1. Resumen

El objetivo de este proyecto es obtener una distribución bimodal de tamaño de grano a fin de mejorar las propiedades mecánicas de un cemento de fosfato de calcio, siendo el cemento obtenido una apatita deficiente en calcio (CDHA) y el polvo utilizado fosfato tricálcico (α-TCP). En 1983, Brown and Chow introdujeron la posibilidad de obtener HA u otros fosfatos de calcio en forma monolítica a temperatura ambiente o fisiológica a partir de una reacción cementante entre una fase sólida en polvo, formada por uno o más fosfatos de calcio, y una fase líquida, formada por agua o una solución acuosa. Resulta de esta reacción cementante un cuerpo en forma de pasta que se puede inyectar en el cuerpo y endurecerse allí con los fluidos fisiológicos llamado cemento.

Hoy en día se investiga mucho la posibilidad de generar el crecimiento óseo con cementos porosos. En este trabajo sin embargo, se busca un cemento lo más denso posible jugando con el método de compactación para mejorar las propiedades mecánicas del material y hacerlo más adecuado para su implantación. Un método de compactación conocido es la sinterización, pero esta técnica a parte de inducir costes energéticos elevados, causa un aumento en el tamaño de grano muy considerable (disminuyendo pues su superficie específica y por lo tanto su capacidad de reabsorción) y el material resultante no puede ser inyectable. Para aprovechar las propiedades inherentes de los cementos, el método que se ha elegido es la utilización de una distribución bimodal de tamaño de partículas de α-TCP. Trabajando con una distribución bimodal se pretende que las partículas más pequeñas actúen de relleno de tal modo que se consiga una estructura mucho más densa y compacta lo que produce una mejora de la resistencia a la compresión de los cementos.

Se procedió pues a la fabricación de cementos con una distribución bimodal de partículas a partir de un polvo inicial de α-TCP constituido por: partículas grandes (G) y partículas de siete a diez veces más pequeñas (P) que las grandes. Para ello se tuvo que optimizar primero el protocolo de molienda que resultó con distribuciones de partículas con tamaño mediano teórico de 18.7 µm (G) y 2.7 µm (P).
Además de optimizar el tamaño de partículas, se investigó también el efecto de la proporción relativa entre número de partículas grandes y pequeñas (G:P) en la resistencia a la compresión del cemento resultante. Se prepararon cementos con las siguientes proporciones (en volumen): 1G, 1G 1P, 1G 2P, 1G 4P. Los resultados mostraron que la proporción 1G:4P (en volumen) fue la que mejores propiedades mecánicas dio a pesar que la proporción óptima calculada teóricamente era de 1G2P. Otro estudio que se llevó a cabo fue la influencia de la naturaleza de las partículas de relleno introduciendo partículas de β-TCP, que son menos reactivas que las de α-TCP, en los cementos anteriores. La finalidad era la de mejorar la inyectabilidad del cemento. El trabajo se completó investigando la naturaleza de la fase líquida del cemento. Diferentes fases líquidas: 1) Na2HPO4 al 2.5 wt% y 2) 2.5 wt% Na2HPO4/0.5M citrato de trisodio fueron empleadas en la fabricación de los cementos para evaluar la influencia del citrato de trisodio como agente dispersante.

Las técnicas de caracterización de los polvos que forman la fase sólida de los cementos empleados fueron la observación de la distribución de partículas con un Laser Diffraction Particle Size Analyser y de la microestructura del cemento con un microscopio de barrido SEM (Scanning Electron Microscopy). Para caracterizar los cementos, se midieron los tiempos iniciales y finales de fraguado mediante las agujas de Gillmore, la cohesión del cemento por inmersión en un baño de agua a 37 oC y la inyectabilidad mediante la extrusión de la pasta a través de seringas. a temperatura ambiente. Además, en los cementos ya fraguados se observó su microestructura por microscopia electrónica de barrido, la porosidad abierta por intrusión con mercurio (MIP) y se analizó el grado de transformación de la α-TCP por difracción de Rayos-X. Se midió la resistencia a la compresión de los cementos mediante un ensayo mecánico a compresión.
1. RESUMEN

2. GLOSARIO

2. INTRODUCCION

3. FUNDAMENTOS TEORICOS

3.1 El hueso en general

3.1.1 Funciones

3.1.2 Estructura

3.1.3 Composición

3.2 Biomecánica del hueso

3.2.1 Dinámica del hueso

3.2.2 Propiedades mecánicas

3.3 Sustitución ósea

3.3.1 Materiales empleados para la sustitución ósea

3.4 Fosfatos de calcio

3.4.1 Metódos de procesado de fosfatos de calcio

3.4.2 Cementos de fosfatos de calcio

3.5. Métodos de compactación

3.5.1 Modelo de empaquetamiento con esferas de diámetro uniforme

3.5.2 Empaquetamiento de esferas bimodales

4. MATERIALES Y METODOS

4.1 Materiales utilizados

4.1.1 Fase sólida

4.1.2 Fase líquida

4.2 Obtención de los cementos

5. CARACTERIZACION DE LOS MATERIALES

5.1 Caracterización de los polvos

5.1.1 Difracción de Rayos-X

5.1.2 Granulometría

5.1.3 Microestructura

5.2 Caracterización de los cementos

5.2.1. Microestructura

5.2.2 Difracción de Rayos-X

5.2.3 Propiedades mecánicas de los cementos
5.2.4 Porosimetría...42
5.3 Caracterización de la pasta de cemento.................................42
 5.3.1 Tiempos de fraguado y tiempo de cohesión.....................42
 5.3.2 Inyectabilidad...43

6. RESULTADOS Y DISCUSION ..45
 6.1 Caracterización del polvo...45
 6.1.1 Difracción de Rayos X ...45
 6.1.2 Molienda ..47
 6.1.3 Granulometría...50
 6.1.4 Tamizado ...56
 6.1.5 Microestructura ..57
 6.1.6 Selección de la proporciones de partículas grandes y partículas pequeñas59
 6.2 Caracterización de los cementos fraguados.........................65
 6.2.1 Microestructura ..65
 6.2.2 Porosimetría MIP ..68
 6.2.3 Ensayos de compresión ...71
 6.3 Caracterización de la pasta de cemento...............................84
 6.3.1 Inyectabilidad ..84
 6.3.2 Cohesión ...87
 6.3.3 Tiempos de fraguado inicial y final............................89

CONCLUSIONES ...91

PERSPECTIVAS FUTURAS ...93

COSTES ECONOMICOS ...95

IMPACTOS MEDIOAMBIENTALES ..97

AGRADECEIMIENTOS ...99

BIBLIOGRAFÍA ..101
2. GLOSARIO

α-TCP: fase α del fosfato tricalcico, α-Ca₃(PO₄)₂

β-TCP: fase β del fosfato tricalcico, β-Ca₃(PO₄)₂.

CDHA: hidroxiapatita deficiente en calcio Ca₉B(PO₄)₅B(HPO₄)OH.

HA: hidroxiapatita, Ca₁₀(PO₄)₆(OH)₂.

PHA: hidroxiapatita precipitada, iniciador de reacción de fraguado

Reabsorbible: capacidad de un material a degradarse químicamente, siendo reemplazado por el tejido del huésped.

Relación L/P, líquido/polvo: relación entre el volumen de solución acuosa en mL y la masa en g de la fase sólida de polvo empleado para fabricar el cemento.

Solución Ringers: solución acuosa de NaCl concentrada a 0,9%.

SEM: Microscopio electrónico de barrido (Scanning Electron Microscopy)

Granulometría: relación de porcentajes en que se encuentran los distintos tamaños de partículas de un polvo respecto al total.

Resistencia a la compresión: esfuerzo máximo que puede soportar un material bajo una carga de aplastamiento; la resistencia a la compresión se calcula dividiendo la carga máxima por el área transversal original de una probeta en un ensayo de compresión.

Fraguado: endurecimiento de la mezcla de polvo y solución acuosa utilizados para fabricar cementos.

Ball-to-powder weight ratio: relación entre el número de bolas de ágata de un molino que emplear en función de la masa de polvo que moler.
2. INTRODUCCION

Una de las disciplinas que está teniendo más auge hoy en día es la fabricación de materiales adecuados para la ingeniería de tejidos. Esta disciplina utiliza materiales con una porosidad elevada capaz de facilitar la entrada de células óseas en su interior con la finalidad de regenerar el tejido óseo. Aunque este tipo de materiales reporta muchas ventajas tiene el gran inconveniente de carecer de estabilidad mecánica, especialmente cuando todavía no se ha formado tejido óseo en el interior del material. Así pues, para todas aquellas aplicaciones que requieran de estabilidad mecánica este tipo de materiales no puede ser utilizado. En el presente proyecto se pretende mejorar las propiedades mecánicas de los cementos de fosfato de calcio para que encuentren aplicación no solo en el campo de la ingeniería de tejidos sino también en aquellas aplicaciones que requieren de materiales con mayor resistencia mecánica. La estrategia que se pretende utilizar para conseguir este objetivo es la de densificar el cemento.

Un método de densificación clásico es la sinterización pero esta técnica induce costes energéticos elevados, una posible transformación parcial de hidroxiapatita en oxiapatita y dificultades para introducir en la apatita por ejemplo especies volátiles o degradables a la temperatura del tratamiento térmico. Una alternativa a la sinterización para la preparación de cementos compactos reside en la utilización de una distribución bimodal de tamaños de grano. Puesto que la formación de los cementos implica la mezcla de una fase sólida en forma de polvo con una fase acuosa, la idea es la de utilizar como fase solida una mezcla adecuada de partículas grandes y pequeñas de forma que las partículas pequeñas rellenen los huecos generados por el empaquetamiento de las más grandes. Se pretende conseguir así una estructura más densa y compacta a fin de mejorar la resistencia a la compresión de los cementos, sin la necesidad de procedimientos de alta temperatura.

Concretamente en el proyecto se trabajará con cementos fabricados utilizando una distribución bimodal de partículas de α-TCP con partículas pequeñas de siete a diez veces más inferiores que las grandes. Se investigará también el efecto de la proporción de partículas grandes y partículas pequeñas en las propiedades del cemento y la inyectabilidad y cohesión de los cementos resultantes.
3. FUNDAMENTOS TEORICOS

3.1 El hueso en general

3.1.1 Funciones

El cuerpo humano de un adulto está formado por 206 huesos aproximadamente. La rigidez de éstos les conduce la función de protección de los órganos blandos de nuestro organismo. Además, el esqueleto proporciona enlaces rígidos y sitios de sujeción del muslo, y facilita la acción del muslo y el movimiento del cuerpo: es un tejido conectivo.

El hueso es el único tejido que tiene esta estructura y propiedades mecánicas peculiares que le permiten cumplir estos papeles. El hueso es uno de las estructuras más duras del cuerpo, siendo el esmalte y la dentina de los dientes los únicos materiales del cuerpo que superan al hueso a nivel de dureza.

El hueso es el tejido el más dinámico y metabólicamente más activo en el cuerpo. Gracias a su importante vascularización, tiene una capacidad de regeneración y puede modificar sus propiedades y su configuración si las exigencias mecánicas cambian. Así por ejemplo, se observa una disminución en la densidad ósea después de periodos de inactividad o al contrario, aumenta, si hay actividad.

Hay también cambios en la forma del hueso que se observan sobre todo durante la cura de una fractura y después de algunas operaciones. [1]

3.1.2 Estructura

A nivel microscópico, la unidad estructural fundamental del hueso es el osteon, o sistema haversiano (figura 3-1). En el centro de cada osteon hay un canal estrecho, llamado canal haversiano, que contiene los vasos sanguíneos y las fibras nerviosas. El osteon en sí está constituido por series de capas concéntricas (lamellae) de matriz
mineralizada alrededor del canal central, lo que es una configuración parecida a los anillos de crecimiento en un tronco de árbol.

![Diagrama del hueso]

Figure 3-1 : Estructura del hueso [1]

Junto con los límites de las lamellae hay pequeñas cavidades llamadas lacunae, cada una conteniendo una única célula ósea, o osteocito. Irradiando desde las lacunae se localizan minúsculos canales, o caniculi, dentro de los cuales el proceso citoplásmico de los osteocitos se extiende.

En la periferia de cada osteon, se sitúa una línea de cemento que es una estrecha área de sustancia parecida a un cemento compuesta fundamentalmente por glicosaminoglicanos GAGs. El caniculi no sobrepasa esta línea cementada de la misma manera que las fibras de colágeno de la matriz interconectan desde una lamela hasta otra con un osteon pero no pasa la línea cementada. Este entrecruzamiento sin duda aumenta
la resistencia del hueso y probablemente explica porque la línea cementada es la parte la más débil de la micro estructura del hueso.

Al nivel macroscópico, se distinguen dos tipos de tejidos óseos: el hueso cortical o compacto, y el hueso trabecular o esponjoso. La distinción proviene del grado de porosidad. En efecto, el hueso cortical tiene una estructura densa como el marfil (densidad ósea igual a 1.85-2 g/cm³) mientras que el hueso trabecular está compuesto de láminas finas (trabeculae) en un “free mesh” (densidad ósea igual a 0.15-1 g/cm³).

El tejido del hueso trabecular está dispuesto en lacunae concéntricas que contienen lamellae pero no canales haversianos. El hueso cortical siempre se ubica alrededor del hueso cortical, pero la cantidad relativa de cada uno varía según el tipo de hueso y sus requisitos funcionales. [1]

Figure 3-2 : Hueso trabecular, con sus trabeculae orientadas
3.1.3 Composición

En calidad de tejido conectivo, el hueso está constituido por una parte inorgánica y una parte orgánica. Así, una característica principal del hueso es su alto contenido de materia inorgánica, en forma mineral, que está estrechamente relacionada con la matriz orgánica. La parte orgánica del hueso (30% en del peso seco total) confiere al hueso flexibilidad y elasticidad y la parte mineral o inorgánica (70%) es el tejido duro y rígido del hueso. No obstante, la composición del hueso difiere según el sitio, la edad, la alimentación, y la presencia o no de enfermedad.

En un hueso humano, la parte mineral está constituida por una fase que se asemeja mucho a la hidroxiapatita, y se encuentra principalmente en forma de pequeños cristales cuya composición es Ca_{10-x} (PO_4)_{x} (HPO_4)_{6-x} (OH)_{2}. Estos minerales, que representan del 60 hasta 70% del peso seco total del hueso, proporcionan la consistencia sólida del hueso. El agua constituye del 5 hasta 8% de la parte mineral, y el resto es la matriz orgánica fundamentalmente compuesta de colágeno. El hueso sirve de reserva para los minerales esenciales del cuerpo, particularmente el calcio.

