Resum

El present projecte té per objecte el disseny i càlcul de l’estructura d’una nau industrial ubicada al polígon industrial de Can Humet a Polinyà.

En el disseny de la nau s’ha volgut projectar una nau amb el màxim possible de superfície, seguint les limitacions de la normativa urbanística vigent al municipi de Polinyà, i amb un espai totalment diàfan ja que l’activitat que si durà a terme no està definida. En un extrem de la nau s’hi situarà un altell destinat a oficines, el forjat d’aquest altell serà col·laborant.

L’estructura de la nau es realitzarà amb perfiles metàl·lics, que constarà d’ 11 pòrtics a dues aigües realitzats amb una gelosia tipus Warren de perfiles tubulars i pilars tipus HEB, amb una llum de 40 metres. La fonamentació de la nau es realitzarà mitjançant sabates aïllades de formigó armat connectades amb bigues de lligat.

L’estructura es projectarà seguint les normatives del Código Técnico de la Edificación, per a l’estructura metàl·lica i l’EHE08 per a la fonamentació. A part del càlcul de l’estructura també s’ha realitzat la comprovació de les unions entre les diferents barres de l’estructura segons el Código Técnico de la Edificación i l’Eurocodi 3.

Finalment s’inclou un estudi d’impacte ambiental del projecte i el pressupost del projecte.
Càlcul estructural d'una nau industrial a Polinyà
Sumari

Resum ... 1
Sumari ... 1
Glossari .. 3
Introducció ... 7

Memòria ... 9
1. EMPLAÇAMENT I JUSTIFICACIÓ URBANÍTICA ... 9
 1.1. Emplaçament .. 9
 1.2. Condicionants urbanístics ... 9
2. DISSENY DE L’ESTRUCTURA ... 11
 2.1. Tipologia estructural ... 11
 2.2. Predimensionat gelosia .. 12
 2.3. Estudi de la gelosia .. 13
3. ANÀLISI ESTRUCTURAL I DIMENSIONAT ... 15
 3.1. Durabilitat ... 15
 3.2. Normativa d’aplicació .. 15
 3.3. Estats límits últims .. 15
 3.4. Estats límits de servei ... 16
 3.5. Càrregues aplicades .. 17
 3.5.1. Accions del vent: ... 19
 3.6. Accions tèrmiques: .. 28
 3.7. Càrrega de neu: .. 28
 3.8. Accions accidentals: .. 29
 3.8.1. Sisme: ... 29
 3.8.2. Incendi: ... 29
 3.8.3. Impacte de vehicles: ... 30
 3.8.4. Altres accions accidentals: .. 30
 3.9. Combinacions d’accions ... 30
 3.10. Coeficients de seguretat i simultaneïtat ... 31
 3.11. Resistència al foc de l’estructura .. 33
 3.11.1. Protecció amb pintura intumescent ... 33
 3.12. Característiques dels materials emprats: .. 34
 3.13. Resistència de les bigues i pilars metàl·lics .. 35
 3.14. Comprovació de les unions .. 36
3.15. Fonamentació ... 37
3.16. Càlcul i dimensionat del forjat col·laborant .. 38
3.17. Programes de càlcul utilitzats ... 39
4. ACABATS I TANCAMENTS ... 41
5. VALORACIÓ ECONÒMICA DE LA REDACCIÓ DEL PROJECTE 43
6. VALORACIÓ ECONÒMICA DEL COST D'EXECUCIÓ DE L'ESTRUCTURA 44
7. ESTUDI D'IMPACTE AMBIENTAL .. 45
 7.1. Descripció del projecte .. 45
 7.2. Anàlisi d'alternatives .. 45
 7.3. Descripció del medi ... 46
 7.4. Detecció o identificació dels impactes .. 47
 7.5. Normativa impacte ambiental .. 48
Agraïments .. 51
Bibliografia ... 53
Referències bibliogràfiques ... 53
Pàgines web ... 53

ANNEX A CÀLCULS ESTRUCTURA METÀL·LICA
ANNEX B CÀLCULS FONAMENTS
ANNEX C PRESSUPOST
ANNEX D PLÀNOLS
ANNEX E LLISTATS DE CÀLCUL
Glossari

LLETRES MAJÚSCULES:

A: Àrea; altitud sobre el nivell del mar; constant (mm²)

G: Mòdul d’elasticitat transversal (N/mm²)

E: Mòdul d’elasticitat longitudinal (N/mm²)

I: Moment d’inèrcia (mm⁴)

L: Longitud, llum (m)

M: Moment flector (N·m)

N: Esforç axil (kN)

Q: Acció variable (kN)

T: Moment torsor (N·m)

V: Esforç tallant (kN)

W: Mòdul resistent

Z: Paràmetre de l’aspror del entorn

LLETRES MINÚSCULES:

a: Gorja d’un cordó de soldadura

cₐ: Coeficient d’exposició

cₑₑ: Coeficient de pressió exterior

cₑᵢ: Coeficient de pressió interior

d: Diàmetre; espessor; longitud de l’edifici

e: Distància entre cargol i vora de la xapa

f: Fletxa

f: Resistència
h: altura de l’edifici

\(h_m \): Altura mitja

i: Radi de gir d’una secció

k: Coeficient de forma de la neu

m: Massa

n: Número; coeficient

\(q_b \): Valor bàsic de la pressió dinàmica del vent

\(s_k \): Valor característic de la carrega de neu sobre un terreny horitzontal

\(v_b \): Valor bàsic de la velocitat del vent

x: Distància

z: Altura de referència

SUBÍNDEXS:

cr: Crític

d: Valor de càlcul o de disseny

u: Últim

R: Resistent

E: Acció

e: Elàstic

x: Eix x

y: Eix y

z: Eix z

LLETRES GREGUES:

\(\alpha \): Relació, pendent d’una coberta

\(\beta \) Angle
γ: Coeficient parcial de seguretat

ε: Arrel de la relació entre el límit elàstic de referència de l’acer empleat

λ: Esveltesa

ν: Coeficient de poisson

μ: Coeficient de forma per determinar la càrrega de neu

θ: Angle de direcció del vent

ρ: Densitat

σ: Tensió normal

ø: Diàmetre

χ: Coeficient de reducció per vinclament

ψ: Factor de reducció de les accions
Introducció

Objectius del projecte:
L'objectiu del present projecte final de carrera és aprofundir dins del càlcul d'estructures metàl·liques mitjançant un casconcret on es calcula una nau industrial.

En el projecte es dissenya l'estructura d'una nau industrial situada al polígon industrial de Can Humet a Polinyà. Aquesta estructura es realitzarà amb perfils metàl·lics i una gelosia composta per perfils tubulars.

Abast del projecte:
El projecte inclou la definició geomètrica de l'estructura, adequant-se a la normativa urbanística vigent al municipi de Polinyà.

També, abasta el càlcul i comprovació de la resistència de l'estructura metàl·lica i la seva fonamentació. Per a tots els càlculs s'ha aplicat la normativa vigent pertinent, el Código técnico de la edificación i la EHE08. Per al càlcul s'han utilitzat com a suport programes informàtics, comprovant-ne després els resultats amb càlculs manuals.

Finalment es fa un estudi d'impacte ambiental i una valoració econòmica de la redacció i execució del projecte del projecte.
Memòria

1. EMPLAÇAMENT I JUSTIFICACIÓ URBANÍTICA

1.1. Emplaçament

L’edificació projectada estarà ubicada, al terme municipal de Polinyà, comarca del Vallès Oriental, província de Barcelona, segons s’indica al plànol de situació adjunt. Les coordenades UTM de la parcel·la són X429.546 Y4.599.954.

La parcel·la delimita a l’oest pel carrer Pintor Joan Miró, al sud pel carrer Pintor Vila Cinca, mentre al nord i a l’est es delimita amb parcel·les veïnes.

1.2. Condicionants urbanístics

Per al disseny de la geometria exterior de la nau s’han seguit les Ordenances de l’Ajuntament de Polinyà. La parcel·la està situada a la zona classificada com a 7a Zona industrial (clau 7). L’ordenança estableix que segons l’ordenació d’aquest sòl l’edificació ha de ser aïllada.

Fig. 1.2.1 Classificació del solar
L'ordenança estableix l'edificabilitat màxima en 1m² de sostre/ m² de sòl, la parcel·la té una àrea de 5.542,77 m² i la nau que es projecta en tindrà 2.800m² de sostre. Això representa una edificabilitat de 0,505m² de sostre/ m² de sòl inferior al 1 m² sostre/m² sòl permès a l’Ordenança.

També s’estableix que el volum màxim edificable és de 8 m³ per m² de parcel·la. Així, el volum edificat serà de 42.000, és a dir, un 94,7% dels 44.342 m³ permesos.

Segons les condicions d’edificació, la parcel·la mínima edificable es fixa en 2400 m², havent de permetre la inscripció d’un cercle de diàmetre mínim de 15m. La façana mínima al vial públic serà de 25 m. En el cas de la nau en projecció, la façana al Carrer de Joan Miró serà de 70 m i la del Carrer Pintor Vila Cinca de 40 m, ambdues majors dels 25m mínims.

