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Abstract 
Speaker recognition is traditionally achieved in speech signal analysis using 

voice signal. New scenarios like the meeting room at USC supply new 

information to the classification problem. Source localization based on a 

microphone array and video capture with posterior processing for people 

localization could be integrated into the speech-based recognition creating a 

multimodal system. These new systems acquire greater importance in low SNR 

conditions, which are frequent in the meeting rooms. Furthermore, other 

features from voice could be extracted and added to the final multimodal 

system, thinking of those being more robust against noise. 

The current work demonstrates how multimodal integration of mentioned 

sources can improve performances for the speaker recognition issue in the 

meeting room. The improvement is very low and theoretical analysis of the 

multimodal probabilistic integration is made to set up limits for such 

performance. In the speech-only classification space, weakness of current 

approaches against noise is demonstrated, so is the higher robustness of the 

articulatory features. The complementarity and usability of the articulatory 

features is shown when joined with the baseline classifiers, obtaining small 

improvements on simple simulations. 

The main conclusion reveals that further work using the same environment and 

improved methods should acquire remarkable results. 



Summary 
All along the current project, the speaker recognition is being reviewed. First 

simulations in this work use the latest ‘state of the art’ algorithms, and later new 

approaches and lots of modifications are used. Multimodality is the main idea to 

achieve better results. The new multimodal data supplied to the speaker 

recognition system will be articulatory features and video+voice source 

localization in the meeting room scenario. Some articulatory features have not 

been widely used for speech analysis so the correct extraction methods are still 

not developed. On the other hand, voice source and video spatial localization 

algorithms are known and only the integration methods have to be defined. 

Theoretical review and a study about integration will follow before finally 

selecting an algorithm. 

 

Machine learning techniques are applied to extract articulatory features, which 

perform a surprisingly right classification. The usability of those feature extractor 

outputs for the speaker recognition issue is not that clear, but very important 

conclusions are set about how the extraction process can affect the posterior 

usage and how other extraction methods could be approached. 

 

During the work, articulatory features demonstrate to be less affected by noise 

than the baseline MFCC+GMM approach, but the correct extraction methods 

are still not available. Even using the baseline extraction methods based on 

MLP, a classification is possible using the articulatory features, and 

complementarities with baseline methods are demonstrated. The improvement 

of the whole system adding articulatory features is very small, but demonstrates 

their usability. The whole process of the articulatory feature integration can 

surely be reviewed expecting successful results in the future. 

 

Due to an extended analysis of how noise poisons the speech features, very 

concrete conclusions are set about noise rejection and affection. By plotting 

how the system works against different SNR conditions, behaviors of some 

methods are explained. In low SNR conditions, very simple changes in the 



algorithms improve the overall performance, and reveal the lack of noise-

oriented design of the baseline. 

 

The most of the methods approached in the current work were finally applied to 

the meeting room scenario at USC. An encouraging but small performance 

increase was achieved, and so the aim of the current work was considered 

realized. The trade-off between the spent effort and the small improvement is to 

be reviewed with further approaches and work. 

 



Acknowledgements 
 

I would like to thank everybody that have contributed to this project, sharing 

their knowledge and devoting some of their time to help me to carry out this 

challenging task. I would like to especially thank the following people: 

 

Professor Shrikanth S Narayanan., because he has motivated me to do my job 

better, he has been always willing to give a hand, and has led my project into a 

successful ending. I also wanted to thank him for his amazing talks, the sharing 

of his never ending experience, and his supervision. 

 

Department and apartment partner Joaquin Lopez, who always listened to my 

ideas and guided so many developing decisions, was always there and 

supported me. 

 

Thanks to PhD student Carlos Busso, who helped me about Signal processing 

issues concerning my low level problems along my thesis. 

 

Professor Panayiotis G. Georgiou, whom practical experience concerning audio 

databases registration, implementation of different methods, resources 

available, and of course, his microphone array system; helped me a lot. 

 

My research group; Naveen Srinivasamurthy, Soon-il Kwon, Sung Lee; who 

joined me at those never-ending sessions in the meeting room. 

 

My office partners, Chartchai Meesookho, Erdem Unal and Viktor Rozgic, 

supporting my ideas and the blackboards’ monopolizations.  

 

Professor Antonio Ortega, who helped me about so many personal issues. 

 

Nune Abramyam, Regina Morton and Tim Boston; who took care of us about 

faculty stuff. 



Table of contents 
Abstract .............................................................................................................. 3 

Summary............................................................................................................ 4 

Acknowledgements ............................................................................................ 6 

Table of contents................................................................................................ 7 

List of Tables ...................................................................................................... 9 

List of figures .................................................................................................... 11 

Abbreviations.................................................................................................... 12 

Abbreviations.................................................................................................... 12 

1. Introduction ............................................................................................... 13 

1.1. Organization of the report .................................................................. 14 

1.2. Current state of the art ....................................................................... 15 

Speaker recognition .................................................................................. 15 

Robust Feature Extraction......................................................................... 20 

Multimodality ............................................................................................. 22 

2. Methods .................................................................................................... 25 

2.1. Goals.................................................................................................. 25 

Speaker Recognition................................................................................. 26 

Robust feature extraction .......................................................................... 33 

Theoretical multimodal studies.................................................................. 46 

Multimodal speaker recognition................................................................. 49 

2.2. Progress of the project ....................................................................... 57 

Requirements............................................................................................ 57 

Accomplishments ...................................................................................... 61 

Limitations ................................................................................................. 62 

3. Results ...................................................................................................... 64 

3.1. Speaker Recognition.......................................................................... 64 

BASELINE................................................................................................. 64 

REAL SCENARIO ..................................................................................... 68 

ARTICULATORY FEATURES .................................................................. 69 

3.2. Robust feature extraction ................................................................... 73 

Speech signal............................................................................................ 73 

Noise on MFCC......................................................................................... 74 



Articulatory features .................................................................................. 76 

3.3. Theoretical multimodality studies ....................................................... 82 

3.4. Multimodal speaker recognition ......................................................... 84 

4. Discussion................................................................................................. 95 

4.1. Speaker Recognition.......................................................................... 95 

4.2. Robust feature extraction ................................................................. 104 

Speech signal.......................................................................................... 104 

Noise on MFCC....................................................................................... 105 

Articulatory features ................................................................................ 106 

4.3. Theoretical multimodality studies ..................................................... 110 

4.4. Multimodal speaker recognition ....................................................... 114 

5. Conclusions............................................................................................. 118 

6. Further work ............................................................................................ 121 

7. References.............................................................................................. 123 

8. Appendices ............................................................................................. 126 

8.1. ICAASP’ 05 Paper............................................................................ 126 

8.2. Presentation plots ............................................................................ 126 

 

 



List of Tables 
 

Table 1.- NIST Database. Room Microphones 27 

Table 2.- NIST Database. Microphones used by participants 27 

Table 3.- NIST Database. Subjects 27 

Table 4.- NIST Database. Artifacts 27 

Table 5.- Phoneme articulatory classification 45 

Table 6.- Phoneme table for consonants 45 

Table 7.- Phoneme table for vowels 45 

Table 8.- NIST Database. Different single microphones for training data 65 

Table 9.- NIST Database. Multiple microphones for training and testing 65 

Table 10.- NIST Database. Different lengths of training data 65 

Table 11.- NIST Database. Number of filters of MFCC 66 

Table 12.- NIST Database. Addition of the first coefficient of DCT 66 

Table 13.- NIST Database. Different length of utterance 66 

Table 14.- NIST Database. Number of gaussians 67 

Table 15.- NIST Database. Training Situations 68 

Table 16.- NIST Database. Training the background model 68 

Table 17.- Room Data. Different microphone info 68 

Table 18.- Room Data. Training with clean data 69 

Table 19.- Articulatory baseline. All pairs 70 

Table 20.- Articulatory baseline. Lucky pairs 70 

Table 21.- Dynamic articulatory classification 71 

Table 22.- Pair classification using pitch and energy only 72 

Table 23.- Pair classification excluding pitch and energy from articulatory 

features 73 

Table 24.- Confusion matrix. Manner I 78 

Table 25.- Confusion matrix. Manner II 78 

Table 26.- Confusion matrix. Place 79 

Table 27.- Confusion matrix. Voiced-voiceless 79 

Table 28.- Confusion matrix. Vowel 79 

Table 29.- Confusion matrix. Height 79 

Table 30.- Confusion matrix. Round 79 



Table 31.- Articulatory baseline performance 79 

Table 32.- MLP complexity analysis for articulatory baseline 80 

Table 33.- MPL input vector analysis for articulatory baseline 80 

Table 34.- Articulatory baseline performance 82 

 



List of figures 
 

Figure 1.- General scheme 25 

Figure 2.- Evaluation problem 29 

Figure 3.- ACS Evaluation 30 

Figure 4.- ACT Evaluation 31 

Figure 5.- CCT Evaluation 31 

Figure 6.- GMM Performance Vs SNR 34 

Figure 7.- GMM Performance Vs Test Utternace Length 30 

Figure 8.- Speech and AWGN distribution over MF Filterbank 38 

Figure 9.- Speech and AWGN distribution over log-MF Finterbank 38 

Figure 10.- Speech and AWGN distribution over cepstral coefficients 39 

Figure 11.- Possible scheme for noise reduction 40 

Figure 12.- Speech and AWGN distributions over each cepstral coef. 41 

Figure 13.- Pitch evaluation values and pitch extractor results 43 

Figure 14.- Simple example for joint classification 46 

Figure 15.- Microphone array output 53 

Figure 16.- Microphone array pdf 54 

Figure 17.- Video output 55 

Figure 18.- Covariance calculation from video 56 

Figure 19.- NIST Database. Number of filters of MFCC 66 

Figure 20.- NIST Database. Different length of utterance 67 

Figure 21.- NIST Database. Number of Gaussians 67 

Figure 22.- Discard high frequencies in MFFB 75 

Figure 23.- Pitch extraction accuracy Vs SNR 77 

Figure 24.- Performances of Bayes, sum, product and SE 82 

Figure 25.- Multimodal performance against previous performances 83 

Figure 26.- State-transition graph used in video 86 

Figure 27.- State-transition graph used in video 88 

Figure 28.- Model pdf and classification spaces 91 



Abbreviations 
 

FB  Feature based (approach) 

MM  Multimodal (approach) 

MFCC  Mel frequency cepstral coefficients 

MFFB  Mel-frequency filterbank 

LPC  Linear predictive coefficients 

SNR  Signal to Noise Ratio 

VQ  Vector quantization 

GMM  Gaussian Mixture Models 

HMM  Hidden Markov Models 

EM  Expectation Maximization 

NIST  National Institute Of Standards and Technology 

MLP  Multi-Layer Perceptron 

RBF  Radial Basis Functions 

DBNN  Dynamic Bayesian Neural Networks 

MOE  Mixture Of Experts 

TDNN  Time Delay Neural Network,  

SRN  Simultaneous Recurrent Neural Network,  

BPTT  BackPropagation Through Time 

DCT  Discrete Cosine Transform 

AWGN Additive White Gaussian Noise 

SL  Semantic Level 

FL  Feature Level 

SE  Squared Error 

PDF  Probability Density Function 

STT  Speech To Text 

 



1. Introduction 
 

New human computer interfaces need to extract ‘who speaks and when’. This 

information is used to create personalized services, grant remote access, 

guarantee security policies or for indexing purposes. 

 

It’s all about recognizing a speaker, and traditionally it has been divided into two 

different problems: speaker recognition or speaker identification. The first 

problem concerns security purposes, where a sample of voice can be admitted 

as one of the allowed users or rejected as an intruder. Background models are 

usually acting as intruders, moving the problem to a highest likelihood 

approach. Then the particular aim of these systems is to train the models 

exhaustively, specially background ones. Second issue tries to select the most 

likely model of a set. The training of those models is less demanding, and can 

be done in non ideal conditions. These systems use to deal with higher noises 

and disturbing scenarios, such as meeting rooms. 

Both systems share techniques and theoretical keys; then methods can be 

extracted from both of them for any purpose. Obviously, there are important 

differences; for example segmentation of speech does not make sense in the 

identification problem, where a piece of voice is assumed to belong to the same 

speaker. However, the study will be based on a recognition problem, assuming 

that techniques for identification should be similar except from background 

modeling, speech segmentation and some other specific issues. 

 

The experts’ room is a good example of Speaker recognition application. A set 

of people meet in the room, and the system must be able to extract the id of the 

currently speaking user. This information can be extracted to save meeting 

reports when joint with a speech recognition system, or to gain remote access 

to the room, sending the speaker ids and voice information to remote 

assistants. Problem has been approached recently by some researchers [17] 

[18] [19] and it is becoming an interesting situation for the community. Allowing 

the users to move free of carrying microphones or sensors is the most important 

request of this project. People can go into the room and act in a natural way, 



without being disturbed by gadgets. These requirements imply a set of real 

constraints to the signal processing problem. 

 

Constraints of this scenario, actually found in most of the real scenarios, are; 

very low SNR, use of speech expressions, strong noises such as blows or 

movements, fast speaker changes, overlapping of speakers or important 

differences on speech volumes. All these problems modify implementation or 

evaluation methods. 

 

This study focuses on finding a solution to the speaker recognition problem on 

difficult scenarios. Work can be divided into some important objectives: analyze 

voice features and its robustness to noise, suggest and evaluate new voice 

features, analyze methods for combining different sets of features, and finally 

apply used methods to the specific problem. 

 

This introduction continues with a succinct explanation of the report’s 

organization, summary of previous work about the speaker id or recognition 

approaches, some referring to the extracted and used voice features until the 

moment, and the combination methods for multimodal systems. Further in the 

document, methods and results will be explained 

 

1.1. Organization of the report 

 

This introduction is created to involve the reader into the speaker multimodal 

recognition issue. Please note it has been divided into three different topics; 

‘speaker recognition’, ‘robust feature extraction from speech’ and 

‘multimodality’, and so have been all the rest of the project. Later on ‘Methods’, 

experimental goals and accomplishments are explained in detail. Results and 

discussions do not appear before its corresponding section, and finally, 

conclusions are explained and possible future work analyzed. 

Since there are a lot of approaches and simulations all along the project, and 

they are concerning different goals, every objective, simulation and result will be 



enumerated to simplify the search of the whole process on a specific 

experiment through the paragraphs for ‘Methods’, ‘Results’ and ‘Discussion’ 

 

This organization of the report could bring to some confusion; a recommended 

reading method is navigating the Goals, Progress of the project (Requirements, 

Accomplishments and Limitations), Results and Conclusions section by section. 

Otherwise, one could keep reading through the different experiments related to 

the different topics, and get into the next section with no record of the first topic 

achievements. 

 

1.2. Current state of the art 

Speaker recognition 

 

Basic approach to the speaker recognition has been based on segmentation or 

clustering of speech segments. Main problems have been the decision of 

features to be used, the feature extraction methods, the error measure criteria, 

the cluster/model selection or the cluster/model training methods. 

 

All techniques capture speech samples from audio sources in their first 

algorithm step, and then features are extracted from that data, usually cepstral 

or LPC coefficients. Different features from different natures are extracted from 

the voice is this very important step. MFC coefficients has shown to be more 

robust to noise than LPC and derived features [1]. The most of the studies have 

been using MFCC, and only a few of them apply new voice characteristics to 

the speaker recognition issue. Current approaches combining information from 

different features [5] classify them into acoustic features, prosodic, phonetic, 

lexical and conversational features. They take into account from low-level 

characteristics of speech signal to high-level ones. [7] and [8] show results 

about usability of prosodic and conversational characteristics avoiding text 

transcription. 

 



Once a vector of inputs is obtained from recorded sound, input vectors are 

segmented into speaker turns. Whatever speaker turns model can be applied 

later, it is necessary to use a set of speaker models. Then the input vector will 

be compared to each of the models in order to select the closer one to the 

sample, solving the problem in a classification space. Distances or likelihood 

functions based on modified distances functions have been classically applied. 

Kullback-Leibler distance, Generalized Likelihood Ratio and Bayesian 

Information Criterion has been used, besides models, likelihood ratios or VQ 

distortion measures for clustering data.  

 

About statistical models for speakers, Reynolds [2] set important conclusions 

and demonstrated that GMM outperformed other stand-alone techniques such 

as VQ or Radial Basis Functions. GMMs take into account speaker-dependent 

cepstral data and discard time variation information, which was represented by 

transitions in HMMs. Independence of the speech dynamics among speakers is 

one of the important conclusions all over bibliography. Initialization and training 

for the models are studied and solved for off-line systems as well as noisy 

channel issues are mentioned in Reynolds’ work. It is important to remember 

these conclusions all over this work, because they are revisited in some of the 

incoming methods, and sometimes assumed for other experiments. When HMM 

were used, and transitions were discarded, models performed better. That 

means than first-order time-dependent statistics relying on phoneme transitions 

are more associated to language than to speaking manners. Some other 

features and temporal statistics of higher order could be used, though first 

results were very discouraging. 

 

Some approaches use a modified EM training algorithm, taking GMM as base-

technique [3]. This technique showed the best performances in cepstral domain, 

and bad results when applied to other features, thought they are useful in 

speaker discrimination, as shown when other models are applied. Pitch values, 

pitch contours, and statistics from energy are best prosodic features for speaker 

discrimination. Their distribution and contours in [4] showed well stand-alone 

performance but more important for our purpose was the complementarity of 

this information with cepstral results. 



There are some projects using acoustic pitch. Approach in [4] studies its 

contours. Parameters such as logarithms of F0 maximum, minimum and mean 

have demonstrated to be useful [8] as well as its distributions, normally 

assumed tied Gaussian. However, its time dependent contours reveal the most 

of the information. [4] estimates contours using the piecewise stylization of 

pitch, adopted by NIST as relevant feature [7]. Behavior information is 

encapsulated in bigrams of increasing, decreasing and voiceless segments of 

speech. [5] presents a different way of modeling pitch and energy. Indifferently 

of how pitch and energy are used, baseline demonstrates usability of those 

voice characteristics, still not sufficient to avoid MFCC-GMM collaboration, but 

its results are remarkable. 

 

Critical Review 

 

GMM is the best system found on literature for modeling speakers in the 

acoustic domain. It uses cepstral coefficients extracted with MFFB which are 

more robust to noise than LPC. It assumes Gaussian distribution for cepstral 

coefficients in different realizations of same utterances, and uncorrelation 

between coefficients. Time variation is omitted in these models because of its 

independency from speaker and higher relation to the language. It can be 

empirically demonstrated that models with higher numbers of uncorrelated 

added Gaussians can accomplish similar performances than a lower number of 

correlated mixtured Gaussians. Then in this work, the inter-correlation of the 

Gaussian coefficients will not be considered, so the major parameter affecting 

the complexity of the models will be the number of Gaussians. A stand-alone 

system with GMM presents three basic problems; order selection, EM 

initialization and calculation. Basically, those are specific application problems 

less important than our main goal; but getting solutions for them achieving 

similar performances with lower demands in terms of training processes or 

offline necessities would also be a remarkable result in the scope of the current 

project. Optimum search of minimum error estimation with EM is guaranteed 

when initialization of the model is correct, but finding minimums is not synonym 

of good representation of speakers. Initialization and order selection are highly 



important, to avoid performance decrease and misclassification. These 

constraints force applications to get its speaker models trained offline with some 

good speech information, though final application would involve hard noise 

conditions.  