La parte mineral esta incrustada en varias fibras orientadas de proteína de colágeno, que constituyen la parte fibrosa de la matriz extracelular. Las fibras de colágeno (tipo I) son resistentes y maleables, pero resisten al estiramiento y tienen una extensibilidad baja. El colágeno constituye aproximadamente el 90% de la matriz extracelular y el 25 hasta 30% del peso seco del hueso.

La sustancia gelatinosa ubicada alrededor de las fibras de colágeno está constituida principalmente por proteínas de polisacáridos, o glicosaminoglicanos (GAGs), fundamentalmente en la forma de macromoléculas complejas llamadas proteoglicanos (PGs). Los GAGs sirven de cemento entre las capas de fibras de colágeno mineralizadas y forman aproximadamente el 5% de la matriz extracelular.

El agua es bastante abundante en el hueso vivo, ya que 25% del peso total seco del hueso es agua. Por poco 85% del agua del hueso se encuentra en la matriz orgánica, alrededor de la fibras de colágeno y de la sustancia producida por las células, y en las
cascaras de hidratación circundante los cristales. El 15% que sobra está en los canales i
cavidades que albergan las células de hueso y llevan nutrimentos al tejido óseo.

Es importante destacar que las apatitas biológicas, hueso, dentina, esmalte, son
componentes no estequiometricos, siempre deficientes en calcio y con presencia de
carbonato en su estructura, de muy baja cristalinidad, con un elevado número de defectos
reticulares y un elevada superficie específica consecuencia de su pequeño tamaño de
partículas. Las apatitas que forman los huesos tienen tamaños inferiores a 500 Å[1] Esto
explica la solubilidad de las apatitas biológicas y la constante regeneración del hueso
mediante ciclos continuos de disolución-cristalización. Además, la presencia de CO$_3^{2-}$ en la
estructura de la apatita biológica es fuente principal de distorsiones que crean a su
alrededor micro tensiones y defectos cristalinos que también influyen de manera
significativa en su solubilidad[1].

3.2 Biomecánica del hueso

3.2.1 Dinámica del hueso

El hueso es un tejido vivo de tal modo que sus células segregan o reabsorben la
matriz extracelular. Células de diferente naturaleza cumplen funciones distintas: los
osteoblastos (célula formadora de hueso), los osteoclastos (responsables de reabsorber el
hueso), los osteocitos (células óseas maduras).

Por otra parte, aunque el hueso es capaz de remodelarse y regenerarse, esta
capacidad es función del tamaño del defecto. No obstante los factores determinantes del
crecimiento óseo son de distintos tipos: genéticos, sistémicos (hormonales), locales
(nerviosos, mecánicos), fisiológicos, patológicos, nutricionales y pueden depender también
del estilo de vida.

La remodelación del hueso se resume con la ley de Wolf: “En un hueso de una
forma determinada, los elementos funcionales que lo componen se sitúan en la dirección
de la presión funcional y aumentan o disminuyen su masa según las variaciones de
intensidad de dicha presión”[5] i.e. la forma sigue a la función. La dirección y disposición
que adoptan las trabéculas óseas en el segmento proximal del fémur están adaptadas para soportar cargas de compresión y tracción. Las estructuras óseas se orientan así mismas en la forma y masa que mejor resiste las fuerzas extrínsecas. Hoy en día, hay muchos estudios que permiten demostrar que la regeneración ósea se puede estimular.

3.2.2 Propiedades mecánicas

Biomecánicamente, el tejido óseo puede ser descrito como un material compuesto bifásico, considerando los cristales de apatita como una fase y fundamentalmente el colágeno como otra fase. En este tipo de material (un ejemplo no biológico sería el material con fiberglass) en el cual está insertado un material duro y frágil en un material más débil y más flexible, las dos sustancias son más resistentes combinadas que cada una sola (Basset, 1965). La combinación de ambos materiales confiere al hueso un comportamiento mecánico visco-elástico. Las propiedades mecánicas las más importantes del hueso son su resistencia y su rigidez.

Sin embargo, las propiedades mecánicas de los diferentes tipos de hueso difieren (Figura 3). En efecto, el hueso cortical es más rígido que el hueso trabecular y aguanta más fuerza pero menos deformación antes de la rotura. A causa de su estructura porosa, el hueso trabecular tiene una gran capacidad de almacenamiento de energía. La diferencia física entre los dos tipos de hueso se cuantifica con la densidad aparente del hueso cuya definición es la masa de tejido óseo presente en una unidad de volumen de hueso (gramos por centímetros cuadrados [g/cc]).
En la Figura 3-1 se observan diferentes valores de propiedades mecánicas para hueso cortical en función de la orientación de aplicación de la fuerza. Se puede observar que no solo los diferentes huesos presentan valores de propiedades mecánicas diferentes entre sí (Figura 3-3) sino que para un mismo hueso, según se haga el ensayo su valor difiere dada la anisotropía intrínseca de este tipo de material (Tabla 3-1).

![Gráfica de comportamiento mecánico del hueso cortical y del hueso trabecular](image)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Orientation</th>
<th>Breaking Strength (MPa)</th>
<th>Yield Stress (MPa)</th>
<th>Ultimate Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
<td>Longitudinal</td>
<td>133</td>
<td>114</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>Tangential</td>
<td>52</td>
<td>–</td>
<td>0.007</td>
</tr>
<tr>
<td>Compression</td>
<td>Longitudinal</td>
<td>205</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Tangential</td>
<td>130</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>67</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Tabla 3-1: Heterogeneidad en las propiedades del hueso
En cuanto al hueso trabecular, su módulo de Young es generalmente del orden de 0.010-2GPa y su resistencia a la compresión es del orden de 0.1-30Mpa [3].

Esta heterogeneidad a nivel de propiedades mecánicas del hueso deja entrever la necesidad de la fabricación de materiales adecuados para cada una de estas aplicaciones.

Sin embargo, fuerzas y momentos pueden ser aplicadas en una estructura en varias direcciones, produciendo tensión, compresión, bending, cizalladura, torsión, y combinación de fuerzas. El hueso en vivo está sometido a todos estos tipos de modos de aplicación de cargas.

En este proyecto, se observará el comportamiento mecánico frente a la compresión. Durante la compresión, cargas iguales y opuestas son aplicadas en la superficie de la estructura de tal modo que resultan una fuerza y una deformación de compresión dentro de la estructura. La fuerza de compresión puede ser considerada como varias pequeñas fuerzas directamente aplicadas en la superficie de la estructura. La fuerza máxima a la compresión ocurre en un plano perpendicular a la carga aplicada. La estructura se acorta y se amplía con la compresión.

Figure 3-4 : Modelización de la aplicación de fuerzas de compresión
Clinicamente, las fracturas debidas a fuerzas de compresión tienen lugar en las vértebras que están sometidas a altas fuerzas de compresión. Este tipo de fractura ocurre a veces en un tejido óseo maduro con osteoporosis. Además, en una articulación, fuerzas de compresión conduciendo a la fractura pueden producirse por una contracción fuerte anormal de los muslos circundantes.

3.3 Sustitución ósea

Dada la gran variedad a nivel de propiedades mecánicas que presentan los diferentes tipos de hueso (Sección 3.2.2) la necesidad de fabricar materiales aptos para cada necesidad es obvia. Además hay también que añadir la constante necesidad de sustitutos óseos adecuados para el tipo de herida en el hueso, enfermedades degenerativas y algunos casos de cirugía reconstructiva. Tratamientos tradicionales como son los "autografts" y "allografts"utilizados como placas biológicas para ayudar la reconstrucción del hueso después de una fractura por ejemplo presentan muchas desventajas respecto al uso de materiales sintéticos debido a la morbosidad del sitio del donante, también a limitaciones del tamaño de hueso que puede ser colocado, al rechazo y al gran riesgo de infecciones.

3.3.1 Materiales empleados para la sustitución ósea

Según la necesidad de sustitución ósea, se pueden emplear distintos tipos de materiales: metales, cerámicas porosas o densas, polímeros, compuestos, etc. Teóricamente el material ideal debiera: no ser tóxico, tener buena resistencia a la corrosión, ser biocompatible, bioactivo (crecimiento de hueso), poseer propiedades mecánicas adecuadas, y ser procesable. En la práctica es casi imposible fabricar un material con todas las especificaciones anteriores y a menudo hay alguna de las propiedades que no se cumple. En estos casos se debe priorizar las propiedades que son más importantes para la aplicación que se desee. Así pues, en la tabla 3-2 se presenta una serie de materiales con propiedades mecánicas muy diferentes. Según el sitio de aplicación se podría escoger uno u otro material.
En general los cerámicos son materiales muy duros pero frágiles, los metales en cambio son dúctiles y poseen, como los cerámicos, propiedades mecánicas demasiado elevadas comparadas con las del hueso (tabla 3-2). En cuanto a los polímeros presentan propiedades mecánicas muy similares a las del hueso trabecular y presentan además propiedades interesantes a nivel de biodegradabilidad (hilos de sutura por ejemplo).

3.3.1.1 Metales

Comparados con otros biomateriales como cerámicas y polímeros, los biomateriales metálicos poseen la propiedad interesante de ser capaz de aguantar tensiones elevadas sin romper aún si estas son dinámicas y también presentan una buena resistencia a la corrosión. Por eso, diversas aleaciones son ampliamente empleadas como materiales
estructurales para las reconstrucciones esqueléticas que requieran de propiedades mecánicas elevadas. Los ejemplos principales de implantes metálicos son las endoprótesis de cadera y de rodilla, placas, tornillos, clavos, implantes dentales, etc.

Sin embargo, este tipo de biomateriales indujeron en algunos casos problemas tales como aflojamiento, reacciones alérgicas debido por ejemplo a la presencia de Cr, Co o Ni procedentes de prótesis en metales inoxidables como las aleaciones de CoCr [2]. Otro problema importante de este tipo de prótesis utilizadas para la sustitución ósea es el alto módulo de Young del material metálico. Cuando se implanta un material con mayor módulo de Young que el del hueso de alrededor, el implante tiende a soportar toda la carga y esto causa la reabsorción (disolución) del hueso. Para evitar este problema es importante que el material que se introduzca tenga módulo similar al del hueso así la carga se puede transferir y se asegura la viabilidad del hueso.

3.4.2.2 Polímeros

Varios tipos de polímeros se emplean para aplicaciones médicas. Unos de estos son los polímeros termoplásticos. A temperatura ambiente los termoplásticos son sólidos visco elásticos. Sus comportamientos dependen de la morfología de su cadena, su estructura, su cristalinidad y el tipo de aditivos añadidos (generalmente para ayudar el procedimiento). La procesabilidad de este tipo de polímeros es la clave para su desarrollo en las aplicaciones biomédicas. En cuanto a la sustitución ósea, los termoplásticos se encuentran en implantes de reconstrucción y ortopédicos, en materiales reconstituyentes dentales hasta dentadura postiza.

3.4.1.3 Biocerámicas

Pese a desventajas como una fragilidad elevada, una conformabilidad baja y un precio elevado, las cerámicas en general tienen propiedades muy interesantes: temperatura de fusión, rigidez, dureza, resistencia mecánica elevadas; reactividad química, conductividad eléctrica, conductividad térmica bajas.
Además, las biocerámicas poseen una buena biocompatibilidad y osteointegración y son, en el caso de las apatitas, materiales parecidos al componente mineral del hueso. A menudo se utilizan en combinación con otros materiales de manera que confieren al material resultante biocompatibilidad y a su vez ganan p. Ej. ductilidad si se combina con un metal (es el caso de recubrimientos de hidroxiapatita sobre sustratos metálicos) o aumentan la rigidez de un polímero si se combinan con una matriz polimérica. Las biocerámicas se emplean en un amplio rango de aplicaciones en forma de cerámicas/vidrios densos, cerámicas/vidrios porosos, gránulos, recubrimientos, fibras de reenforzamiento en materiales compuestos, y la forma que nos interesa: cementos. La figura 3-5 resume las principales características de las cerámicas que se pueden utilizar como implantes.

![Figura 3-5: Características importantes de las cerámicas][1]

Además dentro de las cerámicas pueden distinguirse las que son inertes, bioactivas y reabsorbibles (figura 3-8).
Las primeras cerámicas que fueron utilizadas en aplicaciones médicas, la alúmina y la zirconia, fueron elegidas por sus cinéticas de reacción muy lentas, de tal modo que se podían clasificar como cerámicas “casi inertes”. Se observó que al implantar este tipo de cerámicas « inertes » se formaba una capa de tejido fibroso que impedía la fijación completa del material. Este comportamiento también se observa en metales y polímeros. Sin embargo, había una serie de materiales cerámicos (las apatitas y algunas composiciones de vidrios) en que no aparecía esta capa fibrosa sino que el material se enlazaba directamente con el hueso fijando completamente el implante. A estos materiales se los denomina bioactivos. Las cerámicas reabsorbibles se refiere a aquellas que se van degradando con el tiempo. Hoy en día existen biocerámicas que son bioactivas y a la vez reabsorbibles. Además, hay que tener en cuenta que las reacciones que puede inducir la implantación de una biocerámica en el hueso dependen de la composición y las propiedades de la cerámica implantada. Así si se tiene en cuenta la reacción del hueso vivo frente al implante, la amplia variedad de fosfatos de calcio conocidos (que serán detallados más adelante) y los factores que afectan a la reactividad química, es evidente que se consigue controlar las propiedades mecánicas de las cerámicas que van a ser implantadas.

Figura 3-6: Tipos de cerámicas para aplicaciones biomédicas
o al menos modificarlas en la dirección que se necesite, combinando adecuadamente parámetros composicionales, estructurales y morfológicos como se resumen en la figura 3-7 en el caso de los biomateriales de fosfato de calcio que introduciremos en la sección siguiente 3.4.

![Diagrama de biomateriales de fosfato de calcio](image)

Figura 3-7: Parámetros influyentes en las propiedades mecánicas de los biomateriales de fosfato de calcio[2].

3.4 Fosfatos de calcio

De todas las biocerámicas que existen, las que presentan más interés biológico son los fosfatos de calcio presentados en la tabla 3.

El gran interés en los fosfatos de calcio mostrados en la tabla 3-3, es que permiten obtener por diferentes procesados una hidroxiapatita más o menos similar a la hidroxiapatita del hueso.
3.4.1 Metódos de procesado de fosfatos de calcio

Se deslindan dos tipos de procesados: 1) los procesados de alta temperatura que incluyen la sinterización de cerámicas ya sean densas o porosas en forma de gránulos o bloques y la fabricación de recubrimientos cerámicos por p.ej. proyección plasma spray y 2) los procesados de baja temperatura que permiten obtener recubrimientos por vía biomimética y los cementos de fosfatos de calcio.