L’ocupació de la parcel·la és de 50,5%, menor al 60% màxim que estableix l’ordenança municipal.

L’altura màxima de l’edificació que estableix l’ordenança és de 16m, la nau té una altura màxima de 15m.

L’edificació, segons estableix l’Ordenança, ha d’estar distanciada a 5 m del límit de les parcel·les veïnes i a 7 m del vial més proper. En el cas que es proposa, la nau queda a 5 m del límit de la parcel·la veïna, així com la distància respecte els vials és de 7 m, respectant d’aquesta manera l’Ordenança.

La parcel·la, tal i com estableix l’Ordenança, disposarà de 30 places d’aparcament, una per cada 100 m² construïts.

A continuació es resumeixen les condicions de compliment de l’ordenança urbanística municipal:

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Màxim permès per normativa</th>
<th>Nau en projecte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficient d’edificabilitat neta:</td>
<td>1m² de sostre /m² de sòl</td>
<td>5542,77</td>
</tr>
<tr>
<td>Volum màxim edificable:</td>
<td>8 m³ / m² de sòl</td>
<td>44800</td>
</tr>
<tr>
<td>Ocupació màxima de la parcel·la</td>
<td>60%</td>
<td>3325,6m²</td>
</tr>
<tr>
<td>Façana mínima a vial públic</td>
<td>25 m</td>
<td></td>
</tr>
<tr>
<td>Altura màxima e l’edificació</td>
<td>16m</td>
<td></td>
</tr>
</tbody>
</table>

Taula 1.2.1 Resum del compliment de l’ordenança urbanística municipal
2. DISSENY DE L’ESTRUCTURA

2.1. Tipologia estructural

Els pòrtics és realitzaran amb una biga en gelosia tipus Warren, construïda amb perfiles tubulars, i tindrà una llum de 40 metres. Per al predimensionat i definició geomètrica de la gelosia s’han utilitzat les recomanacions de la “Guia de diseño para estructuras en celosia resueltas con perfiles tubulares de acero” de l’Instituto para la Construcción Tubular.

La gelosia consta d’un cordó superior i inferior realitzats amb tubs d’acer estructural rectangulars i diagonals de secció quadrada. Aquests pòrtics seran suportats per dos pilars encastats realitzats amb perfiles d’acer laminat tipus HEB.

La nau consta de 12 pòrtics a dues aigües, amb una inclinació de 5º, de 40m de llum, 15m d’alçada i separats 6m entre si.

Entre els pòrtics primer i últim es col·locaran unes creus de Sant Andreu realitzades amb cordons d’acer per tal d’arriostrar l’estructura en front de les forces horitzontals.

Finalment en uns dels extrems de la nau s’hi disposarà un altell efectuat amb perfiles metàl·lics i forjat col·laborant.

La fonamentació es realitzarà amb sabates aïllades de formigó armat i bigues de lligat entre sabates.

Finalment, s’ha realitzat un petit estudi per decidir la idoneïtat o no de col·locar l’últim muntant a la gelosia., en base a la quantitat d’acer necessari.
2.2. **Predimensionat gelosia**

La dimensió del cantell (h) de la biga en gelosia es pren com una quinzena part de la llum:

\[
h = \frac{L}{15} = \frac{40}{15} = 2,666 \approx 2,70 m
\]

[Eq. 1]

La separació entre nusos en els cordons es projecta menor de 6 m, d'aquesta manera es poden menysprear, segons el CTE-DB-SE-A apartat 6.3.1, els flectors deguts: al pes propi de les barres, al vent en les barres trianguades i a l’excentricitat en les barres d’arriostrament quan la seva directriu no estigui en el pla de la unió.

L’angle de trobada de les diagonals ha de ser major a 30° per tal de poder efectuar les soldadures correctament.

Amb aquestes dades hi ha dues solucions possibles: amb 12 o 16 diagonals. S’opta per la solució de 16 diagonals amb una separació de 4,96 m i un angle entre diagonals i el muntants de 47° tal i com s’observa a la Fig. 2.2.2.

Es descarta l’opció de la Fig. 2.2.1 per tenir una distància entre els nusos dels cordons major de 6m.
2.3. Estudi de la gelosia

Seguidament, s’analitzen dues opcions, disposar de l’últim muntant o no, per tal de decidir quina és la més adequada tant pel que fa al preu com a la dificultat en el muntatge de l’estructura.

Fig. 2.3.1 Vista 3D de l’opció 1. Gelosia amb l’últim muntant
Fig. 2.3.2 Vista 3D de l’opció 2. Gelosia sense l’últim muntant
Descripció de la opció 1.

A l’opció 1, el cordó inferior de la gelosia està subjectat al pilar. Aquest fet fa necessari part es subjectar la part inferior de les gelosies per quatre punts mitjançant uns tornapuntes per tal d’evitar el fenomen de bolcada lateral o l’estudi minucios dels coeficients de vinclement de vinclement del cordó inferior.

Descripció de la opció 2.

A l’opció 2, el cordó inferior no arriba fins al pilar, d’aquesta manera no hi ha perill de bolcada lateral per tant no es fa necessari la col·locació de tornapuntes. En aquest cas es fa necessari augmentar molt la inèrcia dels pilars per complir amb l’esveltesa mínima.

Amb aquestes dades fent un dimensionat ràpid de l’estructura metàl·lica i de les sabates s’obté que:

<table>
<thead>
<tr>
<th></th>
<th>Opció 1: nau amb tirant</th>
<th>Opció 2: nau sense tirant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kg de d’acer per l’estructura</td>
<td>84015</td>
<td>103130</td>
</tr>
<tr>
<td>m³ de formigó per a les sabates</td>
<td>95</td>
<td>112</td>
</tr>
<tr>
<td>Kg de d’acer per l’armat de les sabates</td>
<td>2945</td>
<td>4233</td>
</tr>
</tbody>
</table>

Taula 2.3.1 Resum d’amidaments de les dues opcions

Comparant aquestes dades es veu més viable econòmicament l’opció 1, degut a que la quantitat d’acer a utilitzar és bastant menor així com la quantitat de formigó armat per a la fonamentació.
3. ANÀLISI ESTRUCTURAL I DIMENSIONAT

3.1. Durabilitat

L’edifici es dissenya per a un període de servei de 50 anys. Període en que s’hauran de complir tant els estats límits últims com els estats límit de servei.

3.2. Normativa d’aplicació

En la redacció del projecte s’ha seguit la normativa d’aplicació en aquests moments a l’estat espanyol per que fa a construccions industrials:

EHE 08, Instrucción de Hormigón Estructural [1].

Código Técnico de la Edificación:

- DB-SE / Seguridad Estructural [3].
- DB-SI / Seguridad en caso de incendio [4].
- DB-SE-AE / Acciones en la edificación [6].

EUROCODI 3

RSCIEI Reglamento se seguridad contra incendios en establecimientos Industriales.

NCSE Norma de construcción sismoresistente

3.3. Estats límits últims

Els estats límits últims son aquells que de no ser complets poden suposar un perill per a les persones, ja sigui perquè l’edifici queda fora de servei o a causa del col·lapse total o parcial d’aquest. Es poden considerar els següents tipus d’estats límits últims:

1. Pèrdua d’equilibri de l’edifici, o d’una part estructuralment independent, considerat un cos rígid.

2. Fallada a causa d’una deformació excessiva, transformació de l’estructura o de part d’ella en un mecanisme, ruptura dels seus elements estructurals (inclosos recolzaments i fonaments) o de les seves unions, o inestabilitat d’elements estructurals incloent els originats per efectes que depenen del temps(fatiga, corrosió).
3.4. **Estats límits de servei**

Els estats límits últims son aquells que de no ser complerts, no suposen un perill per a les persones però afecten al confort i el benestar del usuaris o terceres persones, al correcte funcionament de l’edifici o l’aparença de la construcció.

Aquests estats límits de servei poden ser reversibles o irreversibles. Com a estats límits de servei han de considerar-se els relatius a:

1. **Deformacions** (fletxes, assentaments) que afecten a l’aparença de l’obra, al confort dels usuaris, o al funcionament d’equips i instal·lacions.

2. **Vibracions** que afecten al confort dels usuaris, o al funcionament d’equips i instal·lacions.

3. **Danys o deterioraments** que puguin afectar desfavorablement a l’aparença, la durabilitat o la funcionalitat de l’obra.

Per a l’estructura d’aquest projecte s’ha limitat la deformació a una fletxa màxima admissible de 1/300, en el càlcul d’aquesta deformació es té en compte la rígidesa de les unions. Als llistats de càlcul de l’annex s’hi poden consultar els valors màxims de les fletxes obtinguts.

Pel que fa als desplaçaments horitzontals es limita el desplom total de l’edifici a 1/500 i el desplom local a 1/250.

Fig. 3.4.1 Deformada del pòrtic 20 per la combinació d’acions 1,35Q+1,5N₁.

