes física i MAC han estat:

- **PDR**: *Path Delivery Ratio*. És el resultat del càlcul de la fòrmula 3.1 (FER: *Frame Error Rate* o *Taxa d’Error de Bit*).
PDR = 1 - FER \hspace{1cm} (3.1)

- **LQI**: *Indicador de Qualitat de l’Enllaç*. Ja s’ha parlat d’aquest en anteriors punts, és el paràmetre que determina la qualitat de l’enllaç ràdio.

- **RSSI**: *Indicador de la Intensitat de Senyal Rebut*. També fet referència anteriorment, paràmetre que determina el nivell de potència de recepció.

- **FR**: *Taxa de Trames Rebudes*. Relació de trames rebudes correctament per unitat de temps o *Throughput*.

Els valors dels paràmetres anteriors (FER, LQI, RSSI i FR) són emmagatzemats a un log per part de LabView, a part de ser mostrats mitjançant el panell de control de la pròpia aplicació. En base als logs, han estat generades les gràfiques de les següents seccions, que mostren el resum de l’avaluació de l’enllaç ràdio dels dispositius pel que fa a capa física i capa d’enllaç.

3.1.1. Resultats dels experiments de capa física

En primer lloc, es procedeix a l’avaluació dels paràmetres d’estudi de la capa física. Les gràfiques següents (figures 3.1 i 3.2) corresponen a les relacions entre els valors de [PDR vs LQI] i entre els de [PDR vs RSSI]. Per a cada mesura, de cada escenari, es mostren els valors de LQI i de RSSI presos en relació al *Path Delivery Ratio* (PDR) mesurat.

![Fig. 3.1: Relació PDR vs LQI](image-url)
En aquesta gràfica es veu com a major potència rebuda, més alt valor de LQI i, en conseqüència, millor qualitat de l’enllaç (el màxim LQI que es pot assolir és de 255, màxima qualitat de l’enllaç). El cúmul de punts situats a valors alts de LQI són els que major potència de recepció tenen, és a dir, els corresponents a les distàncies més curtes preses per a cada escenari (ja que aquestes són comuns a tots). La distribució s’escampa per les mesures preses a distàncies més grans (escenaris exteriors: bosc, campus EPSC i platja), a les quals el PDR és menor i, conseqüentment, el valor de LQI és més petit, encara que això no vol dir que tinguem una mala qualitat de l’enllaç.

S’obtenen resultats raonables (a excepció d’alguns valor) que posen de manifest que a major PDR, millor qualitat de l’enllaç tenim. Com era d’esperar, el millor escenari és la platja, on es minimitza el nombre d'elements que afecten la propagació del senyal. Després segueixen els altres dos escenaris exteriors, on el campus de l’EPSC obté millor qualitat ja que els elements que poden provocar mala qualitat de l’enllaç són menors que al bosc dens, ple d’arbres que poden produir fenòmens com l’scattering i introduir atenuació. En últim lloc vindrien els escenaris interiors, on es produeix el fenomen de la propagació multicamí. L’escenari de l'edifici de l'EPSC obté millors resultats que la casa unifamiliar, donat que és un espai més ampli i amb més amplada entre un dels principals obstacles com són les parets.

A la figura 3.2 on es pot veure la relació entre la intensitat de la senyal rebuda i el PDR, s’observa un valor mínim de RSSI, el qual s’estableix com a la mínima intensitat de senyal que podem rebre per a avaluar les condicions de l’enllaç ràdio a la plataforma d’estudi. Aquest valor està a prop dels -90 dBm (-89 dBm concretament) i, a l’extrem oposat, el valor màxim de RSSI que s’ha pogut mesurar és de -40 dBm (màxima intensitat del senyal que pot rebre un node de la plataforma avaluada).
En quant als escenaris veiem també que, a quant major distància a la que es prenen les mesures, més petita és la intensitat del senyal rebut. Pràcticament és molt similar a tots els escenaris, la variació real la trobem quant ens apropem o ens allunyem al mòdul transmissor.

3.1.2. Resultats dels experiments de capa MAC

En segon lloc, l’avaluació de la capa MAC de la plataforma Meshnetics ZigBit Amp pretén mesurar el Throughput, segons els diferents escenaris a considerar. El valor de Throughput ve expressat en kbps. A la gràfica de la figura 3.3 es pot veure la relació entre els valors de [Throughput vs Distància].