3.4.1.1 Procesados a alta temperatura

La sinterización de cerámicas permite obtener una HA estequiométrica muy cristalina y no reabsorbible que se utiliza sólo para aplicaciones sin soporte de carga. Los recubrimientos por plasma spray tienen como objetivo unir las buenas propiedades
mecánicas de los metales y la bioactividad de los fosfatos de calcio proyectando partículas de HA a elevada temperatura y velocidad sobre superficies metálicas. Se emplean para favorecer la fijación de prótesis.

3.4.1.2 Procesados a baja temperatura

Los procesados a baja temperatura son métodos de obtención de HA análogos a los procesos naturales es decir: a baja temperatura y en medio acuoso. Dan lugar a materiales consistentes en apatitas nanométricas, normalmente no estequiométricas, con contenido de grupos carbonato y/o grupos HPO$_4^{2-}$. Estos materiales son mucho más similares a la HA biológica que las apatitas formadas a alta temperatura.

Por lo que se refiere a los recubrimientos por vía biomimética, el principio es depositar una capa de apatita sobre un sustrato a partir de su inmersión en una solución sobresaturada en Ca$^{2+}$ y fosfato respecto a la HA.

Dada la importancia que tienen los cementos en este proyecto, en la siguiente sección se explicará con detalle el procesado de los cementos.

3.4.2 Cementos de fosfatos de calcio

En 1983, Brown and Chow introdujeron la posibilidad de obtener HA u otros fosfatos de calcio en forma monolítica a temperatura ambiente o fisiológica a partir de una reacción cementante entre una fase sólida en forma de polvo, formada por uno o más fosfatos de calcio, y una fase líquida, formada por agua o una solución acuosa. Durante la reacción cementante (figura 3-8) se produce por una lado la disolución de la fase sólida y al mismo tiempo tiene lugar la precipitación de cristales de apatita. Estos cristales se entrecruzan entre sí causando el endurecimiento del cemento. Como esta reacción no es inmediata, una vez se mezclan ambas fases se tiene una pasta que no endurecerá hasta al cabo de unos minutos lo que permite utilizar este material como pasta inyectable. Las ventajas pues que proporciona trabajar con cementos son muchas: una de las más importantes es su moldeabilidad in situ, su inyectabilidad, su buena aposición biomaterial-tejido circundante, su fácil manipulación, su ausencia de toxicidad, de exotermia durante el fraguado y de
contracción de volumen durante el fraguado. A continuación se explica con una esquema el proceso de fraguado de un cemento.

La contracción de un cemento durante el fraguado se puede explicar mediante un esquema. A continuación se muestra un diagrama que ilustra este proceso.

Figura 3-8: Proceso de fraguado y endurecimiento de un cemento

Para que sea viable un cemento en aplicaciones biomédicas, tiene que cumplir requisitos estrictos de diseño: ser biocompatible, endurecer en un medio acuoso sin desintegrarse en contacto con los fluidos corporales, tener un tiempo de fraguado bastante corto (inferior a 30 min), una resistencia mecánica aceptable en condiciones fisiológicas (en función de la aplicación) y por fin poder ser inyectado. Se tienen que considerar dos criterios importantes para que pueda ser inyectado un cemento: que sea inyectabilidad y que tenga cohesión. La inyectabilidad de un cemento es la habilidad de la pasta de cemento a ser extruida a través de una aguja sin endurecer, mientras que la cohesión del cemento es su capacidad de mantenerse íntegro al ponerlo en contacto con un fluido.

Hoy en día, se investigan composiciones y proporciones que permiten obtener precursores de apatitas biológicas, o sea mezclas de fosfatos, que en contacto con los fluidos fisiológicos evolucionan químicamente hacia apatitas deficientes en calcio con un
porcentaje de carbonatos alrededor de 4.5% en peso, de pequeño tamaño de partículas y muy baja cristalinidad. Para sintetizar cementos de fosfatos de calcio se utilizan varios componentes presentados en la figura 3-9.

De todas las composiciones mostradas en la Figura 3-9 la que tiene más interés en este proyecto es la que utiliza fosfato tricalcico alpha y PHA como fase solida. A continuación en las secciones 3.4.2.1 y 3.4.2.2., se dan algunas generalidades de las dos formas alótropicas en las que existe el TCP y de la reacción cementante de este compuesto.
3.4.2.1 El fosfato tricalcio (TCP) y su reactividad

El fosfato tricalcico existe en dos formas alotrópicas, la α- y la β- dependiendo de su estabilidad en función de la temperatura. La fase β-TCP (fosfato tricálcico β, β-Ca₃(PO₄)₂) es la fase estable a temperatura ambiente del fosfato tricalcio. Se obtiene a temperaturas por encima de los 800°C por descomposición térmica de apatita deficiente en calcio (CDHA) o por reacción en estado sólido entre un ortofosfato de calcio ácido, por ejemplo el DCPA, y una base, con es por ejemplo el CaO. A temperaturas por encima de los 1125°C, la fase β-TCP se transforma en otra fase de alta temperatura, la α-TCP. A pesar que la fase β-TCP pura no forma parte del hueso, se ha detectado en calcificaciones biológicas como whitlockite (β-TCPM - β-tricalcium magnesium phosphate, β-(Ca,Mg)₃(PO₄)₂) formando parte de piedras urinarias, caries, piedras salivales, cartílago articular y en algunos depósitos de tejidos blandos. La fase beta se utiliza ampliamente combinada con HA para formar fosfatos de calcio bifásicos (BCP). La fase alfa en cambio, al estabilizarse solo por encima de los 1125°C no puede formarse en el cuerpo.

Una de las diferencias más notables entre ambas fases es su reactividad en solución acuosa. La fase alfa se hidroliza rápidamente en agua mientras que la fase beta es muy poco soluble. La alta reactividad de la fase alfa permite que esta fase pueda ser utilizada como fase sólida de un cemento. La reacción de hidrólisis que experimenta esta fase puede escribirse:

\[3 \text{Ca}_3(\text{PO}_4)_2 (s) + \text{H}_2\text{O} \rightarrow \text{Ca}_6(\text{HPO}_4)(\text{PO}_4)_2(\text{OH}) (s) \]

Esta reacción que tiene lugar a temperatura ambiente o a 37 C resulta en la formación de una apatita deficiente en calcio (CDHA) muy similar a la fase mineral del hueso.

A pesar de las muchas ventajas que se han reportado de los cementos, la reacción de disolución-precipitación de los cementos, da lugar a un material altamente poroso y por lo tanto con propiedades mecánicas relativamente bajas (p.ej. resistencia a la compresión por debajo de los 40 GPa).

El objetivo de este proyecto es el de fabricar cementos, lo más densos posibles, para mejorar las propiedades mecánicas del material y hacerlo más adecuado para aplicaciones que requieran resistencias a la compresión más elevadas (p.ej. en vertebroplastia). El
interés de estos sistemas acuosos que generan productos inorgánicos con alta densidad no sólo reside en la reparación de hueso sino también en el sector de los “biomimetics”.

3.5. Métodos de compactación

Como ya se ha mencionado anteriormente los cementos tienen muchísimas ventajas, pero aún así, tienen la gran desventaja de carecer de resistencia mecánica debido a su alta porosidad. Una forma simple de superar esta limitación sería asegurando una compactación más eficiente del polvo durante la preparación del cemento. Esta estrategia es similar a la que se utiliza para fabricar bloques densos por sinterización. El proceso de sinterización normalmente se aplica sobre materiales en polvo empaquetados de la forma más compacta posible para poder después fusionar este polvo mediante temperatura. Cuanto mayor el grado de empaquetamiento menor será el coste energético para conseguir la densificación eficiente del material.

Idealmente, para conseguir un buen empaquetamiento el polvo debería: tener tamaño de grano fino (p. ej. entre 0.1 y 1 μm), una distribución de tamaño adecuada, una forma/conformación equiaxial y sin la presencia de aglomeraciones. Aun cumpliendo estas especificaciones, se mostrara a continuación que según la distribución granulométrica del polvo y el porcentaje de tamaños, se pueden tener empaquetamientos más o menos compactos.

3.5.1 Modelo de empaquetamiento con esferas de diámetro uniforme

Un posible empaquetamiento podría ser el de esferas de diámetro uniforme. Tal y como se muestra en la figura 3-9 y la tabla 3-4 se resumen cinco empaquetamientos de esferas diferentes y se adjuntan los valores de densidad de empaquetamiento y los números de coordinación correspondientes. La fracción y el porcentaje del volumen ocupado por las partículas corresponde a la fracción de empaquetamiento PF (en inglés Packing Fraction) y la densidad de empaquetamiento PF(%), respectivamente. Como se ve
en la tabla de la tabla 3-4, la densidad de empaquetamiento varía de 52% para un empaquetamiento cubico simple hasta 74% para empaquetamiento tetraédrico y piramidal y es independiente del tamaño de las esferas[9]. El número de coordinación NC se define como el número de esferas vecinas alrededor de cada esfera. Del NC y del PF se puede calcular el número de contactos Nc por unidades de volumen:

\[Nc = \frac{3 \,(PF) \,(CN)}{\pi a^3} \]

Figura 3-9: Empaquetamientos de esferas de tamaño único [8].

Tabla 3-4: Densidad de empaquetamiento y número de coordinación de diferentes empaquetamientos de esferas de tamaño único[8].
3.5.2 Empaquetamiento de esferas bimodales

Otro enfoque de empaquetamiento es utilizando polvos bimodales en vez de polvos con un único tamaño de grano. En efecto, se demostró que con mezclas bimodales de partículas esféricas se podían obtener estructuras más densas que utilizando polvos con esferas de diámetro uniforme. La idea es rellenar con partículas pequeñas los huecos creados entre partículas gruesas (modelo de Furnas). Con la introducción de pequeñas partículas en los intersticios de partículas grandes se reduce la porosidad del material y el tamaño de los poros. Para conseguir la máxima densidad de empaquetamiento hay que añadir una cantidad de partículas pequeñas tal que se rellene justamente el espacio vacío entre las partículas grandes sin forzar que estas se separen. Este modelo también puede mirarse desde el punto de vista de introducir partículas grandes sobre partículas pequeñas de manera que las partículas mayores sustituyan el volumen equivalente de partículas pequeñas y poros. Este modelo de empaquetamiento se llama modelo de Furnas y se muestra en la figura 3-10.
En la Figura 15 se observa que la fracción de partículas grandes/pequeñas optima en el modelo de Furnas es del 70 vol.% de partículas grandes (G) y el 30 vol.% partículas pequeñas (P). La relación entre las dos es pues:

Figura 3-10: (a) Volumen de empaquetamiento para una mezcla de partículas pequeñas y grandes. La línea recta corresponde al empaquetamiento ideal cuando la fracción de un tamaño de partículas está reemplazado por otro tamaño y la relación entre tamaño de las partículas grandes y las pequeñas es infinita. (b) Fracción de empaquetamiento PF correspondientes. La PF máxima ocurre cuando las partículas pequeñas justo caben en los intersticios entre partículas grandes en contacto. (Courtesy of Jingmin Zheng, Alfred University).[8]
Por lo que respecta al diámetro relativo entre partículas G y P, para que las P puedan caber en los huecos generados por las G debe cumplirse la siguiente relación:

Si se asume que las partículas G se empaquetan formando huecos tetraédricos (Figura C), el tamaño de las partículas P viene dado por la expresión:

\[
\frac{\text{Vol. } \% \text{ G}}{\text{Vol. } \% \text{ P}} = \frac{70}{30} = 2.33
\]

Figura 3-16: Representación del modelo teórico de relleno [8]

\[
\text{RG} = \frac{(12 \times \text{RP})}{\sqrt{3}}
\]

donde \(\text{RG} = \) radio de una partícula grande
\(\text{RP} = \) radio de una partícula pequeña

\(\text{G} = \) Grandes y \(\text{P} = \) Pequeñas
4. MATERIALES Y METODOS

4.1 Materiales utilizados

4.1.1 Fase sólida

Los materiales utilizados fueron dos polvos de α-TCP con distinto tamaño mediano de partículas: un polvo con partículas pequeñas (P) y un polvo con partículas grandes (G). También se trabajó con polvo de β-TCP con un tamaño pequeño (P) de partículas similar al de α-TCP.

4.1.1.1 Preparación del polvo de α-TCP

El polvo de α-TCP se prepara por reacción en estado sólido mediante la mezcla de hidrogeno fosfato de calcio CaHPO$_4$ (C7263-2.5K, Sigma-Aldrich) con carbonato de calcio CaCO$_3$ (C4830-500g, Sigma-Aldrich) de acuerdo con la siguiente reacción:

$$\text{CaCO}_3 + 2 \text{CaHPO}_4 (\alpha-\text{Ca}_3(\text{PO}_4)) + \text{CO}_2 + \text{H}_2\text{O}$$

El protocolo detallado que se utilizó se muestra a continuación:

1. Peso de los dos reactivos

 $$131.6 \text{ g CaHPO}_4$$
 $$48.6 \text{ g CaCO}_3$$

2. Mezcla de los dos polvos por agitación en un agitador “Whip Mix” (1425 rpm) durante al menos 10 minutos para que la mezcla sea homogénea. Se aseguró que la agitación tuviese lugar justo antes de poner la mezcla en el horno para evitar la sedimentación de las partículas más pequeñas en la base del crisol.
3. Puesta de la mezcla en un crisol de platino al horno y se somete un programa de calentamiento cuyas seis etapas se resumen en la tabla siguiente 4-1 y cuyo ciclo térmico se presenta en la figura 4-1.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>T_0 (°C)</th>
<th>T_1 (°C)</th>
<th>V (°C/min)</th>
<th>Δt (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>300</td>
<td>2,5</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>300</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>1100</td>
<td>2,5</td>
<td>320</td>
</tr>
<tr>
<td>4</td>
<td>1100</td>
<td>1100</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>1100</td>
<td>1400</td>
<td>2,5</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>1400</td>
<td>1400</td>
<td>0</td>
<td>120</td>
</tr>
</tbody>
</table>

Tabla 4-1: Etapas del tratamiento térmico de síntesis del α-TCP.

Figura 4-1: Ciclo térmico experimental para la obtención de α-TCP.
La primera fase permite eliminar el agua adsorbida en los reactivos. Durante la segunda y tercera etapa, ocurre la reacción de descomposición del CaCO$_3$ en dióxido de carbono y agua según la reacción:

$$\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2$$

El oxido de calcio reacciona después con el hidrogeno fosfato de calcio formando el fosfato tricalcio. El plateau a 1100°C se realiza para asegurar la reacción completa de los reactivos. Finalmente, la última etapa a la temperatura de 1400°C se lleva a cabo para que tenga lugar la reacción alotrópica de la fase β a la fase α ($T = 1180^\circ\text{C}$). Se elige una temperatura suficientemente por encima de los 1180°C para que al templar el fosfato de tricalcio no se inicie la transformación a la fase β.