Fig. 3.4.2 Deformada del pòrtic 20 per la combinació d’acions 0,80Q+1,5V270+V270cpi
3.5. Càrregues aplicades

Les càrregues aplicades segons el “CTE-Acciones en la edificación” seran:

ESTRUCTURA:

<table>
<thead>
<tr>
<th>Càrrega</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pes Propi tancament</td>
<td>0,17 KN/m²</td>
</tr>
<tr>
<td>Corretges</td>
<td>0,07 KN/m²</td>
</tr>
<tr>
<td>Sobrecàrrega neu</td>
<td>0,47 KN/m²</td>
</tr>
<tr>
<td>(alçada a menys de 1000m del nivel del mar)</td>
<td></td>
</tr>
<tr>
<td>Sobrecàrrega d’ús</td>
<td>0,4 KN/m²</td>
</tr>
<tr>
<td>(coberta accessible només per a manteniment)</td>
<td></td>
</tr>
<tr>
<td>Vent 0º</td>
<td>(segons zona)</td>
</tr>
<tr>
<td>Vent 180º</td>
<td>(segons zona)</td>
</tr>
<tr>
<td>Vent 90º</td>
<td>(segons zona)</td>
</tr>
<tr>
<td>Vent 270º</td>
<td>(segons zona)</td>
</tr>
</tbody>
</table>

ALTELL:

<table>
<thead>
<tr>
<th>Càrrega</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pes Propi</td>
<td>3,10 KN/m²</td>
</tr>
<tr>
<td>Sobrecàrrega d’ús</td>
<td>2,00 KN/m²</td>
</tr>
<tr>
<td>(zones administratives)</td>
<td></td>
</tr>
</tbody>
</table>

Les càrregues corresponents al pes propi de l’estructura les genera automàticament el programa de càlcul informàtic segons el material i perfil escollit, la densitat de l’acer es pren com a 78,5kN/m3. a les figures següents es pot observar algunes de les càrregues aplicades a l’estructura en el model de càlcul:

Fig. 3.5.1 Pòrtic 20- Càrregues permanents
Fig. 3.5.2 Pòrtic 20- Sobrecàrrega d’ús

Fig. 3.5.3 Pòrtic 20- Càrrega de vent V270

Fig. 3.5.4 Pòrtic 20- Càrrega N1
3.5.1. Accions del vent:

L’acció que exerceix el vent sobre l’estructura es pot expressar com:

\[q_e = q_b \cdot c_e \cdot c_p \] \[\text{[Eq.2]} \]

On:

- \(q_b \): és la pressió dinàmica del vent
- \(c_e \): Coeficient d’exposició
- \(c_p \): Coeficient eòlic o de pressió

Es calcularà l’acció del vent segons els coeficients de l’annex D.3 del DB-AE. Es preveuen tres forats en façana, de 5,25x8m, dos a la cara sud i un a la cara nord de la nau. Al tractar-se d’una nau on els forats a façana o coberta son inferiors al 30%, no es necessari calcular l’estructura com si fos una marquesina segons la secció 3.3.5 del CTE-AE.

3.5.1.1. Càlcul de la pressió dinàmica del vent \((q_b)\)

Segons l’annex D “Acción del viento” de la norma, el valor bàsic de la pressió del vent es pot calcular com:

\[q_b = 0,5 \cdot \delta \cdot v_b^2 \] \[\text{[Eq.3]} \]

on:

- \(\delta \): És la densitat de l’aire, que en general es pot adoptar com a 1,25kg/m\(^3\).
- \(v_b \): És la velocitat bàsica del vent (m/s).

El valor bàsic de la velocitat del vent de Polinyà pot obtenir-se en el mapa de la figura següent (Fig. 3.5.1.1.1), extret del DB-SE-AE (figura D.1). Polinyà està situat a la zona C, això correspon a una \(v_b = 26 \) m/s. Obtenint una \(q_b \) de 0,52kN/m\(^2\).
Fig. 3.5.1.1 Valor bàsic de la velocitat del vent (\(v_b\)).

3.5.1.2. Càlcul del coeficient d’exposició (ce)

Per al càlcul del coeficient d’exposició també s’ha utilitzat la fórmula descrita a l’annex D. Per a alçades sobre el terreny menors a 200m, es pot determinar amb l’expressió:

\[
c_e = F \cdot (F + 7k)
\]

\[
F = k \cdot \ln(\max(z, Z) / L)
\]

on \(k\), \(L\) i \(Z\) on paràmetres de la taula D2 de l’annex D del DB-SE-AE.

Taula 3.5.1.2.1 Coeficients per a tipus d’entorn

La nau objecte d’aquest projecte correspon a un grau d’aspror IV, així aplicant els coeficients \(k\), \(L\) i \(Z\) a les equacions [Eq.5] i [Eq.4] s’obté un \(c_e\) de:

\[
F = 0.22 \cdot \ln(\max(5;15) / 0.3) = 0.875
\]

\[
c_e = 0.875 \cdot (0.875 + 7 \cdot 0.22) = 2.11
\]
3.5.1.3. Càlcul del coeficients de pressió (cp)

Per al càlcul del coeficient de pressió en naus industrials, si l’edifici presenta grans forats, l’acció del vent genera a més de pressions a l’exterior, pressions a l’interior que se sumen a les anteriors. Per tant, s’han de contemplar dues possibilitats, que les obertures estiguin obertes i per tant hi hagi una pressió interior que se sumarà a la pressió exterior o bé que les obertures estiguin tancades i per tant només hi hagi pressió exterior.

Així doncs per a cada direcció en que pot bufar el vent es contemplaran les següents combinacions de coeficients de pressió:

\[
\begin{align*}
V 0^\circ : & \quad \text{cp exterior (cas1)} + \text{cp interior} \\
& \quad \text{cp exterior (cas1)} \\
& \quad \text{cp exterior (cas2)} + \text{cp interior} \\
& \quad \text{cp exterior (cas2)} \\
V 180^\circ : & \quad \text{cp exterior (cas1)} + \text{cp interior} \\
& \quad \text{cp exterior (cas1)} \\
& \quad \text{cp exterior (cas2)} + \text{cp interior} \\
& \quad \text{cp exterior (cas2)} \\
V 90^\circ : & \quad \text{cp exterior} + \text{cp interior} \\
& \quad \text{cp exterior} \\
V 270^\circ : & \quad \text{cp exterior} + \text{cp interior} \\
& \quad \text{cp exterior}
\end{align*}
\]

Fig. 3.1 Presiones ejercidas por el viento en una construcción diáfana
Càlcul del coeficient de pressió exterior:

Els coeficients de pressió exterior s’estableixen segons l’annex D.3. del DB-SE-AE, per a paraments verticals i cobertes a dues aigües, que recullen el valor pèssim en cada punt segons la direcció del vent.

Cp exterior: paraments verticals

<table>
<thead>
<tr>
<th>direcció</th>
<th>h/d</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0º</td>
<td>>10m²</td>
<td>0,39</td>
<td>-1,2</td>
<td>-0,8</td>
<td>-0,5</td>
<td>0,72</td>
</tr>
<tr>
<td>180º</td>
<td>>10m²</td>
<td>0,39</td>
<td>-1,2</td>
<td>-0,8</td>
<td>-0,5</td>
<td>0,72</td>
</tr>
<tr>
<td>90º</td>
<td>>10m²</td>
<td>0,23</td>
<td>-1,2</td>
<td>-0,8</td>
<td>-0,5</td>
<td>0,70</td>
</tr>
<tr>
<td>270º</td>
<td>>10m²</td>
<td>0,23</td>
<td>-1,2</td>
<td>-0,8</td>
<td>-0,5</td>
<td>0,70</td>
</tr>
</tbody>
</table>

Cp exterior: coberta a dues aigües

<table>
<thead>
<tr>
<th>direcció</th>
<th>A</th>
<th>pendent</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>0º</td>
<td>Cas 1</td>
<td>>10m²</td>
<td>5º</td>
<td>-1,7</td>
<td>-1,2</td>
<td>-0,6</td>
<td>-0,6</td>
</tr>
<tr>
<td></td>
<td>Cas 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0,6</td>
<td>-0,6</td>
<td>0,2</td>
</tr>
<tr>
<td>180º</td>
<td>Cas 1</td>
<td>>10m²</td>
<td>5º</td>
<td>-1,7</td>
<td>-1,2</td>
<td>-0,6</td>
<td>-0,6</td>
</tr>
<tr>
<td></td>
<td>Cas 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0,6</td>
<td>-0,6</td>
<td>0,2</td>
</tr>
<tr>
<td>90º</td>
<td>Cas 1</td>
<td>>10m²</td>
<td>5º</td>
<td>-1,6</td>
<td>-1,3</td>
<td>-0,7</td>
<td>-0,6</td>
</tr>
<tr>
<td></td>
<td>Cas 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0,6</td>
<td>-0,6</td>
<td>-</td>
</tr>
<tr>
<td>270º</td>
<td></td>
<td>>10m²</td>
<td>5º</td>
<td>-1,6</td>
<td>-1,3</td>
<td>-0,7</td>
<td>-0,6</td>
</tr>
</tbody>
</table>

El coeficient de pressió interior es pot calcular com a $c_{pi}=0,7c_{pe}$ si l’àrea de l’obertura de la façana és el doble que la resta d’obertures juntes, sent el c_e el coeficient eòlic exterior calculat amb l’altura mitja dels forats. Per a casos intermedis s’utilitza la taula 3.6 del DB-AE.