 

Issues related to on-line behavior of the system are still being studied. One of 

the approaches [6] consists on creating a wide database of speaker models, 

which will be picked, assigned and adapted to speakers in real time. It’s based 

on speaker-change detection and later classification. As long as online model 

adaptation is not one of the aims of this project, a separately trained database 

will be assumed. The commented reference discusses about an interesting and 

assumed fact: turns over-detections can be corrected by posterior clustering or 

turns modeling, but misdetection can not be repaired later. 

 

Accuracies on low SNR conditions are only mentioned as future work. One 

could just find comments at the end of the cited references approaching high 

noise conditions. Cepstral mean subtraction is the solution given by Reynolds 

on GMM-based works. Anyway, there is not a study about which features are 

more robust to noise, in terms of Speaker recognition. 

 

Acoustic pitch underlies in cepstral coefficients, but its temporal behavior is not 

considered on static models such as GMM. Combination of these features with 

other speech-based classifiers is still a baseline in current literature. 

 

Pitch database used has not low SNR conditions, which we are interested in. 

The correct extraction of pitch from these constrained audio data can be an 

obstacle for future applications not being analyzed. Variances for the length of 

pitch and energy contours models are also basic problems in the previously 

commented work. Stronger extraction methods against noise and time-

variations exist and have not been used, they will be analyzed in this work. 

 

Transcription of text could maybe solve these issues, as some studies have 

tried; with the addition of the STT system: suitable to errors and with higher 

computational requirements. Approaches on text-transcription used for speaker 



recognition are present on bibliography. One could find usual speaker 

dependent expressions in speech, word rates, pause rates and some other 

prosodic information. Authors of the current work think it would be better to 

solve the problem in a simpler way; specially avoiding those high requirements. 

 

Current study follows up the experts’ room project, considering a text 

recognition system may be added to the multimodal system in future, but for the 

moment, this system and its possibilities in speaker recognition will not be 

considered. Then these items will follow; first try to extract the best information 

from feature level, later from larger term features and finally from 

conversational-length characteristics. In other words; acoustic, word and 

sentence-level features and conversational turns. 

 

Conversational turns have been studied too. In [7], a theoretic approach to 

usability of conversational statistical parameterization showed positive results, 

but complementarity of this performance with previous systems is not clear.  

 

Later on this episode, multimodal discussion is the main theme; there are 

solutions and ideas about how this information and previous one can be joined.  

Extensive database is needed for speakers’ turns modeling. The best 

parameters seem to be static ones, used when there are not wide databases 

available or when systems can work on-line. They are turns length, 

#pauses/turn… a unigram is sufficient to model these parameters, bigrams 

should take into account dynamic properties for turns, which are considered 

meeting-dependant and then not usable. It will be important to disguise which 

information extracted from the turn modeling is not dependent on people’s 

mood or on meeting themes. 

 

Other contributions to speaker recognition comprise high-level information such 

as characteristic pronunciation of phones or characteristic/incorrect lexical use 

of words. These features are extracted from phonemes segmentation and 

transcriptions. Good results have been estimated for the union of these features 

into basic systems [5]. It is still presented as just an approach to demonstrate 

complementarities of information from different context; acoustic, prosodic, 



phonetic, lexical and conversational. It takes into account too many parameters 

for on-line computation and necessarily uses lots of redundant information, but 

as long as it’s presented like a basic approach throwing good results, it’s 

remarkable. Huge feature vectors used for high-level studies such as [5] or [8] 

result from an elementary combination of shorter vectors; combination should 

be studied in depth to improve performances or to save requirements. 

 

There are no studies about articulatory features applied to speaker recognition 

[7][8]. So it’s a good start point for research. 

 

Before leaving this section, considering all the read bibliography, it can be 

assumed that larger speech segments become more reliable for feature 

extraction. When thinking about posterior usage of segments for classification, 

segments should necessarily be shorter than the smallest speaker turn. If 1 

second is considered the shortest of the speaker turns, 1 second should be the 

length of the speech segment to be extracted for analysis.  

 

On the methods section, the drawbacks found in the current “state of the art” in 

speaker recognition will be transformed in experiments and simulations. The 

main conclusion of the review about feature extraction has been the lack of 

usage of articulatory features. See the corresponding section of Methods, called 

ARTICULATORY CLASSIFICATION for further details. 

 

Robust Feature Extraction 

 

No relevant studies have been found about noise effects on the feature 

extraction methods. These studies would answer questions such as; which of 

our features are most affected by noise? Rejecting weak features would 

increase or decrease the performance? Is there any feature extraction method 

more resistant to noise? 

 

Reynolds in [5] showed cepstral mean subtraction increased performances on 

high noise conditions, and one of the methods of that study demonstrates the 



reason for that, and explains why some other researchers have proposed noise 

removal on the MFFB. On bibliography and further, the number of cepstral 

coefficients used is reported as an accurately chosen design parameter 

involving robustness, with no special mention about the election method. 

 

Critical Review 

 

The mentioned literature, lacks an analysis about the behavior of the different 

audio features when contaminated with noise. The robustness of a system 

against noise is normally reported using results, and no specific pre-analysis is 

made. Systems are not designed thinking on predefined noise rejection ratio; 

when a system outperforms some other, then it is backwards studied in terms of 

noise and possible reasons are explained. Although designing specially 

focusing on noise rejection is not a good strategy, maybe there are important 

conclusions on the approach, or maybe implications about how features and 

extraction methods behave against noise show up. 

 

On the methods episode, addressing this discussion, these questions are to be 

approached; 

- Given a group of features from voice, can we define its behavior when noise is 

added? (For example, would likelihood borders be affected because of SNR? 

Or how much affected are features by noise?) 

- Given a group of methods for extracting the same set of features, which is the 

best method against noise? 

- Given a vector of features, which of them are more important for the speaker 

recognition system (there exists a low dependency between features on the 

model)? And which of them are more/less robust to noises? 

- A model or some models for noise are needed all along this study. Can we 

define a good one addressing the meeting room scenario?   

- Can we compare different feature extraction methods using a noise rejection 

measure? 

And linking with the review of the previous section… 

- Are articulatory features more robust to noise compared to MFCC? 



 

In the Robust feature extraction subsection, inside the methods section, some 

simulations, hopefully answering the previous questions, are explained.  This 

mentioned subsection will be responsible of the articulatory feature extraction 

baseline and methods. Some discussion about the path to follow in the project 

is there developed, though this could be the right place for it, the arguments 

expressed are considered part of the progress of the project. 

 

Multimodality 

 

Combining information from different sources has demonstrated an 

improvement on information systems. There are on literature two ways to 

integrate multimodal information. They combine information at feature level or at 

semantic level, meaning they mix features before using them in a classifier, or 

they are classified separately and outputs of these classifiers are used. Mixed 

feature models would take advantage of all the information available on input 

parameters. On the other hand, using the outputs of previous well-known 

subsystems could mean easy implementations with similar results. Anyway, 

they both obey front-end processing and feature extraction of source signals 

and try to decide from source parameters. So the multimodal systems deal with 

designing joint models for features from different sources and problems such as 

modular design and information bottlenecks at the output of subsystems. 

 

Some approaches of feature level multimodal integration have been using 

statistical techniques like Hidden Markov Models [9], Neural Networks (MLP, 

RBF, DBNN, MOE) and Temporal Neural Networks [10] (TDNN, SRN, BPTT). 

They provide good solutions and an easy human interpretation for sources with 

close relationship between them, as speech and gestures relations. One of the 

multimodal combination problems studied in depth is the speech and lip 

movement interaction [11], which is usually solved from feature point of view, 

because the correlation between this information is high. Less nice relations can 

be found in other problems, solved at semantic level. These systems work with 

processed information which is expected to be less capable of reliable 



solutions, and accuse the lack of test databases, while feature level systems 

require computation power and have scalability problems. 

 

Semantic-based systems must combine decisions to “solve subsystems’ 

errors”. Used techniques have been Neural Networks [11], Dynamic Bayesian 

Networks [12][13] or some kinds of probabilities’ weighting solutions. There are 

many systems on literature combining sources information but they just solve 

their problems and it is done in very different ways. Owiatt [14] tried to set lower 

and upper bounds for subsystems combination efficiency and measure the 

disambiguation between sources, where the lower bound equals to separate 

decisions and upper bound can be calculated from sources inter-correlations. 

These are not available from the start point but it can be approximated by 

training. 

 

Along bibliography [9]-[16] it is known that appropriate systems for feature-

based integration would take strongly correlated input parameters and a wide 

training database. If softly correlated input signals are present, or there's a lack 

of training database one should use other solutions. Known problems in both 

techniques are: determining relevant features to be extracted from the input 

signals and the synchronization of these sources. Multiple articles discuss 

features relevance or their joint behavior for specific problems, even one could 

find studies about sources’ correlations. Being not aware of design rules for 

integration, it seems to be useful to take advantage of previous experience on 

subsystems design, and set up some procedures for selecting the data at its 

outputs and combining it. 

 

Critical Review 

 

Although exist a lot of papers about multimodal combination, there are few of 

them studying the problem from a theoretical point of view. A theoretical 

approach would be very useful for setting some high level rules to deal with 

multimodal problems. Few conclusions are given by papers about using 

semantic or feature level systems, and the classical product or sum rules are 



not suitable for systems where the whole performance is expected to reach its 

best because of the multimodal integrator. 

 

There are also few explanations about empirical results trying to analyze which 

systems perform better with which solutions. Some simple problems could be 

demonstrated to be best solved by one method instead of using some others. 

Neither a specific application has been demonstrated to be outperformed with 

one specific method. Given the classification nature of these problems, most of 

the methods used acquire previous (from previous subsystems) likelihood 

responses to achieve new classification spaces. That’s for sure a mathematical 

non-sense working because of the previous good behavior of classifiers, but 

theoretically inconsistent. 

 

The peculiar nature of the data in the meeting room scenario brings up a non 

classical problem. Final system will be receiving data from other systems 

running on different machines, each of them reaching misdetection and over-

detection errors continuously, and indeed system falls. Finding about similar 

projects was an impossible objective, and apply classical digital signal 

processing algorithms has been tricky. 

 

Before proceeding to apply a method to the specific problem, the mathematical 

background of the multimodal issue will be discussed, and the results will follow. 

Although this work is not pretended to be a mathematical theory, the formulation 

of the problem will guide to an easier understanding of the results of the 

experiments. 



2. Methods 

2.1. Goals 

 

The global system approached in this work will combine the results of specific 

subsystems: these subsystems are: people’s localization, sound source 

localization and voice classification over speaker models. This information is 

clearly separated into two spaces; physical one; where sound source 

localization and people localization relies; and the speech space, where 

spectral information of voice is used. Then there are two clustering results; 

based on spatial and voice decision boundaries. For sure, voice data is not 

giving any information to space classification, in terms of likelihood or distance 

functions used, meaning; distances used for each classification are completely 

independent. The variation along time of the classification weights is more 

suitable to be used for the combination purpose. Although they will not be 

synchronous, because time slots used for classification will be pretty different, 

the prior probabilities of each input vector related to a specific class in every 

space will be functions behaving similar along time. Then it’s obvious to assume 

a semantic level combination of these two results. Each subsystem will throw its 

likelihood or distances vector to the multimodal integrator, defining the main 

scheme this way: 

 

 

Figure 1.- General scheme 

 

A feature-level combination of the system is not considered. Features of the 

system are; the MFCC coefficients, the cross-correlations of the microphone 

array and the video localization shapes. As stated, it is nonsense to combine 
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MFCC with other features. However, the estimation of the microphone array 

delays and the video localization is also theoretically tricky. There are several 

algorithms for the source localization based on microphone arrays. The mostly 

used are the ones based on correlation. 

 

Once the main scheme has been stated and discussed, this ‘Goals’ episode will 

be divided into 4 categories involving different parts of the previous scheme. 

‘Speaker Recognition’ and ‘Robust Feature Extraction’ will deal with the speech 

space clustering, each of them carrying out the task of classifying a set of input 

vectors and extracting them, respectively; ‘Theoretical multimodality studies’ 

and ‘Multimodal speaker recognition’ will approach the space classification and 

the high level combination, concerning theoretical and implementation specific 

issues.  

 

Speaker Recognition 

BASELINE  

As stated before, this chapter is responsible of classification. GMM is the most 

used model, then the baseline of this work will be a first approach based on it 

and on MFCC extraction. Some simulations will be performed to accomplish 

these goals: 

- Familiarize with the MFCC extraction method, evaluating the parameters of 

the extraction method, how they affect the final performance. 

- Use the GMM models, working on its parameters and training methods  

- Create a background environment to work with in the next simulations.  

 

The NIST database will be used for the first baseline. It is a meeting between 

four speakers; two male and two female, and one unmiked component: 

 

 Topic:  news gathering scenario 1 

 Type:  focus group discussion 

 Date:  29/07/2003 - 15:13 

 Duration: 23 minutes 



 Participants: 5 

 Unmiked Participants: 1 

 Bleeps: 0 

 Location: NIST/225/B243 

 

 Room Microphones: 
Name Type Stats Notes Location* (m) 
ARRAY-1 Array OK  (2.88, 0.00, 1.20) 
ARRAY-2 Array OK  (-0.40, 3.26, 0.40) 
ARRAY-3 Array OK  (4.54, 6.60;  1.20) 
OMNI-1 Table OK  (1.51, 3.26, 0.74) 
OMNI-2 Table OK  (3.30, 3.26, 0.74) 
OMNI-3 Table OK  (4.40, 3.26, 0.74) 
QUAD-1 Table OK Direct. SE (2.95, 3.26, 0.74) 
QUAD-2 Table OK Direct. NE (2.95, 3.26, 0.74)  
QUAD-3 Table OK Direct. NW (2.95, 3.26, 0.74) 
QUAD-4 Table OK Direct. SW (2.95, 3.26, 0.74) 

Table 1.- NIST Database. Room Microphones 

  

 Microphones used by the participants 

Name Type Subject ID Status Notes 
HM-1 Head 25 OK  
LM-1 Lapel 25 OK  
HM-2 Head 27 OK  

LM-2 Lapel 27 Corrupted Problem, no signal 
first few minutes  

HM-3 Head 40 OK  
LM-3 Lapel 40 OK  
HM-4 Head 19 OK  
LM-4 Lapel 19 OK  

Table 2.- NIST Database. Microphones used by participants 

 Subjects 
Subject ID Gender  Native Notes 
25 F Yes  
27 M Yes  
40 M Yes  
19 F Yes  
6 F Yes Unmiked 

Table 3.- NIST Database. Subjects 

 Artifacts 
Artifact Name  Location* (meters) 
Projector Screen (-0.40, 1.70, 0.74) 
Whiteboard (2.52, 0.00, 0.90) 

Table 4.- NIST Database. Artifacts 

 



There is a considerable amount of information on this meeting database. Spatial 

information will be discarded as well as delays on the microphone array. The 

aim of this particular step is to get familiar with a noisy speech database. There 

are three omnidireccional microphones and lapel microphones for each 

speaker. The speaker turns and speech are transcribed. The environment is 

very noisy, so it is perfect for the goal of the thesis. 

 

The current baseline should set conclusions on basic questions such as: 

- The correct selection of training data and simulation data, in terms of 

microphones, which involve SNR conditions and channel filtering. 

- The correct parameterization of the MFCC, particularly how the number of 

filters variation performs, selection of the first DCT coefficient, length of the 

utterances….  

- The selection of GMM parameters; number of Gaussians and performances in 

front of different input features and training situations, testing the training 

algorithm exhaustively 

- Methods to model the background, in order to add the silence as a new model 

into the speaker’s group. 

 

To accomplish these goals, evaluation methods are needed. These are the 

suggested and used along this work: 

 

1.- ACS. Approximately classified segments  

When a timeline is segmented into different speaker turns, each instant belongs 

to a speaker, assuming there are not overlappings. Along time, a classification 

is performed in each cluster/period, due to signal analysis issues every decision 

is based on information belonging to the current period and the surrounding 

data, because the longer the speech segment is taken, the better the 

classification works. The upper time axis in the next diagram shows that issue: 

 



 

Figure 2.- Evaluation problem 

 

The utterance period Tf is the length of the window used in the time domain to 

extract speech features’, and the decision period Td is the time stepped to 

move the window. A decision is taken when a speech window is settled in a 

time instant; a classification label is applied to the result. Note that the classified 

period is Td, so the solution of the algorithm will be compounded by labeled 

periods of Td seconds, as showed in the second horizontal axis of the drawing 

above. Considering that timeline the final decision of the system, how to 

evaluate its performance? 

 

Advancing some of the preliminar simulations, one second seems to be the 

shorter utterance period to perform a valid decision. Larger periods would 

exhaustively take periods shared by two speakers, and shorter ones do not 

behave statistically the way stated models do. Otherwise, there are not 

important conversation turns shorter than one second, it has been 

demonstrated than significant utterances for a conversation are longer than one 

second or at least they have large pauses before and after when important. This 

reason brings up an upper bound for Td. Speaker models are based on the 

statistics of spectral characteristics or voice source parameters, and 50 ms is 
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the average time vocal tract needs to emit a phoneme; so we use it as a lower 

bound for Td. So we know Td must be in between 50ms and 1s. Values from 50 

ms to 500 ms would imply; redundancy of the decisions, the need for post-

processing when isolated turn errors appear; and a great precision on speaker 

changes.  Finally: decision period Td will be considered half a second, though 

shorter values for redundancy will be simulated to evaluate its contribution. 

 

 

Figure 3.- GMM Performance Vs Test Utternace Length 

 

ACS evaluation algorithm doesn’t mind about speaker change detection 

accuracy. If a time segment is classified into a speaker model present in some 

part of the window, individually or overlapped, it’s taken as a correct 

classification, as showed in this scheme: 

 

Figure 4.- ACS Evaluation 
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2.- ACT. Approximately classified Turns  

Similarly to ACS evaluation method, ACT will not mind about exactness of 

speaker change detection but missing a speaker turn will be considered an 

error. Where ACS missed turns because of its relaxed evaluation measures, 

ACT is stricter and throws an error. 

 

Figure 5.- ACT Evaluation 

 

These errors are supposedly avoidable with the correct selection of Td and Tf, 

then ACT will be used to be compared to ACS and extract conclusions about 

the selection of these parameters. 

 

3.- CCT. Correctly classified Turns  

Taking a look to the GMM approach and the ML algorithm, it is supposed on the 

segments where 2 speakers are present, to throw a decision belonging to the 

most present of the speakers. Then CCT will evaluate the shared segments to 

belong to the speaker present on more than 50 % of the segment. 

 

Figure 6.- CCT Evaluation 
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The overlappings will be also computed using a percent. As an example, if the 

first half of a segment belongs to the speaker 1, and spk1 and spk2 are 

overlapped on the second half, then 33% of the segment would belong to spk2 

and 66% to spk1. Correct decision for CCT would be spk1 because in the ML 

domain; probability of spk1 given the utterance is greater or equal to 50%. 

 

4.- CCTS Correctly Classified Turns  with Silence 

Based on the CCT method, this evaluation method will not extract silence 

period from the speech signal, taking it as a new model to be classified with the 

same accuracy than others. 