4. Temple a temperatura ambiente del material sinterizado rompiendo rápidamente el polvo para asegurar la estabilización de la fase alfa y evitando la formación de fase beta (β-TCP es la fase estable a temperatura baja).

Una vez preparado el polvo se procedió a su molienda mediante un molino de ágata en el Pulverisette 6 (Fritsch GMBH) con bolas de ágata grandes (d=30mm) y pequeñas (d=10mm). La masa de α-TCP obtenida después del temple es aproximadamente 145 gramos. Por eso, los protocolos de molienda se hicieron sobre una masa de α-TCP de 145 gramos. El protocolo detallado de la molienda se especifica en la sección de resultados.

4.1.1.2. Preparación del polvo de β-TCP

Las primeras etapas de preparación de β-TCP son idénticas a las que permiten obtener α-TCP:

1. Peso de los dos reactivos

$$131.6 \text{ g } \text{CaHPO}_4$$

$$48.6 \text{ g } \text{CaCO}_3$$

2. Agitación de la mezcla de los dos polvos durante al menos 10 minutos para que la mezcla sea homogénea.
3. Puesta de la mezcla en un crisol de platino al horno y se somete al siguiente programa de calentamiento (Figura 4-2):

La selección de las tres rampas es idéntica al caso anterior, para la fabricación de la fase alfa.

4. A diferencia de la α-TCP para obtener la β-TCP no hay que hacer temple puesto que esta fase es la estable a temperatura ambiente. Así pues la última rampa de enfriamiento se lleva a cabo enfriando lentamente en el horno.

Al igual que para la α-TCP, después de la preparación del polvo se procedió a su molienda utilizando el mismo protocolo de molienda que para el polvo de α-TCP.
4.1.2 Fase líquida

Una solución de hidrogeno fosfato de sodio Na$_2$HPO$_4$ 9 wt% (131679.1210, Panreac) y otra solución 2.5 wt% Na$_2$HPO$_4$/0.5M citrato de trisodio (25114, Sigma-Aldrich) fueron empleadas para la fabricación de los cementos.

4.2 Obtención de los cementos

Los cementos se obtuvieron mediante la mezcla de las fases sólidas enunciadas en la sección 4.1.1 con las fases líquidas presentadas en la sección 4.1.2, con una relación Liquido/Polvo = 0.35 ml/g. Previo a la mezcla de ambas fases se añadió a la fase sólida del cemento un 2% en peso de apatita precipitada (PHA, Alco ref.nº1.02143.1000) con la finalidad que ésta actuara de semilla facilitando la precipitación de CDHA. Una vez la mezcla estuvo echa, la fase sólida y la fase líquida fueron mezcladas y homogeneizadas en un mortero de ágata con la ayuda de una mano de mortero durante unos 30 s. A continuación se rellenaron o bien moldes cilíndricos de 12 mm de altura por 6 mm de diámetro para la realización de los ensayos de compresión, o bien anillos para los ensayos de cohesión y de determinación de los tiempos de fraguado inicial y final. Finalmente los moldes se dejaron fraguar por espacio de 7, 10 y 17 días a 37oC en solución Ringers (9% en peso de NaCl, S9625-500G, Sigma-Aldrich).
5. CARACTERIZACION DE LOS MATERIALES

5.1 Caracterización de los polvos

5.1.1 Difracción de Rayos-X

La composición de las fases de los polvos iniciales se evaluaron por difracción rayos-X (XRD, Philips MRD). La difracción se realizó en el rango 0/2θ de 5-60° a 40 kV y 30mA; El step size fue de 0.02°.

5.1.2 Granulometría

La distribución de partículas se analizó mediante el analizador de tamaño de partículas por difracción laser con el equipo LS 13320 (Laser Diffraction Particle Size Analyser, Beckman Coulter). Para ello las muestras se dispersaron en una solución de etanol durante 5 minutos en un baño de ultrasonidos antes de la medida.

5.1.3 Microestructura

La microestructura del polvo con partículas grandes (G) y la del polvo con partículas pequeñas (P) se observaron con un microscopio electrónico de barrido (SEM, JEOL JSM-840) a diferentes aumentos. Previo a la observación de los polvos, las muestras se recubrieron con oro para evitar que se cargaran bajo el haz de electrones.
5.2 Caracterización de los cementos

5.2.1. Microestructura

La microestructura de los diferentes cementos se observó con un microscopio electrónico de barrido (SEM, JEOL JSM-840) a diferentes aumentos. Se observaron superficies de fractura de los materiales para revelar la estructura interna de los cementos. Previo a la observación de las muestras, éstas se recubrieron con oro para evitar que se cargaran bajo el haz de electrones.

5.2.2 Difracción de Rayos-X

La DRX se utilizó para analizar el grado de reacción de los diferentes cementos. El análisis se realizó sobre los cementos previamente triturando mediante un mortero de ágata. Para la identificación de las diferentes fases se utilizaron las fichas de difracción de la base de datos del Joint Committee on Powder Diffraction File con números 09-0348 (α-TCP), 09169 (β-TCP), 09-0432 (HA). La cuantificación de las diferentes fases se realizó mediante el método de áreas de picos mayoritarios de los difractograma. En efecto, se observan los dos picos mayoritarios de cada fase y se deducen proporciones.

5.2.3 Propiedades mecánicas de los cementos

La resistencia a la compresión de los cementos se midió sobre cilindros de 6mm de diámetro por 12mm de altura. Los cilindros fueron enjuagados de la solución de Ringers con agua milliQ y posteriormente secados antes de realizar la medida. Los ensayos de compresión se hicieron con una maquina de ensayos mecánicos de tracción, compresión – Adamel Lhomargy DY-34 (Adamel Lhomargy, France) con una célula de carga de 10 kN. El software para grabar información de los ensayos era Autotrac. Se obtuvo el valor de la resistencia a la compresión a partir de la media de al menos cinco muestras cilíndricas ensayadas a compresión con una velocidad del travesaño de 1mm.min⁻¹.
5.2.4 Porosimetría

El porosímetro de intrusión de mercurio (MIP, Autopore IV Micromeritics) fue empleado principalmente para examinar el contenido de porosidad y para determinar la distribución del tamaño de los poros en los cementos. Para ello las muestras fueron debidamente secadas antes del análisis y se escanearon en el rango de presiones desde 30 hasta 30000 psi lo que permite estudiar un rango de porosidades de 360 a 0,006 μm.

Del ensayo de la porosimetría se puede obtener además la densidad esquelética que representa la densidad intrínseca del material. Éste último valor incluye en la medida aquella porosidad que está por debajo de los 0,006 um y la porosidad cerrada.

5.3 Caracterización de la pasta de cemento

5.3.1 Tiempos de fraguado y tiempo de cohesión

Cementos con una relación L/P igual a 0,35 ml/g fueron preparados utilizando los diferentes polvos previamente obtenidos de α-TCP con diferentes tamaños medianos de partículas y el polvo de β-TCP. El polvo inicial y el líquido fueron mezclados en un mortero durante aproximadamente un minuto para luego rellenar anillos de cobre y los tiempos inicial y final de fraguado fueron determinados con agujas de Gillmore según la norma estándar C266-ASTM. Un aguja gruesa sostenida por un peso ligero permite determinar el tiempo inicial de fraguado que corresponde al tiempo después del cual la aguja gruesa no deje marcas en la superficie del cemento. El tiempo final de fraguado se mide con una aguja fina sostenida por un peso mayor y corresponde al tiempo después del cual la aguja fina no deje marcas en la superficie del cemento.

El tiempo de cohesión, definido como el tiempo después del cual el cemento no sufre desintegración al sumergirlo en solución Ringers a 37°C, fue determinado por inspección visual.
5.3.2 Inyectabilidad

La inyectabilidad de un cemento se define con la relación siguiente:

\[
I(\%) = \frac{\text{masa de cemento inyectado}}{\text{masa inicial de cemento en la jeringa}} \times 100
\]

Se asume una fuerza máxima de inyección igual a 300N, fuerza que corresponde a la fuerza teórica que se puede aplicar a mano.

El ensayo se desarrolla de esta manera:

1] se mide primero el peso de la jeringa vacía,

2] se rellena ésta con la pasta de cemento,

3] se mide el peso de la jeringa rellenada con la pasta de cemento,

4] se empieza el ensayo de inyectabilidad con la máquina adecuada,

5] se mide por fin el peso final de la jeringa con la pasta de cemento que sobra (que no se ha inyectado).

La máquina empleada para este ensayo era la BIONIX 858, MTS. Se ensayaron cementos cuya fase líquida contenía un dispersante, el citrato de trisodio, y también cementos con partículas de β-TCP en su composición. Además, para cada caso, se hizo la medida en triplicado.
6. RESULTADOS Y DISCUSION

6.1 Caracterización del polvo

Los resultados de la caracterización del polvo de α-TCP y β-TCP obtenido según los protocolos establecidos en la sección 4.2.1 y 4.2.2 se detallan a continuación.

6.1.1 Difracción de Rayos X

Esta técnica se utilizó para verificar al pureza de la reacción de síntesis de los dos polvos (α-TCP y β-TCP). Los difractogramas resultantes se muestran en las Figuras 6-1 y 6-2 para el α-TCP y el β-TCP respectivamente.

![Difractograma analizado del polvo de alpha-TCP](image_url)
Para la identificación de los diferentes picos de difracción se utilizaron las fichas de referencia de la α-TCP (pdf 09-0348) y de la β-TCP (pdf 09169) de la base de datos del Joint Committee File. Como puede verse en la Figura, la mayoría de picos pertenece a la fase alfa. Sin embargo se observa también la presencia de fase beta que se indica en el gráfico con flechas de color verde. La intensidad de los picos de la fase beta es muy inferior a los de la fase alfa lo que indica que la fase beta es una fase minoritaria. Para calcular la proporción de cada fase presente en el polvo, se utilizaron las áreas de los picos principales de cada fase como se explicó en la sección materiales y métodos. Los resultados muestran un porcentaje de α-TCP del 89.6% y el 10,4% de fase β-TCP. A pesar del porcentaje de fase beta este polvo puede considerarse como polvo alfa relativamente puro. La flecha de negro indica un pico que no pudo ser identificado a ninguna de las fases. La subida de la línea de base entre el rango de ángulos de 10-20 o corresponde al análisis del portamuestras donde se colocó el polvo.

El polvo de β-TCP analizado presentó este difractograma:

Figure 6-2: Difractograma analizado del polvo de beta-TCP
De la misma manera que para el polvo de α-TCP, se analizó el difractograma del polvo β-TCP y se calcularon las proporciones de cada fase. Se observó que el polvo de β-TCP contenía una proporción relativamente elevada de fase de α-TCP ya que aparecen varios picos de esta fase con intensidades relativamente elevadas (marcadas con una flecha de color naranja en el difractograma). Las proporciones de β-TCP y α-TCP calculadas eran 68.1% y 31.9% respectivamente.

Posiblemente, este porcentaje de fase α-TCP proviene de la última etapa del ciclo térmico empleado para la fabricación de β-TCP que corresponde a la rampa de enfriamiento. Quizá la velocidad de enfriamiento no ha sido lo suficientemente lenta y ha provocado una especie de temple estabilizando parcialmente la fase de alta temperatura α-TCP.

6.1.2 Molienda

Como se explicó en la sección 3.5, se puede conseguir un empaquetamiento más efectivo de polvo si se trabaja con distribuciones bimodales de partículas: partículas grandes (G) y pequeñas (P). Para conseguir este empaquetamiento se vio que las partículas pequeñas debían tener un radio al menos 7 veces menor que el de las grandes para poder caber en los huecos que generan el empaquetamiento de las partículas grandes. El tamaño mediano elegido para este trabajo es de 2.7 μm de radio de partículas pequeñas y el de las partículas grandes es 18.7 μm. Se ha elegido este tamaño mediano de partículas pequeñas para aprovechar uno de los protocolos de molienda bien definidos de nuestro grupo de trabajo. El tamaño de las partículas G es 7 veces mayor al P.

6.1.2.1 Protocolo de molienda para la obtención del polvo con partículas pequeñas

Un protocolo de molienda se define como duración: número de revoluciones, siendo la duración en minutos y el número de revoluciones en rpm.

Para la obtención de un polvo con una mediana de 2.7 μm, el protocolo es el siguiente:

60:450-30:500
o sea 60 minutos a 450 rpm con 10 bolas grandes y 30 minutos a 500 rpm con 100 bolas pequeñas para homogeneizar el polvo.

Dado el alto número de revoluciones al que trabaja la máquina, la molienda de 60 minutos se hace en 3 ciclos de 20 minutos cada uno para evitar el sobrecalentamiento de la máquina.

6.1.2.2 Estudio del protocolo de molienda para la obtención del polvo con partículas grandes

Para modificar el tamaño de grano mediante una molienda, se pueden modificar diferentes parámetros:

- tamaño de las bolas: 1 y 3 cm de diámetro
- número de bolas: se dispone de 10 bolas grandes y 100 de pequeñas
- número de revoluciones (unidad: rpm)
- duración de la molienda (en minutos)
- masa de polvo a moler
- tipo de bolas (mezcla de bolas pequeñas con grandes)

En cuanto al tamaño de las bolas, utilizar bolas mayores proporciona mayor energía en el movimiento de rotación del molino resultando en impactos con mayor energía entre las bolas y el molino lo que induce una reducción en el tamaño de las partículas. Las bolas pequeñas sin embargo, al proporcionar una menor energía de impacto ayudan más a homogeneizar el polvo que a reducirlo.

A partir del protocolo utilizado para la preparación del polvo P, si lo que se quiere es aumentar el tamaño de grano, lo más lógico sería disminuir los parámetros citados antes exceptuando la masa de polvo a moler. Para poder observar el efecto de los diferentes parámetros en el tamaño medio de las partículas, se han realizado diferentes experimentos cambiando un parámetro cada vez para apreciar su influencia en el sistema.
Basándonos en experimentos previos que se hicieron en el grupo se vio que moliendo 145 g de a-TCP con el siguiente protocolo: 15:450 con 10 bolas grandes (3 cm diámetro) los tamaños medianos obtenidos fueron de 6.242 μm con una SSA de 1.06 m² g⁻¹. Como el tamaño mediano que se quiere obtener es 18.7 μm, o sea 3 veces mayor, se propusieron las moliendas especificadas en la tabla 2 donde básicamente se reduce el tiempo de molienda o el número de revoluciones.

En estos experimentos el número de bolas y la masa de polvo a moler se mantienen constantes asumiendo que el “ball-to-powder weight ratio” desarrollado en el grupo es el óptimo.