Es preveuen tres forats en façana per a l’entrada de camions, de 5,25x8m. Dos dels forats estaran col·locats a la façana perpendicular a l’acció del vent quan aquest bufa a 270º. L’altre forat és a la façana perpendicular a l’acció del vent quan aquest bufa a 0º.

<table>
<thead>
<tr>
<th>c_{pi}</th>
<th>Àrea obertures</th>
<th>Àrea obertures cara/total</th>
<th>mètode càlcul</th>
<th>Esweltesa paral·lela al vent</th>
<th>c_{pi}</th>
</tr>
</thead>
<tbody>
<tr>
<td>direcció 0º</td>
<td>42 m²</td>
<td>0,33</td>
<td>taula 3.6</td>
<td>0,34</td>
<td>0,4</td>
</tr>
<tr>
<td>direcció 180º</td>
<td>0</td>
<td>0,00</td>
<td>taula 3.6</td>
<td>0,34</td>
<td>0,7</td>
</tr>
<tr>
<td>direcció 90º</td>
<td>0</td>
<td>0,00</td>
<td>taula 3.6</td>
<td>0,20</td>
<td>0,7</td>
</tr>
<tr>
<td>direcció 270º</td>
<td>84 m²</td>
<td>0,67</td>
<td>$c_{pi}=0,75c_{pe}$</td>
<td>0,20</td>
<td>1,01</td>
</tr>
</tbody>
</table>
Per a les direccions de vent 0\(^\circ\), 180\(^\circ\) i 90\(^\circ\) el cp interior és l’indicat a la següent taula del DB-SE-AE:

<table>
<thead>
<tr>
<th>Esbeltez en el plano paralelo al viento</th>
<th>Área de huecos en zonas de succión respecto al área total de huecos del edificio</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1</td>
<td>0.7 0.7 0.6 0.4 0.3 0.1 0.0 -0.1 -0.3 -0.4 -0.5</td>
</tr>
<tr>
<td>≥4</td>
<td>0.5 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.3</td>
</tr>
</tbody>
</table>

Taula 3.5.1.3.1 Taula 3.6 del DB-SE-AE pels coeficients de pressió interior

Quant el vent bufa en direcció 270\(^\circ\), l’àrea d’obertures a la façana en la direcció perpendicular al vent és el doble que la suma de la resta d’obertures, per tant el cp interior es calcularà com a:

\[
c_{pi} = 0,75c_{eint} = 0,75 \cdot 1,33 = 1
\]

\[
c_{eint} (4m) = 1,33
\]

Sent el \(c_{eint}\) el coeficient d’exposició corresponent a l’alçada mitja de les obertures.

Per tant, aplicant la formula \(q_e = q_b \cdot c_e \cdot c_p\) s’obté el valor de l’acció del vent per a cada zona de l’estructura, a les següents pàgines es pot observar la distribució dels coeficients de ce i el valor \(q_e\) obtinguts per cada direcció de vent.
Càrregues de vent quan el vent bufa a 0º:

<table>
<thead>
<tr>
<th>ZONA</th>
<th>(c_p)</th>
<th>(c_e)</th>
<th>(q_b)</th>
<th>(q_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,2</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,317</td>
</tr>
<tr>
<td>B</td>
<td>-0,8</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,878</td>
</tr>
<tr>
<td>C</td>
<td>-0,5</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,549</td>
</tr>
<tr>
<td>D</td>
<td>0,718</td>
<td>2,11</td>
<td>0,52</td>
<td>0,788</td>
</tr>
<tr>
<td>E</td>
<td>-0,33</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,362</td>
</tr>
<tr>
<td>F</td>
<td>-1,7</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,865</td>
</tr>
<tr>
<td>G</td>
<td>-1,2</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,317</td>
</tr>
<tr>
<td>H</td>
<td>-0,6</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
<tr>
<td>I</td>
<td>-0,6</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
<tr>
<td>J</td>
<td>0,2</td>
<td>2,11</td>
<td>0,52</td>
<td>0,219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONA</th>
<th>(c_p)</th>
<th>(c_e)</th>
<th>(q_b)</th>
<th>(q_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0,50</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,549</td>
</tr>
<tr>
<td>B</td>
<td>0,72</td>
<td>2,11</td>
<td>0,52</td>
<td>0,788</td>
</tr>
<tr>
<td>C</td>
<td>-0,33</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,362</td>
</tr>
<tr>
<td>D</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
<tr>
<td>E</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
<tr>
<td>F</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
<tr>
<td>G</td>
<td>-0,60</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
<tr>
<td>H</td>
<td>-0,60</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
<tr>
<td>I</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
<tr>
<td>J</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Fig. 3.5.1.3.1 Esquema de distribució dels coeficients \(c_e \) pel del vent a 0º segons la geometria de la nau
Càrregues de vent quan el vent bufa a 0º:

direcció 180º

<table>
<thead>
<tr>
<th>ZONA</th>
<th>(c_p)</th>
<th>(c_e)</th>
<th>(q_b)</th>
<th>(q_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,2</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,317</td>
</tr>
<tr>
<td>B</td>
<td>0,8</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,878</td>
</tr>
<tr>
<td>C</td>
<td>0,5</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,549</td>
</tr>
<tr>
<td>D</td>
<td>0,718</td>
<td>2,11</td>
<td>0,52</td>
<td>0,788</td>
</tr>
<tr>
<td>E</td>
<td>0,33</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,362</td>
</tr>
<tr>
<td>F</td>
<td>1,7</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,865</td>
</tr>
<tr>
<td>G</td>
<td>1,2</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,317</td>
</tr>
<tr>
<td>H</td>
<td>0,6</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
<tr>
<td>I</td>
<td>0,6</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
<tr>
<td>J</td>
<td>0,2</td>
<td>2,11</td>
<td>0,52</td>
<td>0,219</td>
</tr>
</tbody>
</table>

direcció 180º cas 2

<table>
<thead>
<tr>
<th>ZONA</th>
<th>(c_p)</th>
<th>(c_e)</th>
<th>(q_b)</th>
<th>(q_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,5</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,549</td>
</tr>
<tr>
<td>B</td>
<td>0,72</td>
<td>2,11</td>
<td>0,52</td>
<td>0,788</td>
</tr>
<tr>
<td>C</td>
<td>0,33</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,362</td>
</tr>
<tr>
<td>D</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
<tr>
<td>E</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
<tr>
<td>F</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
<tr>
<td>G</td>
<td>0,60</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
<tr>
<td>H</td>
<td>0,60</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
<tr>
<td>I</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
<tr>
<td>J</td>
<td>0,00</td>
<td>2,11</td>
<td>0,52</td>
<td>0,000</td>
</tr>
</tbody>
</table>

\(q_b\) cpi int=0,277 kN/m²

Fig. 3.5.1.3.2 Esquema de distribució dels coeficients \(c_e\) pel del vent a 180º segons la geometria de la nau
Càrregues de vent quan el vent bufa a 90°:

<table>
<thead>
<tr>
<th>ZONA</th>
<th>c_p</th>
<th>c_e</th>
<th>q_b</th>
<th>q_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,2</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,317</td>
</tr>
<tr>
<td>B</td>
<td>-0,8</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,878</td>
</tr>
<tr>
<td>C</td>
<td>-0,5</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,549</td>
</tr>
<tr>
<td>D</td>
<td>0,7</td>
<td>2,11</td>
<td>0,52</td>
<td>0,768</td>
</tr>
<tr>
<td>E</td>
<td>-0,3</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,329</td>
</tr>
<tr>
<td>F</td>
<td>-1,6</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,756</td>
</tr>
<tr>
<td>G</td>
<td>-1,3</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,426</td>
</tr>
<tr>
<td>H</td>
<td>-0,7</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,768</td>
</tr>
<tr>
<td>I</td>
<td>-0,6</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
</tbody>
</table>

$q_{b\text{ cpi int}} = 0,484 \text{ kN/m}^2$

Fig. 3.5.1.3.3 Esquema de distribució dels coeficients c_e pel del vent a 90° segons la geometria de la nau
Càrregues de vent quan el vent bufa a 270º:

<table>
<thead>
<tr>
<th>ZONA</th>
<th>(c_p)</th>
<th>(c_e)</th>
<th>(q_b) (kN/m²)</th>
<th>(q_e) (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,2</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,317</td>
</tr>
<tr>
<td>B</td>
<td>-0,8</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,878</td>
</tr>
<tr>
<td>C</td>
<td>-0,5</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,549</td>
</tr>
<tr>
<td>D</td>
<td>0,7</td>
<td>2,11</td>
<td>0,52</td>
<td>0,768</td>
</tr>
<tr>
<td>E</td>
<td>-0,3</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,329</td>
</tr>
<tr>
<td>F</td>
<td>-1,6</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,756</td>
</tr>
<tr>
<td>G</td>
<td>-1,3</td>
<td>2,11</td>
<td>0,52</td>
<td>-1,426</td>
</tr>
<tr>
<td>H</td>
<td>-0,7</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,768</td>
</tr>
<tr>
<td>I</td>
<td>-0,6</td>
<td>2,11</td>
<td>0,52</td>
<td>-0,658</td>
</tr>
</tbody>
</table>

\(q_b \) cpi int=0,699 kN/m²

Fig.3.5.1.3.4 Esquema de distribució dels coeficients \(c_e \) pel del vent a 270º segons la geometria de la nau
3.6. **Accions tèrmiques:**

Degut a les dimensions i característiques de la nau no cal preveure que les dilatacions i retraccions previstes afectin a la seguretat de l'estructura.