 

Previous work on speaker classification was working on perfectly cut speech 

segments. The models were applied to segments of voice belonging to just one 

speaker. Online requirements forced us to set these performance measures, 

which will let us detect problems such as little delays of the goal segmentation, 

correct selection of parameters, exactness of the speaker change detection, 

and exactness of the silence model. Another problem is the large delays 

between the classification labels, and the real speech signal. These errors are 

present on some databases, and are not necessarily continuous along 

database, that means, there are errors on the classification goal. This will 

necessarily be studied manually and exhaustively. 

 

REAL SCENARIO 

Once having data relative to the Real Scenario, new Simulations with different 

goals should be run. Special care should be taken to accomplish these goals; 

- Extract conclusions about the location of the microphones and the 

preprocessing necessary for the correct classification 

- Conclusions about model training methods. 

- Analyze the background model performance. 

 



ARTICULATORY CLASSIFICATION 

The next goal of this section will be using new acoustic features to classify 

speakers. Again, two baselines for the NIST database and for the real scenario 

will be stated and discussed. 

 

The methods for extracting the features will be commented in this section, but 

further explanations are in the Robust Feature Extraction section. 

 

Once the baseline gets working, how to improve its performance will be studied 

and how to join it into the GMM model in a multimodal scheme. The basic plan 

for the models is to start with static models, like GMM, and move to dynamic 

ones like HMM. It’s well known in bibliography than major differences in pitch 

between different speakers are basically the temporal variation, nor the instant 

values. That’s why every feature will be specially considered and studied about 

this concern, trying different approaches like static models, models based on 

derivatives, models based on temporal variations and some mixtures. 

 

 

In the Results section, the Speaker Recognition::Baseline subsection contains 

the explanation and results of the run simulations about MFCC (Simulation 1 

and Simulation 2). Further related studies on this topic, is in the Progress of the 

project section, inside Requirements::Speaker Recognition. Simulation 5 and 

Simulation 6 are the baselines for the articulatory usage. See 

Requirements::Speaker Recognition for other articulatory approach 

explanations. 

 

Robust feature extraction 

Speech signal 

 

The accuracy of the systems decay fast as noise is added to the speech signal. 

Next plot shows it, it responds to a preliminary simulation with the same corpora 

being contaminated with white, colored and real noise. 



 

 

Figure 7.- GMM Performance Vs SNR 

 

Speech has been traditionally modeled as the sum of a source from the vocal 

cords and the spectral filtering created by the vocal tract. Two major 

approaches to model speaker dependant features have based the classification 

problem on the source or on the tract characteristics. In terms of spectral shape, 

MFCC are the most commonly used features. Its properties has been largely 

analyzed and exalted by speech analysis lectures. Otherwise, when using 

source characteristics, pitch and energy are the important features; speaker 

dependency has been demonstrated in the way pitch evolves on time. However, 

the speaker ID problem is usually solved with statistics of the spectral shapes, 

which need long test utterances and high SNR. Since that method is considered 

in the limit of its capabilities, addition of new features is the way to improve it. 

New features can income from a similar nature or from a very different one, 

such as voice source localization. This section is based on extracting the most 

from the sound signal. 

 

It’s hard to find features capable to represent the acoustic characteristics of an 

utterance better than MFCC, so the most of the researches focuses on prosodic 

information. Before that, an analysis of robustness of MFCC against noise 

(please view next section) could throw some light over the problem. 
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The aim of this section is to work on the MFCC avoidance, and extract other 

source features which could contribute with information different from MFCC. 

The MFCC have been used for speech recognition, since the human ear works 

in the spectral domain, then the human voice tries to reproduce sounds 

distinguishable by the human ear. There is a strict true underneath the whole 

process; the different sounds of the human voice are classified by the speech 

recognition systems using the same methods the human ear uses; spectral 

shape, and it’s surely the best way. But in terms of speaker recognition that is 

completely erroneous, meaning; the human voice is not trained to be different 

than other voices; and even worse; it is trained to be equal and understandable. 

So when looking at MFCC for the speaker recognition purpose, we are looking 

into the small differences users have when creating a sound, that is the resilient 

error in the speech recognition algorithm. For sure that measures the inability of 

some vocal tracts to reproduce standard sounds. That is for sure a very good 

baseline, since the human ear is capable of distinguish the person speaking by 

using its ear, meaning using a spectral shape analyzer, but doesn’t need to be 

the unique solution to the speaker recognition issue. 

 

Pitch is the main feature that can be used to look directly into the speech 

generation process. It’s a clean feature different among all speakers, genuine 

without any doubt. But the aim of this project is finding other similar 

characteristic features on the speech generation process, specially focusing on 

those ones not captured by the MFCC algorithm. 

 

Looking for the vocal tract bibliography and speech generation process lessons, 

the speech is known to be generated differently if a voiced or unvoiced 

phoneme is being pronounced. The voiced segments are modeled as a source 

followed by a filter, where the vibrating vocal chords and the vocal tract are 

responsible of each role respectively. The MFCC catch the filtering process 

successfully, filtering is always considered linear because second order 

components are considered inexistent. The unvoiced phonemes are commonly 

assumed to be generated by some source coming from the lumps, and the 

vocal tract generating some temporal predefined events. That reveals the need 

of using something like the HMM transition modeling in the speech recognition 



problem, which joins the GMM to accomplish the recognition of the whole 

phoneme corpora.  

 

By using the mentioned ideas, which are a brief description of a very large 

theory, one could assume than the only information included in the human voice 

that is not firmly captured by the MFCC algorithm is: the source model, the non-

linear effects of the vocal tract filters or the characteristics of the high-frequency 

components of voice. Source models can be approached using pitch 

extractions, or calculating background noise models using the mean of the 

unvoiced segments. The non-linearity of the vocal tract is minim, and the catch 

of that kind of events needs a correct modeling and understanding of the non-

linearity order, and furthermore; online extraction. The high-frequency 

particularities are not captured by MFCC since they are focused in the human 

ear listening procedure. The Mel-Frequency is based in the loss of spectral 

accuracy of human ear as frequencies are higher. That is a very logical 

escalation of the filters for the speech recognition, but as mentioned, the 

speaker recognition is different, and the human ear behavior has not to be 

copied. The particular resolution scale used by MFFB from low to high 

frequencies is to be analyzed 

 

Simulations in the Results section will try to answer some of the approached 

questions, using pitch, energy and some other articulatory features, and see if 

plain usage reveals hints for next steps. 

 

Noise on MFCC 

 

In Figure 7, the performances of a speaker ID system against additive Gaussian 

are plotted1. The same graph adding real world noise or conversation 

interferences was plotted during the progress of this baseline and the results 

                                            
1 Classification performance on the USC1 database, 14 MFCC coefficients (first discarded), 16 

gaussian per model, silence periods discarded 



were similar. It is obvious how the speaker dependency using MFCC is lost 

when noise or interferences are present.  

To evaluate how the noise is merged with the real data in MFCC, let’s take 

again a simple example by adding AWGN to speech signal: 

 

  )()()()()()( wWwXwYnwnxny +=↔+=  

 

And carrying the new signal through each step of signal preprocessor, starting 

with pre-emphasizer filter; 
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passing the signal through the filter bank and computing the power at the output 

means the same than computing spectral power and multiplying per filter bank; 
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we want to evaluate how the noise goes through the filter bank. The amplitude 

of the noise can be approximated in each filter as the amplitude in the center of 

the filter: 
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Then, at the output of the filter there will be; 
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Figure 8.- Speech and AWGN distribution over MF Filterbank 

 

Applying the logarithm: 
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Figure 9.- Speech and AWGN distribution over log-MF Finterbank 

 

The last step previous to obtain the cepstral is the DCT: 

 

Speech and AWGN over filterbank 
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Figure 10.- Speech and AWGN distribution over cepstral coefficients 

 

The plots show how the power of noise is distributed in the same way as the 

power of signal is. This compacted distribution is the great advantage of DCT, 

but it makes impossible to separate useful information from the noisy data in 

this domain. It is not that way in the previous step, before transformation. 

Logarithmic outputs of filterbank have more power when noise is added in high 

frequencies, where speech power starts to decay. Having a vector with a 

reliability scale over its coefficients, would give the possibility of discarding 

some coefficients on hard noise environments. That’s not doable after the DCT, 

and DCT is one of the most important steps for classification. 

These are the suitable modifications of the system revealed by the study: 

-Take out the high frequency coefficients of the log-filterbank 

-Find a transformation different than DCT mapping energy of noise and speech 

to different coefficients could lead to a similar situation in the transformation 

domain, then coefficients with higher SNR after the transformation could be 

discarded. 

 

First solution works on spectral domain, and second one on cepstral domain. 

Two simulations will be performed in order to set a baseline on these solutions: 

 

1.- Discarding of high frequency coefficients 

Speech and AWGN over cepstral 



From previous plots, high frequency coefficients are demonstrated to suffer 

lower SNRs. Then, it’s intended to compare how its avoidance performs in front 

of its use. The general scheme of the simulation will be: 

 

 

Figure 11.- Possible scheme for noise reduction 

 

After the DCT, Gaussian mixture models will be applied. As long as GMM are 

working when all the coefficients are used, GMM are supposed to perform 

similar when some of them are discarded, no other classification methods will 

be considered. The baseline stated for speaker classification (Simulation 1) will 

be taken to evaluate this simulation. 

 

Since the particularity of speakers given frequency information exists for 

spectral shapes and not simply spectral values, the histograms of log-filterbank 

don’t show any speaker dependency. Only specific interlocutors having big 

differences such as pitch, the classification could be performed. The DCT or 

any other transformation is needed to locate the differences. 

 

After the transformation, these are the histograms for a pair of speakers taking 

14 mel cepstral coefficients with energy included: 
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Figure 12.- Speech and AWGN distributions over each cepstral coef. 

 

Green color has been used for the histograms of signal with added noise. 

Because of the non-linear operation; the logarithm, it’s impossible to 

disambiguate PDFs shapes of signal and noise. The results end up with limited 

possibilities when trying to get cleaner MFCC coefficients. 

 

Simulation 9 in the Results section will play with the MFCC algorithm and the 

mentioned distributions of noise so proposed solutions can be analyzed. After 

those simulations, the Progress of the project will indicate how to continue the 

study. 

 

Articulatory features 

 

There are different methods to accomplish the extraction of the articulatory 

features. Pitch, energy, voicidity, rounding, place, open, manner and point 

Speech and AWGN over cepstral 



(low/medium/high) are the considered features. Since bibliography is full of 

methods for the pitch and energy calculation, and the performance of these 

algorithms are good enough to train speaker models, the pitch and power 

methods will be explained and compared, and later its performance examined 

for high noise constraints. No new methods will be approached in this work. 

Otherwise, other articulatory characteristics have not been widely studied, 

neither extraction methods. First goal of this section is to extract those features 

with a simple algorithm, and later when the features get a classification result 

the extraction method will be reviewed 

 

For the pitch extraction, the KEELE pitch database is used, where we can find 

transcribed valid values of pitch for training and testing the pitch calculation 

algorithm. These methods are based on autocorrelation, maximum likelihood, 

spectrum based product or the YIN method. Being the pitch the more powerful 

periodic signal in the human voice; a simple filtering, correlation and peak 

search algorithm is enough for an accurate extraction, and first results showed it 

being sufficient. However, to evaluate and compare the methods, we could use 

a simple squared error measure. Being x the expected values of the pitch, and y 

the resulting values for the pitch: 
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For those pieces of signal where the pitch can’t be calculated because of 

unvoicidity of the phonemes, the error will be avoided. There are some 

considerations about the effects caused by small delays; next plot can help to 

understand it: 

 



 

Figure 13.- Pitch evaluation values and pitch extractor results 

 

This plot is extracted from the results sections; it shows the spectrogram of a 

piece of voice, with the pitch values saved in the KEELE database in blue color, 

and the values from the pith extractor in white color. Discarding voiceless 

pieces in order to keep the performance measure calculated with only voiced 

segments is plainly done by reading the zero values of the KEELE’s pitch. But 

in the areas close to VOICE-VOICELESS changes, there’s a small delay 

between the expected values and the real values. Then we can analyze the 

accuracy of the systems with two measures; let’s call them SE (Squared error) 

or CSE (Corrected Square Error). The second one allows a delay without 

considering it an error, varying from half the length of the analyzing window to 

the whole window. 

 

The database used for other articulatory features has been the TIMIT database, 

which was the only free database that was soon available for the simulations. 

We could find marked phonemes on it, which could be easily translated into 

marked articulatory features, since every phoneme has unique articulatory 

characteristics. Once done, first baseline will be based in MLP. To evaluate how 

good the classifiers are, we will plot the probability of error in every simulation. 

Basically the MLP is trained to write at its output the value 1 when the input 

signal is voiced (for example) and -1 when it is not. The amount of voiced 

phonemes classified with a value <0 and the amount of voiceless phonemes 

classified with >0 result is the probability of error. 

Pitch evaluation values and pitch extractor results 



 

Here we plotted the translation table for the phonemes transcribed in the TIMIT 

database to convert them to articulatory training/testing vectors. The phonemes 

are transcribed with the ARPABET phoneme alphabet. 

 
Phoneme Manner Place Voic Vowel Height Round 
Consonants 
[b] stop lab voiced - - - 
[d] stop alv voiced - - - 
[g] stop vel voiced - - - 
[p] stop lab voiceless - - - 
[t] stop alv voiceless - - - 
[k] stop vel voiceless - - - 
[dx] flap alv voiced - - - 
[jh] fric alv voiced - - - 
[ch] fic alv voiceless - - - 
[z] fric alv voiced - - - 
[s] fric alv voiceless - - - 
[zh] fric vel voiced - - - 
[sh] fric vel unvoiced - - - 
[v] fric lab voiced - - - 
[f] fric lab voiceless - - - 
[dh] fric den voiced - - - 
[th] fic den voiceless - - - 
[m] nas lab voiced - - - 
[em] nas lab voiced - - - 
[n] nas alv voiced - - - 
[nx] flap alv voiced - - - 
[ng] nas vel voiced - - - 
[en] nas alv voiced - - - 
[hh] fric glo voiceless - - - 
[q] stop glo voiceless - - - 
Semivowels 
[l] - cen voiced - - - 
[el] - cen voiced ten mid - 
[r] - ret voiced ten mid - 
[hv] - cen voiced lax mid - 
[er] - alv voiced lax mid - 
[axr] - alv voiced lax mid - 
Vowels 
[w] - bak voiced ten hi unr 
[y] - fro voiced ten hi rounded 
[iy] - fro voiced ten hi unr 
[ih] - fro voiced lax hi unr 
[eh] - fro voiced lax mid unr 
[ey] - fro voiced ten mid unr 
[ae] - fro voiced ten lo unr 
[aa] - cen voiced ten lo unr 
[aw] - cen voiced ten lo rounded 
[ay] - cen voiced ten lo unr 
[ah] - cen voiced ten lo unr 
[ao] - bak voiced ten lo unr 
[ow] - bak voiced ten mid rounded 
[uh] - bak voiced lax hi unr 



[uw] - bak voiced ten hi rounded 
[ax] - cen voiced lax mid unr 
[ix] - fro voiced lax hi unr 

Table 5.- Phoneme articulatory classification 

 

[voiced] [unv] Labial 
(lab) 

Dental 
(den) 

Alveolar 
Postalv. 
(alv) 

Retrof
lex 
(ret) 

Vowel 
(bak,cen,f
ron) 

Velar 
(vel) 

Glotal 
(glo) 

stop [b] [p]  [d] [t]   [g] [k] [q] 

Nasal [m] [] 
[em] []  [n] [] 

[en] []   [ng] []  

flap  [dx] [] [nx] []     

fri [v] [f] [dh] [th] [jh] [ch] 
[z] [s]   [zh] [sh] [] [hh] 

-   [er]*  
[axr]*  [r]* [l]* [el]* 

[hv]*   

Table 6.- Phoneme table for consonants 
* Semivowels; all voiced 
 

[rounded] 
[unr] Frontal (fro) Central (cen) Back (bak) 

Height (hi) 

[] [y] 
[] [iy] 
[] [ih] 
[] [ix] 

 [w] [] 
[uw] [] 

Middle (mid) [] [eh] 
[] [ey] 

[er]* [axr]* [r]* [el]* [hv]* [l]*  
[] [ax]  [ow] [oy] 

Low(lo) [] [ae] 
[aw] [aa] 
[] [ay] 
[] [ah] 

[[] [ao] 

Table 7.- Phoneme table for vowels 

 

The input of the MLP is a key factor of the system. It can’t be a high 

dimensional vector, and it needs to encapsulate all the necessary speech info. 

For the baseline, the MFCC or the plain MF Coefficients will be used. The MLP 

complexity is another key factor, and two layers of 16 and 8 nodes respectively 

are being used for the most of the features, except for the point of articulation, 

which needed a higher complexity of the network. The results showed those 

dimensions were enough, at least for a correct feature extraction, which doesn’t 

necessarily mean the results were good for speaker classification. Simulation 

11 shows the results of the MLP baseline. 

 

After the baseline is accomplished, we would like to analyze different methods 

for extracting these same features, based on speech signal analysis, and trying 



to avoid the MFC analysis, which is surely a bad start point when the main aim 

of this work is to extract different information than the MFCC. In the progress of 

the project section how to approach that extraction is discussed 

 

Theoretical multimodal studies 

 

In order to present the objectives of this discussion, a simple example will be 

taken, it will show empirically and analytically the exposition. The example 

consists on a classification problem. Given two classes, two sources are being 

measured by two different one-dimensional signal readers, which we are calling 

modes. Classification could be done in everyone of the spaces, or using a 

multimodal algorithm. To be analytically easy and to represent generalized 

issues, measures in both spaces are contaminated by additive Gaussian noise. 

The aim of the exercise is to achieve the best joint classification possible. 

 

 

Figure 14.- Simple example for joint classification 

 

It’s a multimodality example that can be approached from a semantic level (SL) 

combination or a feature level (FL) combination. FL uses the input features to 

solve the classification problem, while SL uses prior probabilities of the features 

given the classes or any other classification measure to compute a final prior 

probability. 

 

Let’s show how a feature level combination is based on Bayes decision for the 

given example. 

Taking joint probability distribution in both spaces, and assuming it to be joint 

Gaussian: 

     Pdfs of classificacion spaces
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The Bayes decision taking equally probable classes and based on posterior 

probabilities is equivalent to the decision of prior probabilities. 
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It will assign the received sample to the maximum of the likelihoods 

The Bayes decision rule sets a bound. It’s the optimal statistical solution. All 

other approaches will perform lower than this solution. 

 

There are a couple of questions to be answered about semantic level point of 

view.  

-What can be reached with a semantic level approach? We know that the 

accuracy will be for sure lower than the Bayesian one. But, can we set a bound 

lower than that?  

-Performance of alone classifiers also set a bound for the solution. Before that 

bound it’s not necessary to use a multi-classification scheme, because there are 

stand-alone classifiers working better than the given solution. But, can we find a 

good solution over this bound for a wide range of conditions? 

-Is there a method to find solutions to a problem near the upper bound? Is there 

a method to find solutions far from the lower bound? 