Basándonos en el protocolo ya establecido, decidimos variar estos dos parámetros así:

<table>
<thead>
<tr>
<th>Duración de la molienda (min)</th>
<th>Número de revoluciones (rpm)</th>
<th>Tipo y número de bolas de ágata</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>250</td>
<td>10 bolas grandes</td>
</tr>
<tr>
<td>20</td>
<td>250</td>
<td>10 bolas</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>10 bolas</td>
</tr>
<tr>
<td>30</td>
<td>250</td>
<td>10 bolas</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>10 bolas</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>10 bolas</td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>10 bolas</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>10 bolas</td>
</tr>
<tr>
<td>40</td>
<td>150</td>
<td>10 bolas</td>
</tr>
</tbody>
</table>

Tabla 6-1: Difractograma analizado del polvo de beta-TCP.

En vez de hacer un experimento para cada protocolo, el número de experimentos se pudo disminuir haciendo primero un ensayo 15:250, sacando un poco de muestra (alrededor de unos 3 g), y continuando con un ensayo 20:250, uno a 25:250 sacando y
finalmente el ensayo 30:250. De esta manera el número de experimentos se redujo a 2 experimentos: un polvo molido a 250 rpm y otro polvo a 150 rpm a diferentes tiempos.

6.1.3 Granulometría

Para determinar cuál de los protocolos de molienda anteriores era el óptimo se midió la distribución de tamaños de partículas de los polvos ensayados. El tamaño mediano de partículas y la curva de distribución de tamaño de partículas del polvo con partículas pequeñas (protocolo de molienda 60:450-30-500) se muestra a continuación (tabla 6-2). Se dan además un resumen de los protocolos de molienda intentados para la obtención del polvo con partículas grandes (tablas 6-3 y 6-4).

<table>
<thead>
<tr>
<th>Protocolo de molienda</th>
<th>Mediana (μm)</th>
<th>Distribución de partículas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fino 60:450-30:500</td>
<td>2.2</td>
<td>[Diagrama de granulometría]</td>
</tr>
</tbody>
</table>

Tabla 6-2: Granulometría del polvo con partículas pequeñas.

Se observa que el tamaño mediano de partículas teórico de 2.7 μm obtenido en el grupo con el protocolo de molienda 60:450-30:500 es muy similar al que se obtiene en este
proyecto con valor de 2.2 μm. En la distribución de la tabla 6-2 se observa una distribución de partículas prácticamente monomodal a excepción de unos picos que aparecen a valores de diámetro de partícula alrededor de 15 y 30 μm. Estos picos podrían ser producidos por el agregamiento de partículas durante el ensayo. Este efecto es especialmente pronunciado cuando se trabaja con valores de tamaño de partícula muy pequeños.

En la tabla 6-3 se muestran las distribuciones de polvo con el protocolo realizado a 250 rpm para la obtención de polvo grueso. En todas las curvas, independientemente del tiempo de molienda se observa una distribución que podría considerarse “monomodal” con valor de mediana que varía entre 12.7 con 15 min de molienda a 9.5 μm con 30 minutos de molienda. Aunque el tiempo de molienda no afecta mucho el tamaño mediano de las partículas, se observa claramente como al aumentar el tiempo de molienda la cantidad de partículas por debajo de las 2 μm aumenta considerablemente. Esto no es muy favorable ya que se aumenta la dispersión a nivel de tamaños de partículas.
Como se explicó en la sección 3.5.2, el tamaño mediano de partículas teórico para el polvo con partículas grandes tenía que ser 7 veces mayor que el del polvo con partículas grandes.
pequeñas. Por eso, descartamos los protocolos cuyos resultados son presentados en la tabla 6-3 puesto que los valores de tamaños medianos de partículas son demasiado pequeños además de presentar distribuciones de partículas demasiado anchas lo que implicaría la necesidad de un tamizado posterior. Además se observan la presencia de agregaciones de partículas en la parte derecha de las curvas de los protocolos 15:250 y 20:250. Finalmente, se nota un ligero decremento del tamaño mediano de partículas al aumentar la duración de la molienda.

Finalmente, en tabla 6-4 se muestran las distribuciones de polvo correspondientes al protocolo realizado a 150 rpm. A diferencia de las curvas obtenidas a 250 rpm en este caso el tamaño mediano de partículas baja considerablemente. Se observa una disminución importante del tamaño mediano de partículas entre el protocolo 15:150 y 20:150 pero para los protocolos 25:150, 30:150 y 40:150 el tamaño mediano obtenido es mayor y parecido al protocolo 15:150. Esta diferencia se podría explicar en el fenómeno de homogeneización que aporta una duración de molienda más larga además de hacer disminuir el tamaño de las partículas. Por eso, a pesar de que los protocolos 15:150, 25:150, 30:150 y 40:150 tuvieron un tamaño mediano de partículas bastante similar, sus distribuciones resultan diferentes. En efecto, a medida que se aumenta la duración de molienda (excepto para el protocolo 20:150) se aprecia un estrechamiento de la distribución de tamaños de partículas. Además, en cada caso se observa un volumen significativo de partículas pequeñas y la presencia partículas enormes agregadas.

<table>
<thead>
<tr>
<th>Protocolo de molienda</th>
<th>Mediana</th>
<th>Distribución de partículas</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:150</td>
<td>19.7</td>
</tr>
<tr>
<td>20:150</td>
<td>15.1</td>
</tr>
<tr>
<td>25:150</td>
<td>20.1</td>
</tr>
<tr>
<td>30:150</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Para apreciar los resultados y sobretodo elegir correctamente el protocolo óptimo de molienda se hizo la tabla siguiente que resume todos los ensayos.

<table>
<thead>
<tr>
<th>Duración de la molienda (min)</th>
<th>Número de revoluciones (rpm)</th>
<th>Mediana (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>250</td>
<td>12.7</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>19.7</td>
</tr>
<tr>
<td>20</td>
<td>250</td>
<td>12.4</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>15.1</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>10.4</td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>20.1</td>
</tr>
<tr>
<td>30</td>
<td>250</td>
<td>9.4</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>20.0</td>
</tr>
<tr>
<td>40</td>
<td>150</td>
<td>21.09</td>
</tr>
</tbody>
</table>

Tabla 6-4: Tabla de los últimos ensayos de molienda.

Tabla 6-5: Resumen de los ensayos de granulometría
A pesar que varias de las distribuciones de polvo obtenidas con la molienda a 150 rpm podrían escogerse por tener un valor de 7 a 10 veces superior que el tamaño de las partículas pequeñas, se ha escogido el protocolo de molienda: 40:150. Este protocolo permite obtener un tamaño mediano de partículas igual a 21.09 µm es decir **9.47 veces** mayor que el tamaño mediano de partículas del polvo con partículas pequeñas igual a 2.7 µm.

6.1.4 Tamizado

Pese a valores de tamaños medianos de partículas adecuados, se encontró el problema de la anchura de las distribuciones de partículas obtenidas. Se intentó tamizar el polvo con varios métodos utilizando la máquina de tamizado (Vibratory Sieve-Shaker "analysette 3", Fritsch). En el caso del polvo con partículas pequeñas, el carácter muy higroscópico de la α-TCP y la superficie específica tan elevada del polvo, no permitieron tamizar el polvo por debajo de las 20µm debido a la agregación inmediata del polvo una vez el tamizador se ponía en marcha. Este hecho sucedía independientemente de trabajar con polvo seco y de poner en el tamizador partículas desecantes.

No obstante se destacó que la distribución de partículas del polvo con partículas pequeñas no era tan ancha como la del polvo con partículas grandes y se decidió utilizar el polvo sin posterior tamizado.

En cuanto al polvo con partículas grandes, aunque estas debieran agregarse con menor facilidad, tampoco se pudieron tamizar con un rendimiento viable con tamices inferiores al de 50 µm por culpa también del carácter higroscópico de la α-TCP. Sin embargo, el polvo de partículas gruesas (21µm) fue tamizado por el tamiz de 50 µm para eliminar las partículas por encima de este valor que claramente se apreciaban en su distribución de polvo en la tabla 6-4.
El gran problema que supone el no poder tamizar el polvo grueso con un tamiz por debajo de las 5-10µm es que este polvo incorpora un volumen considerable de partículas pequeñas con distribución de partículas muy ancha. Este hecho va a hacer que no se pueda aplicar el modelo de compactación óptimo de Furnas a nuestros polvos.

6.1.5 Microestructura

Se observaron ambos polvos de partículas grandes y partículas pequeñas a diferentes aumentos con el microscopio electrónico de barrido para revelar su morfología. Las micrografías resultantes a diferentes aumentos se presentan en la Figura 6-3. Los índices P y G corresponden a polvo con partículas pequeñas y polvo con partículas grandes respectivamente.

Comparando las imágenes del polvo P con el G, se destaca bien la diferencia entre tamaño de partículas. No obstante, el polvo con partículas pequeñas parece mucho más heterogéneo que el de partículas grandes ya que se observa la presencia de varios agregados de partículas especialmente en las imágenes de más aumento. Respecto a la morfología de las partículas, se observa que presentan formas angulares causadas por la fractura de estos materiales durante su molienda. El hecho de tener partículas con morfología tan angular en vez de esferas perfectas va a dificultar el empaquetamiento de partículas necesario para conseguir el objetivo del trabajo. Las concavidades que se observan en las partículas podrían ser causa de falta de puntos de contacto entre partículas y por tanto de creación de porosidades. Para evitar este problema se trabajará (como se verá en la sección siguiente) con proporciones elevadas de partículas pequeñas para rellenar estas irregularidades y así compactar el polvo y mejorar las propiedades mecánicas del cemento. Se tratará de este modelo de compactación más adelante en la parte 6.1.6.
Figura 6-3: Fotografías SEM del polvo con partículas pequeñas P (columna izquierda) y del polvo con partículas grandes G (columna derecha), a diferentes aumentos
En la fotografía de la Figura 6-4 se observa bien las agregaciones de varias partículas pequeñas formadas a causa del carácter muy higroscopio del α-TCP.

Figura 6-4 : Detalle del polvo con partículas pequeñas.

6.1.6 Selección de la proporciones de partículas grandes y partículas pequeñas

Aunque como se explicó en la sección 3.5, la proporción teórica entre partículas pequeñas y grandes necesaria para conseguir rellenar los huecos que generan una distribución compacta de esferas grandes (modelo de Furnas) en un empaquetamiento optimo es la siguiente:

\[
\frac{\text{Fracción volumica de partículas grandes}}{\text{Fracción volumica de partículas pequeñas}} = \frac{70}{30} = 2.33
\]
Esta proporción es la calculada suponiendo un modelo ideal de partículas esféricas con tamaño específico. Sin embargo, en nuestro caso la gran irregularidad tanto en tamaño como en morfología de las partículas grandes (G) con presencia de muchas concavidades, hace pensar en la necesidad de una cantidad muy superior de partículas pequeñas (P) para poder rellenar la porosidad entre los huecos de las partículas grandes. Como esta cantidad no la podemos cuantificar, se probaran diferentes proporciones, con la finalidad de densificar la mezcla. Este efecto de densificación se puede conseguir aun si nos alejamos de las proporciones ideales que establece el modelo de Furnas. Así pues densificar se puede simplemente conseguir como se muestra en la figura 6-5:

La tabla 6-6 resume las diferentes proporciones de partículas definidas en términos de volumen en la primera columna e identificadas en términos de masa de polvo de cada tipo de partículas respectivo en las otras columnas. Las letras G y P corresponden a partículas grandes y partículas pequeñas respectivamente.
El cemento formado únicamente por partículas G nos servirá de control para apreciar el efecto de la adición de partículas pequeñas. Se prepararon otros cementos con las proporciones mencionadas en la tabla anterior 1G 1P, 1G 2P y 1G 4P, en un intento de mejora de la compactación y sobretodo de comparación. A continuación, designaremos siempre los cementos preparados como se indica en la tabla 6-6.

A continuación (figura 6-6), se muestra una comparación de granulometrías de polvos de α-TCP preparados con diferentes proporciones de partículas pequeñas y partículas grandes. Se revela la eficacia del posterior tamizado del polvo con partículas grandes por la disminución de la anchura de la curva de distribución de partículas, las partículas con un tamaño encima de 50 µm siendo eliminadas. Además, se observó el resultado de la mezcla de las partículas bimodales (G y P) puesto que se ven claramente dos picos en la grafica.

<table>
<thead>
<tr>
<th>Proporción volumica</th>
<th>Masa de partículas grandes (g)</th>
<th>Masa de partículas pequeñas (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G</td>
<td>2.857</td>
<td>0</td>
</tr>
<tr>
<td>1G 1P</td>
<td>1.428</td>
<td>1.428</td>
</tr>
<tr>
<td>1G 2P</td>
<td>0.952</td>
<td>1.905</td>
</tr>
<tr>
<td>1G 4P</td>
<td>0.571</td>
<td>2.286</td>
</tr>
</tbody>
</table>

Tabla 6-6: Resumen de las proporciones de partículas grandes y pequeñas utilizadas para la fabricación de los cementos.
A continuación, en la Figura 6-7 se muestra un esquema de las diferentes configuraciones de empaquetamiento que se pueden dar al añadir diferentes proporciones de partículas P sobre partículas G. La situación a) muestra el caso de tener solo partículas G. En esta situación la irregularidad de las partículas da lugar a pocos puntos de contacto entre ellas y por lo tanto a un alto nivel de porosidad. La situación optima es la situación de relleno de las irregularidades con partículas pequeñas (situación b) ya que se ve claramente que en esta situación se generan muchos puntos de contacto entre partículas lo que disminuye mucho la porosidad del material aumentando su compactación y por consiguiente las propiedades mecánicas. La situación c es una situación donde hay exceso de partículas pequeñas y lo único que se consigue es inducir una microporosidad que afecta la compactación y por eso las propiedades mecánicas.
Este modelo de compactación que se plantea, basándose en la formación de una especie de película de partículas pequeñas alrededor de las partículas grandes de manera que rellene las irregularidades del polvo G, harán aumentar los puntos de reacción química entre partículas y por consiguiente se formarán puntos de anclaje con enlaces fuertes entre las partículas grandes aumentando de esta manera la densidad y por lo tanto la compactación del material y sus propiedades mecánicas.
Figura 6-7: Configuración de empaquetamiento de partículas. a) Partículas grandes sólo, b) Modelo de relleno de irregularidades, c) Modelo de relleno con una gran cantidad de partículas pequeñas.
6.2 Caracterización de los cementos fraguados

6.2.1 Microestructura

En el proyecto, se pretende conseguir un aumento de compactación de un cemento con una disminución de las porosidades del material. Se aprecia esta disminución con las dos series de imágenes de SEM siguientes (Figura 6-8) que presentan cementos fabricados con las diferentes proporciones de polvos con partículas grandes y pequeñas, después de 17 días de fraguado en Ringers. Las imágenes que se muestran son de la superficie de fractura de los cementos para poder revelar su interior. Se dan imágenes a dos aumentos para observar el efecto de la densificación (bajos aumentos) y el detalle de la estructura.
Figura 6-8: Micrografías SEM de los cementos fraguados durante 17 días en Ringers con diferentes proporciones de tamaños de partículas.
Se observa claramente que cuantas más partículas pequeñas se añaden, más porosidades aparecen rellenadas. Las imágenes muestran bien a ambos aumentos la densificación del material a medida que se introducen más partículas pequeñas. Las imágenes del cemento con partículas grandes (1G) revelan la porosidad enorme que existe entre las partículas grandes y también su morfología irregular. El detalle de las imágenes revela que la morfología del cemento es muy diferente a la del polvo (sección 6.1.5). La diferente morfología se debe a la reacción de hidrólisis del cemento: el polvo en contacto con agua se disuelve precipitando después en forma de cristales de hidroxiapatita (HA). Ambos tipos de partículas, las P y las G, sufren esta reacción. No obstante, las partículas pequeñas de α-TCP tienen una superficie específica mucho más elevada de tal manera que tienen una reactividad más alta que la de las partículas grandes y por consiguiente se transforman más rápido en plaquitas formando puntos de contacto tales como cuellos entre partículas grandes, ayudando así a pegar las partículas entre sí.