3.7. **Càrrega de neu:**

Com a valor de la càrrega de neu per unitat de superfície en projecció horitzontal q_n es pot prendre el valor obtingut de la següent expressió:

$$q_n = \mu \cdot s_k$$ \[Eq. 8\]

on:

μ: coeficient de forma segons la taula 3.5.3 del DB-SE AE

s_k: el valor característic de la càrrega de neu sobre un terreny horitzontal segons l’apartat 3.5.2 o l’annex E del DB-SE AE

La nau està situada en un solar a una alçada topogràfica de 133m sobre el nivell del mar, consultant l’annex E tenim que la nau se situa en la zona de clima hivernal 2, i que interpolant linealment a la taula Taula 3.7.1 el valor característic de la càrrega de neu resultant és de 0,47kN/m2.

Fig. 3.7.1 Zones climàtiques d’hivern
Taula 3.7.1 Sobrecàrrega de neu en un terreny horitzontal (kN/m²).

El coeficient de forma $\mu=1$ (cobertes amb inclinació menor a 30° i sense impediment al lliscament de la neu).

Finalment s’obté:

$$q_{\text{n}} = \mu \cdot s_{\text{k}} = 1 \cdot 0,47 \text{kN/m}^2 = 0,47 \text{kN/m}^2$$ \[\text{Eq. 9}\]

3.8. Accions accidentals:

3.8.1. Sisme:

Les accions sísmiques estan regulades per la Norma de la Construcción Sismoresistente: parte general i de edificación (NCSE).

Segons l’apartat 1.2.3 de la norma, en un edifici amb importància normal i una acceleració bàsica igual o menor de 0,04g no es obligatòria l’aplicació d’aquesta norma.

Segons la NCSE la nau industrial objecte d’aquest projecte es pot classificar com a construcció d’importància normal. L’acceleració sísmica bàsica del terme municipal de Polinyà és de $a_b=0,04g$. Per tant en aquest projecte, al no ser d’obligat compliment, no es tindran en compte les accions per efecte de sisme.

3.8.2. Incendi:

En aquest cas en tractar-se d’un establiment industrial les accions degudes a les agressions tèrmiques dels incendis venen definides pel “Reglamento de Seguridad contra incendios en establecimientos industriales en caso de incendio” i l’ “ordenanza municipal sobre las condiciones de protección contra incendios aplicables als establecimientos industrials” i el Document Bàsic de protecció contraincendis del Código Técnico de la Edificación.
Segons es detalla més endavant al capítol “3.11 Resistència al foc de l’estructura” s’haurà d’assegurar una resistència al foc de l’estructura de R30, en aquest apartat es detalla el gruix mínim necessari de pintura intumescent per a cada tipus de perfil.

3.8.3. Impacte de vehicles:

Per tal d’evitar l’impacte de vehicles contra elements de l’estructura es protegiran els pilars de possibles impactes accidentals amb uns tubs metàl·lics disposats al voltant dels pilars a una alçada d’1m.

3.8.4. Altres accions accidentals:

No es preveuen altre tipus d’accidents que puguin ocasionar una acció accidental sobre l’estructura portant.

3.9. Combinacions d’accions

El valor de càlcul dels efectes de les accions corresponents a una situació persistent o transitòria, es determina mitjançant combinacions d’accions a partir de l’expressió:

\[\sum_{j \geq 1} \gamma_{G,j} \cdot G_{k,j} + \gamma_{P} \cdot P + \gamma_{Q,k} \cdot Q_{k,j} + \sum_{i \geq 1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i} \]

[Eq. 10]

On:

\(G_k \): Valor característic de les accions permanents

\(P \): Valor característic de les accions permanents degudes al pretensat

\(Q_k \): Valor característic de les accions variables

\(\gamma_G \): Coeficient de seguretat per accions permanents

\(\gamma_Q \): Coeficient de seguretat per accions variables

\(\psi_0 \): Coeficient de simultaneïtat

Es a dir, considerant l’actuació simultània de:

a) Totes les accions permanents, en valor de càlcul, \((\gamma_G \cdot G_k)\), inclòs el pretensat \((\gamma_P \cdot P)\).

b) Ucció variable qualsevol, en valor de càlcul \((\gamma_Q \cdot Q_k)\), havent d’adoptar com a tal una rere l’altre successivament en diferents anàlisis.

c) La resta d’accions variables, en valor de càlcul de combinació \((\gamma_Q \cdot \psi_0 \cdot Q_k)\).
El valor de càlcul dels efectes de les accions corresponents a una situació extraordinària, es determina mitjançant combinacions d’accions a partir de l’expressió:

\[
\sum_{j=1}^{\infty} y_{G_{k,j}} \cdot G_{k,j} + y_{P} \cdot P + A_{d} + y_{Q_{1,i}} \cdot \psi_{1,i} \cdot Q_{1,i} + \sum_{i=1}^{\infty} y_{Q_{2,i}} \cdot \psi_{2,i} \cdot Q_{2,i}
\]
[Eq. 11]

Es a dir, considerant l’actuació simultània de:

a) Totes les accions permanentes, en valor de càlcul, \((\gamma G \cdot G_k)\), inclòs el pretensat \((\gamma P \cdot P)\).

b) Una acció accidental qualsevol, en valor de càlcul \((Ad)\), havent d’analitzar-se successivament cadascuna de les accions.

c) Una acció variable qualsevol, en valor de càlcul \((\gamma Q \cdot \psi_1 \cdot Q_k)\), havent d’adoptar com a tal una rere l’altra successivament en diferents anàlisis.

d) La resta d’accions variables, en valor de càlcul quasi permanent \((\gamma Q \cdot \psi_2 \cdot Q_k)\).

3.10. Coeficients de seguretat i simultaneïtat

Els coeficients de seguretat i simultaneïtat utilitzats en el càlcul són els indicats a les taules 4.1 i 4.2 del DB-SE i l’EHE08. Seguidament es poden veure els coeficients utilitzats en el cas particular d’aquest projecte.
E.L.U. de trencament. Acer laminat: CTE DB-SE A

<table>
<thead>
<tr>
<th>Persistent o transitòria</th>
<th>Coeficients parcials de seguretat (γ)</th>
<th>Coeficients de combinació (ψ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Favorable</td>
<td>Desfavorable</td>
</tr>
<tr>
<td>Càrrega permanent (G)</td>
<td>0.800</td>
<td>1.350</td>
</tr>
<tr>
<td>Sobrecàrrega (Q)</td>
<td>0.000</td>
<td>1.500</td>
</tr>
<tr>
<td>Vent (Q)</td>
<td>0.000</td>
<td>1.500</td>
</tr>
<tr>
<td>Neu (Q)</td>
<td>0.000</td>
<td>1.500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accidental d’incendi</th>
<th>Coeficients parcials de seguretat (γ)</th>
<th>Coeficients de combinació (ψ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Favorable</td>
<td>Desfavorable</td>
</tr>
<tr>
<td>Càrrega permanent (G)</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Sobrecàrrega (Q)</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Vent (Q)</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Neu (Q)</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* Les sobrecàrregues d’ús per a cobertes lleugeres no són concomitants amb la resta de càrregues variables.

E.L.U. de trencament. Formigó: EHE-08-CTE

<table>
<thead>
<tr>
<th>Persistent o transitòria</th>
<th>Coeficients parcials de seguretat (γ)</th>
<th>Coeficients de combinació (ψ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Favorable</td>
<td>Desfavorable</td>
</tr>
<tr>
<td>Càrrega permanent (G)</td>
<td>1.000</td>
<td>1.350</td>
</tr>
<tr>
<td>Sobrecàrrega (Q)</td>
<td>0.000</td>
<td>1.500</td>
</tr>
<tr>
<td>Vent (Q)</td>
<td>0.000</td>
<td>1.500</td>
</tr>
<tr>
<td>Neu (Q)</td>
<td>0.000</td>
<td>1.500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accidental</th>
<th>Coeficients parcials de seguretat (γ)</th>
<th>Coeficients de combinació (ψ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Favorable</td>
<td>Desfavorable</td>
</tr>
<tr>
<td>Càrrega permanent (G)</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Sobrecàrrega (Q)</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Vent (Q)</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Neu (Q)</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
3.11. Resistència al foc de l’estructura

Tal i com s’ha indicat anteriorment caldrà seguir l’establert en el RSCIEI i l’"ordenança municipal sobre les condicions de protecció contra incendis aplicables als establiments industrials".