![Fig. 3.3: Relació Throughput vs Distància](image)

Com veiem, la gràfica mostra els valors de Throughput per a cada distància mesurada en cada escenari. Amb alguna variació, els resultats experimentals coincideixen amb els valors teòrics, en relació a que a quanta més distància es trobin els terminals, menor velocitat de trames per segon hi haurà a l’enllaç, ja que la taxa de recepció de trames correctament és inferiors, i per tant, menor Throughput mesurat. Veiem que existeixen alguns pics i irregularitats en els valors mesurats, això és degut a les condicions variables de l’entorn i a fenomenes que afecten a la propagació del senyal, com la dispersió multi-cami, scattering, atenuació, etc.

L’interval de valors de Throughput mesurats està dintre del màxim de 160kbps teòric que es pot obtenir segons l’estàndard IEEE 802.15.4 a nivell MAC, tenint en compte que la longitud dels paquets transmesos és de 122 bytes (128 bytes menys els 6 bytes de la capçalera física), que la longitud de les adreces és de 16 bits i que no s’utilitzen reconeixements (ACKs). Aquest interval, va des dels
40kbps mínims fins als 140kbps màxims, que s’han pogut mesurar a la plataforma.

Com a últim punt a destacar de les mesures a nivell físic i MAC cal esmentar la distància màxima a la qual els nodes poden transmetre a la mínima potència (de 0 dBm – 1mW). El rang d’abast màxim mesurat a les plaques MeshBean Amp és de 350 m en espais oberts i d’uns 100 m (concretament 90 m) en espais tancats. Un cop sobrepassades aquestes distàncies, el node receptor no rep correctament la informació transmesa pel node transmissor.

3.2. Experiments de Capa de Xarxa

L’objectiu d’aquesta part del projecte és l’avaluació i anàlisi de la capa de xarxa de la pila ZigBee integrada a la plataforma ZigBit Amp.

Els experiments de la capa de xarxa han tingut com a objectiu mesurar i avaluar diferents paràmetres d’aquesta mateixa, els quals es mostren a continuació:

- Retard d’incorporació d’un node a la xarxa.
- Retard per restablir l’enllaç entre els nodes de la xarxa quan un node intermedi cau (router).
- Retard per tornar a formar la xarxa si el node coordinador cau.
- Retard per canviar de ruta entre node i coordinador.

Per a realitzar les mesures s’ha disposat dels següents equips:

- 3 mòduls ZigBit Amp (ZDM-A1281-PN) de MeshNetics amb amplificador de potència de sortida i antena externa, muntats sobre 3 plaques MeshBean Amp també de MeshNetics.
- Software **WSN Monitor** de Meshnetics.
- Sniffer **Daintree Sensor Network Analyzer** compost de:
 - Software de monitorització de paquets IEEE 802.15.4 i ZigBee.
 - Sensor capturador de paquets.
- PC portàtil executant:
 - **Meshnetics WSN Monitor**.
 - **Daintree SNA GUI (Software de monitorització)**.
Un cop esmentats els equips, a continuació s’indiquen les condicions i paràmetres configurats en l’entorn de proves:

- 3 Mòduls de ZigBee treballant sobre la pila de protocols completa. Funcions:
 - Node 1: Coordinador.
 - Node 2: Router.
 - Node 3: End device.

- Antena Omnidireccional Exterior/Interior a 2,4 GHz i guany de 5,5 dBi fixada al connector SMA.

- Mòdul coordinador connectat a ordinador portàtil mitjançant cable USB 2.0, emulant una connexió serial (port COM) gràcies al pont USB-UART que porta integrat la placa MeshBean Amp. Alimentat via USB.

- Mòduls router i end-device alimentats amb dues bateries cadascú AA-LR6 de 1,5V.

- Senyal de RF transmesa al canal 0x0B (canal 11: 2405 MHz) dintre de l’espectre de freqüències de la banda de 2,4 GHz.

- Identificador de xarxa PAN (PAN ID) igual a 0xD1-72.

- Per a un mateix paràmetre d’estudi, s’han realitzat quatre mesures, per tal d’apropar-nos a un valor més freqüent del mateix.

Als següents apartats es mostrarà l’avaluació de cadascun dels paràmetres anteriors, indicant per a cada cas d’estudi en particular, l’escenari de proves objecte de les mesures. Per cada paràmetre s’han pres quatre mesures, d’aquesta manera obtindrem una mitja de totes elles.

3.2.1. Escenari 1. Estudi del retard d’incorporació a la xarxa

Per aquest estudi, s’han definit dos sub-escenaris diferents, donada la voluntat d’avaluar el temps d’incorporació a la xarxa tant del dispositiu actuant com a router com del dispositiu actuant com a dispositiu final (o *End Device*).