Solutions to joint classifiers 

 

The given semantic solution will be some function of prior probabilities: 

 

  ( ) ( ) ( )( )jjj xPxPfxxP θθθ |,||, 1010 =  

 



Known classical functions have been product, sum, min and max functions. 

These classical functions are supposed inefficient and there’s no way to 

analyze which one is the best for each problem. All of those functions are 

usually tested for the current problem, and the best of them is selected. 

We need to define a criterion to establish which functions are closer to the one 

we expect than others. Integrating the difference between the solution and the 

reference PDF along all the possible input values, we get a measure of how far 

are the functions one from the other. 

 

 ( ) ( ) ( )( )[ ]∫∫ ∂∂−= 21
2

2121 |,||, xxxPxPfxxPSE θθθ  

 

Minimizing this value is a good way to proceed to fit the solution to the PDF. 

The basic problem is usually the availability of the real PDF. Let’s take the 

simple example: Because of the shape of the density function used to compute 

prior probabilities, the shape of the approximated function (centered in 0) is 

attached to: 

  ( ) ( ) ( )θθθ |,|,|, 212121 xxfxxfxxf −=−=  

 

It can be shown than minimizing SE for a given even-even f function is the 

same than minimizing the function against the even-even part of the joint 

density 

  ( ) ( ) ( )( )[ ]∫∫ ∂∂−= − 21
2

2121 |,||, xxxPxPfxxPSE eveneven θθθ  

 

Then the most appropriate function to extract is the even-even part of the joint 

density function expressed in terms of prior probabilities. And it is: 
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To see where this solution is located between product rule and Bayes rule, 

probabilities of error of the final decision for different values of noises’ 

correlations can be plotted. These figures are in the Results section, and their 

implications are discussed on Methods and Conclusions. 

 

Multimodal speaker recognition 

There are two main objectives for this section of the project. The first one will try 

to accomplish the best speaker classification achievable by using only speech 

data.. The second objective is related to the intelligent meeting room, where not 

only speech info is used, a microphone array and the output from a set of 

cameras are considered a new input for the system, as mentioned above. 

 

Speech only classifiers 

About the speech only multimodal classification, further sections are expected 

to result in two main classifiers; the one based on GMM, and another based on 

Articulatory characteristics. Both classifiers focus on feature extractor and 

posterior clustering/modeling method capable of calculating prior probabilities 

given the set of models to be considered. This is a good scheme where the 

feature or semantic level approaches can be applied. Which one will perform 

better will depend on the temporal constraints related to each kind of feature. 

The goal of the speech only multimodal classifier will be to apply the different 

multimodal combinations known, and select the one working better. 

 

Simulation 14 tries to mix features from different nature, all based on speech 

information. 

 

Multimodal speaker classification in the meeting room 

 

For an accuracy improvement of the current speaker Id systems, new sources 

capable of speaker identification are joining acoustic algorithms. Spatial 



dimensions are the most informative feature spaces; with the prior knowledge of 

the people’s positions and the estimation of the voice source coordinates, a 

decision is possible. Next section explains how people and source localization 

are added to the current multimodal speaker ID system. Basically, some 

previous input modules will output data to feed the multimodal fusion, and the 

front modules are: 

 

-Video system; supported by 4 cameras focusing the meeting room. Using 

background subtraction techniques, segmentation and creating three 

dimensional models, video system estimates the number of objects present in 

the room and its coordinates. 

 

-Based on time-delay estimation over a microphone array (MA), and a ML 

criterion, the most probable voice source coordinates are given at the output of 

the MA system. 

 

-Spectral-shape based speaker ID, commented in previous sections provides 

prior probabilities of the received voice utterances. 

 

These systems have some errors, then a post-processing is expected to filter 

their noises. It is considered necessary to analyze the received signal from 

these front modules, and next sections will create some models for those inputs 

with two different purposes; to explain the behavior of the systems and to create 

mathematical usable formulas describing them. 

 

Input models 

 

The names chosen for the basic features, coming from source voices, 

microphone array and cameras, are: 

 

)(txa  Information from audio; vector of 39 components; 12 MFCC + energy, 

first and second derivatives 



)(tsMA  Information from time delay estimation, vector of 15 elements 

corresponding to each of the pairs in a 16-channel microphone array including 

the origin microphone 

)(tsV  Information from video cameras 

 

Previous modules are processing this information to output new data directly to 

the multimodal processing. GMM models for each speaker in the speaker ID 

module are able to extract prior probabilities of the received vector. Source 

localization in the MA computes the most probable voice location, we can't get 

prior probabilities for several positions because computational requirements 

doesn’t allow us to sample likelihood function on-line. Coming from the video 

system, positions and number of detected objects are available.  

Then the final information received will be; 

 

)|)(( ia StxL  Information from audio; vector of 5 components; log-probabilities 

of the input signal vector given each of the 4 speaker models of the database 

and given the silence model (1Hz) 

)(txMA   Most probable location of the audio source (12Hz) 

)(),( txtn VV  Number of objects found in the room and coordinates of the 

objects. (15Hz) 

 

Acoustic Speaker ID 

 

The system called 'acoustic speaker id' is the one giving log-likelihoods of the 

input speech vector given the speaker models in the database. For each input 

vector of cepstral coefficients, it internally computes the prior log-likelihood 

values. In order to get better performances, and to decrease the output rate, the 

sum of the logarithms along 1 second is the final output, what lineally means the 

product. 

There are 4 speakers in the database and a model for the silence. Then a 

vector of 5 values is outputted each second. Under the assumption than one of 

the speakers should be speaking or there is silence, the probabilities should be 

forced to comply with: 



 

 ( ) ( ) ( ) ( ) ( ) 1||||| 4321 =++++ asilaSaSaSaS xPxPxPxPxP θθθθθ  

 

But the outputs of the system are log-likelihoods, so using Bayes, and equally 

probable speakers, the vector will comply: 

 

 ( ) ( ) ( )( ) 110...1010· ||| 21 =+++ silaSaSa xLxPxP θθθα  

Where  
( )
( )a

Si

xP
P θ

α ∝  

 

Otherwise, the alpha factor can be adjusted in every input sample, or every 1s 

period, once the product rule is applied. Then the best way to get the desired 

probabilities is using a scalar factor, which involve the summation of all the log-

likelihoods during 1 second, and to avoid the lost of resolution caused by 

logarithms in the floating point calculations; 
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Product per beta will ensure resolution when logarithmic values go to linear 

ones, when the above equation is calculated online by summing the 

denominator and later inverting the result 

There appears a new problem: margin between higher and lower extracted 

probabilities results too high for a posterior use of the values. However, 

posterior normalization of the probabilities has been discarded for theoretical 

inconsistencies. 

 

Microphone Array 

 

The result from the MA is basically distributed near a centre called “noise 

centre”, and moves slightly near to the current speaking person. 

 



 

Figure 15.- Microphone array output 

 

To create a statistic model for these samples, a three dimensional pdf will be 

fitted with the shown characteristics. With the current amount of data, a correct 

statistical study is still not available, but some conclusions can be extracted.  

The model will be speaker-independent. The only speaker-dependent property 

of the MA behavior is how easy it catches some of the speakers and it doesn’t 

catch some others, mainly because of the power of the voice and its good 

statistical properties. A speaker-dependent selection of models would just 

assign the samples closer to the silence to the less detectable of the speakers. 

The plot shows the correctness of the coordinates in terms of direction of 

incoming sound, and the error on distance. The pdf will be parameterized by the 

noise centre and the current speaker location. The first approach will transform 

the three-dimensional coordinates to the basis of the vectors: 
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Where s1 is the vector going from the noise centre to the speaker location, s2 is 

the vector parallel to the plane XY and perpendicular to the first, and s3 is the 

perpendicular to others. 

Assuming these dimensions as uncorrelated, the statistical models for each of 

the coordinates will be; 
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Figure 16.- Microphone array pdf 

 

Gaussian assumption for the second and third coordinates is justified by the 

histograms. From the histogram of the first coordinate, a Gaussian located on 1 

is visible, some Gaussian distribution close to 0 caused by misdetection and 

some uniform statistic from 0 to 1 also. From the training data, the next values 

for the mentioned pdf parameters are extracted: 
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Now this information is enough to build several pdf`s of the voice source 

locations, given the speaker models, based on coordinates, where likelihoods 

can be extracted and moved to the multimodal step. 

The independence assumption is not real, and the distribution along the first 

coordinate is not accurate, but this model is expected to be accurate enough for 

the purpose. 

 

Video 
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The signal received from the video is hard to model. Each person in the room 

can or can not be detected. Coordinates of each one (when detected) are 

assumed contaminated by an additive Gaussian noise. In addition to that, there 

are also false alarms.  

The problem is based on receiving an input stream represented by the next plot: 

 

  

Figure 17.- Video output 

Where the boxes are vectors of three coordinates, each time step is a column, 

the number of vectors received is variable, and those vectors correspond to 

some of the current speaker or to false alarms 

 

Taking independent realizations as the first simpler model (statistics are not 

conditioned to the number of received coordinates neither the number of people 

on the room), each of the 3-coordinates input vectors can be modeled as: 

 

 χζνζ )1(·)(1 −+=txV  

Where: 

ζ  is a binary random variable being 0 for a false alarm  with probability Pfa, 

and 1 otherwise. 

χ  is a three coordinates uniform random variable distributed along all the 

room space 
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Where: 

N  is the number of speakers in the room 

iα   is the global probability of being speaking speaker i 

# spk 

time 



iμ   is the position of speaker i 

iΣ   is a fixed covariance matrix analyzed from the error generated by the 

video system 

 

About detection or misdetection: 

 Pnd is the probability of a present speaker being not detected in a 

frame 

 

In order to continue working with the model, it’s necessary to know its 

parameters. Probability of false alarm, probability of misdetection, probabilities 

for each of the speakers and covariance matrix can be computed form the total 

training data. Speakers’ positions are missing and it’s necessary to compute 

them. 

 

From the training data: 
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Figure 18.- Covariance calculation from video 

 

 

Once having these input models, which will be considered valid for all the rest of 

this work, the Results section will apply classification algorithms to this input 

models and data, and discussions will follow. 

     Covariance in video



 

Since the multimodal integration of the meeting room is mainly based on the 

speaker recognition sections of the current work, no further simulations will be 

run, so no Progress of the project section neither Limitations section will be 

referring to the Multimodal issue. However, the Results section a Multimodal 

Speaker recognition section with all simulations and results. 

 

2.2. Progress of the project 

 

Requirements 

Speaker Recognition 

 

Some simulations were performed to accomplish the speaker recognition 

paradigm: Simulation 1 and Simulation 2 represent the baseline. Two 

algorithms were used in those both simulations; a self-programmed MATLAB 

code and also the SONIC software adapted to GMMs. 

 

Next simulations were all based on the self-programmed MATLAB code, which 

was easier to configure than sonic though it ran slower. Simulation 3 shows first 

results in the real scenario. Testing and choosing algorithm parameters was 

also done in this simulation using the experience acquired in the previous 

experiments, conclusions were discarded because they were similar to the ones 

thrown by Simulation 1 and Simulation 2. This simulation meant the first contact 

with the real space which resulted far more demanding than the recorded data. 

The experiment was repeated many times with different combinations of the 

data incoming from the microphone array. The data filtering was assisted by the 

microphone array programmer, and finally a channel-dependent filtering and the 

addition of several empirically chosen microphones became the best input for 

the performance of the system 

 

Simulation 4 is performed with nice training data. It will be the first simulation 

using separate training data (recorded during training time). It had to be 



repeated several times to get the correct data. The retries are considered errors 

of the Training procedure so they are not errors of the system. When we finally 

got nice recorded data, the simulations started to work. Having cleaner training 

data was supposed to increase the model’s accuracy. The channel transfer 

function will be independent of the system in this simulation, since models are 

not trained in the real scenario with the channel influence. 

 

Simulation 5 is the first one using the Articulatory features. The first idea under 

this simulation is to use the same GMM models used in previous classification 

algorithms, in order to simplify the progress of the project reusing code. Then 

once we get encouraging results, we can move to more complicated models. 

Simulation 6 has applied time-dependant models which are explained in the 

Results section, in the introduction of the simulation. The conclusions to extract 

from these last couple of simulations were not clear, so Simulation 7 tried to 

analyze the errors/inconsistencies of previous simulations, in order to purge the 

possible conclusions thrown by Simulation 5 and 6. 

 

Robust Feature extraction 

At some point during the performed simulations for articulatory extraction, there 

appeared the need of turning the MFCC + MLP speech analysis used into a 

more classical speech analysis, where the place, manner… could be derived 

without dealing with the MFCC. MFCC extraction is a lossy analysis model, 

meaning that some info is lost when the MFCC is the only available information 

about the voice, then the natural thought would be using different methods 

avoiding the MFCC. 

These were the suggested ideas for signal analysis to extract the articulatory 

features: 

Voiced-voiceless: the extraction of this feature is the easiest one. By only using 

the same method used in the pitch extraction algorithm, the voicidity feature can 

easily be extracted. Other simpler methods based also in correlation can be 

used. It is important to mention the ability of MLP of returning a voicidity value, 

instead of a Boolean result, so differences between speakers could show up. 



Manner: the effects of the different manners in the voice signal are sometimes 

clear also, as for stop for example, building a detector of stopped sounds could 

be easy, and analyzing the behavior of the voice in the surroundings of the 

glitch could show up some results in speaker recognition. There are some other 

manners, such as flap, that are recognizable in the speech signal. Other 

possibilities or features need a further study of the signal itself. Having a large 

database with articulatory features marked, cutting and concatenating the 

pieces of sound intended to classify, and plotting those pieces in front of the 

rest of the speech signal in several spaces and transformations, using filters 

and analysis methods, would be great to intuitively know how to identify the 

manner characteristics of phonemes. That is a large work out of the timing of 

this project. 

Place of articulation has something to do with the spectral shape of the different 

sounds, maybe the MFC approach is good enough for analyzing that feature, 

but further studies could be accomplished for better accuracies, probably a 

single filter can work for every place. 

About vowel characteristics; tense or relaxed, high, middle of low, and rounded 

or unrounded, there’s no point on looking at the simple signal and try to extract 

specific differences between them, there a wide study should be performed, 

where finding specific characteristics of each feature seems to be uneasy.  

On the other hand, the classification achieved using the MFC approach threw 

remarkable results, though they were not useful enough for speaker recognition, 

had a great articulatory classification success. Then it revealed in some way the 

importance of the spectral information in those pieces of speech. This way of 

thought shows again the importance of the posterior usage of the feature 

extraction, which is speaker recognition. Since the MLP seemed to be good in 

analyzing the speech signal and classify the phonemes into the articulatory 

groups, those outputs were not good to differentiate the speaker’s speech 

characteristics. Then having measures about; how rounded are the most of the 

vowels of this speaker, or how tense or relaxed the phonemes are forced to be 

for a specific user…, for example, those measures can enter in a new speaker 

classification space that can achieve completely different information than the 

MFCC-GMM approach. 

 



This work revealed nothing else than a basic MLP approach to the Articulatory 

feature extraction, and some theoretical ideas. These ideas would have marked 

the progress of the project. 

 

Noise over MFCC 

Since no interesting result was achieved from the stated theory about noise 

distribution among MFCC, this experiment ended up with no real progress. 

 

Articulatory features 

Pitch and energy were extracted successfully, and some classification success 

was reached. Other articulatories were also calculated by using MLPs, and 

integrated into a classification scheme including pitch and energy. The 

accuracies of the extractors and final classifiers were not completely 

satisfactory, so the current work progressed by analyzing the exact problems of 

the suggested baseline. Several methods were tested in Simulation 10, some 

different parameter validation and check was done in simulation 12. And finally, 

dynamic models were used instead of static ones in Simulation 13. 

 

Theoretical multimodality studies 

There were not specific situations among the project to contrast the validity of 

the theoretical conclusions of the multimodality studies. Though a couple of 

integrations demonstrated their correctness, they are still considered a theory to 

be demonstrated. Then this specific issue requires a more extended corpus of 

multimodal problems to be precisely validated. 

 

Multimodal speaker recognition 

All other results extracted from the other sections of the project were applied to 

the real data from the CommVision project room. All of them resulted in a 

performance improvement, though not remarkable. A wider database of 

meetings with different SNRs ratios would have been perfect for a better 

analysis. 



 

Accomplishments 

Speaker Recognition 

A baseline algorithm for the test databases and the real scenario has been set 

with the previously explained simulations and the results and discussions can 

be found in the next sections. 

The GMM approach is abandoned at that point, since that approach is widely 

studied and performance improvement seems to be achievable only with 

different ideas such the ones in the sections of this work.  

 

Using the articulatory features in the speaker recognition problem was already 

accomplished, since the discussion section is throwing clear ideas about why 

those results did not help to the main classification improvement, the reader is 

invited to directly go to Robust Feature Extraction section for further results, 

because the methods for extraction seemed to be the worst point of the whole 

articulatory method. 

 

Further accomplishments using the main ones of this section are inside the 

Multimodal speaker recognition section below. 

 

Robust Feature extraction 

Stated in the progress of the project, there’s a big limitation in the success of 

this project, which is a whole study of articulatory pre-classified speech pieces 

to set empirical differences between articulatory features. 

The whole organization of the project included the GMM system start up, the 

microphone array set up, and the multimodal integration algorithm. The further 

study of articulatory extraction methods ran out of the timing of this work. 

 

The small achievement of the articulatory results demonstrating the success 

when catching slightly different information from the speech than the one caught 

by the old classifiers based on MFCC features is a great start point. The failure 



of the suggested algorithms for mixing those speaker recognition classifiers was 

a small step into better algorithms and performances 

 

Noise over MFCC 

Although a better method than cepstral mean subtraction is not found, some 

questions about how the noise is introduced in the method were answered, and 

small theoretical keys discovered. It all is considered to be helping to the whole 

project understanding and approaching, though no result showed up. 

 

Articulatory features 

A baseline classifier using pitch, energy and other articulatory features was 

successfully working during this thesis. 

 

Theoretical multimodality studies 

Thanks to this analysis, the limitations of the multimodal integration are known, 

and then the results of several integrations are considered in their correct 

measure. 

 

Multimodal speaker recognition 

Although the bad results in the rest of the sections, a good integration of very 

different sources was build and run. This is probably the best accomplishment 

of the current work, which resulted in a publication at ICAASP'05 (see 

Appendices). 

 

Limitations 

 

The results of the speaker recognition based on GMM are the best effort of the 

author of this project. And they are still far from a good system. Throwing 65% 

of accuracy approximately when there are 4 speakers is a very poor result. The 



main reason of that low relation is the noise in the real environment .the same 

algorithm used in a clean scenario resulted in approximately 90% of success. 

 

The results of the articulatory are not far from the expected behavior, they 

performed not so good, but stronger against noise. The large difference 

between the ratios of the MFCC -GMM and the Art-GMM/Art-HMM are the 

culpable of the joint classification failure. So the Articulatory limitation is bind to 

the feature extraction method. 

 

The noise is easily introduced in the MFCC+GMM algorithm, since it is the best 

method when noise is not present. Analysis has showed than mixture between 

white noise and voice is deep enough to ensure they are impossible to be 

separated again. Even those features more contaminated can't be rejected for 

the classification purpose. The author would probably need some other noise 

models, the noises found on real scenarios for example could behave different 

and bring this study to usable conclusions. 