Segons aquesta normativa l’edifici queda classificat com a tipus C, ja que es tracta d’un establiment industrial que ocupa totalment un o diversos edificis situats a distància superior als tres metres de l’edifici més proper. Aquesta distància haurà de ser lliure de qualsevol element susceptible de propagar un incendi.

La coberta de l’edifici es pot classificar com a coberta lleugera, el pes de la coberta no excedeix els 100 kg/m\(^2\), i suposant un risc d’incendi alt la resistència al foc que cal justificar per a l’estructura portant és una R30. Això vol dir que s’haurà de justificar la capacitat de l’estructura de resistir un incendi durant 30 minuts sense que això afecti la seva integritat.

S’especifica en càlculs i plànols l’espessor mínim de pintura que cal aplicar per complir amb aquest requisit de R30.

3.11.1. Protecció amb pintura intumescent

Per tal de garantir una resistència al foc R30 a l’estructura caldrà recobrir tots els perфils amb una capa de pintura intumescent, en aquest cas s’ha escollit una pintura Promat WIP amb els següents espessors mínims segons la massivitat de cada perfil.

Característiques tècniques de la pintura Promat WIP

Rendiment:	1kg/m\(^2\) per cada 500 micres d’espessor
Temps de secat:	6 hores (20\(^\circ\) i 50% humitat)
Sòlids en pes:	70\%
Pes específic:	1,36gr/cc
PH:	8

<table>
<thead>
<tr>
<th>PERFIL</th>
<th>Massivitat (m(^{-1}))</th>
<th>Espessor pintura mínim (micres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEB280</td>
<td>123</td>
<td>299</td>
</tr>
<tr>
<td>HEB160</td>
<td>234</td>
<td>534</td>
</tr>
<tr>
<td>IPE 550</td>
<td>140</td>
<td>299</td>
</tr>
<tr>
<td>IPE 300</td>
<td>216</td>
<td>477</td>
</tr>
<tr>
<td>RHS 250x150x8</td>
<td>128</td>
<td>299</td>
</tr>
<tr>
<td>SHS 250x10</td>
<td>103</td>
<td>299</td>
</tr>
<tr>
<td>SHS 120x5</td>
<td>205</td>
<td>411</td>
</tr>
<tr>
<td>SHS 90x4</td>
<td>257</td>
<td>589</td>
</tr>
</tbody>
</table>
3.12. Característiques dels materials emprats:

Acer laminat:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designació</td>
<td>S275</td>
</tr>
<tr>
<td>Límit elàstic: f_y</td>
<td>275 N/mm²</td>
</tr>
<tr>
<td>Tensió de ruptura: f_u</td>
<td>410 N/mm²</td>
</tr>
<tr>
<td>Mòdul d’elasticitat: E</td>
<td>210.000 N/mm²</td>
</tr>
<tr>
<td>Mòdul de rigidesa: G</td>
<td>81.000 N/mm²</td>
</tr>
<tr>
<td>Coeficient de Poisson: ν</td>
<td>0,3</td>
</tr>
<tr>
<td>Coeficient de dilatació tèrmica: α</td>
<td>1,2·10⁻⁵m/mºC</td>
</tr>
<tr>
<td>Densitat: ρ</td>
<td>7.850 kg/m³</td>
</tr>
</tbody>
</table>

Taula 3.12.1 Característiques de l’acer laminat

Acer de cargols, femelles i volanderes

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Límit elàstic: f_y</td>
<td>480 N/mm² (6.8) / 480 N/mm² (8.8)</td>
</tr>
<tr>
<td>Tensió de ruptura: f_u</td>
<td>600 kp/ N/mm² (6.8) / 600 kp/ N/mm² (8.8)</td>
</tr>
</tbody>
</table>

Taula 3.12.2 Característiques dels cargols

Acer corrugat:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designació</td>
<td>B-500S</td>
</tr>
<tr>
<td>Límit elàstic: f_y</td>
<td>500 N/mm²</td>
</tr>
</tbody>
</table>

Taula 3.12.3 Característiques de l’acer corrugat

Formigó armat

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designació</td>
<td>HA25/</td>
</tr>
<tr>
<td>Resistència característica als 28 dies f_{ck}</td>
<td>25 N/mm²</td>
</tr>
<tr>
<td>Resistència de càlcul del formigó f_{cd}</td>
<td>16,67 N/mm²</td>
</tr>
<tr>
<td>Ambient:</td>
<td>IIa + Qa</td>
</tr>
<tr>
<td>Tipus de ciment:</td>
<td>(RC-03) CE; I/32,5 N</td>
</tr>
<tr>
<td>Màxima relació aigua /Ciment</td>
<td>0,60</td>
</tr>
<tr>
<td>Quantitat mínima de ciment:</td>
<td>275kg/m³</td>
</tr>
<tr>
<td>Tamany màxim de l’àrid:</td>
<td>20 mm</td>
</tr>
<tr>
<td>Consistència del formigó:</td>
<td>Tova</td>
</tr>
<tr>
<td>Sistema de compactació:</td>
<td>Vibrat</td>
</tr>
<tr>
<td>Nivell de control:</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Taula 3.12.4 Característiques del formigó
3.13. Resistència de les bigues i pilars metàl·lics

Un cop determinades la geometria de l’estructura, els materials emprats i les accions que actuen sobre l’estructura es procedeix al càlcul dels desplaçaments i esforços que hauran de suportar els diferents elements de l’estructura. Aquests càlculs han sigut realitzats mitjançant el programa informàtic Nou Metal 3D, que forma part del conjunt de programari per la construcció de Cype, aquest programa realitza un anàlisi matricial de l’estructura considerant un comportament elàstic i lineal dels materials.

El mètode de càlcul per a la comprovació de la resistència de les seccions s’escollirà segons la classe de secció. Les seccions es classifiquen segons la capacitat de deformació i desenvolupament de la resistència clàssica dels elements plans comprimits d’una secció sol·licitada per un moment flexor.

Taula 3.13.1 Models de distribució de tensions segons la classe de la secció, figura extreta del CB-SE-A
S’haurà de comprovar que cap de les barres té una resistència menor a la necessària, per a les combinacions d’accions que hi actuen, comprovant la seva resistència:

- a tracció
- a compressió (que inclou la comprovació de fallada per vinclament)
- a flexió
 - vinclament lateral, guerxament
- a esforç tallant
- per diferents combinacions d’esforços.

També s’haurà de comprovar que no se superi en cap cas l’esveltesa màxima establerta en el DB-SE-ACERO.

3.14. Comprovació de les unions

La facilitat i simplicitat en la construcció de les unions, tall de les barres, soldadura, trepant, etcètera influeix en alt grau en el cost de l’estructura, ja que presenten una gran part de la feina efectuada en taller. D’altra banda el número d’unions a calcular i dissenyar també té gran influència en el temps necessari per realitzar el projecte. Per aquesta raó s’ha intentat realitzar l’estructura de manera que les unions resultin el més senzilles possible, tant pel que fa a la fabricació com el càlcul d’aquestes.

L’estructura s’ha dissenyat de buscant el major grau de prefabricació en taller possible, d’aquesta manera es minimitzen els costos de desplaçament de medis i personal qualificat a l’obra, el control de qualitat en taller també és més fàcil fent més fiable aquesta opció.

Els nusos soldats que es realitzaran al taller són bàsicament els dels nusos en gelosia, i cordons realitzant peces de dimensions adequades per al seu transport i col·locació en obra. Les unions realitzades en obra es faran mitjançant unions cargolades, es faran així les unions entre gelosies i pilars, entre gelosies i corretges, unions de peces de gelosia, etc.

Les unions s’han comprovat a resistència, es poden consultar el càlculs a l’annex A i la geometria i disposició de les unions als plànols adjuntats a l’annex C. Per a totes les unions es comprova que els efectes de les accions, E_d per qualsevol de les accions de càlcul no superen la resistència de càlcul del nus R_d.

\[E_d \leq R_d \] [Eq. 12]
Les unions, en general, s’han de dimensionar perquè resisteixin com a mínim:

- Nusos rígids i empalmaments: la meitat de la resistència última de cadascuna de les peces a unir.

- Nusos articulats: una tercera part de l’axil o tallant últim (segons sigui el cas) de la peça a unir.

3.15. Fonamentació

Un cop calculada l’estructura i els esforços que aquesta transmetrà al terreny cal calcular la fonamentació on es recolzarà. El tipus de fonamentació escollida varia en funció de les característiques del terreny, les accions transmeses per l’estructura i la geografia de l’estructura.

Degut a que el substrat resistent de l’estructura no és a una profunditat molt elevada i que la tensió admissible d’aquest substrat és prou bona, 3,50kg/cm\(^2\), el més econòmic és realitzar la fonamentació de la nau industrial amb sabates aïllades de formigó armat, també es disposaran bigues de lligat entre les sabates per absorbir els esforços de flexió.

La normativa a seguir per al càlcul de les fonamentacions és el DB-SE-CIMENTACIONES del CTE, que regula els elements de fonamentació i contenció de tot tipus d’edificis, i la instrucció de formigó estructural EHE08.