Sin embargo, en algunas fotografías de SEM se distinguen algunas partículas grandes de α-TCP que no han precipitado todavía a HA (Figura 6-9). Estas muestras se dejaron fraguar 17 días en Ringers a 37°C y aun así queda polvo que no ha reaccionado. Se puede deducir de esta constatación que un tiempo de fraguado de 17 días todavía no es suficiente para que transformar todo el polvo de α-TCP a HA. Para intentar cuantificar el grado de reacción del polvo se estudiarán más adelante los espectros de difracción de rayos-X de los cementos observados anteriormente y se calcularán las proporciones de las fases presentes. Así se podrá ver si hay alguna relación entre las propiedades mecánicas de los cementos fraguados con las proporciones de fases que constituyen el cemento.
6.2.2 Porosimetría MIP

Una mejora de la compactación se debería traducir en una disminución de la porosidad del material. Para ver si esto era cierto se realizaron ensayos de porosimetría por intrusión de mercurio en los diferentes cementos. Los resultados de las diferentes curvas de los cementos con proporciones 1G, 1P, 1G 2P, 1G 4P dejados fraguar 17 días en solución Ringers se muestran en la Figura CC. El cemento fabricado a partir del polvo
constituido únicamente por partículas grandes 1G y el fabricado a partir de partículas pequeñas fueron también analizados como controles, después de las mismas condiciones de fraguado. Como puede observarse, es evidente que la adición de partículas pequeñas juega un papel muy importante en la porosidad del material permitiendo disminuir el contenido de porosidad y el tamaño de poros y por consiguiente aumentar la compactación del material y sus propiedades mecánicas.

La gráfica siguiente 6-10 nos da la derivada del cociente entre el volumen y el logaritmo de la intrusión diferencial en función del tamaño mediano de intrusión de poros. Esta representación es cómoda para comparar la porosidad de varios materiales ya que el volumen de porosidad del material corresponde al área bajo la curva. A mayor área, mayor es el volumen de porosidad del material. Se muestran a continuación las curvas obtenidas para cada caso. Se distingue claramente que el área del cemento control 1G es grande lo que significa que el material tiene un porcentaje más elevado de porosidad lo que se va a confirmar en la tabla de la figura 34. Además, aparte de tener un alto contenido de porosidad la curva es ancha lo que significa que el rango de porosidades abarca muchos tamaños. En la figura se ve el tamaño de entrada de poro va de 0.01-1um (e incluso por debajo de 0.01um). Las áreas de los cementos con partículas P presentan un volumen muy parecido de porosidad y un tamaño de porosidad por debajo de los 0.1um. Mirando con detalle las curvas se observa que al añadir partículas P sobre partículas G aunque no varía mucho el contenido de la porosidad, sí que lo hace el tamaño de entrada de poro. Así pues la presencia de porosidades más pequeñas frente a porosidades grandes supondrá una mejora en las propiedades mecánicas del material. No se observan diferencias entre las curvas 1G 4P y 1P lo que parecería indicar que las propiedades de ambos materiales deberían ser similares.
Varios resultados se obtuvieron con el porosímetro MIP y se resumen en la tabla 6-
6.

<table>
<thead>
<tr>
<th>Proporciones de P y G</th>
<th>Porosidad total después de 17 días (%)</th>
<th>Tamaño mediano de intrusión de poro (en µm)</th>
<th>Densidad esquelética (g/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G</td>
<td>40</td>
<td>0.130</td>
<td>2.57</td>
</tr>
<tr>
<td>1G 1P</td>
<td>35</td>
<td>0.026</td>
<td>2.43</td>
</tr>
<tr>
<td>1G 4P</td>
<td>33</td>
<td>0.020</td>
<td>2.41</td>
</tr>
<tr>
<td>1P</td>
<td>35</td>
<td>0.018</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Figura 6-10: Tamaño mediano de intrusión de poros de varios cementos ensayados.
En la tabla 6-6, se ve claramente que el porcentaje de porosidad disminuye cuantas más partículas pequeñas se añaden ya que pasa de 40% en el caso de un cemento constituido únicamente por partículas grandes a 33% para un cemento con una gran proporción de partículas pequeñas añadidas. El polvo 1G 4P tiene entonces una porosidad total parecida a la de un polvo constituido únicamente por partículas pequeñas lo que significaría que al añadir partículas pequeñas permitiría en primer lugar disminuir la porosidad total del material casi 10% y también generaríá una porosidad muy pequeña, microporosidad, parecida a la que existe en un polvo con partículas pequeñas. Con estos resultados se demuestra que al añadir partículas P se rellenan efectivamente los huecos entre partículas G y las irregularidades propias del polvo (p. ej. Concavidades) reduciendo la porosidad del material lo que tiene por consecuencia un aumento de su densidad induciendo una mejora de la compactación y de las propiedades mecánicas.

6.2.3 Ensayos de compresión

Se hicieron ensayos de compresión con los diferentes cementos fraguados en solución Ringers a 37°C por 7 días, 10 días y 17 días.

La grafica siguiente resume los diferentes valores del promedio de la resistencia a la compresión de series de 5 a 12 muestras según la duración de hidrólisis y según el tipo de cemento fabricado.
Se destacan de esta grafica diferentes comportamientos según el tipo de cemento fabricado y según el tiempo de hidrolisis. Se observa que especialmente para 7 y 10 días de fraguado, todos los cementos que incorporan partículas P tienen una resistencia a la compresión superior al cemento G. Esto se explica por la alta reactividad de las partículas pequeñas que favorece que la reacción de hidrólisis tenga lugar más rápidamente. Con la reacción de hidrólisis de las partículas pequeñas, estas actúan de anclaje de las partículas G entre sí. Así con la formación de puntos de contacto entre partículas se aumenta la compactación del material y sus propiedades mecánicas. Este fenómeno de aumento de la resistencia a la compresión es más importante en el caso del cemento 1G 4P que alcanza a unos 10 días de fraguado una resistencia mediana máxima igual a 53.1 MPa es decir 3 veces mayor a la resistencia mediana máxima del cemento procedente de partículas grandes únicamente cuyo valor es 17.34 MPa.

Figura 6-11: Resistencia a la compresión en función del tiempo de hidrolisis para varios cementos preparados.
El fraguado y el endurecimiento de un cemento resulta del proceso de disolución-precipitación de las partículas de α-TCP, es decir la disolución progresiva de las partículas de α-TCP y la formación simultánea de la red entrelazada de cristales precipitados de CDHA. El tamaño de las partículas del polvo es la clave que hay que tener en consideración cuando se trata no solo de mejorar las propiedades mecánicas sino también de mejorar las propiedades de inyectabilidad y cohesión de un cemento con la finalidad de conseguir requisitos clínicos específicos de una aplicación dada. Una reducción en el tamaño de las partículas produce una disminución considerable de ambos tiempos de fraguado y tiempo de cohesión. Así que con un protocolo de molienda más largo se puede acelerar el tiempo de fraguado. Además, la reducción del tamaño de las partículas tiene un efecto acelerante en la hidrólisis del cemento.

El tamaño de las partículas de α-TCP también se ha visto que afecta a la morfología y tamaño de los micro/nano cristales obtenidos durante el proceso de disolución-precipitación [ref]. La formación por ejemplo de pequeños nano cristales en forma de agujas que se obtienen con el polvo con partículas pequeñas se puede explicar con el grado alto de sobresaturación conseguido con la disolución de este polvo fino con superficie específica alta. Puesto que cuando la superficie específica aumenta la disolución está favorecida y la fase líquida alrededor de las partículas sólidas se vuelve más sobresaturada debido al aumento de los iones de fosfato y de calcio, lo que favorece la formación de mas núcleos cristalinos induciendo pues la precipitación de más cristales de menor tamaño. Se podría pues esperar una resistencia más alta cuanto menores fuesen los cristales ya que con los cristales pequeños existen más puntos de contacto, y la porosidad entre ellos es inferior. En resumen, el trabajar con un polvo inicial bien empaquetado y el favorecer la formación de cristales precipitados pequeños facilitan una micro estructura más compacta [9].

Si se observa con detalle la evolución de la curva 1G en función del fraguado, y teniendo en cuenta que cuanto mayor es el tamaño de las partículas iniciales más tarda la hidrólisis de las partículas, se ve que hay un aumento progresivo de la resistencia a compresión. Este comportamiento como ya se ha mencionado anteriormente también se observa hasta los 10 días de hidrólisis en cementos 1G 1P y 1G 2P. En ambos casos el
aumento de la resistencia a la compresión de 7 a 10 días aumenta ligeramente lo que parece indicar la contribución de las partículas grandes en la reacción de hidrólisis. Sin embargo, la curva correspondiente a los cementos 1G 4P revela un incremento muy considerable de la resistencia a la compresión entre 7 y 10 días lo que demostraría la participación todavía de las numerosas partículas pequeñas que al hidrolizarse formarían más rápido puntos de anclaje mejorando de este modo la compactación del material y por consiguiente su resistencia. Es importante mencionar la gran dispersión de valores obtenida en los cementos 1G 4P a 10 días de hidrólisis. Se sospecha que esta variación es debida a que se han agrupado los resultados de ensayos realizados en días diferentes. Posiblemente, los polvos pudieron estar ya parcialmente hidrolizados causando esta dispersión tan elevada. Para salir de duda se han llevado las muestras para hacer ensayos de DRX.

Es importante también resaltar el valor obtenido de resistencia a la compresión para el control 1P respecto los cementos preparados con diferentes proporciones de P a 10 días de hidrólisis. Los valores de compresión del 1P frente al 1G 1P Y 1G 2P no son significativamente diferentes (estos resultados se detallaran en la sección siguiente). Asimismo, también cabe destacar el alto valor de resistencia a la compresión para el 1G 4P a 10 días de hidrólisis. Para entender estos resultados se muestran en la Figura 6-12 unos esquemas que pretenden aclarar las diferencias observadas entre los diferentes cementos.
La situación 1G correspondería a un cemento formado sólo por partículas grandes que tendrían algunos puntos de contacto entre ellas pero no suficiente para una buena compactación del cemento ya que quedaría una cierta porosidad lo que induciría una resistencia a la compresión mucho menor. Esta porosidad podría ser disminuida con la

Figura 6-11: Modelos explicativos del comportamiento mecánico de los cementos ensayados.
adición de partículas pequeñas justo en los huecos entre partículas grandes. En la situación 1G 1P, con la adición de partículas P se conseguirían rellenar los huecos generados entre partículas G pero si hubiese un exceso de partículas P, éstas separarían ligeramente las partículas G entre sí para poder caber. Esta situación al final acabaría generando porosidad entre partículas G. Para el caso 1G 2P esperaríamos una situación muy similar. En este caso, con un volumen mayor de partículas P se provoca la separación entre partículas G. Sin embargo, los espacios generados quedan prácticamente llenos con partículas P. Con estos modelos podemos explicar los valores de resistencia a la compresión tan similares entre los cementos 1P, 1G 1P y 1G 2P basándonos en: 1) el contenido total de porosidad es similar y 2) aunque el tamaño de poros es claramente diferente (p.ej. 1P tiene poros más pequeños que los anteriores), la presencia de partículas grandes y completamente densas compensan este efecto. Los cementos 1G 4P presentan resistencia a la compresión más elevada que las de los otros casos. En esta situación el número de partículas sería suficientemente alto para el relleno de las porosidades entre partículas. Las partículas que sobran permitirían la formación de una película de partículas pequeñas alrededor de las partículas grandes aumentando de esta manera los puntos de anclaje entre partículas. La compactación resultaría más elevada y provocando un incremento en la resistencia a la compresión.

El sistema 1G 4P se muestra pues como el modelo más eficaz de empaquetamiento ensayado en este proyecto logrando valores de resistencia a la compresión un 67 % superiores a los valores del cemento G y del 40 % respecto a los del P. Los resultados obtenidos, aún sin ser quizá los mejores abren una vía de investigación para conseguir de forma sencilla el aumento de las propiedades mecánicas de los cementos sin necesidad de añadir ninguna partícula de refuerzo.

Con respecto a los valores de resistencia a la compresión de los cementos a 17 días de fraguado, sorprenden los valores tan bajos y la dispersión que hay entre ellos. Esta tendencia no es lógica y seguramente es debido a la preparación de los cementos.
Estudio estadístico de los resultados de los ensayos de compresión

Finalmente, se pueden sacar de las gráficas mucha información relevante si se tiene en cuenta la estadística relacionada con los ensayos efectuados para mejorar el análisis y confirmar tendencias. Con el programa de estadística Minitab, se hicieron análisis de los resultados utilizando herramientas estadísticas conocidas como el ANOVA o el 2-Sample t-test que serán explicadas a continuación.

Las estadísticas interferenciales se utilizan para comprobar si hay diferencias significativas entre dos o más grupos. Como en cada estudio estadístico, se tiene que elegir en primer lugar una hipótesis formada por al menos dos variables. Se diferencian las variables independientes y las dependientes. Lo que se busca aquí es saber si la adición de partículas pequeñas a un polvo inicial de cemento con partículas grandes afecta o no las propiedades mecánicas del cemento final. Esta pregunta es la variable independiente del estudio. En un estudio estadístico siempre se deben tener datos cuantificables, lo que es en este caso el valor de la resistencia a la compresión de los cementos fraguados constituyendo la variable dependiente del estudio.

Por otra parte, la significatividad es una noción importante en un análisis de datos. Se representa con la letra p y debe cumplir $p < 0.05$ para que la diferencia entre dos grupos sea significativa. De hecho, este límite corresponde a menos del 95% de posibilidad que con un cierto ensayo se obtengan resultados similares a los resultados obtenidos anteriormente.