 



3. Results 

3.1. Speaker Recognition 

BASELINE 

Simulation 1.- Selecting microphones, training and simulation data. 

For this simulation, two algorithms will be used; the one supplied by SONIC and 

the parameters adjusted by Soon-Il, and a self-programmed MATLAB algorithm 

which will be more flexible and used further. The results presented are the 

better of the two algorithms mentioned. 

 

The possibilities when selecting the microphones and the training or testing 

data are huge, but they are based on: 

- Single microphones or combination of microphones. It’s well known the 

capability of mean calculation for noise reduction. 

- Sum combination or time-delayed sum combination based on correlation to 

perfectly adjust the sum of microphones and improve SNR. If the microphones 

are not completely synchronized, the sum will not act simply as a mean, it will 

also filter the signal. Post processing to avoid the filter or pre-processing to find 

the delay will be necessary. The correlation is used to find the delay manually, 

the method is out of the scope of this project. 

- Different microphones for training and testing, which can be personal lapel 

mics or table omnidirectional mics. Training can be done with any microphone, 

but testing is necessarily performed on a microphone where all the speakers 

are present. One could also take every lapel microphone and calculate prior 

probabilities of a speaker on each audio stream. This would change the main 

scheme suggested. Although this is not the aim of the project because of the 

freedom constraint that would be lost using lapel microphones, some 

simulations will be focusing this problem. 

- Different lengths of training data, and once selected the lengths, the part of the 

conversation used.  

 

 



 ACS ACT CCT CCTS 
OMNI 1 – 1st ¼ training 74% 73% 65% 56% 
OMNI 2 – 1st ¼ training 73% 71% 65% 56% 
OMNI 3 – 1st ¼ training 70% 70% 61% 51% 
HEAPS – 1st ¼ training and testing on OMNI 1 62% 62% 56% 48% 
LAPELS – 1st ¼ training and testing on OMNI 12 58% 57% 52% 43% 

Table 8.- NIST Database. Different single microphones for training data 

 
 ACS ACT CCT CCTS 
ARRAY 1,2,3 – Summed directly – 1st ¼ training 70% 70% 59% 52% 
ARRAY 1,2,3 – Summed delayed – 1st ¼ training 72% 70% 62% 54% 
QUAD 1-4 – Summed directly – 1st ¼ training 62% 61% 51% 45% 
QUAD 1-4 – Summed delayed – 1st ¼ training 63% 62% 50% 45% 

Table 9.- NIST Database. Multiple microphones for training and testing 

 
 ACS ACT CCT CCTS 
OMNI 1 – 1st 1/5 training 65% 63% 57% 52% 
OMNI 1 – 1st ¼ training 74% 73% 65% 56% 
OMNI 1 – 1st 1/3 training 73% 73% 65% 55% 
OMNI 1 – 1st ½ training 76% 76% 67% 59% 

Table 10.- NIST Database. Different lengths of training data 

 

The results showed here are based on this procedure: 

- First simulations are run to know the behavior of each parameter. 

- A simulation was run with the best parameter combination, resulting in a 74% 

accuracy. 

- Then simulations changing each single parameter and maintaining the other in 

their last ‘optimal value’ are executed and results presented 

Simulation 2.- Selecting speech analysis parameters. 

The second goal of this section was to familiarize with the MFCC-GMM 

algorithms, in order to analyze: 

- The optimal number of filters on MFCC 

- The avoidance of the first DCT coefficient 

- The length of the utterances   

- Number of Gaussians for different input features 

- Different situations of the training algorithm 

- Specific simulations for a good choice of background model 
                                            
2 One of the lapels has not data on the first period of signal. This period will be absolutely 

avoided. 



 ACS ACT CCT CCTS 
10 MFCC Filters 66% 64% 59% 50% 
12 MFCC Filters 72% 68% 62% 53% 
14 MFCC Filters 74% 73% 65% 56,% 
16 MFCC Filters 73% 71% 66% 57% 
18 MFCC Filters 74% 72% 66% 57% 

Table 11.- NIST Database. Number of filters of MFCC 

 

Figure 19.- NIST Database. Number of filters of MFCC 

 
 ACS ACT CCT CCTS 
Baseline without 1st DCT coef. 74% 73% 65% 56% 
Baseline with 1st DCT coef 70% 70% 62% 53% 

Table 12.- NIST Database. Addition of the first coefficient of DCT 

 
 ACS ACT CCT CCTS 
Utterance length 0,05 s 44% 43% 42% 39% 
Utterance length 0,2 s 59% 58% 51% 48% 
Utterance length 0,6 s 67% 65% 57% 51% 
Utterance length 0,6 s 67% 65% 59% 53% 
Utterance length 1 s 74% 73% 61% 56% 
Utterance length 1,4 s 77% 70% 59% 51% 

Table 13.- NIST Database. Different length of utterance 
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Figure 20.- NIST Database. Different length of utterance 

 
 ACS ACT CCT CCTS 
8 Gaussians 28% 26% 26% 20% 
16 Gaussians 45% 42% 40% 32% 
24 Gaussians 72% 70% 62% 45% 
32 Gaussians 73% 71% 65% 56% 

Table 14.- NIST Database. Number of gaussians 

 

Figure 21.- NIST Database. Number of Gaussians 

 
 ACS ACT CCT CCTS 
Using 1st ¼ o the speech 74% 73% 65% 56% 
Using last ¼ of the speech 72% 71% 61% 55% 
Using 1st 1/3 of the speech 79% 74% 64% 60% 
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Using last 1/3 of the speech 78% 75% 64% 60% 

Table 15.- NIST Database. Training Situations 

 
 ACS ACT CCT CCTS 
Without background model 74% 73% 65%  
With background model 71% 70% 60% 51% 

Table 16.- NIST Database. Training the background model 

 

REAL SCENARIO 

Simulation 3.- Data from the real scenario. 

Selecting the voice data from an array of 16 microphones was the first goal of 

this simulation. A trade-off exists between filtering noise in the room and 

maintaining the spectral info of each speaker intact. Preprocessing speech data 

is not considered erroneous, since the microphone array will create greater 

differences from one speaker to each other. 

The data of the real scenario is also including 4 speakers, talking in turns, which 

were far more ordered than the speaker changes and overlappings on the NIST 

database. The parameters for the simulation are close to the ones selected in 

the previous simulations. One minute of training was taken for each speaker, 

during one minute; every speaker was talking to the array, sitting in the same 

place where he would stay all along the meeting. All speakers were men, and 

only one of them speaking Native American English.  

The silences were not removed in this simulation, then the pieces of recorded 

data full of silence were not used for the results, and the pieces containing 

some speech info and some silence, were evaluated similarly to the ACT 

method. 
 ACS ACT CCT CCTS 
Using one simple microphone 62% 60% 55% 50% 
Addition of 2 microphones 64% 61% 57% 51% 
Addition of 2 synchronized microphones 62% 60% 56% 51% 
Addition of 5 microphones 65% 62% 57% 56% 
Addition of 5 synchronized microphones 64% 61% 57% 55% 
Addition of 10 microphones 65% 62% 60% 57% 
Addition of 10 synchronized microphones 65% 63% 60% 57% 

Table 17.- Room Data. Different microphone info 



The previous filters used to emphasize the signal after the microphones are not 

mentioned here and are considered part of the microphone array system, 

though the author collaborated in the design and programming. 

Simulation 4.- Training with clean data. Real scenario. 

The training data used in the previous was extracted from the microphone 

array. It was supposed to capture some channel dependant filtering, which 

would help to the classification whenever the speaker would not move from its 

position. That’s a non-desired constraint of the meeting room, and then we are 

in this simulation training the models with special data independent from the 

scenario. 

One minute of speaking in front of a single microphone for each participant was 

recorded and used for training. 
 ACS ACT CCT CCTS 
Result 64% 60% 56% 53% 

Table 18.- Room Data. Training with clean data 

The previous filters used to emphasize the signal after the microphones are not 

mentioned here and are considered part of the microphone array system. They 

were a key point to get the system working. 

 

ARTICULATORY FEATURES 

Simulation 5.- Baseline with articulatory features. 

The MLP trained in the Simulation 12, in the Robust Feature Extraction section, 

will be used in this simulation to see how articulatory features perform when 

classifying speakers. In the discussion sections, the problems and coherence 

when using these outputs are commented, here we will go straight to the 

explanation of the simulation and its results.  

This simulation will be based on GMM models; the input vector comes from the 

various previous MLP and pitch extractor, as they will be presented in 

simulations 10 and 11. The amount of input variables are: 27 outputs from 

MLPs, 3 outputs from the pitch extractor, including 1st and 2nd derivatives, and 2 

outputs of energy, including 1st derivative: A total of 32 inputs for the system. 

The outputs from the MLP were extremely abrupt variables when plotting their 



PDF. The use of these features as inputs is not recommended, so a whitener 

transformation was calculated for each input vector. To accomplish the 

portability of this whitener transformation, the shape was calculated by using the 

densities from the TIMIT database, which was used to design the articulatory 

extractor. 

The system was widely studied by trying different training percentages, different 

number of Gaussians, and all the parameters in simulation 1 mentioned. The 

best adjust of it all responded to 32 Gaussians, 30% of training. The speaking 

used for the simulation was created by mixing the utterances of the Switchboard 

database, where 16 speakers, 8 male and 8 female were summed in pairs and 

speaker recognition based in 2 speaker conversations was analyzed. 15 

conversations were created by selecting 3 male and 3 female and mixing them 

in pairs. The articulatory extractors were trained with the TIMIT database, which 

could mean it being not adapted to the current speakers for several reasons. 

Several simulations were ran to analyze the correction of the algorithm in the 

current database, manually marking some utterances and checking the results; 

the performance was very similar to the ones showed in simulations 10, 11. The 

segment length used to classify speakers and the length of the MFCC used by 

MLP was another issue of segmentation solved with ML criteria.  

The observed success was close to a 70%, but the intermediate results were 

more relevant. In the pairs made with male and female, the performance was 

better than the performance achieved in the male-male or female-female pairs. 

There were other particular cases, were a pair of male-male had a good 

performance. The results with the different pair types were: 

 
 ACS ACT CCT CCTS 
Male-female pairs (9) 85% 83% 81% 79% 
Male-male pairs (3) 63% 59% 56% 54% 
Female-female pairs (3) 62% 60% 56% 55% 
Total 76% 74% 71% 69% 

Table 19.- Articulatory baseline. All pairs 

 
 ACS ACT CCT CCTS 
Lucky pairs (5) 89% 86% 85% 81% 
Other pairs (10) 69% 68% 64% 63% 

Table 20.- Articulatory baseline. Lucky pairs 

 



Simulation 6.- Dynamic model .with articulatory feature 

In the discussion of simulations 10 and 11, the importance of the temporal 

behavior of the articulatory events is remarked in terms of feature extraction. 

For sure its importance would come to the speaker recognition issue if the 

dynamics of the measurements are speaker-dependent. Further discussions will 

note the inconsistency of the dynamic catch among a large set of speakers for 

the articulatory recognition issue and the particular dynamic study to search for 

peculiarities in individuals. 

 

The current simulation applied HMM models instead of GMM to the same 

previous system. The input vector had a size of 32, and GMMs were based on 

32 Gaussians also. The idea was to create 3 state models for phoneme 

transitions; each state having the ability to catch the utterance statistics the 

same way a 32 Gaussian with 32 inputs was capable of it, but further applying a 

temporal constraint of steps along the utterance execution. It was known the 

temporal parameters of the HMM transitions would not be speaker-dependent, 

especially when mixing the articulatory features with the pitch and the energy.  

The system was trained to achieve the recognition of events at utterance time 

level, other dynamic events at pitch and energy magnitudes were discarded. 

The results when classifying speakers were again better for the same lucky 

pairs of speakers, and again the results are presented related to the pairs they 

belonged to: 

 
 ACS ACT CCT CCTS 
Male-female pairs (9) 88% 85% 82% 80% 
Male-male pairs (3) 62% 59% 55% 54% 
Female-female pairs (3) 60% 59% 54% 53% 
Lucky pairs (5) 90% 88% 87% 84% 
Other pairs (10) 70% 68% 63% 61% 
Total 77% 74% 71% 69% 

Table 21.- Dynamic articulatory classification 

 

Simulation 7.- Further simulations about the baseline for articulatory. 

Since previous simulation resulted in very low performances, some fast 

simulations were run in order to analyze the results. 



In the previous simulation, the whole group of features was used to create the 

models. It’s well known the speaker dependency of energy and pitch, and that 

forced to consider the most of the classification success was due to the addition 

of those two specific features. A fast simulation was executed with only pitch 

and energy to analyze that possibility. The static models didn’t perform as 

successful as dynamic ones. Trying the best of static models including first and 

second derivative, a better result was achieved, but resulting performance was 

very low compared to HMM using the pitch and energy contours. 

 

A very simple model of 16 Gaussians and 3 states for the HMM transitions was 

used and showed to be as effective as more complicated models. The results 

with these models and similar utterance lengths and overlapping used in 

previous simulations, resulted in the next performances: 

 
 ACS ACT CCT CCTS 
Male-female pairs (9) 81% 81% 74% 73% 
Male-male pairs (3) 60% 59% 54% 53% 
Female-female pairs (3) 59% 58% 53% 52% 
Lucky pairs (5) 86% 86% 80% 78% 
Other pairs (10) 66% 65% 57% 57% 
Total 73% 72% 65% 64% 

Table 22.- Pair classification using pitch and energy only 

  

Note please the capability of the HMM to catch very small turns, by turning the 

ACS and ACT measures almost equal. The lucky pairs mentioned here remain 

the same than the lucky ones in the previous simulations. 

 

The idea of analyzing the ability of the other articulatory features without the 

pitch and energy started to be interesting, and the exact same algorithms 

applied in simulations 5 and 6 were used for the same input vectors by 

discarding the pitch and energy from them. The results in the next table are 

extracted from the algorithm in simulation 6 applied to the commented input 

vectors. All those results, in this particular case, outperformed the results with 

the algorithm of simulation 5, showing up the small relevance of the dynamics 

that seemed not to be that important before: 

 



 
 ACS ACT CCT CCTS 
Male-female pairs (9) 67% 66% 58% 56% 
Male-male pairs (3) 58% 58% 54% 53% 
Female-female pairs (3) 58% 57% 54% 53% 
Total 63% 63% 56% 55% 

Table 23.- Pair classification excluding pitch and energy from articulatory features 

 

As the comments will note later in the discussion section, the results are very 

likely to be completely discouraging and discardable, but they will be maintained 

here, since simulation 14 in the Multimodal recognition section will try to reach 

at semantic level, similar successes than the ones obtained in the previous 

simulations, by mixing these two previous classifiers. 

 

3.2. Robust feature extraction 

Speech signal 

Simulation 8.- Voice source features 

Some fast simulations were run in order to answer some of the questions of the 

current issue. 

The first one tried to achieve the speaker recognition by using the pitch. 

The next one applied second and third order adaptive filter models to the 

speech generation processes and used the filter parameters extracted during 

training as a speaker dependant feature, then GMM models using those 

parameters could classify speakers. 

Last one modified the Mel-frequency scaling factor, to achieve better resolutions 

in high-frequencies. 

 

None of these simulations reported good results, but since they were 

considered on some pieces of the current work, here they are explained;  

The pitch-based recognition is achieved in simulation 7, some new thoughts 

based on catching not only pitch, either the pitch energy, second and third 

peaks in the pitch search over the spectral domain and its respective energies 

were there tried, using the methods analyzed in simulation 10. The results 

showed up to be very similar to the ones achieved with only pitch value. The 



capability of the pitch extractor when finding secondary peaks was slightly poor, 

and the energy values had a great variation among a same conversation and 

even the same speaker. 

The variation of the MFCC extraction algorithm specially based on the idea of 

robustness against noise is developed in the next section, and the spectral 

varied resolution was there applied to test its performance. Again the results 

were not good enough to mention them. 

 

The second order adaptive filters were used only in the current section, they 

belonged to a personal intuition of the author about the possibility of second, 

third and fourth order components in the speech voice. The adaptive filters with 

10 coefficients were calculated by minimizing the likelihood, the same way than 

wiener filters minimize ML in MLP filters. They performed well for automatically 

generated noises, and gave apparently logical results over speech signal, 

where the voiced and unvoiced segments could even be analyzed from its 

output, but there was no speaker dependency found on that, neither for speaker 

pairs that were absolutely successful on all other simulations. The particular 

theoretical objective of the current simulation was discarded without a clear 

reason explaining the failure. 

 

Increasing the spectral density of filters in the high frequencies of the filterbank 

was unsuccessful again. The performance of the system was exactly the same 

then using the traditional MFFB resolution. 

 

Noise on MFCC 

Since the first theoretical analysis of the noise distribution over MFCC resulted 

in a very confusing conclusion, next simulations will probably ensure the ability 

of the cepstral mean subtraction to achieve the best possible results. 

 

Simulation 9.- Discard high frequencies on MFFB 

 



The theoretical study commented the idea of the next simulation. It’s based on 

the higher presence of noise in the high order frequencies. When the noise is 

powerful enough, the higher filters in the MF Filter Bank are very contaminated, 

because of the bandwidth of the filter. So, using figure 11 scheme, next plots 

show how discarding some filter outputs, the behavior against noise can be 

modified: 

The added noise is white and Gaussian, generated using MATLAB, and the 

MFCC+GMM is adjusted by using the parameters of simulations 1 and 2. 

 

 

Figure 22.- Error Vs SNR discarding high frequencies in MFFB 

 

The plain MFCC behavior against different SNRs is plotted, so are the 

behaviors of using cepstral mean subtraction, and discarding one or two high 

frequency coefficients of the filter bank. Taking a look at it, there are a couple of 

points where the coefficient discarding outperforms the plain MFCC method.  
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Articulatory features 

Simulation 10.- Baseline to extract Pitch 

 

Four different methods are here analyzed. Autocorrelation peak search; 

maximum likelihood, spectrum based product or the YIN method. All these 

algorithms are applied to windowed speech signal utterances from 0,2 to 0,4 

seconds with a window overlapping of 0,1 seconds. These simple methods 

were satisfying enough, and no other post-processing algorithms were required 

for any of them. In the discussions section, this thread of thought is widely 

explained. 

The autocorrelation method is very simple; a previous de-emphasizer filter is 

used to avoid pitch harmonics being more powerful than pitch itself, later the 

maximum peak is searched over the signal vector autocorrelation to calculate 

its related frequency. 

The spectrum based product is an extension of the autocorrelation, because the 

product in the spectrum space means the correlation in the time domain. The 

spectrum based approach is used when the sampling frequency is low enough 

than changing the found correlation peak delay by one simple sample can bring 

up a big frequency error. 

The likelihood is used to show a probabilistic approach to the problem, and the 

YIN method is based in correlation, but using a special window which showed 

better performances. 

 

The goals section mentioned how we could use different evaluation methods for 

the results: SE and CSE were used, but only one is plotted here, because the 

comparisons between different methods using the different evaluation functions 

were completely equivalent, and the absolute value of the error is not important 

at this moment. 