Igual que per a la resta d’elements de l’estructura en la fonamentació és necessari comprovar tant els estats límits últims com els estats límits de servei. Els estats límits últims que cal considerar són: pèrdua de la capacitat portant del terreny de recolzament de la fonamentació per enfonsament, lliscament o bolcada, pèrdua de l’estabilitat global del terreny en l’entorn pròxima la fonamentació, pèrdua de capacitat resistent per fallada estructural o fallada del fonament per causes que depenen del temps. Pel que fa als estats límits de servei cal comprovar els moviments excessius que podrien induir esforços i deformacions a l’estructura, vibracions que de transmetre’s a l’estructura poden produir falta de confort i els danys o deteriorament que poden afectar negativament a l’aparença, durabilitat i la funcionalitat de l’obra.

La comprovació de tots els elements de fonamentació es realitzaran amb l’ajuda del programa informàtic Nou Metal 3d, en aquest programa l’usuari pot escollir la disposició, geometria i armat de les sabates i bigues riostra. Tot i així es procedeix al càlcul a mà de la sabata més sol·licitada, per corroborar els resultats obtinguts.
3.16. Càlcul i dimensionat del forjat col·laborant

El forjat de l’altell destinat a oficines es resoldrà amb un forjat col·laborant. El forjat col·laborant és un sistema que consisteix d’una xapa metàl·lica grecada que treballa conjuntament amb una llosa de formigó, la instal·lació d’aquests tipus de forjats en estructures metàl·liques és senzilla, ràpida i neta.

Un forjat mixt de xapa col·laborant està constituït per una xapa grecada d’acer sobre la qual es construeix una llosa de formigó que conté una malla d’armadura, destinada a mitigar la fissuració del formigó. En aquest tipus de forjat, la xapa grecada serveix de plataforma de treball durant el muntatge, d’encofrat per al formigó fresc i d’armadura inferior per al forjat després de l’enduriment del formigó.

Les xapes grecades han de tenir una resistència i una rigidesa suficients per a ocupar la funció d’encofrat, en la mesura del possible sense apuntalaments provisionals. A més, per a assegurar una bona connexió i un treball conjunt del formigó i l’acer es disposen connectors que connecten el forjat amb les bigues de suportació.

La llum màxima entre l’entramat de bigues d’acer laminat que suportaran el forjat col·laborant és de 3m. Les càrregues que actuen sobre el forjat són 2kN/m². Per aquestes condicions s’escull un forjat col·laborant de la casa Arcelor-Mittal model Cofrastra 70

![Fig. 3.16.1 Característiques geomètriques de la xapa col·laborant.](image-url)
3.17. Programes de càlcul utilitzats

Per al càlcul de l’estructura s’han utilitzat com a suport els següents programes informàtics:

Metal 3D versió 2009.1.h. Per al càlcul de l’estructura metàl·lica i la fonamentació.

Aquest programa realitza un anàlisi matricial de l’estructura, considerant un comportament elàstic i lineal dels materials. Les barres són definides com a elements lineals. Per cada estat de càrregues el programa genera totes les combinacions possibles segons la normativa escollida per l’usuari. A partir de la geometria i càrregues que s’introdueixen, el programa obté la matrícia de rígidesa de l’estructura i les matrícies de càrrega per hipòtesis simples. La matrícia de desplaçaments dels nusos de l’estructura s’obté invertint la matrícia de rígidesa per mètodes frontals. Després de trobar els desplaçaments per hipòtesi es calculen totes les combinacions per tots els estats de càrrega, i els esforços en qualsevol secció a partir dels esforços en els extremos de les barres i les càrregues aplicades a la barra.

Fig. 3.17.1 Vistes en 3d del model de càlcul utilitzat amb el programari Nou Metall 3d.
Cidjoint versió 1.38 Per a la comprovació de les unions amb perfils tubulars.

Aquest programa de " l'Instituto para la Construcción Tubular" realitza la comprovació de la resistència de diversos tipus d'unions amb perfils tubulars, segons les sol·licitacions, disposicions i seccions introduïdes per l'usuari. Aquest program segueix les recomanacions de les guies de disseny del CIDECT i compleix amb la normativa europea d'estructures metàl·liques, Eurocodi 3.

Classe Versió 2.001 Per a l'establiment del tipus de secció dels perfils.

Aquest programa desenvolupat a l'ETSEIB s'ha utilitzat per al càlcul de les seccions eficaces dels perfils de l'estructura. Aquest programa utilitza la normativa europea, l'Eurocodi3.
4. ACABATS I TANCAMENTS

Tancaments exteriors de l’estructura:

Els tancaments de l’estructura es realitzaran amb panells tipus sandvitx, amb una resistència al foc mínima de R30. El primer metre de façana s’hi col·locarà una paret de bloc de formigó, també es col·locaran diverses portes i finestres indicats en plànols.

S’ha escollit aquest sistema constructiu per les seves propietats, que el fan el material més idoni per al tancament de naus industrials:

- Elevada capacitat portant amb baix pes
- Aïllament tèrmic i acústic
- Facilitat de muntatge, senzillesa de reparació i substitució en cas de danys
- Baixos costos de manteniment
- Resistència al foc
- Higiènic, les llanes minerals que el componen son materials inerts i per tant imputrescibles i no susceptibles de creixement en ells de microorganismes o insectes.

Les plaques sandvitx estan constituïdes per dues xapes d’acer perfilat i prelacat que aporten resistència mecànica al conjunt i un nucli de llana de roca que fa les funcions d’aïllant tèrmic i acústic.

Aquestes plaques es fixaran sobre les corretges de façana i coberta.

Per a les façanes s’ha escollit un panell de façana amb les fixacions ocultes de la marca ACH-ISOVER amb un gruix de 50 mm.

Característiques tècniques panell façana ACH ISOVER

<table>
<thead>
<tr>
<th>Característiques</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessor</td>
<td>50 mm</td>
</tr>
<tr>
<td>Amplada</td>
<td>1150 mm</td>
</tr>
<tr>
<td>Transmitància tèrmica</td>
<td>0,69 W/(m² . K)</td>
</tr>
<tr>
<td>Resistència i estabilitat al foc:</td>
<td>RF 30 / EF 60</td>
</tr>
<tr>
<td>Resistència i estabilitat acústica</td>
<td>Rₐ=30, 6 dBA</td>
</tr>
<tr>
<td>Aïllament acústic</td>
<td>Rₜ₆ₐ=31 dB</td>
</tr>
<tr>
<td>Absorció acústica</td>
<td>Nᵦ=0,85</td>
</tr>
<tr>
<td></td>
<td>αₜ₆ₐ=0,9</td>
</tr>
</tbody>
</table>
Per a la coberta s’ha escollit un panell coberta amb dues greques de la marca ACH-ISOVER amb un gruix de 50 mm.

Característiques tècniques panell coberta ACH ISOVER

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessor</td>
<td>50 mm</td>
</tr>
<tr>
<td>Amplada</td>
<td>1150 mm</td>
</tr>
<tr>
<td>Transmitància tèrmica</td>
<td>0,621 W/(m². K)</td>
</tr>
<tr>
<td>Resistència i estabilitat al foc</td>
<td>RF 30 / EF 60</td>
</tr>
<tr>
<td>Aïllament acústic</td>
<td>Rₐ=33 dBA</td>
</tr>
<tr>
<td>Absorció acústica</td>
<td>Rₐw=33 dB, Nᵣₐ=0,85, αᵣₐw=0,85</td>
</tr>
</tbody>
</table>

Paviment:

Sobre la base de sorra compactada, es formarà un paviment de formigó fratasat amb agregat de polys de quars silici de color gris de 15 cm de gruix, El nivell d’acabat de la solera es situarà 30 cm per sobre de la base dels pilars de l’estructura o superfície superior de la fonamentació.

El formigó serà de 25 N/mm² de resistència característica. Es col·locarà una armadura formada per una malla electrosoldada de 150x150x8 mm.

Posteriorment, el paviment es tallarà mecànicament per a formar juntes de retracció que es segellaran amb resina epoxi.
5. VALORACIÓ ECONÒMICA DE LA REDACCIÓ DEL PROJECTE

Seguidament es fa una estimació del cost de redacció del projecte, sense entrar en el cost d’execució del projecte, visats o direccions d’obra. El present projecte final de carrera té una càrrega lectiva de 24 crèdits, l’escola indica una dedicació orientativa per l’estudiant de 2,25 x Número de Crèdits x 10 hores, que suposa un total de 540 hores.

Costos en mà d’obra:

<table>
<thead>
<tr>
<th>Hores</th>
<th>€/ hora</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enginyer júnior</td>
<td>490</td>
<td>30</td>
</tr>
<tr>
<td>Delineant</td>
<td>50</td>
<td>12</td>
</tr>
</tbody>
</table>

Total costos ma d’obra 15.300€

Costos materials i d’infraestructura:

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amortització ordinadors, programes informàtics</td>
<td>500€</td>
</tr>
<tr>
<td>Consumibles, pàper, enquadernacions.</td>
<td>50€</td>
</tr>
</tbody>
</table>

Total Costos materials i d’infraestructura: 550€

S’estima que el cost de redacció del present projecte és de 15.850€.
6. VALORACIÓ ECONÒMICA DEL COST D’EXECUCIÓ DE L’ESTRUCTURA

Seguidament es presenta el resum del cost d’execució per contracte (PEC) de l’estructura objecte d’aquest projecte, el pressupost detallat es pot consultar a l’annex de pressupost d’aquest mateix projecte.