En tots dos casos, el diàleg de missatges entre coordinador i node (router o dispositiu final) és el mateix. El coordinador envia trames de beacon i són els nodes els que al rebre-la, inicen el procés d’associació mitjançant un missatge *JOIN.request* cap al propi coordinador. Un cop el coordinador rep el missatge de petició d’unió a la xarxa, respon amb un reconeixement i seguidament amb un *JOIN.response*. Finalment amb el reconeixement del node (router o dispositiu final) s’acaba d’establir el lligam pare-fill i el node s’incorpora a la xarxa. A continuació, a la figura 3.4, es pot veure el procés.
CAPÍTOL 3. EXPERIMENTS I RESULTATS

1: Beacon.
2: JOIN Request (Petició d’Associació).
3: JOIN Response (Resposta d’Associació).
4: ACK (Reconeixement).
5: Enviament de dades.

Fig. 3.4: Diàleg Coordinador – Terminal ZigBee Join

3.2.1.1. Retard d’incorporació del Router ZigBee

L’escenari d’estudi ha estat el següent, tal i com es mostra a la figura 3.5.

Podem veure la configuració de xarxa establerta entre el coordinador i el router ZigBee. Les adreces de xarxa de 16 bits són de 0000 pel coordinador i de 0001 pel router. Veiem com també es mostren els paràmetres de LQI i RSSI per l’enllaç (a tots els escenaris d’estudi igual).

S’han pres quatre mesures del temps que ha trigat el router en incorporar-se a la xarxa. Aquestes quatre mesures han estat:

- **Mesura 1:** 710,72 ms
- **Mesura 2:** 712,64 ms
- **Mesura 3:** 712,64 ms
- **Mesura 4:** 715,20 ms

Per tant, fent la mitja calculada entre les quatre mesures, s’obté el valor mig de temps d’incorporació del router a la xarxa.

TEMPS D’INCORPORACIÓ ROUTER: 712,8 ms

Fig. 3.5: Router
3.2.1.2. **Retard d’incorporació del End Device ZigBee**

L’escenari d’estudi es mostra a la figura 3.6:

En aquest cas, l’adreça de xarxa de 16 bits que el coordinador (0000) assigna al dispositiu final és 003B.

Les quatre mesures preses del temps en que el dispositiu final triga en incorporar-se a la xarxa han estat:

- **Mesura 1**: 668,48 ms
- **Mesura 2**: 663,04 ms
- **Mesura 3**: 663,68 ms
- **Mesura 4**: 662,72 ms

En resum, un cop calculada la mitja de les quatre mesures preses, es pot dir que el valor de mig del temps en que un dispositiu final s’incorpora a la xarxa és:

TEMPS D’INCORPORACIÓ END DEVICE: 664,48 ms

![Fig. 3.6: End Device](image)

Analitzant els resultats obtinguts, es pot veure som s’ha obtingut un temps menor d’incorporació en el dispositiu final (o *End Device*) que no pas en el router, ja que aquest últim, en connectar-se, rep la taula de veïns per part del coordinador ZigBee, i això és el que implica l’increment de temps d’associació a la xarxa amb respecte al dispositiu final.

3.2.2. **Escenari 2. Estudi del retard redescobriment de ruta si un node cau**

Aquesta prova consisteix en desconnectar un node i, posteriorment veure com es torna a associar el segon node connectat al primer (desconnectat), al coordinador de la xarxa. Hi intervenen dos procediments ZigBee, com són la desassociació i associació a la xarxa (*Leave – Join ZigBee*). A les figures següents es poden veure ambdós intercanvis de missatges entre els nodes de la xarxa (3.7 i 3.9).
A la desassociació ZigBee, si és el node qui marxa de la xarxa, ell mateix envia un missatge *ZigBee Leave* cap al terminals als quals està connectat. En primer lloc al coordinador, per a que aquest l’esborri de la seva taula de veïns i ja no el tingui present a la xarxa. En una segona instància, també envia el mateix missatge al dispositiu final que té associat, per a que aquest ja no el consideri com el seu ‘pare’ i quedí orfe, per a que pugui reassociacioc-se posteriorment a la xarxa un altre cop. En aquest cas el node desconectat és el router ZigBee i els missatges *ZigBee Leave* que envia són els de les figura 3.7.