 

Since the plot of the comparison was slightly poor, the simulations for the 

different methods were expanded to include how the error performs when SNR 

grows. Then; for every algorithm mentioned, we calculated the performance for 



the voice signals of 8 different speakers, 4 male and 4 female, swept by the 

addition of noises of growing power.  

 

 

Figure 23.- Pitch extraction accuracy Vs SNR 

 

Simulation 11.- Baseline to extract articulatory features 

 

A Multi-Layer Perceptron will be used as baseline to extract the other 

articulatory features. The input features for the Multi-layer perceptron are the 

MFCC extracted from the audio; with a speech utterance length of 1 second, 

and without overlapping. The discussion section suggests using other extraction 

methods not based on MF Coefficients or MFCC, which has not been simulated 

but discussed, so has been the usage of computer learning techniques for it. 

 

The simulations trained MLPs with three layers of 39, 16 and 8 nodes 

respectively in all of the cases except for the articulation point, which used 39, 

32 and 16 nodes. The function shapes in the nodes were as plain as possible, 

trying to extract at the output of the classifiers not only the classification results, 

either the distance measure between different phonemes. The silence was 

included in several simulations. Including it in the training signal meant lower 
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performances. Then the considered results are the ones with silences 

discarded. 

The input of the system is a vector of 39 values; 13 MFCC coefficients, 

including energies, and its 1st and 2nd derivatives, with some overlapping in the 

analyzing window. As the output of the described system is giving us more than 

one result during the length of a phoneme, systems to segment those outputs 

were considered. A very simple median window of 200 ms was used, because 

the visual analysis of the results showed that errors to be solved by 

segmentation were only 2%, and that method solved it fairly ok 

The Manner network had a particularity; it was duplicated to analyze vowels and 

consonants, so it had 2 outputs. In the consonants output, a vowel was 

considered to be well-classified if fell into the Vowel class, known by the output 

of other networks, and equivalently in the vowel classifier. The overall 

performance of the manner extraction worked better in this separate situation, 

instead of creating a huge neural network with all the features at its output. 

Although creating a unique network using this conclusion was easy, it was 

discarded because of the coding effort it needed, and two different networks 

were used. The problem detected when using a big network for classification 

was assigned to the back-propagation algorithm being unable to find a good 

minimum in the error function. 

The next plots show the confusion matrix of the articulatory features, using the 

trained MLPs: 

 
84% accuracy Labial Alveolar Velar Dental Glottal Vowel RESULT
Labial 362 18 29 22 27 10 77% 
Alveolar 16 288 21 27 20 2 77% 
Velar 18 33 344 25 15 5 78% 
Dental 18 23 12 377 25 9 81% 
Glottal 32 22 16 17 345 6 78% 
Vowel 36 31 28 26 45 1454 90% 

Table 24.- Confusion matrix. Manner I 

 
82% accuracy Back Central Front - RESULT 
Back 556 87 75 36 74% 
Central 66 397 59 57 69% 
Frontal 47 53 595 41 81% 
- 42 70 62 1561 90% 

Table 25.- Confusion matrix. Manner II 



 
85% accuracy Stop Flap Fric Nasal - RESULTS
Stop 454 16 27 20 25 83% 
Flap 4 180 9 15 8 84% 
Fricative 22 37 421 29 19 80% 
Nasal 17 22 11 465 24 86% 
- 32 22 16 17 1892 96% 

Table 26.- Confusion matrix. Place 

 
90% accuracy Voiced Voiceless RESULTS 
Voiced 1757 167 91% 
Voiceless 186 1694 90% 

Table 27.- Confusion matrix. Voiced-voiceless 

 
82% accuracy Tense Relaxed - RESULTS 
Tense 867 160 18 83% 
Relaxed 170 852 20 82% 
- 108 102 1507 88% 

Table 28.- Confusion matrix. Vowel 

 
88% accuracy Low Middle High - RESULTS
Low 603 33 43 11 87% 
Middle 75 499 81 18 74% 
High 21 47 613 30 86% 
- 18 23 42 1647 95% 

Table 29.- Confusion matrix. Height 

 
89% accuracy Rounded No rounded - RESULTS 
Rounded 752 97 58 83% 
No rounded 133 1167 60 86% 
- 28 42 1467 95% 

Table 30.- Confusion matrix. Round 

 

Since next simulations are meant to be compared with this one, the next table 

will compact the data in the previous confusion matrices: 

 
Feature Accuracy
Manner I 84% 
Manner II 82% 
Plac 85% 
Voicidity 90% 
Vowel 82% 
Height 88% 
Rounding 89% 
Total 85,7% 

Table 31.- Articulatory baseline performance 



 

Simulation 12.- Improving articulatory features baseline 

 

The reader was encouraged to believe the previous results in the baseline, 

while the adjusting of the system was completely uncommented. That’s why the 

next simulations were performed, to show how the parameters chosen in the 

10th simulation were the best effort of the author and, though the title of this 

section includes ‘improving’, the general performance of the baseline will not be 

defeated. 

 

Found in the discussion sections, there are a new couple of questions that can 

be considered when the previous results are analyzed.  

- Is the network too small for the extraction? 

- Is the 12 MFCC + energy+ derivatives the best input vector for a system of this 

nature? 

 

These are the simulations that helped to choose the network complexity and the 

input vector size: 

 
Network complexity Accuracy
39 +  16 + 8 MLP 83% 
39 + 32 + 16 + 8 MLP 85% 
39 + 12 MLP 74% 
39 + 16 + 8 MLP (but 39+32+16 art) 85% 

Table 32.- MLP complexity analysis for articulatory baseline  

 
Input vector Accuracy
32 MFCC 72% 
16 MFCC 76% 
13 MFCC 79% 
32 MFCC + 1st der 76% 
16 MFCC + 1st der 79% 
13 MFCC + 1st der 83% 
32 MFCC + 1st 2nd der 78% 
16 MFCC + 1st 2nd der 82% 
13 MFCC + 1st 2nd der 85% 

Table 33.- MPL input vector analysis for articulatory baseline 

 



The results show how including 1st and 2nd derivatives, and using a smaller 

number of MFCC coefficients resulted in better results. Other simulation not 

mentioned showed how less than 13 MFCC started to decease the 

performance, either the use of 3rd derivatives.  

 

We should mention than the number of MFCC coefficients used in the 

simulation sweeping the MLP complexity was 13 + 1st and 2nd derivatives. The 

MLP complexity used when trying to choose the amount of input features to 

include in the system, was particularly chosen for every simulated situation. 

Both premises are tied to result in the best pair of chosen parameters for input 

vector size and layer complexity. 

 

Simulation 13.- Dynamic models for articulatory features 

 

The baseline for the classification of articulatory features was based on static 

models. It’s particularly interesting how the articulatory event behave along 

time. That’s why the usage of dynamic models instead of static is the obvious 

way to go.  

Using the nature of the previous simulations, the easiest way to move forward 

was to apply HMM to the feature extractor instead of MLP. That would mean the 

capability of the new models to catch the time-dependency of the vocal tract. 

But the comparison between the MLP and the HMM is not on equal conditions. 

Another simulation will be executed to analyze the importance of time variation, 

and it will use GMM instead of MLP. 

 

The GMM simulation is adjusted for using time periods of 200 ms, overlapped 

50 ms, 32 Gaussians, and the 30% of the samples were used for training. No 

posterior segmentation algorithm used. 

The HMM simulation was based also in the same conditions than GMM, 3 state 

models, and the Waum-Welch algorithm was used for training. 

 

The results are plotted here briefly, without including the confusion matrices: 

 



Feature GMM HMM MLP 
Manner I 76% 81% 84% 
Manner II 75% 80% 82% 
Plac 76% 84% 85% 
Voicidity 79% 86% 90% 
Vowel 74% 79% 82% 
Height 80% 87% 88% 
Rounding 79% 88% 89% 
Total 77% 83,6% 85,7% 

Table 34.- Articulatory baseline performance 

 

3.3. Theoretical multimodality studies 

Result 1.- Simple example results. 

To see the stated question about where the theoretical best semantic level 

solution is located between product rule and Bayes rule, the next plot shows 

probabilities of error of the final decision for different values of noises’ 

correlations: 

 

Figure 24.- Performances of Bayes, sum, product and SE 

 

These plots express probability of error against cross-correlation values, 

because it’s on correlated input conditions where SL solutions work inefficiently. 

Green solution shows the performance of product rule, black one is sum rule, 

blue for the best semantic decision based on SE minimization, and red for the 

Bayes decision.  

Performances of joint classification rules Vs 

correlation of input noises 

 Sum rule 

 Product rule 

 SE min rule 

 Bayes rule 



 

Result 2.- Previous performances importance 

 

The choice of a classification method is not easy and is for sure critical for the 

performance of the system. The next plot shows the accuracy improvement as 

a function of previous classifiers’ performances in our simple example. Superior 

corner on the left represents the improvement for previous classifiers which 

probabilities of error are 0.5, and lower corner on the right the improvement 

when previous classifiers have no errors.  

 

 

Figure 25.- Multimodal performance against previous performances 

 

The big plot refers to Bayes improvement, the blue-colored one to product rule 

applied on dependent noises, and the other one to sum rule. 

 

The blue color in the plots means 0 improvements, and the red is the higher 

improvement. The exact value of the higher point is not important, since the aim 

of the simulation is to have an idea of the areas where it works better. The best 

location in the graph for the multimodal issue is the line of equal performances, 

the one linking the upper-left corner with the lower-right. It’s easy to get an 

improvement in this area, higher or lower depending on the amount of new 

Joint performance Vs  

previous performances 

Product rule 

Sum rule 
Bayes rule 



information added by the new source. It decreases when we move from this 

line. This rule is accomplished whatever used method.  

 

Black areas represent the zones where the classification is worst than the best 

of the previous sources.  

 

3.4. Multimodal speaker recognition 

 

Simulation 14.- Mixing pitch+energy with articulatory classifiers at semantic 

level. 

 

Simulations 5 to 7 showed how the articulatory features performed when 

classifying speakers. The timescale difference between pitch and energy 

compared to the other articulatory features was considered the most important 

reason of the poor results. In the current simulation, they are mixed at semantic 

level instead of doing it at feature level. 

 

Last runs in simulation 7 already tried to classify by only using articulatory 

features or energy and pitch. The different timescales are about 6 times greater 

for the pitch+energy classifier. The HMM had to be trained with period steps of 

that order to accomplish the best results, that is giving us speaker turns every 

500-600ms, while articulatory features are segmenting the time on 100 ms 

periods. 

 

The way to join those previous classifiers was selected from a large set of tests, 

where all the methods approached in the Theoretical multimodality studies were 

applied. Product rule resulted again the best choice. The temporal difference 

between the previous semantic classifiers forced the system to multiply the 

pitch classifier per all the articulatory classifiers under the same time period; so 

each segment classification was using 2 priors from the pitch+energy and 12 

from the articulatory, resulting in 1,2 seconds periods, with steps of 0,6 sections 

when throwing results. 



 
 ACS ACT CCT CCTS 
Articulatory classifier 63% 63% 56% 55% 
Pitch+energy classifier 73% 72% 65% 64% 
Product rule applied 74% 72% 67% 65 
Semantic level mixture 77% 74% 71% 69% 

Table 35.- Articulatory baseline performance 

 

Result 3.- Number and positions of people in the room 

 

The solution for computing the total speakers in the room will be based on a 

stationary state assumption, where the current number of people in the room is 

known, and hypotheses that a new speaker is coming into the room, and that an 

old speaker is moving out from it are continuously analyzed. The veracity of 

these hypotheses will be tested in order to add or delete people from the room, 

creating an on-line method. 

Then the new problems are the tracking and re-estimation of people location, 

and the formulation of the given hypotheses. 

 

Each set of vectors from the video is received each 100 ms. Under the 

assumption that the position of a person is constant during half a second, his 

coordinates can be estimated from a sliding window 5 frames long. Before the 

estimation process, it’s necessary to select which 5 samples inside the window 

correspond to each of the speakers. Every selection has an associated cost, 

and the selection with lower cost for each person will be assigned to him/her. 

 

Being o a set of states, with associated set of vectors, then the decision for the 

speaker j is based on: 
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Equivalently; 
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This set of states will be used to estimate current position: 
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To avoid the choice of error samples for estimation in cases of misdetection, a 

new row of states corresponding to no detection will be added to the current 

state-graph (figure 17): 

  

Figure 26.- State-transition graph used in video 

 

To choose the most likely path for a speaker, it is necessary to compare the 

facts:  

- All the samples are most likely to belong to misdetections of the current 

speaker: 
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Then comparison is 
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There are too many computations in this formula, and there are some suitable 

simplifications.  



For simplicity, the first model for the distribution of no-detection case will be a 

uniform distribution along all the room space, and if the distribution of samples 

is assumed uniform also, the same computation mode based on distances can 

be used: 

 ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑
⊂

−=

t

Oi
t

t

ji
O

t
j dO

4
,minarg

τ

τ μν  

In this case, the distance to a state corresponding to not-detected is set to a 

constant dnd. 

 

These assumptions are too constraining but result in good performances in 

simple cases. 

For a completeness of the no-detection model, a more accurate distribution can 

be assigned to misdetection. The distribution is the same than the given for a 

sample except for the Gaussian component related to the current speaker: 
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But this computation is demanding, because of the number of different pdfs 

created during the algorithm. The algorithm can compute the activations of each 

of the Gaussians, and for each case use those that are necessaries. 

There is another suitable improvement on the state-search. Up to now, weights 

have been promoting some state-selection, but state-transition weights can add 

dynamic considerations to the system. Considering the probabilities of the state 

conditioned to the previous state, probabilities of detection or misdetection can 

assign weights to the transitions: 

 



  

Figure 27.- State-transition graph used in video 

 

These state-transition probabilities help the tracking of people in the room. In 

the first approaches, there is a threshold up to which tracking is lost. Using 

transitions, this threshold increases when number of misdetections increase. 

 

These methods update the position of the speakers in such a way of filtering 

fast movements and committing errors just when the jump between two 

detections is too long. 

The method is highly configurable. The weight of the states can be more 

accurately modeled, making them conditioned to the number of currently 

received vectors, the number of people in the room and the values of the 

samples. Either the probability false alarm is better defined with these priors. 

Finally a state-transition weight tied to the statistics of appearance of false 

alarms could bring up to a viterbi-search over the states. These features were 

discarded because of the reliability of the video system and the performance of 

the first model. 

 

The subtraction of a speaker from the room will be based on how long the 

speaker has been misdetected. If the state selection means that the speaker 

has been not detected for the last 5 frames, he/she will be considered out of the 

room. The probability of committing an error is the addition of the probability of 

being a speaker not detected during 5 frames and the probability of the speaker 

samples being noisy enough during 5 samples: 
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The distance of not detection must be higher of 0.1 m in order to achieve an 

error lower than 0.00032. The distance of speaker misdetection; dnd can be 

derived for each of the configurations of the algorithm. 

 

The proposed method to add a person into the room is based on a study of the 

statistic of false alarms. False alarms will be compared with the statistical model 

suggested in order to know if they hide the samples of a real speaker. 

A Gaussian model will be adjusted to the statistic of the input false alarms. 

From each input frame, the closer sample to the mean of this Gaussian will be 

used to train the model parameters. In case of false alarm absence, the 

parameters of the model will be adjusted with a standard deviation and means, 

equivalent to the real false alarms properties.  

Then the update of the parameters, assuming a diagonal covariance matrix for 

the Gaussian, will be: 
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when there’s no false alarm 

 

To analyze if the Gaussian converges to the expected values let’s see the 

cases of an existing speaker and noise. 



Being a new static speaker in the room detected each frame, mean of false 

alarms will converge to the mean of the speaker as 
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Then a value for alpha can determine the time used by the false alarms system 

to estimate a variance lower than a threshold. 
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And so on. Parameters can be adjusted for a determined catching time. Using 

two parameters instead of one is not necessary. False alarm probabilities would 

set the opposite bound for the parameters; too much fast catching algorithm 

could take false alarms thinking they are people. This problem is not present in 

our data, so it was not considered in the study. 

 

Result 4.- Classification over spatial domain 

Once the speaker locations are estimated with the video information, and noise 

centre is known in the calibration procedure, parameters of MA pdfs are 

complete. The video results are used as the centers of the distributions. Prior 

probabilities can be extracted from the generated models and sent to the 

multimodal module. 

 

The next plots show: the probability density functions and the decision 

boundaries created by the mentioned procedures respectively. 



 

Figure 28.- Model pdf and classification spaces 

 

The model for the silence is missing in the goals section of this work, which has 

been added as white Gaussian, where center and covariances can be 

estimated from the training data. 

 

No further specifications are needed for the MA classification. Considering the 

possibility of receiving incorrect positions from the video classifier, a fast 

clustering algorithm was run to analyze, only from audio data, the number and 

positions of the speakers in the room. Results were satisfying enough for offline 

purposes, but spent a long time to converge when used online, because of 

misdetections in the microphone array. More ideas in the Discussion section. 

 

Result 5.- Joining classification spaces 

 

It’s time to review the study made in a previous section of this work, based on 

how to combine prior probabilities from two classifiers: 

 ( ) ( ) ( )( )μθθθ ˆ,|,||, jMAjajMAa xPxPfxxP =  

Mu represents the estimated positions of the people in the room. 

 

But previous to the choice of the function, there is a new problem generated by 

the independence of speaker models in the spatial domain. Each of the 

positions must be related to each of the acoustic models. There’s no prior 

knowledge about where each person is located in the room. The only 

information relating each model to its position is the temporal similarity. Prior 



probabilities can be compared in terms of temporal correlation. If the alone 

performances are good, the probabilities of the models must be correlated. At 

least correlation between the priors of the same speaker must be greater than 

crossed correlations. 

Having the signals: 
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The correlations matrix R can be computed as 
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Mean subtraction and normalization are applied to probabilities vectors, and an 

offset is added to the matrix R to get it being positive-definite 

Once the matrix is constructed, a mathematical procedure is applied. Singular 

value decomposition of the matrix results in matrix U, V and S, where S is a 

diagonal matrix with singular values in the diagonal.  

  TUSVR =  

Substitution of S with a identity matrix, and computing R’ again, 

  TVUSR ''=  

 

Matrix R’ has two important mathematical properties. It keeps the relation 

between weights given by each coordinate of the matrix. And it’s constructed in 

a way that, searching through the columns of R’, if a maximum is found in the 

row i, then no other columns are having a maximum in the row i. This property 

will help us with searching the right pairs of classes. 

 

Simulation 15.- Real data from the meeting room 

 

All the results from 3 to 5 mentioned in the current section were applied to real 

registered data in the meeting room scenario. The data was recorded in the 



CommVision lab at USC, with the help of the CommVision project integrators, 

all of them present in the Acknowledgements section. Two conversations of 5 

minutes each were first recorded for the speaker recognition algorithm set up. 

Another 4 conversations between 4 interlocutors resulting on a total of 20 

minutes of recorded meetings with all the data necessary for speaker and 

spatial classification. 