PRESSUPOST D’EXECUCIÓ PER CONTRACTE

<table>
<thead>
<tr>
<th>DESCRIPCIÓ</th>
<th>VALOR (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSUPOST D’EXECUCIÓ MATERIAL (PEM)</td>
<td>947.689,34 €</td>
</tr>
<tr>
<td>13,00 % DESPESES GENERALS</td>
<td>123.199,61 €</td>
</tr>
<tr>
<td>6,00 % BENEFICI INDUSTRIAL</td>
<td>56.861,36 €</td>
</tr>
<tr>
<td>subtotal</td>
<td>1.127.750,32 €</td>
</tr>
<tr>
<td>IVA 16%</td>
<td>180.440,05 €</td>
</tr>
<tr>
<td>TOTAL (PEC)</td>
<td>1.308.190,37 €</td>
</tr>
</tbody>
</table>

El pressupost d’execució per contracte és de un milió un milió tres-cents vuit mil cent noranta euros i trenta-set cèntims.
7. **ESTUDI D’IMPACTE AMBIENTAL**

L’avaluació d'impacte ambiental és un instrument preventiu per a la protecció del medi ambient, és el document tècnic, objectiu i de caràcter interdisciplinari encaminat a predir les conseqüències de l'execució del projecte sobre el medi ambient i establir mesures correctores. D'acord amb la normativa vigent l'autorització de projectes públics i privats que puguin tenir incidències notables sobre el medi ambient només podran atorgar-se després de realitzar un estudi d'impacte ambiental, es dir, una avaluació dels seus efectes sobre el medi.

7.1. **Descripció del projecte**

El present projecte té per objecte la redacció del projecte per definir el càlcul estructural d’una nau industrial ubicada al polígon industrial de Can Humet a Polinyà.

L’estructura de la nau es realitzarà amb perfils metàl·lics, la fonamentació de la nau es realitzarà mitjançant sabates rígides aïllades de formigó armat connectades amb bigues de lligat.

Les fases de construcció de la nau industrial es dividiran en :

- Moviment de terres
- Construcció dels fonamentació
- Construcció de l’estructura metàl·lica
- Col·locació dels tancaments
- Pavimentació

7.2. **Anàlisi d’alternatives**

Ubicació en el territori:

La nau s’ubica en un polígon industrial existent, l’elecció d'aquest emplaçament s'ha fet en base a que el polígon ja consta de tots els serveis necessaris per a la possible activitat, la proximitat a autopistes i altres vies de comunicació que redueixen i faciliten els desplaçaments.

Tipologia estructural
La nau s’ha dissenyat optimitzant l’utilització de materials de construcció, que principalment serà l’acer i el formigó. També s’ha procurat que gran part dels treballs de construcció de l’estructura d’acer es puguin realitzar en taller de manera que es pugui controlar millor la generació de residus, contaminació i duració dels treballs de construcció al solar.

7.3. Descripció del medi

Medi físic

L’edificació projectada estarà ubicada, segons s’indica al plànol de situació adjunt, al terme municipal de Polinyà, comarca del Vallès Oriental, província de Barcelona. Les coordenades UTM de la parcel·la són X429.546 Y4.599.954.

La parcel·la delimita a l’oest pel carrer Pintor Joan Miró, al sud pel carrer Pintor Vila Cinca mentre al nord i a l’est es delimita amb parcel·les veïnes.

Àmbit territorial

La parcel·la se situa a la frontera del polígon industrial de can Humet de Dalt, separat pel carrer Joan Miró d’un terreny sense urbanitzar.

Fig. 7.3.1 Vista aèria del solar afectat

Clima

El clima és mediterrani, modificat per la topografia i amb freqüents inversions tèrmiques a l’hivern. La temperatura mitjana anual és de 14’ 5ºC i una notable amplitud tèrmica entre el gener 6 i el juliol 23. La pluviositat davalla des dels 1200 mm.

Aigües (superficials i subterrànies)
La parcel·la se situarà a 400 metres de la riera de Polinyà. No es troba situada sobre cap aqüífer protegit.

Atmosfera

Segons l’estació automàtica de la XPVCA més propera, UTM X,Y: 432055.0, 4597923.0, la qualitat de l’aire en aquest indret és d’índex 2.

Medi humà:

Polinyà té diversos polígons industrials, la terra dels quals és més gran que la zona urbana. S’hi han assentat empreses importants com Peguform Ibèrica, Astral, Nupik Internacional, etc.

7.4. Detecció o identificació dels impactes

Durant la construcció de la nau industrial hi ha el risc d’impactes negatius en el medi ambient en aquest període. Els efectes sobre el medi natural seran mínimes ja que l’activitat es realitzarà en un medi urbà, concretament en un polígon industrial on no hi ha residents. Les naus veïnes es podrien veure afectades per aquests impactes, per tant cal aplicar les mesures correctores necessàries.

A continuació s’exposen els diferents impactes mediambientals que es podrien ocasionar la seva valoració (compatible, moderat, sever, crític) i les mesures correctores proposades:

<table>
<thead>
<tr>
<th>IMPACTE</th>
<th>Valoració</th>
<th>MESURES CORRECTORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pols</td>
<td>Moderat</td>
<td>Regat de les terres per evitar l’aixecament de pols.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protecció de la càrrega en els transports.</td>
</tr>
<tr>
<td>Sorolls de maquinària</td>
<td>Compatible</td>
<td>No es realitzarà cap activitat que pugui generar sorolls de 8 del matí a 8 de la tarda.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Es comprovarà que la maquinaria compleixi les normatives vigents pel que fa a contaminació acústica.</td>
</tr>
<tr>
<td>Increment de terres en l’àmbit de treball</td>
<td>Moderat</td>
<td>Acopis adequats de les terres</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reutilització per formar terraplens</td>
</tr>
<tr>
<td>IMPACTE</td>
<td>Valoració</td>
<td>MESURES CORRECTORES</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Generació de residus</td>
<td>Moderat</td>
<td>Minimització de la generació de residus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Separació dels residus per a la seva reutilització o reciclatge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manteniment de l’ordre i la neteja de l’àmbit de l’obra.</td>
</tr>
<tr>
<td>Generació de runes</td>
<td>Moderat</td>
<td>Minimització de la generació de runes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gestió adequada de les runes per un ens autoritzat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manteniment de l’ordre i la neteja de l’àmbit de l’obra.</td>
</tr>
<tr>
<td>Emissió de gasos de la</td>
<td>Moderat</td>
<td>Revisió i manteniment de la maquinària</td>
</tr>
<tr>
<td>maquinària</td>
<td></td>
<td>No utilitzar la maquinària quan no sigui imprescindible.</td>
</tr>
<tr>
<td>Vessaments de pintures,</td>
<td>Moderat</td>
<td>S’emmagatzemaran en una zona segura que garanteixi la no absorció del sòl o en</td>
</tr>
<tr>
<td>olis i altres agents</td>
<td></td>
<td>cas d’abocament.</td>
</tr>
<tr>
<td>contaminants</td>
<td></td>
<td>S’utilitzaran els envasos adequats a cada substància.</td>
</tr>
</tbody>
</table>

7.5. Normativa impacte ambiental

Normativa bàsica referent als procediments d’avaluació d’impacte ambiental, i les activitats i els projectes sometsos a aquests procediments.

Normativa europea

- Directiva 1985/337, relativa a l’avaluació de les repercusions de determinats projectes públics i privats sobre el medi ambient. DOCE-L núm. 175, de 05.07.1985.

Normativa de l’Estat

Normativa de la Generalitat de Catalunya

• Decret 114/1988, d'avaluació d'impacte ambiental. DOGC núm. 1000, de 03.06.1988.
Agraïments

Vull agrair el suport que m'ha donat el meu director de projecte, Frederic Marimon, per la seva guia durant la redacció d'aquest projecte.

També vull agrair a la meva família i amics el suport i ànims que m'han donat durant aquest temps.
Bibliografia

Referències bibliogràfiques

[1] GARCIA, J. I ALTRES AUTORS; L’estructura i el projecte, Espanya. Escola Sert

[4] PACKER, WARDEINER, KUROBANE, DUTTA, YEOMANS; Guia de diseño 1 para nudos de perfiles tubulares rectangulares (RHS) bajo cargas predominantemente estáticas, Alemanya, ed. Per Comité international pour leDéveloppement et l’Étude de la Construcción tubulaire. 1996

Pàgines web

http://www.access-steel.com pàgina web sobre acer i l’Eurocodi

http://www.constructalia.com pàgina web de l’empresa Arcelor-Mittal

http://www.ictubar.es pàgina web de l’intituto para la Construcción tubular

http://www.isovert.net pàgina web d’Isover, fabricant de panells sandvitx

http://www.percosa.com pàgina web de Percosa, fabricant de perfils conformats