El 2-Sample t-test permite saber si entre dos series de datos existe una diferencia significativa. La hipótesis nula que supone que no haya diferencia entre los grupos analizados para este ensayo es

$$H_0: \mu_1 - \mu_2 = \delta_0$$
Donde:

\(\mu_1 = \) el promedio de la primera serie de datos

\(\mu_2 = \) el promedio de la segunda serie de datos

\(\delta_0 = \) la diferencia hipotética entre los promedios de las series de datos

Así, la hipótesis alternativa para un 2-Sample t-test que se quiere verificar es la siguiente:

\[H_1 = \mu_1 - \mu_2 \neq \delta_0 \]

En cuanto a **ANOVA**, es el acrónimo de **ANalysis Of VAriance**. ANOVA. El objetivo de ANOVA es probar la hipótesis de que los promedios de tres o más series de datos sean iguales. De hecho, ANOVA es la generalización del 2-Sample t-test presentado anteriormente pero considera más de dos series de datos. Consideramos que existen k series de datos.

La hipótesis nula para ANOVA es:

\[H_0: \mu_1 = \mu_2 = \mu_k \]

La hipótesis alternativa consiste en decir que existe al menos un promedio diferente de los otros.

Con Minitab, se puede obtener un análisis de los promedios (llamado ANOM) que corresponde a un ANOVA pero de forma gráfica. ANOM prueba la igualdad de los promedios de las series. Minitab permite obtener una gráfica parecida a un panel de control que compara el promedio para cada situación (factor) al promedio global (llamado también promedio general). Se detallaran más adelante los principales elementos de esta gráfica.

Se hicieron ANOM para tiempos de hidrólisis de 7, 10 y 17 días analizando las series de datos obtenidos de resistencia a la compresión. Se supuso que las distribuciones de cada serie eran normales y que las series eran independientes. El análisis solo tuvo un factor: la adición o no de partículas pequeñas al polvo inicial con partículas grandes.
Los principales elementos que componen una grafica ANOM son los siguientes:

- Los puntos corresponden a los promedios de cada serie.
- La línea verde central representa el promedio global.
- Las líneas rojas son las límites de decisiones utilizadas para probar la hipótesis. Se definen automáticamente. Minitab busca los promedios ubicados encima o debajo de estos límites y los señala mediante puntos rojos.

Se puede analizar la grafica ANOM de esta manera:

- Si un promedio se sitúa fuera de un límite de decisión, se puede eliminar la hipótesis que el promedio es igual al promedio global.
- Si un promedio se ubica en el interior de las límites de decisión, no se puede echar la hipótesis según la cual el promedio es igual al promedio global.
En la grafica correspondiente a un tiempo de hidrólisis de 7 días se observa que ningún promedio se ubica fuera de los límites de decisión lo que significa que todos los promedios se acercan al valor del promedio global. Con esta grafica no se ve bien la diferencia que podría existir entre un polvo con partículas pequeñas y un polvo sin. Se verificará el resultado siguiente con un posterior análisis 2-sample t-test.

A 10 días de hidrólisis, se observa que dos promedios salen de los límites, el promedio correspondiente a los cementos 1G y el de los cementos 1G 4P es decir que estos dos promedios no igualan el promedio global y por consiguiente se destacan del resto.

Figura 6-14: Resultados de ANOVA de forma gráfica, 10 días de hidrolisis.
A 17 días de hidrólisis, todavía se destacan los promedios de los cementos 1G y 1G 4P pero sobrepasa además el promedio de los cementos 1G 2P. Esta gráfica nos muestra que los valores promedio se diferencian bastante lo que indica que algo está sucediendo entre las diferentes situaciones lo que vamos a mostrar a continuación.

Así, ANOVA nos permite mostrar que los promedios de cada situación no son iguales y que por consiguiente, existe una diferencia entre ellas ya que sobrepasan los límites de decisión. No obstante, los resultados del 2-Sample t-test van a permitir contestar a la pregunta previa que era si la aportación de las partículas pequeñas tenía un efecto en las propiedades mecánicas del cemento.

Los resultados obtenidos con el 2-Sample t-test se resumen en la tabla siguiente 6-7.
<table>
<thead>
<tr>
<th>Tiempo de hidrolisis</th>
<th>Grupos analizados</th>
<th>Valor de p</th>
<th>Diferencia significativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1G /1G 1P</td>
<td>0.080</td>
<td>NO</td>
</tr>
<tr>
<td>7</td>
<td>1G /1G 2P</td>
<td>0.213</td>
<td>NO</td>
</tr>
<tr>
<td>7</td>
<td>1G /1G 4P</td>
<td>0.503</td>
<td>NO</td>
</tr>
<tr>
<td>10</td>
<td>1G /1G 1P</td>
<td>0.0001</td>
<td>SI</td>
</tr>
<tr>
<td>10</td>
<td>1G /1G 2P</td>
<td>0.001</td>
<td>SI</td>
</tr>
<tr>
<td>10</td>
<td>1G /1G 4P</td>
<td>0.001</td>
<td>SI</td>
</tr>
<tr>
<td>17</td>
<td>1G /1G 1P</td>
<td>0.002</td>
<td>SI</td>
</tr>
<tr>
<td>17</td>
<td>1G /1G 2P</td>
<td>0.375</td>
<td>NO</td>
</tr>
<tr>
<td>17</td>
<td>1G /1G 4P</td>
<td>0.001</td>
<td>SI</td>
</tr>
</tbody>
</table>

Tabla 6-7: Resultados del 2-Sample t-test respecto al polvo con partículas grandes.

Estos resultados de 2-sample t-test confirman los resultados obtenidos con las gráficas ANOM. Se concluye que a unos 7 días de hidrólisis, la aportación de las partículas pequeñas todavía no es significativa ya que el cemento tardará mucho más tiempo en fraguar y en aumentar sus propiedades mecánicas. A 10 días de hidrólisis las propiedades alcanzan valores de resistencia a la compresión muy elevados y la contribución de las partículas pequeñas es evidente dado que las diferencias entre el polvo constituido únicamente por partículas grandes y los otros polvos son significativas. Sin embargo, a 17 días de hidrólisis, aparece una diferencia más débil entre el cemento 1G y el 1G 2P que
podría demostrar que esta situación que se intentó modelizar en los párrafos anteriores todavía no es una situación de compactación del material.

Además, con los resultados de resistencia a la compresión correspondientes a 10 días de hidrólisis se intentó apreciar la situación inversa, es decir la aportación de partículas grandes en un polvo con partículas pequeñas.

Los resultados obtenidos se muestran en la tabla siguiente 6-8.

<table>
<thead>
<tr>
<th>Tiempo de hidrolisis</th>
<th>Grupos analizados</th>
<th>Valor de p</th>
<th>Diferencia significativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1P /1G 1P</td>
<td>0.354</td>
<td>NO</td>
</tr>
<tr>
<td>10</td>
<td>1P /1G 2P</td>
<td>0.886</td>
<td>NO</td>
</tr>
<tr>
<td>10</td>
<td>1P /1G 4P</td>
<td>0.045</td>
<td>SI</td>
</tr>
</tbody>
</table>

Tabla 6-8: Resultados del 2-Sample t-test respecto al polvo con partículas pequeñas.

Los resultados son relevantes; no se encuentran diferencias significativas entre el cemento 1P y los cementos 1G 1P y 1G 2P como se vio en las gráficas de resultados de resistencia a la compresión para 10 días de hidrólisis en la sección anterior. No obstante, sí que hay diferencias significativas entre el cemento 1G 4P y el cemento 1P. Esto indica que el añadir partículas grandes a un gran volumen de partículas pequeñas densifica el material. Los cementos 1G 1P y 1G 2P no poseen un volumen bastante grande de partículas pequeñas de forma que al introducir las partículas G, éstas acaban separando las partículas P entre sí provocando la formación de huecos y disminuyendo el grado
empaquetamiento del cemento. Esto se entiende mejor fijándonos en la figura 6-12 de la sección 6.2.3.

6.3 Caracterización de la pasta de cemento

Una caracterización muy importante de estos materiales es la posibilidad de implantarlos en el cuerpo. Para conseguir este objetivo, es menester que el material tenga cohesión, que sea inyectable y además tenga tiempos de fraguado adecuados. En esta sección, se pretende cuantificar el grado de inyectabilidad a través de ensayos de inyectabilidad detallados en la parte 5.3.2, evaluar la cohesión de los diferentes cementos mediante ensayos sencillos de cohesión explicados en la parte 5.3.1, y determinar los tiempos de fraguado de varios cementos, en especial del de 1G 4P por presentar propiedades mecánicas superiores a los demás.

6.3.1 Inyectabilidad

Uno de los problemas técnicos que genera la utilización de polvo con tamaño de partículas muy pequeño (aproximadamente de pocas micras) es el riesgo de formación de agregaciones dando lugar a cementos heterogéneos. Esto se puede evitar utilizando soluciones que contengan dispersantes. Un ejemplo es el citrato de sodio que al adsorberse sobre las partículas les da carga negativa lo que produce una dispersión partículas dentro de la pasta del cemento. El citrato además actúa de agente licuante, dando una reología a la pasta de cemento adecuada especialmente cuando se trabaja con relaciones líquido/polvo bajas. Más adelante, se estudiará la influencia de la utilización de una solución de citrato de trisodio en la inyectabilidad del cemento.

Además, en un intento de aumentar la inyectabilidad del cemento también se hizo variar la naturaleza de las partículas pequeñas utilizando un polvo fino de β-TCP. El papel de las partículas de β-TCP es facilitar la inyección de la pasta de cemento ya que éstas no reaccionan tanto como las de α-TCP. La proporción de partículas β-TCP que se escogió fue la mitad de la proporción de las partículas pequeñas. Se hicieron ensayos en los cementos que presentaron mayores propiedades mecánicas, los de proporción 1G 4P. La nomenclatura de estos cementos es: 1G 2P(α+ β).
Como se mencionó en la sección 5.3.2, los ensayos de inyectabilidad se hicieron por triplicado. En la tabla 6-9 se muestra el valor medio y su desviación estándar de las diferentes formulaciones ensayadas.

<table>
<thead>
<tr>
<th>Liquido de mezcla</th>
<th>Proporciones de P y G</th>
<th>Inyectabilidad (mediana, en %)</th>
<th>Desviación estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>solución 2.5 wt% Na2HPO4 1G 4P</td>
<td></td>
<td>12.3</td>
<td>1.5</td>
</tr>
<tr>
<td>solución 2.5 wt% Na2HPO4 1G 2P(α+β)</td>
<td></td>
<td>32.1</td>
<td>0.9</td>
</tr>
<tr>
<td>solución 2.5 wt% Na2HPO4/0.5M citrato de trisodio 1G 4P</td>
<td></td>
<td>61.1</td>
<td>1.4</td>
</tr>
<tr>
<td>solución 2.5 wt% Na2HPO4/0.5M citrato de trisodio 1G 2P(α+β)</td>
<td></td>
<td>79.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Tabla 6-9: Resultados de ensayos de inyectabilidad.

Los valores de inyectabilidad son claramente visibles cuando se añade citrato de trisodio en el líquido de mezcla. En efecto, el citrato de trisodio aumenta considerablemente la inyectabilidad de la pasta del cemento ya que por ejemplo, para el caso 1G 4P su valor pasa de 12.3 con un líquido de mezcla sin citrato al 61.1% inyectado con un líquido con citrato. Esto se traduce a una inyectabilidad 5 veces mayor en presencia de citrato. De la misma manera en el caso 1G 2P(α+β), aumentó 2.5 veces el valor de la inyectabilidad gracias a la adición de citrato de trisodio. Con respecto a la introducción de las partículas beta, se observa que también influyen de manera significativa en la inyectabilidad de la
pasta de cemento. Así pues se observa que para el cemento preparado con fase líquida de al 2.5 wt% Na2HPO4, se calculó que la inyectabilidad era **2.6 veces** mayor cuando se añadieron partículas de β-TCP. Cuando se utilizó una solución 2.5 wt% Na2HPO4/0.5M citrato de trisodio, el valor de la inyectabilidad era **1.3 veces** más elevado en el caso de adición de partículas de β-TCP.

Comparando el efecto del citrato de trisodio con la adición de partículas de β-TCP, se puede concluir que el citrato de trisodio tiene un efecto superior en la inyectabilidad de la pasta de cemento que la adición de partículas β-TCP en la pasta del cemento. Esta diferencia llega a ser de hasta 5 veces más.

![Figura 6-16: Curvas de inyectabilidad de diferentes pastas de cemento.](image)

El aumento de inyectabilidad se puede apreciar también de manera gráfica (Figura 6-16). En efecto, la curva que representa el caso 1G 4P Na2HPO4 tiene una pendiente más elevada que la curva 1G 2P (α+β) Na2HPO4 lo que significa que cuesta más inyectar la
pasta que no tiene partículas de β-TCP. Del mismo modo se puede observar que cuesta más inyectar la pasta de cemento 1G 4P con Citrato que la pasta de cemento 1G 2P (α+β) con Citrato demostrando de nuevo el efecto de las partículas β-TCP. El papel del citrato en la inyectabilidad se obvio en las curvas mostradas en la Figura 6-16 donde se ve que con un fuerza aplicada mucho menor se consiguen extrusiones superiores.

6.3.2 Cohesión

El tiempo de cohesión se define como el tiempo mínimo después del cual la pasta de cemento no sufre desintegración cuando se sumerge en solución Ringer a 37°C. Se evalúa por inspección visual. En la tabla X se resumen los resultados de ensayos de cohesión de varios cementos clasificados según la proporción de partículas grandes/pequeñas y de la fase líquida utilizada para preparar el cemento. El grado de cohesión se evalúa de la manera siguiente: ++ significa que la pasta de cemento tiene una buena cohesión y + corresponde a una cohesión regular.