![Fig. 3.7: Diàleg Router – Coordinador – End Device ZigBee Leave (Router)](image)

El temps de *Leave* total que es considera, és aquell des de de que el node desconectat (router) envia el primer missatge de *Leave*, fins que acaba la transmissió de l’últim missatge de *Leave* (retard entre l’inici d’enviament del primer missatge i el final d’enviament de l’últim), ja que serà el temps en el que el dispositiu final quedí orfe i pugui començar a associar-se de nou a la xarxa, més concretament al coordinador. El segon missatge de *Leave* no s’envia just quan s’acaba de rebre el primer pel coordinador, sino que s’envia tot seguit al primer missatge de *Leave* (no hi ha enviament del primer + confirmació del primer + enviament del segon, sino que hi ha enviament del primer + enviament del segon).

El procés que segueix el dispositiu final un cop queda orfe a la xarxa per associar-se de nou aquesta, més concretament al coordinador, és el que es mostra a la figura 3.8, procés de *ZigBee Join*.
1: Beacon.

2: JOIN Request (Petició d'Associació).

3: JOIN Response (Resposta d'Associació).

4: ACK (Reconeixement).

5: Enviament de dades.

Fig. 3.8: Diàleg Join End Device

Així doncs, el temps de redescobriment de ruta del dispositiu final serà el resultat del temps que triguin a rebre els nodes destinataris els missatges de Leave (router → coordinador; router → dispositiu final. Figura 3.7) del router desconnectat més el temps de Join del propi dispositiu final. El temps de Leave del router desconnectat es considera donat que s'ha de considerar l'instant en què el dispositiu final queda orfe i pot començar a establir una nova associació (Join) al coordinador de la xarxa.

Però també hem de considerar que un node pot caure sense que li doni temps a enviar un missatge de Leave. En aquest cas en concret, el temps de redescobriment de ruta es basarà en el temps en què quedí lliure el dispositiu final (just quan detectí que el node al qual estava connectat no respon amb confirmacions, timeout segons la configuració del dispositiu), més el seu propi temps de Join novament a la xarxa (sense considerar el temps de Leave del router). Aquesta última indicació no es dóna als experiments, als quals a les traces de l'sniffer es poden veure els missatges de Leave que envia el router.

L'escenari de proves 2, inicialment, consisteix en la següent topologia (veure figura 3.9).
Inicialment s’estableixen els enllaços coordinador (0000) – router (0001) – dispositiu final (001C). L’objecte d’estudi és veure què passa quan el node intermedi (router) es desconnecta i, per tant, el dispositiu final ha de tornar-se a incorporar a la xarxa però ara establint un enllaç directe amb el node coordinador.

En el procés, també cal esmentar que el dispositiu final haurà de canviar d’adreça de xarxa (adreça lògica assignada pel coordinador) ja que es trobarà a una unitat menor de profunditat (topologia en arbre).

Fig. 3.9: Topologia inicial

Un cop desconnectat el router, la topologia queda de la següent manera (figura 3.10):

Ara, es pot veure com el dispositiu final està connectat directament amb el coordinador i té una nova adreça lògica de xarxa (assignada pel coordinador) igual a 003B.

El temps que s’ha trigat en formar-se aquesta topologia un cop el router s’ha desconnectat ha estat de:

- **Mesura 1**: 1,22 s
- **Mesura 2**: 1,97 s
- **Mesura 3**: 0,73 s
- **Mesura 4**: 1,213 s

On la mitja ens indica el valor mig del retard total:

TEMPS REDESCOBRIMENT DE RUTA: 1,28 s.

Fig. 3.10: Topologia final

Els valors obtinguts, mostren uns valors i marges raonables, en els quals es sumen els temps de transmissió com són els dos temps de Leave del dispositiu que es desconnecta (a coordinador i a dispositiu final, figures 3.7 i 3.8), on es considera aquell que més retard tingui (ja que els dos s’envien alhora), i el temps de Join en qual el dispositiu que queda orfe (dispositiu final) es torna a connectar a la xarxa.
3.2.3. Escenari 3. Estudi del retard per tornar a formar la xarxa

En aquest escenari, s’estudia el cas en el qual és el node coordinador el que es desconecta, per qualsevol problema que pugui tenir. Inicialment, la topologia està formada tal i com es mostra a la figura 3.13. En cert moment, el coordinador es desconnecta i es torna a connectar, i es mesura el temps en el que la xarxa torna a formar-se tal i com ho estava inicialment (incloent el temps en què el coordinador ha estat desconectat). El diàleg de missatges que es presenta en aquest cas es descriu a continuació.