 

About people’s position estimation, by only using the video data, the system 

performed perfect with the first algorithm approached in result 3. The time used 

to converge and detect the 4 present speakers in the room was about 3 

seconds averaged from the 4 conversations. The time ratio given by the periods 

where at least one speaker was undetected during the conversations resulted in 

0,025%, which is a perfectly acceptable result, considering than duration lost 

was about 3 seconds long, the most of the time spent by the algorithm to 

converge to a new speaker model. All these results were extracted by the best 

selection of the algorithm parameters. 

 

Applying these noisy people localization to the speaker localization algorithm, a 

first speaker classification performance was achieved. About 78% of samples 

incoming from the MA were correctly classified. Considering than 2,5% of those 

errors are resilient in the Video people’s localization, and the other 20% of 

errors are missed localizations of the microphone array, at this point we can 

consider the video errors as  less important. 

 

Finally, that classification can be joined with the speaker recognition algorithm. 

This time, only the GMM approach based in MFCC is used, by applying the 

SONIC program online or the MATLAB algorithms simulating the online 

procedure. It resulted slightly better than the simulations using the first real data 

recordings. 68% is the accuracy for these recorded conversations, to be joined 

with the 78% given by the MA. 

 

The final system was able to achieve an 81% of performance using the product 

rule, which is  poor better result than the 78% given by only the MA, but much 

better than the 77% given by the sum rules or other tried approaches. 



 ACS ACT CCT CCTS 
Video error rate -2,5% - - - 
Microphone array + video online classification 78% 76% 72% 69% 
MFCC+GMM classification 68% 66% 65% 64 
Multimodal integration of previous 81% 78% 73% 71% 

Table 36.- Multimodal integration at CommVision room 

 

 



4. Discussion 

4.1. Speaker Recognition 

 

A big number of simulations have been performed for the speaker recognition 

issue. This section reviews the results of each one. 

 

Simulation 1.- Selecting microphones, training and simulation data. 

 

This simulation was executed to analyze differences on the microphones 

present in the baseline database. Main answered question was the usability of 

the lapel/head microphones for model training, and then the noisy environment 

is avoided, at least in the training step. Another conclusion is the possibility to 

reduce the noise with the sum of microphones, which was expected to need 

some delayed sum or some similar channel equalization, but the system would 

also work without it. 

 

The choice of a microphone was easy. The cleaner omni-directional one was 

giving the best results. 

Taking different microphones for training and testing didn’t work properly; 

neither when using cepstral mean subtraction to avoid the channel effect. The 

author tried to train models by using the lapel microphones, which had a better 

SNR. That could be caused for different reasons; the non-linearity of the 

channels in the lapel seems to be the most important. That conclusion came up 

when using cepstral mean subtraction for those microphones, it caused the 

system to decrease in performance. The cepstral mean was supposed to 

eliminate those constant filters all along the meeting, and also those 

multiplicative noises. One should take into account the cepstral mean is 

calculated with all the meeting information, where there’s more silence info than 

speech. Then if it causes decease of accuracy, it means that the constant 

multiplicative side of the data was belonging mostly to the speaker than to the 

channel or environment. Otherwise, listening to the microphones, it is clear the 



channel and the environment effects are really important, that rejects the normal 

situations where mean subtraction is incorrect because of good SNRs. Further 

corporas demonstrate more flexibility when using different microphones, so we 

accuse the recording of the database of the performance decease when using 

different microphones for training and testing. 

 

About the arrays present in the room; the best way to use them for recognition 

has been summing them delayed; inter-correlations were used to find the exact 

delays. The improvement is about 2%. This result throws up an important 

conclusion. We could consider summing the microphones directly would cause 

the GMM models to catch the channel effect, and use it as an added feature in 

order to better distinguish the speakers in the signal. But it showed up it doesn’t. 

The reasons can be several; the GMM is not capable to save that information; 

or maybe there’s no great difference between speakers’ delays. The spectral 

shape of the sum should be a clear multiplicative valley in the spectrum, which 

GMM should catch if MFFB have enough accuracy in that area, then it is right to 

mostly accuse the no-difference between speaker delays than the lack of ability 

of the GMMs. We could consider then using new multimodal features linked in a 

higher level to the spectrum, but the use of the channel effect in the signal 

would fall again out of our freedom constraint; we don’t want the users of the 

system to stay in the same position during all the meetings to use that effect. 

 

Table 7 shows the results with different training lengths. We had a strange 

behavior moving from ¼ to 1/3 for training, but we’ll consider that a casualty of 

the current corpora. 

 

Simulation 2.- Selecting speech analysis parameters 

 

Since this simulation was focusing the parameter selection; let’s analyze how 

every parameter affects the final performance: 

 

The NUMBER OF MFCC FILTERS had to be higher than 12 to reach good 

results. This selection felt on a bad classification when lower, and maintained 



good levels when higher. It is directly related with the shapes and spectral 

characteristics that GMM are trying to model. Since we are catching the 

characteristics shapes of the speaker’s voice, we need to maintain the info of 

those shapes in every step of the signal information extraction for GMM. It 

seems we loose that particular info with only 10 MF filters. 

 

The avoidance of the FIRST DCT COEFFICIENT resulted in loss of 

performance. Other pieces of this study explain this behavior; when the noise is 

low, the 1st coefficient is speaker-dependant, and in high noise conditions, it 

depends on the channel. 

 

The UTTERANCE LENGTH is the clue of all this work. The final aim of the 

global project in which this work is included was to accomplish real-time 

systems where the speaker recognition is necessary. By using speaker 

utterances of 1.4 seconds for example, we can miss speaker turns or try to 

classify utterances where several people interfere. 

The longer the utterance length, the better the performance is. But CCT/CCTS 

is not growing as fast as ACS does. That is logic; when the utterances are 

short, they hardly fall into speech periods shared between several users, if we 

consider those shared periods always misclassified, they are only a few wrong 

classified periods when the decision period is short, but a bunch of them when 

is large. 

In that line of results, there’s a misclassification step between 1s and 1.4s. The 

ACS still grows, but the other evaluation methods go back and result in 

erroneous speech segments. That’s why 1s of utterance is the selected length 

as a conclusion of this whole work. Classifying the speech signal in 1s 

segments or using half a second segments of overlapped windows of 1s length 

showed up very similar results, but the evaluation logic is confusing. 

 

Selecting the NUMBER OF GAUSSIANS for the models was a simple choice. 

All performance measures grew to reach a top limit as number of Gaussians 

grew. Since the speaker models were close to the limit when using 24 

Gaussians without cross-correlations, the model for the silence/background still 

needs some more Gaussians to be accurate. But 32 Gaussians is a good 



choice for it, because moving to higher numbers revealed no great 

improvement. 

 

When BACKGROUND MODEL is used, unfortunately new errors appear in the 

classification. The results given are plotted using 32 Gaussians. As previous 

results showed, less Gaussians do not accurately model the background, and 

then differences between having and not the silence model are higher. 

 

Then we can state these general conclusions for the MFCC baseline; we’ll use 

12 MFCC coefficients or higher, we’ll extract or not the 1st cepstral depending 

on the amount of noise, we’ll use 1s of non overlapped utterances and 32 or 24 

Gaussians for simulations using or not using silence respectively. 

 

Simulation 3.- Data from the real scenario 

 

Changing the data meant results changes. They are still comparable, because 

the number of speakers is the same. Conclusions already mentioned in the 

previous simulation are not reported. We just found interesting the selection of 

signal source. 

 

The scenario had a microphone array in the middle of the central table, where 

the meeting was developed. The method followed in simulation 1 was used 

again, and cross-correlations calculated to sum the different microphone 

sources. Apart from the chosen method to sum the microphones, summing 

clearly showed better results than using a single microphone. That was 

expected, since the sum of the same signal contaminated with uncorrelated 

noise means the decease of noise power against signal power. Noise was not 

considered uncorrelated before this simulation, and surely we have different 

sources of noise, some of them could be considered correlated, but we stated 

here there is a part of the noise which can be removed by summing, then it is 

uncorrelated. 

 



Although the synchronization showed up better results in the previous 

simulations, it doesn’t here, and it reinforces the idea mentioned then. The 

directly summed microphones, when they are not synchronized, helped the 

GMMs. A clear multiplicative valley in the spectrum is a good shape to force the 

GMMs to adjust to it. We have here a good difference between speakers that 

improves the classification. If we synchronize the microphones, we loose a 2% 

of performance. The only reason for that difference is an incorrect corpora in the 

previous simulations, or a better positioning of spectrum valleys in this corpora 

thanks to different spatial separation of microphones. Note that speakers are 

not moving during the meeting, which could be also a reason. 

Finally, we could state a conclusion similar to the one realized with 1st cepstral 

coefficient; we should synchronize microphones when speakers have no great 

difference in the inter-delays, and we want to maintain the speaker’s spectral 

info. But we can sum them directly if we want to take advantage of that info, 

which we would like to note again; violates our freedom constraint for the 

participants.  

 

Simulation 4.- Training with clean data. Real Scenario 

 

The result for this simulation is slightly discouraging. The idea behind it was to 

create better trained models, in order to demonstrate than bad training could be 

the problem of the system. But results showed up than training the models with 

data extracted from the meeting itself was the best choice. The performance 

difference is about 2-5%, which is not a big step.  

The only explanation for that behavior is the channel effect. It was supposed to 

be no-included in the models, to accomplish the freedom constraint of letting the 

users move around the meeting room. We also realized in previous conclusions 

than discarding the first cepstral coefficient was extracting the channel effect 

and some continuous speaker speech characteristics, being more or less 

important depending on the scenario.  The current simulation was executed with 

and without the 1st cepstral coefficient, throwing similar results. Having a clean 

and different info for training will make 1st coefficient in the training data be very 

different that 1st coefficient in the testing environment 



 

Simulation 5.- Baseline with articulatory features 

 

This simulation was run with the articulatory features extracted as in simulation 

10th and 11th. There are some comments about those simulations related to the 

speaker recognition issue that are not mentioned in the corresponding 

discussion section because of the specific pure extraction purpose of those 

methods. So this is the place for its discussion. 

 

The differences found in the articulatory features between speakers will surely 

be installed in one of these characteristics: 

 

- The articulatory feature distribution:  

Either single feature common distribution, either joint probability density 

distribution is suspected to be different among speakers, because the 

articulatory events are commonly executed in different ways depending on the 

speaker, and the ability to perfectly pronounce our phonemes is widely different. 

A specific speaker can be good at differencing voiced from voiceless 

phonemes, and another one can be particular in mixing rounded and unrounded 

sounds. 

 

- The articulatory temporal behavior: 

Every speaker tends to execute the sounds in a dynamic specific way. Moving 

from voiced to voiceless sounds (for example) can be done in different steps, 

each of one being characteristically repeated in every speaker, either the single 

feature execution can be different among them. The next simulations are trying 

to catch those movements and see how they collaborate with the speaker 

recognition issue. 

 

From the feature extraction point of view, there’s a matter of different objectives 

compared with the purpose of this section. Extraction has enough with a 

line/plane in the space to know where every input vector is to be outputted. 

Statistic models for speaker recognition instead, need wide ranged values, to 



catch statistically repeated patterns. That issue is solved in the extraction 

algorithm by forcing the trained MLP to use functions in the node without abrupt 

shapes. Although those lines were soft, the output of a classifier tends to force 

the distances between the different groups, being that its particular purpose. 

That’s why the classification performance of the classifiers is not a measure of 

how good the feature will be in the speaker recognition algorithm. In a general 

scope, what we’re achieving in the whole system is to apply a non-linear 

transformation to the MFCC features, moving the input vector from a first space 

to a second one, and later try again to classify them. The more important 

constraint to be achieved in this process is to move the first vector into a space 

where the speaker models can be more easily created and differentiated.  

The performance of an articulatory feature classification system is a measure of 

the ability of the transformation to group the specific articulatory event in the 

new space. For the next step of the whole system, that’s not the main reason 

for the transformation, as we mentioned. Then, although knowing the feature 

extraction algorithm is probably far from our best effort, we are using it in the 

current simulation. 

To avoid one of these mentioned effects, the pre-whitener transformation is 

used. 

 

The results of the simulations were showing how several pairs of speakers had 

specific differences in their articulatory behavior, enough to differentiate one 

from another. On the other hand, other pairs had no significant differences to 

permit the GMM models a neat classification. The pairs were studied, and there 

was no particular speaker being repeated among the more successful 

simulations, neither other specific notable patterns.  

Note than the results are really poor, specially for some pairs, and because of 

the fact that we’re right now working with pairs instead of groups of 4 people, 

which was the main thread followed all along this document. Small simulations 

were ran for larger groups, and results were completely discouraging. The 

revealing results of this simulation brought up new question to be solved, such 

as: 

- Which are the particular articulatory features performing the best? 



- Is the current system architecture the responsible of the bad performance? 

Meaning, would another different system catch speaker differences? 

- Is the articulatory event a fact among all speaker or does it depend on 

particular ones? 

 

As usual, these questions are not easily solved, some simulations can throw 

some light on some of them, but there is no strict analysis to assign the 

culpability of the unsuccessful accuracy. The best way to continue would be to 

try different methods than this one with the same overall objective, match 

similar patterns and suggest again such questions. 

 

Simulation 6.- Dynamic model .with articulatory feature 

The current simulation was to probe the importance of the articulatory event 

dynamics in the speaker recognition paradigm, applying HMM instead of GMMs 

to the articulatory meters. 

HMMs are already successfully used in the feature extractor approached in 

simulation 13. If a HMM is good on finding articulatory features among a huge 

set of speakers, it means the temporal behavior is very common, at least there 

is a specific common dynamism in all the people in the training set. How much 

of the dynamics belongs to a specific speaker and how much to a common 

routine will give us the ability of these models on identifying speakers. Following 

this thought and noting than the results of simulation 13 showed a great 

importance of the timings in the feature modeling, the bad results of the current 

simulation could be predicted. 

 

As mentioned, the temporal behavior of the articulatory events is related to a 

common pattern that all the people needs to obey in order to pronounce 

utterances correctly than to individual particularities. That is clearly showed up 

by the results of this section, at least when talking about utterance level events. 

The performance of the speaker classifiers created for the previous simulations 

are not better by using the HMM temporal capabilities. The lucky pairs, that had 

great performances by using the GMM models, increased modestly their 

successes, but the other pairs got a slight worst result. That result is considered 



good, since seems to show up than HMM fit better models than GMM. About 

the results for the other pairs, they demonstrate than the classification function 

being minimized in the training algorithms, has non-clear minimums, and both 

minimization algorithms stop in local minimums, since the number of 

calculations and parameters in the HMM is greater than the ones in GMM, the 

number of possible local minimums is greater, then the search for a general 

minimum is more complicated, and the possibility of falling in a localized one is 

bigger. 

 

Simulation 7.- Further simulations about the baseline for articulatory. 

About the last simulation ran for the articulatory paradigm; let’s say it obeyed to 

a personal thought of the author. The bibliography about speaker recognition 

showed great results in the pitch and energy usage, especially in terms of 

statistic distribution and time contours. There was no exact explanation about 

the usage of the commented techniques neither about the evaluation method 

used. Although the bibliography assigns to the pitch and energy features a 

success of about 82%, the overall achievement of the current work, was close 

to the 70% for the best algorithm, and the ACT evaluation method. Again the 

culpability of the result is considered because of the similarities of specific 

speaker pairs. The results over the lucky pairs are close or even better than the 

known results in the bibliography. In any case, there is another group of 

speaker pairs unable to reach good classification results.  

The author accuses the similarities between the speakers in this corpora, and 

the lack of rigor in the bibliography when talking about the achieved results to 

be guilty of those differences. 

 

Once assuming the validity of those simulations, and the reality than the 

showed results are the best ones achievable by the proposed algorithms, one 

could analyze how the different information among different extracted features 

collaborated in the previous classifiers. The pitch+energy classifier is unable to 

success the way the whole articulatory system did, and the same happens to 

the alone articulatory classifier. Both together are a successful team, separating 

them we find than the pitch+energy is the stronger player, but the articulatory 



fills some lacks of the first.  That firmly demonstrates the improvement given by 

the articulatory features, showing it to be less important, but significant.  

 

Using articulatory features, we can achieve another classification results than 

the ones based on the previous MFCC+GMM classifiers. The pitch and energy 

are important, but other articulatory are bringing up with some different 

information. The real question from this point is; are this three groups of 

classifiers; the ones based in MFCC+GMM, the pitch+energy, and the 

articulatory features coming up with new classification algorithms, including 

each of them new information to the main objective of the project, and will they 

all together perform in a better way than the stand-alone systems? All the 

questions are tried to be solved in the simulations below inside the topic 

Multimodal speaker recognition. In the Theoretical multimodality studies are 

approached some methods to perform the mixtures, and the Robust feature 

extraction will explain how the features of the last three simulations were 

extracted, how could they be approached in a more strict theory, and what’s the 

finally chosen extraction method. 

 

4.2. Robust feature extraction 

Speech signal 

Simulation 8.- Voice source features 

The current topic ended in the simulation section with completely unsuccessful 

results, specially due to incorrect premises. The idea of finding a speaker-

dependent feature completely unrelated to the MFCC mandatory features fell 

into several unsuccessful simulations 

 

The idea under the usage of several peaks for the pitch extractor tried to extract 

the more of the info possible from the speech voice, related to the source piece 

of the speech model. The vibration of the vocal chords is a key piece of the 

voice generation information outside the spectral shape modeling, so the 

extension of the number of features of its extraction was considered a good 

start point. That start point is still correct, the failure is the feature selection; the 



next peaks and its values. Those features were considered to analyze the effect 

of a different manner when forcing the vocal chords to vibrate, but results 

showed they caught in a better way the frequencies of the vowel formants, 

instead of the harmonics of the source vibration. The temporal variation of the 

energy in the pitch peak, caused the energy to be very speaker-independent, 

not only for the first peak, either for the next ones. 

 

When focusing on second order models, the classifiers behavior seemed to 

work over correct data, meaning, there was no apparent phenomena indicating 

the dysfunction of the feature extractor. But the results were completely noisy, 

which probably would mean the inexistence of second order filters in the human 

voice, and the ability of the proposed extractor to produce some kind of noise, 

or even better: the independency among different speakers of the mentioned 

behavior. 

 

Increasing the resolution of the filter bank at high frequencies was done to 

differentiate the speaker and the speech recognition problems. The result was 

discouraging again, but conclusion is: there’s no speaker dependency on high 

frequencies. 

 

Noise on MFCC 

Simulation 9.- Discard high frequencies on MFFB 

 

The result of this simulation, although being unusable, is considered very 

interesting. The pair of points where the MFCC line is crossed by the graphs of 

1 coef discarded and 2 coefs discarded are a particular theoretical point. The 

power of noise is increasing as lines go to the left side of the graph. Although 

the main power of the noise is not comparable to the main power of the speech 

until the left border of the graph, since the distribution of noise energy is more 

important in the high frequencies, where the voice is particularly weak, there 

exists a SNR ratio where the last filter in the filterbank has a localized SNR 

close to 0. That crossing point showed up to be close to the area where mean 



subtraction starts to outperform MFCC. That is considered a pure casualty, and 

author is pretty sure than applying the same simulation to different corpora will 

surely result in similar shapes but those points would not coincide. 

The same happens with the 2 discarded coefficients line. The overall SNR must 

be lower to get a completely contaminated 2nd coefficient, but at that point it was 

better to discard it, being this argument the one we wanted to demonstrate. 