<table>
<thead>
<tr>
<th>Liquido de mezcla</th>
<th>Proporiones de P y G</th>
<th>Cohesión</th>
<th>Grado de cohesión</th>
</tr>
</thead>
<tbody>
<tr>
<td>solución 2.5 wt% Na2HPO4</td>
<td>1G</td>
<td>No</td>
<td>/</td>
</tr>
<tr>
<td>solución 2.5 wt% Na2HPO4</td>
<td>1G 4P</td>
<td>Sí</td>
<td>++</td>
</tr>
<tr>
<td>solución 2.5 wt% Na2HPO4</td>
<td>1G 2P(α+β)</td>
<td>Sí</td>
<td>++</td>
</tr>
<tr>
<td>solución 2.5 wt% Na2HPO4/0.5M citrato de trisodio</td>
<td>1G</td>
<td>No</td>
<td>/</td>
</tr>
<tr>
<td>solución 2.5 wt% Na2HPO4/0.5M citrato de trisodio</td>
<td>1G 4P</td>
<td>Sí</td>
<td>+</td>
</tr>
<tr>
<td>solución 2.5 wt% Na2HPO4/0.5M citrato de trisodio</td>
<td>1G 2P(α+β)</td>
<td>Sí</td>
<td>+</td>
</tr>
</tbody>
</table>

Tabla 6-10: Resultados de cohesión de diferentes pastas de cemento.
Se ve con claridad que las pastas de cementos con sólo polvos de partículas grandes no tienen cohesión y esto se debe fundamentalmente a la baja cinética de reacción de estas partículas (tienen muy poca superficie específica). Al añadir partículas pequeñas a la formulación del cemento su cohesión aumenta notablemente. Además, también se observa que las pastas de cementos preparadas con una solución 2.5 wt% Na$_2$HPO$_4$ presentan una buena cohesión y ésta es superior a la de los cementos preparadas con una solución 2.5 wt% Na$_2$HPO$_4$/0.5M citrato de trisodio. Esta diferencia de cohesión se explica por el carácter dispersante del citrato de trisodio y sobre todo por el carácter líquido que le da a la pasta.

La fotografía siguiente representa los anillos de pastas de cementos después de una hora en el baño térmico a 37°C.

Figura 6-17: Anillos de cementos después de una hora en el baño térmico a 37°C.
6.3.3 Tiempos de fraguado inicial y final

Otra caracterización importante de la pasta de cemento son los tiempos de fraguado, el inicial y el final. Se calcularon según la norma estándar C266-ASTM con las agujas de Gillmore. Este método mide básicamente la resistencia de la pasta a la penetración de dos agujas de diámetro diferente. El tiempo de fraguado inicial se mide con una aguja gruesa sostenida con un peso ligero, y el tiempo de fraguado final con una aguja más fina pero con un peso mayor.

<table>
<thead>
<tr>
<th></th>
<th>Tiempo de fraguado inicial (min)</th>
<th>Tiempo de fraguado final (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G</td>
<td>45</td>
<td>199</td>
</tr>
<tr>
<td>1G 1P</td>
<td>29</td>
<td>73</td>
</tr>
<tr>
<td>1G 2P</td>
<td>27</td>
<td>82</td>
</tr>
<tr>
<td>1G 4P</td>
<td>26</td>
<td>74</td>
</tr>
<tr>
<td>1P</td>
<td>10</td>
<td>27</td>
</tr>
</tbody>
</table>

Tabla 6-11: Tiempos de fraguado inicial y final para cada caso de cementos.

En la tabla 6-11 se muestra claramente que los tiempos de fraguado aumentan considerablemente con el contenido de partículas grandes en la formulación del cemento. Esto indica que la resistencia de la pasta a la penetración está estrechamente ligado a la cantidad de partículas pequeñas, lo que es lógico por su elevada reactividad. Cuanto más rápidamente se hidrolice la pasta menores serán los tiempos de fraguado. También se observa una diferencia apreciable entre los tiempos de fraguado inicial y final de los cementos que contienen partículas G y la pasta que únicamente está compuesta de polvo P. De nuevo la explicación de este comportamiento viene dado por el velocidad de reacción.
tan lenta para las partículas G. El valor de los tiempos que se obtienen son demasiado elevados para ser útiles, ya que se necesitan pastas que endurezcan al cabo de unos 30 min.

Así pues, aun habiendo conseguido el objetivo del trabajo que era el de mejorar las propiedades mecánicas de los cementos tradicionales (con distribucional mono modal de partículas) con la formulación 1G 4P, uno de los principales inconvenientes de esta formulación son los altos tiempos de fraguado causados por la presencia de las partículas G. Sin embargo, este inconveniente podría ser superado si se trabajase con distribuciones de polvo de tamaño inferior a las de este proyecto.
CONCLUSIONES

Se ha conseguido incrementar en un 40% la resistencia a la compresión de los cementos mediante la formulación de un polvo de α-TCP compuesto por partículas con distribución bimodal (partículas pequeñas, P, de tamaño mediano de 2.26 µm y partículas gruesas, G, de tamaño mediano de 21.09 µm).

La preparación del polvo de α-TCP ha sido la etapa más crítica de este proyecto, especialmente su tamizaje. El carácter higroscópico del polvo hizo imposible su tamizaje por debajo de las 20µm. Esto dio lugar a los polvos con distribuciones de partículas muy anchas y también hizo que no pudieran eliminarse las partículas pequeñas del polvo grueso. Se observó por SEM que el polvo con partículas pequeñas se agregaba con mucha facilidad y que el polvo grueso era un polvo de morfología muy irregular.

Las distribuciones tan anchas de partículas P y G, la tendencia a agregarse del polvo y la morfología tan angular especialmente del polvo G, hicieron que no pudiera aplicarse el modelo de Furnas para el empaquetamiento compacto de partículas bimodales. Sin embargo se estudió la posibilidad de densificar el material mediante la sustitución por partículas G de una masa equivalente de partículas P. Dado que las partículas G son densas, su incorporación densifica el sistema. De las diferentes formulaciones estudiadas: 1G, 1G1P, 1G2P, 1G4P y 1P, únicamente la proporción 1G4P supuso un aumento significativo en la resistencia a la compresión del material. Este aumento se verificó por SEM y MIP. Por SEM se vio que los cementos eran más compactos que los demás y por MIP se observó que el tamaño de los poros en el cemento eran muy pequeños (por debajo de las 0.1µm). Se propusieron diferentes modelos para explicar todos los resultados. Para el caso del 1G 4P se supone que la gran cantidad de partículas P forman una película alrededor de las G rellenando sus concavidades e irregularidades y a su vez actúan de ‘pegamento’ entre partículas G. La gran superficie específica de las partículas P hace que éstas se hidrolicen muy rápidamente actuando pues de pegamento.
Aún habiendo mejorado las propiedades mecánicas con el cemento 1G4P se verificó si la pasta de esta formulación de cemento tenía buena inyectabilidad y cohesión. Se observó que el cemento no era inyectable pero añadiendo un agente dispersante o partículas de β-TCP se mejoraba drásticamente su inyectabilidad sin comprometer demasiado la cohesión de la pasta.

A pesar de haber aumentado las propiedades mecánicas de los cementos de fosfato de calcio creemos que la formulación 1G4P puede y debe ser mejorada. Uno de los inconvenientes de estos cementos es el tamaño relativamente grande de las partículas que hacen aumentar considerablemente el tiempo de hidrólisis del material lo que no es viable clínicamente. Otra consecuencia de la lentitud en la reacción de hidrolisis es que la mejora en las propiedades mecánicas se consigue solo a partir de los 10 días de hidrólisis cuando lo ideal fuera alcanzar estos valores máximos en menos de 30 min (para así conseguir una fijación inmediata del implante).
PERSPECTIVAS FUTURAS

El efecto de distribuciones bimodales en las propiedades mecánicas de cementos de fosfato de calcio debe seguir siendo investigado. A continuación se dan algunas pistas para esta investigación:

La evolución de la resistencia a la compresión según el tiempo de hidrólisis podría mejorarse si se encuentra una manera de desplazar el valor de resistencia máximo a un tiempo de hidrólisis más bajo con lo que se conseguiría que fuese más viable clínicamente. Jugar con los tamaños de partículas elegidos para cada tipo de polvo, es decir disminuyendo el tamaño mediano de las partículas pequeñas y el de las partículas grandes, podría ser un buen método para mejorar el tiempo de hidrólisis puesto que se sabe que partículas de 21.09 µm tardan demasiado en hidrolizarse.

Otro parámetro importante a optimizar es el control de la granulometría de los polvos iniciales utilizados para la posterior fabricación de los cementos. Otros métodos de tamizado deberían ser probados con la finalidad de paliar el carácter tan higroscópico de la α-TCP y de mejorar las distribuciones de partículas haciéndolas más estrechas. Esto permitiría una mejora aplicación de los modelos teóricos de empaquetamiento óptimos.

Otro aspecto a considerar es el estudio de la cantidad optima de agente desagregante necesario para conseguir cementos que puedan ser moldeables. La cantidad que se estudio dio un efecto demasiado licuante sobre la pasta lo que no permitió preparar moldes para ensayos de compresión (la pasta demasiado líquida se escapaba por las juntas del molde). Sin embargo, dados los buenos resultados de inyectabilidad y cohesión conseguidos con el agente desagregante, creemos que el citrato de sodio debe continuar investigándose.

Finalmente, hoy en día se investiga la utilización de sistemas más complejos de distribuciones de partículas plurimodales para conseguir el mismo objetivo. Este sería otro punto a explorar para incrementar más las propiedades mecánicas del material.
COSTES ECONOMICOS

Cada trabajo que se realiza en un laboratorio ya sea para un determinado estudio pedido por parte de una universidad o para una empresa tiene un cierto coste asociado. Las tablas siguientes detallan los reactivos, máquinas y servicios exteriores utilizados a lo largo del proyecto con sus costes respectivos. El precio total del proyecto se menciona al final.

<table>
<thead>
<tr>
<th>Reactivos</th>
<th>Cantidad utilizada</th>
<th>Coste (euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaHPO$_4$ (C7263-2.5K, Sigma-Aldrich)</td>
<td>789.534 g</td>
<td>134.1</td>
</tr>
<tr>
<td>CaCO$_3$ (C4830-500g, Sigma-Aldrich)</td>
<td>291.594 g</td>
<td>137.9</td>
</tr>
<tr>
<td>Hidroxiapatita precipitada CaB$_{10}$(PO$_4$)$_3$B$_4$(OH)$_2$ (PHA, 1.02143.1000, Merck)</td>
<td>4.707 g</td>
<td>0.10</td>
</tr>
<tr>
<td>Hidrogenofosfato de sodio Na$_2$HPO$_4$ (131679.1210, Panreac)</td>
<td>6.25 g</td>
<td>0.38</td>
</tr>
<tr>
<td>NaCl (S9625-500G, Sigma-Aldrich)</td>
<td>18 g</td>
<td>0.34</td>
</tr>
<tr>
<td>Citrato de trisodio (25114, Sigma-Aldrich)</td>
<td>6.45 g</td>
<td>0.21</td>
</tr>
<tr>
<td>Total Coste Reactivos</td>
<td></td>
<td>273.03</td>
</tr>
<tr>
<td>Máquinas</td>
<td>Número de veces de utilización o duración del ensayo</td>
<td>Coste (euros)</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>BET</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>Adamel</td>
<td>10*1.5h</td>
<td>15*300€/hora = 4500</td>
</tr>
<tr>
<td>Bionix</td>
<td>1*2h</td>
<td>2*300€/hora = 600</td>
</tr>
<tr>
<td>SEM</td>
<td>2 sesiones</td>
<td>2*32€/sesión = 64</td>
</tr>
<tr>
<td>Porosimetría</td>
<td>3</td>
<td>3*145€/muestra = 235</td>
</tr>
</tbody>
</table>

Total Coste Máquinas

5464

<table>
<thead>
<tr>
<th>Servicios exteriores</th>
<th>Número de muestras</th>
<th>Coste (euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulometría*</td>
<td>10 (3h)</td>
<td>300</td>
</tr>
<tr>
<td>Difracción*</td>
<td>17</td>
<td>114.58</td>
</tr>
</tbody>
</table>

Total Coste Servicios exteriores

414.58

Precio total proyecto(euros)

6151.51

El coste del operador está incorporado en el precio.
IMPACTOS MEDIOAMBIENTALES

Hoy en día, debe tenerse en cuenta los impactos medioambientales de cada proyecto o estudio para una mejor gestión de nuestro entorno. En cuanto al material principal utilizado en este proyecto, o sea el fosfato de calcio, no presenta ningún riesgo para el medioambiente por su naturaleza. Se recuperan los residuos de fosfatos de calcio y se tratan de manera conveniente. No obstante, el único riesgo que el fosfato de calcio puede provocar es cuando se manipula en forma de polvo con partículas muy pequeñas. Este único inconveniente es fácilmente solucionable con la ayuda de mascaras que estaban a disposición en el laboratorio.

Lo que llama la atención al nivel medioambiental en este proyecto es la utilización de mercurio cuando se caracteriza la porosidad por MIP. El mercurio es un reactivo peligroso y contaminante ya que tiene un alto potencial de bioacumulación en los organismos vivos y por eso es tóxico para los seres vivientes. Por su naturaleza de metal pesado, obliga a ponerse guantes para realizar los ensayos y dispositivos de aeración y temperatura baja son dos criterios de la instalación donde se ubica el porosímetro. Agua con restos de mercurio (empleada para limpiar los utensilios en contacto con el mercurio), residuos sólidos con restos de mercurio (utensilios empleados durante el ensayo que pueden contener mercurio, como por ejemplo guantes o papel), las muestras ensayadas (inmergidas en mercurio durante el ensayo, quedan impregnadas de mercurio) y el mercurio propio son cuatro orígenes de residuos de mercurio. La instalación dispone de recipientes adecuados que permiten una gestión de los residuos de mercurio mediante una empresa especializada.

Finalmente los guantes de látex o potes de plástico contaminados se recuperan y se tratan adecuadamente.
AGRADECIMIENTOS

En primer lugar, quisiera agradecer a la ponente de mi proyecto final de carrera María Pau Ginebra por haberme permitido conseguir mi sueño de descubrir los biomateriales en general gracias a sus cursos que me apasionaron y por haberme aceptado en su departamento de biomateriales para efectuar mi proyecto final de carrera que fue muy interesante y confirmó mi gana de trabajar en este campo de investigación.

Doy las gracias a mi tutora de proyecto Montse por su paciencia, sus explicaciones tan sencillas y claras, su entusiasmo al descubrir mis resultados y por su rigor en el trabajo. Ahora creo que seré capaz de encontrar “buenos hilos conductores” en cada trabajo que haré. ¡A ver si sigo la vía de la investigación gracias a ti!

Agradezco a todos los doctorados y investigadores del departamento de biomateriales que me ayudaron a lo largo del proyecto. Pienso en particular en Gemma que me enseñó y me explicó de manera perfecta muchas cosas que me permitieron ir adelante en mi proyecto y en Txell por toda la energía que pone en ayudar a la gente incluso yo. Quisiera dar un agradecimiento particular a Hortensia que me enseñó lo todo en la fabricación de cementos al principio de mi proyecto con mucha paciencia y simpatía. Gracias a Edgar, Luis, Kim que me ayudaron repetidas veces a arreglar los problemas que encontraba durante mis ensayos. Gracias a Pablo por su buen sentido de la orientación en el Parc Scientific, a Román por su sentido del humor, a Maite por su buen humor y a Yassine por su manera de hacer pasar mejor las horas de trabajo en el chiringuito.
BIBLIOGRAFÍA