Un cop el coordinador es desconecta, envia un missatge ZigBee Leave a tots els seus nodes fills de la xarxa (profunditat 1, comunicació directa). En aquest escenari enviaria el missatge al rou ter i aquest, a la seva vegada, ho notificaria al dispositiu final (figura 3.11).

Fig. 3.11: Diàleg Coordinador-Router ZigBee Leave.

Així doncs, és en el següent pas on el coordinador es torna a connectar (OFF-ON immediat), i els terminals tornen a realitzar el procés de Join (veure figura 3.12), ja que el propi coordinador quan torna a estar actiu començarà a enviar beacons als nodes ZigBee que tenia anteriorment associats i aquests el trobaran mitjançant un nou escaneig de canal. Es realitza el procés d’associació des de zero i el temps total és temps de Leave més el temps de Join. Pot ser que hi hagi casos (no s’han donat als experiments) en què degut a una desconexió brusca del coordinador (baixada de tensió, tall de la xarxa d’alimentació, etc.), no li doni temps al coordinador a enviar el missatge de Leave. En aquests casos, el temps que trigarà en formar-se la xarxa de nou (restabliment de la xarxa) dependrà de factors externs i estarà condicionat en el temps de recuperació del propi coordinador.
CAPÍTOL 3. EXPERIMENTS I RESULTATS

1: Beacon.
2: JOIN Request (Petició d’Associació).
3: JOIN Response (Resposta d’Associació).
4: ACK (Reconeixement).
5: Enviament de dades.

Fig. 3.12: Diàleg Terminal – Coordinador Join

Les mesures del retard en que la xarxa ha tornat a formar-se un cop s’ha desconnectat i tornat a connectar el router han estat les següents. Són les corresponents al temps des de que es desconnecta el router (ZigBee Leave) fins a que es torna a connectar i estableix novament la xarxa (figures 3.11 i 3.12 més el temps en què el coordinador està desconnectat):

- **Mesura 1:** 1,263 s
- **Mesura 2:** 0,698 s
- **Mesura 3:** 1,523 s
- **Mesura 4:** 2,287 s

Per tant, tenim que el valor mig de les mesures preses és de:

TEMPS RESTABLIMENT DE XARXA: 1,44 s

Les mesures poden tenir petites diferències en funció de la reactivació del coordinador un cop ha estat desconnectat. Pot rebre en primer lloc la petició de connexió del dispositiu final i processar dades d’aquest, mentre que té la petició del router en espera arribada milisegons després de la petició de transmissió de dades del dispositiu final, a efectes pràctics, acumulant una mica més de temps en el restabliment de la xarxa, segons mostren les mesures preses amb l’*sniffer* emprat a l’experiment.

Fig. 3.13: Topologia escenari 3
3.2.4. Escenari 4. Estudi del retard per canviar la ruta al coordinador

En l'escenari 4 es planteja la situació següent. En primer lloc es té una xarxa formada per la topologia de la figura 3.14, on el router està distanciat físicament del coordinador una distància D i el dispositiu final està distanciat del router una distància menor que D (més a prop del router que no pas del coordinador).

Es pot comprovar a la figura 3.14 que el dispositiu final està a prop del router i, aquest a la seva vegada està lluny del coordinador, fixant-nos en els valors de RSSI de l'enllaç.

L'objectiu d'aquest escenari és veure què passa si apropem el dispositiu final (001C) al coordinador a una distància menor que a la que està situat el router del mateix (distància bastant menor que D).

En teoria, s'espera que el dispositiu final canviï de ruta un cop vegi que ara la manera d'arribar al coordinador és més senzilla que no pas abans, on el passar pel router era la manera més òptima d'associar-se a la xarxa.

A l'experiment, un cop s'apropa el dispositiu final al coordinador s'observa que no hi ha cap canvi a la topologia de la xarxa, però sí que es veu com el valor de RSSI de l'enllaç entre el dispositiu final i el router disminueix molt més (passa de -7 a -37).

Fig. 3.14: Topologia inicial

S'ha extret com a conclusió, que possiblement la qualitat de l'enllaç sigui prou bona com per no haver de canviar de ruta. Aquesta disminueix, però això no vol dir que empitjori massa, sinó que passa a adoptar valors més baixos però no tant influents en la transmissió de les dades.

Pel que fa als diàlegs de missatges entre nodes de la xarxa, no s'introduceix cap nou, ja que la xarxa està prèviament formada i no hi ha cap caiguda ni modificació de la topologia. En el cas que sí hagués canviat la topologia, hi haurien estat presents missatges com els de redescobriment de ruta.
4.1. Conclusions

En aquest treball final de carrera s’ha estudiat i avaluat la plataforma de desenvolupament *MeshNetics ZigBit Amp*.

La caracterització dels nodes ZigBee del kit de desenvolupament ha tingut dues fases ben diferenciades, l’estudi de la capa física i MAC basades en l’estàndard IEEE 802.15.4 sobre el qual treballa ZigBee, i l’avaluació de la capa de xarxa ZigBee.

Pel que fa a les capes física i MAC, s’ha pogut comprovar el gran abast que tenen els mòduls ZigBee de la plataforma, els quals transmeten a potència mínima poden arribar fins a 350 m en espais oberts i, segons datasheet poden arribar fins a 4 km transmeten a potència màxima en espais oberts. Aquest últim aspecte, per raons pràctiques, finalment no s’ha portat a terme. També cal dir que tots els resultats han estat dintre dels marges que estableix l’especificació del protocol. Els valors de LQI i RSSI obtinguts a les mesures, són bastant superiors que els poden oferir altres plataformes que també implementin ZigBee. El rang que teòricament pot arribar a donar el mòdul d’estudi, s’ha pogut comprovar als experiments que és un marge bastant ampli i englobant valors elevats, que van des de 100 a 255 a LQI i des de -90 a -40 a RSSI. Tenint en compte el *Throughput*, es pot dir que el seu valor teòric que pot donar com a màxim segons les especificacions del protocol a la capa MAC, és dels més elevats que es permeten, al poder treballar amb paquets de mida gran, sense reconeixements d’entrega i amb adreces de 16 bits als nodes.

En quant a la capa de xarxa, els valors obtinguts als experiments, han estat bastant propers als teòrics especificats per l’aplicació utilitzada per a configurar la xarxa de sensors. Per exemple, el cas del temps de *Join* d’un terminal qualsevol a la xarxa, no difereix gaire del teòric especificat per l’aplicació de 500 ms (router 712,8 ms i dispositiu final 664,48 ms). En definitiva, la majoria dels experiments han estat acords amb una marges acceptables en quant a les mesures de temps de la transmissió de paquets entre els nodes de la xarxa.

La plataforma *Meshnetics ZigBit Amp* es situa en molt bona posició en relació a les altres plataformes del mercat, ja que proporciona un abast de transmissió molt ampli en entorns oberts i, proporcionalment també en entorns tancats. El kit de desenvolupament que ofereix és molt útil a l’hora de realitzar proves senzilles amb els nodes. A més, ofereixen una API per a que qualsevol desenvolupador pugui realitzar les seves pròpies aplicacions, encara que en un entorn no gaire intuïtiu i funcional. Les aplicacions subministrades, com ja s’ha dit, són de gran utilitat, encara que es tanquen a futures ampliacions o modificacions (encara que sí són possibles) donat que es basen en entorns propietaris.
4.2. Línies futures

Com a línia futura es podria determinar la implementació d’una aplicació capaç d’enviar dades entre terminals i calcular paràmetres a temps real d’avaluació de la xarxa, per exemple temps d’entrega, paquets enviats, paquets perduts, etc. tal i com funciona el software *PING* a les consoles MS-DOS dels equips Windows o els terminals als equips UNIX.

Una altra possible línia futura consisteix a comparar el rendiment de la plataforma avaluada *MeshNetics ZigBit Amp* amb el d’altres plataformes que també implementin el protocol ZigBee, com per exemple TelosB.
BIBLIOGRAFÍA

[1] ZigBee Alliance. Pàgina principal. [en línia]. Disponible a:

Disponible a:
<http://www.zigbee.org/Products/DownloadZigBeeTechnicalDocuments.aspx>

<http://www.meshnetics.com/downloads/docs/>

Doc. M-251~02. [en línia]. Disponible a:
<http://www.meshnetics.com/downloads/docs/>

MeshNetics Doc. P-EZN-451. [en línia]. Disponible a:
<http://www.meshnetics.com/downloads/docs/>

<http://www.meshnetics.com/downloads/docs/>

[8] TSL2550 Ambient Light Sensor with Smbus Interface. TAOS Datasheet
TAOS029E. February 2006. [en línia]. Disponible a:

2006. [en línia]. Disponible a:

[10] AVRFreaks Forum. [en línia]. Disponible a:
<http://www.avrfreaks.net>