 

Unfortunately, there was no point where the filter discarding worked better than 

the MFCC or the mean subtraction. That is surely because of the nature of 

noise, being in a main part constant along the time of a meeting. The out 

performance could only happen in the case of being some part of the noise also 

variable and contaminating also the mean subtraction. That seemed not to 

happen from the results, and finally mean subtraction is considered from now 

on the best approach when using MFCC. 

 

Articulatory features 

Simulation 10.- Baseline to extract pitch 

 

The results extracted from the simulation 10 showed up a very reliable 

articulatory feature: the pitch. Since this section was only focused on the trade-

off between the accuracy of the extraction and how it performs when noise is 

present, one could say the simulations were completely satisfactory. Later the 

pitch showed not to be as good for recognizing speakers, but that’s in the focus 

of the previous sections. 

After the pitch extraction algorithms, there was no need for filtering or grouping 

the results. A simple median filter was tried in the posterior processing, which 

resulted in a great performance where noise was hard enough to contaminate 

the pitch. But that was not the ideal scenario for the corrected pitch extraction in 

the speaker recognition area, because the classification result was so 

contaminated by errors, that solving a 3% of pitch errors didn’t help to the whole 

system. 



All the methods mentioned were equivalent. One could just view a very slight 

difference between them in the graph. That difference was mainly caused by 

the time resolution of the different methods. Some of them were working in the 

time domain, then they assigned a value to the peak delay, which was 

calculated in terms of samples. That meant the pitch resolution is constraint to 

the sample resolution and obviously to the sample frequency. Other methods 

worked in the spectral domain. A slightly better resolution can be achieved, 

theoretically in terms of interpolation, in the spectral domain, but the FFT 

function must be chosen carefully to achieve it. The ML method, against 

prognostics, gave the best resolution in time domain, that’s caused because its 

dereference against time-samples and floating point calculation. 

 

Simulation 11.- Baseline to extract Articulatory features 

 

The results of the 11th simulation were encouraging enough. The performance 

of static models based on MFCC features to classify articulatory events, was 

more satisfactory than expected. The first thought of the author was that static 

models should never catch the vocal tract events successfully enough, but 

results showed to be not that bad. The classification result was considered the 

best effort achievable in these terms, and better ratios were left for dynamic 

models or classifiers not based on MFCC. The posterior processing of the 

feature extraction, based on median filter was an important step for the speech 

segmentation success. 

The immediate conclusion about these results was to accept MFCC catch the 

most of the necessary information in the speech voice to classify the articulatory 

events. That’s good in terms of speech recognition, but doesn’t mean a good 

behavior for speaker identification.  

The silence issue was especially interesting. It had the constraint to force our 

MLP extractor to be redesigned in terms of complexity. The ability of the 

network to catch it was good, but only when a certain complexity was achieved. 

That could bring us to the conclusion that the speech model for silence is a 

complex statistical group of features needing higher complexities than simple 

phoneme characteristics. It is shocking when silence detectors are easy to 



build. Then the reasonable explanation is that an articulatory feature extraction 

algorithm need all of the MLP network complexity to its purpose. Then using the 

same network to classify the silence, it complains about the need of a 

separate/parallel group of perceptron nodes to categorize it. 

 

Simulation 11 is working on the idea of dynamic models for articulatory events; 

at this moment 1st and 2nd derivatives are included. Although that is a poor 

consideration of the temporal behavior of the input variables, that’s taken into 

account. Next simulations, particularly simulation 13 is using HMM to tie the 

result in a major way to the dynamic characteristics. 

 

Simulation 12.- Improving articulatory features baseline 

 

There are a couple of important conclusions in the current simulation; which are 

the unnecessarily complexity of large MLPs, and the maximum capability of the 

MFCC to catch the articulatory effects when having 13 coefficients. The MLPs 

complexities are widely discussed in literature, and there’s no need to go deeply 

into it. But MFCC complexity is very interesting. 

 

The major differences in the articulatory events in the speech signal are tied to 

spectral shapes, dynamic behaviors, temporal glitches… There is a lot of 

information in the speech signal usable for analyzing, and the MFCC is one of 

the best known information extraction methods for the voice. Varying the 

number of coefficients in the MFCC extraction method, should only mean to 

extract a different vector size from the same input signal. If we are talking about 

features completely clear to identify when looking at spectral shape, we were 

also completely confident to identify them in the MFCC domain. The use of a 

greater number of coefficients would mean a greater definition in the 

spectral/cepstral domain, but the expected shapes would be the same while 

changing the vector size.  

That means that the length of the input vector is the same than the number of 

filters in the MF filter bank. That’s not colliding with the previous assertion, 

where changing that number will only mean having a better resolution, but can 



throw up a new idea. The position of the filters in the filter bank can achieve the 

particular separation of several spectral specific characteristics, though filters 

are contiguous, because they are completely overlapped, they can favor a 

specific spectral shape when changing the resolution. 

 

The results plotted in the previous sections, were showing how 13 coefficients 

result the best choose. The performance when increasing/decreasing that 

number was not plotted, but it was lower and noisy, meaning some particular 

number of filters behaved surprisingly better than other numbers. The clear 

conclusion of this effect is to say that MF filter bank and respectively, MFCC are 

missing some features valuable for articulatory feature classification, and only in 

special cases it’s able to catch them in a successful way. 

 

Simulation 13.- Dynamic models for articulatory features 

 

The results of this simulation are odd, because they reveal the need of temporal 

behavior catching, and also reveal the outperformance of a static model against 

a dynamic one. 

The GMM model is very poor in classification results. The bad results are 

assigned to the training algorithm, which is unable to find a good minimum, and 

it stops in localized ones. The noisy results as the system was trained several 

times indicated it. But those results will still be a good comparison objective 

since HMM and GMM are very similar algorithms. 

The results of the HMM are surprising. Similar models than the previously used 

were able to improve the classification results in an 8% by applying the state 

change weights. This result is taken as unequivocally showing the relevance of 

temporal behavior on the articulatory events. That is another argument for 

future extractors that can avoid MFC coefficients, and obviously another 

relevant feature for the speaker recognition issue.  

 

About the difference between the machine learning technique and the other 

models, one could think than applying time-dependency to a model such 

successful could achieve still more accurate results. But that’s one of the 



oddities of the machine learning techniques, the resulting systems are not easily 

analyzed neither can be modified to work on different scenarios or premises. It’s 

important to remember than the MLP simulation included the 1st and 2nd 

derivatives of the MFCC, that’s the first step into dynamism, and probably it’s 

enough for the current system.  

As it will be seen later, the global conclusion of the articulatory feature 

extraction ends up with the need of different extractor architecture, starting from 

the signal samples, and ending on the feature measure, by using meters rather 

than classifiers, and avoiding a common start point for all features such as 

MFCC. Having this conclusion in mind, the behavior of the MLP is given as 

good enough as baseline, and will not be discussed how to make it dynamic. 

 

 

4.3. Theoretical multimodality studies 

Result 1.- Simple example results. 

There are some conclusions from the plots stated in Result 1: 

- From the given formulas, for null cross-correlation between noises, product, 

semantic and Bayes solutions are the same. But as correlation increases, the 

new bound is higher than the Bayes bound, and sets a new limit to be reached 

by SL solutions. 

- Multiple sources combined at SL are useful when the errors at its outputs are 

uncorrelated, because the classifications measures use to be affected equally 

and that becomes to equal errors after combination. But the correlation of the 

noise in the source signal doesn’t necessary mean correlated classification 

errors in the SL. Two sources with uncorrelated added noises ensure 

uncorrelated output errors, but correlated error sources aren’t necessarily 

correlated errors at the output of the joint classification. In the last part of the 

curves, as the noises get more and more correlated, the performance 

increases. 

 

And some new questions: 



-Is the SE minimization the optimal SL method? The final performance of a 

classifier depends on the decision areas and bounds. SE method penalizes 

deviation from real PDF along all the area of the function, and gives no special 

importance to areas closer to the decision bounds. There are algorithms based 

specially on the creation of a good decision plane, and they sometimes show up 

as better classifiers, being completely unaware of the PDF shape far from the 

decision bound. 

 

General solution 

 

From the found solution, it’s relevant how hard is to select a function fitting the 

joint PDF. An easy solution for the problem would be a parametric joint 

probability function, and it would need to adjust the parameters to best fit the 

joint density. To adjust those parameters, a function to be minimized is needed, 

for example the SE between PDFs or Minimum Error at the output. Note that a 

wide training data would be necessary. It’s known than lineal functions are the 

easiest ones for convenient parameter estimation. The problem is that the 

function we found for the simple example is not lineal at all. Neither is possible 

to find analytical solutions for SE in the most of the cases. Then it’s necessary 

to study families of functions and to find a technique able to train its parameters.  

Machine learning techniques have been using this kind of parameter training in 

different applications, based in these operations: They already solve the 

problem of being the resulting PDF more important in the areas closer to 

decision boundaries, as long as minimization is usually performed in terms of 

output errors. The methods performed by machine learning are similar to: 

-Create a binary posterior PDF such as 0 in areas where the current class is not 

the correct decision, and >0 where it is.  
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-Use a trainable function to approximate these PDFs. 

-Apply error minimization using a defined distance function. 



Although there is some nonlinearity used in the process; in the probability 

function to fit or on the distance measures, training methods are well studied 

and stated. These methods have some advantages in simple classification 

spaces, fitting the decision boundaries to the real bounds. Either it has 

disadvantages with variable PDFs, when estimated error is usually not 

representative of the performance of the classifier, but each of the machine 

learning techniques are scalable and its performance Vs escalation discussed. 

 

Neural networks and back-propagation or support vector machines are two 

techniques focused on fitting decision boundaries. They are used in 

bibliography with higher or lower success. 

 

 

Validation of the stated model 

 

The stated model tried to be the simplest problem to be approached. Its 

simplicity would surely be a problem in order to extract conclusions for higher 

order systems.  

 

However, the extracted conclusions take this order-dependent problem into 

account so the author gives full validity to the model. 

 

A word about product rule 

 

Since other solutions such as sum, min or max rules assume errors on previous 

classification spaces, product rule is simply based on independency. The 

assumption can be shown not far from reality, and the results are good enough 

for the most of the applications.  

Before considering independency of previous classifications, let’s assume that a 

new classifier is added into a system because it’s expected to solve the problem 

we work on where the first classifier doesn’t do it. Then a new feature is added 

into a set of features when its classification result is uncorrelated with the 



previous ones. If the addition of a new algorithm means falling into the same 

errors, the solution may be discarded. 

One could say that uncorrelated input vectors become uncorrelated previous 

classifiers. And it will usually hold, but inputs are not necessarily uncorrelated 

when output errors are. 

In cases when multimodality is used for noise robustness, we cannot assume 

independency. The new features are not added because of its independency, 

they are maybe correlated with the previous ones but more robust against 

noise. As seen in previous figure, dependency doesn’t mean decreasing of 

performance but it invalidates product rule assumption. 

 

Result 2.- Previous performances importance 

 

The problem represented by the dark areas in this experiment reflected a bad 

choice of the combination function. The conclusion to extract from this 

experiment should be the danger of an incorrectly chosen function. And again in 

favor of product rule; it showed up to never be worst than simple classifiers. 

 

But there are other areas that, not being black, they mean no significant 

improvement with the second signal source. Generally, adding two 

classifications where one of them has a good performance but the other one 

has a bad one, revealed a hard to reach improvement. 

 

The idea of moving these conclusions to higher order problems is hard to justify. 

In high level approaches of the problem, one could consider a very simple 

model for the previous classifiers; clustering systems contaminated with noise. 

The mixture of good and bad classifiers then would mean to group noisy and 

clear systems. They are for sure throwing less uncourageous results than the 

mixture of similar ones, that’s proved with formulas very similar to the ones 

used in the simple problem. 

But modeling a whole multimodal system is meant to be more accurate than 

joining contaminated sources. The better the model, the best it will classify. But 

all the simulations executed in this work showed up that behavior, which, 



though we demonstrated it is using a non-general model, we will take it as 

definitive. 

4.4. Multimodal speaker recognition 

 

The simulations 14 and 15 are run in this section, results 3 to 5 are trying to 

theoretically analyze the methods suggested and applied in simulation 15. 

 

Simulation 14.- Mixing pitch+energy with articulatory classifiers at semantic 

level. 

In the results table of this simulation, we can see how the product rule 

outperforms the previous classifiers, but it is not as good as semantic level 

combination. That confirms the general idea about the choice of semantic or 

feature level combination, where dependent features, like these ones are better 

combined at feature level. Although it is not a great conclusion, this result has a 

special interest because of the pair of features we are talking about. They are 

temporally correlated and apparently throwing similar results -except for the 

errors- but are scaled differently in time, meaning the best of their previous 

classifiers are having very different time periods. That seemed to direct the 

author to the semantic approach, but it didn’t work out.  

 

The semantic combination so, had here another bad result. So the basic ideas 

about choosing the type of multimodal combination should be reconsidered, and 

give more importance to the feature-level combination. Probably the different 

time scales of the features is the problem when trying to integrate them at 

semantic level 

 

Result 3.- Number and positions of people in the room 

The first method suggested in the current result got 2,25% of errors. The 

method based on state change weights performed equal than the simpler 

method. It is considered better than the first method, but the first approach is 

good enough. 



In case source would throw faster and noisier results, the second method would 

perform better than the one used.  

 

It is important to note than a sliding window of 5 samples is the right choice to 

filter the errors and combine the samples incoming from the video system. The 

general conclusion about the current result is the correctness of the video 

solutions. Except for the noted limitations of the system, which is very sensible 

to movements and light changes, the performance for people who are not 

constantly moving and the light ambience is not violently modified, is very good. 

The system is not complicated but has a great result. 

 

Result 4.- Classification over spatial domain 

The extracted results when mixing the video information and the MA output are 

pretty good. The observed errors are evidently misdetections on the MA 

system. There are only a little group of samples close to the noise center, where 

some samples can be considered ambiguously related to a speaker or to the 

noise. The author tried to force the sample border by manually modifying the 

variance of the noise model. The results showed than the estimation given by 

the noise samples was the best choice for the noise variation.  

 

The final result is about the 78% for the MA samples. There exists the 

confidence of being extracting the best from the given data. Since the output of 

this system will not only be based on the decided model, otherwise the 

likelihoods of every model will be used. The values of these likelihoods were 

plotted and observed, they were slightly deviated when the MA sample was 

ambiguous, but they were widely separated when the sample was clearly 

incoming from a specific model. The possibility of whitening these samples was 

considered, but discarded, in order to follow a strict probabilistic approach. 

 

Result 5.- Joining classification spaces 

The offline nature of the current linkage of classification spaces is the worst 

conclusion in the current system. As mentioned in the results, a perfect match 



was achieved in all simulations between the models belonging to spatial or 

speech spaces. Author considers there is no other way to link the different 

models, because of the completely different spaces and natures of the 

information.  

 

A pair of simulations was run also in order to analyze the online performance of 

the current system. Although the system is always converging to the right 

decision, the only difference between the online and the offline methods is the 

convergence time, analyzed as the time while the decision is incorrect until it is 

fixed. The time was close to 10 seconds. Note than once the decision has 

converged, the previous incorrect results can be fixed, meaning the online 

decision being incorrect in that period, but the final result is correct. 

 

Simulation 15.- Real data from the meeting room 

 

Mentioned in the previous sections; results 3 to 5, the mix of the video an MA 

spaces, and the model matching between this space and the speech spaces 

result in good performances. The final decision though, was chosen by using 

simulation 15. It used the product rule to decide the more probable speaker, 

discarding sum rule or any other mixing methods. A time period of 1 second 

was integrated to extract the currently speaking person in the room.  

 

Results were not as good as expected. Previous classifiers with 78% and 63% 

of accuracy resulted in a mixed performance of about 81%. The use of the 

product rule is the best choice inside the group of traditional probabilistic 

approaches for multimodal semantic integration. The results in the Theoretical 

multimodality studies are oriented to analyze the particularity and difficulty of the 

best multimodal integrators.  

 

The theoretical approaches to the semantic combination are only improved by 

the knowledge of pdfs of previous classifiers, by knowing them; some 

minimization function could be applied. There was no approachable 

mathematically simplification possible, so it was theoretically abandoned. Other 



empirical observations and mixtures were used, based on the idea of creating 

functions applied to the likelihoods of the spatial and speech classifiers.  

 

A fast experiment using a neural network was ran, trained and applied to the 

current semantic combination, as the conclusions of theoretical studies 

suggested. The results were very close to the product rule application, they 

were slightly better than the first one, but not enough to mention it as a success. 

 



5. Conclusions 
There have been three main purposes in this work; improving the speech 

analysis for speaker recognition, mixing the speaker classification from different 

classifiers, and applying it to the meeting room scenario. 

 

The idea of finding information in the speech different than the traditional 

approach based on MFCC is a good start point, and it is still considered worth 

working on it, though the results achieved here were not satisfactory. They are 

failing because of the different performances between the traditional MFCC 

method and the newly suggested articulatory classification. A theoretical study 

showed how classifiers with very different performances can’t achieve big 

improvements; furthermore they can increase the number of errors if the 

multimodal integration is not correctly designed. So the general conclusions 

about the speech only classification is the correctness of the method followed, 

but the need to achieve better results in the alternatives to MFCC. Articulatory 

feature seems to extract important information for the speaker recognition issue, 

so it is considered to be a correct choice. The lack of accuracy when working 

stand-alone is the drawback, and is considered improvable by using other 

articulatory extraction methods. When high SNR appears and MFCC looses 

accuracy, the methods are more equivalent because articulatory features are 

less affected by noise, so there are remarkable achievements in that situation. 

 

Methods to integrate different classifiers are mentioned all along this work. The 

traditional literature was only based on the probabilistic assumptions resulting in 

the sum or product rules. The probabilistic approach is mentioned in this work, 

applied to the PDFs just before the previous classifiers. The need of knowing 

those PDFs, and the application of some error function and its minimization, 

brings up an unapproachable problem, it is mathematically solved for a very 

simple example, but seems not to be reachable for more complicated scenarios. 

The idea is considered to be right, and is suggested as a good method for other 

scenarios, but it seems not to be solvable in most of them. The conclusions 

show the little difference between the mentioned solution and the product rule in 

most of the cases. In other cases it can be mathematically very sophisticated. 



That kind of complicated mathematical functions and the approaching of 

unaffordable problems seem to match with the situations usually solved with 

machine learning techniques such as the neural networks or SVM. 

 

The meeting room scenario has been the place to apply all the mentioned 

algorithms. The performance in the room is not good enough at the current 

moment, but the author considers it to be ok as a baseline. The major problem 

incomes from the inability of the traditional speaker recognition based on 

speech and MFCC, and it was expected to be solved with the articulatory 

extraction. The MA has a very good performance, and the empirical experience 

reveals the system to be more valuable. A better adjust for the MA can bring up 

with a much better performance, and it is achievable with some more work done 

in the configuration. Otherwise, the speech classification is not considered to be 

easily improved, and the video system seems to be weak when dealing with 

moving people. The method mentioned for joining all the systems is considered 

to be working fine for the current previous performances, but it is also subject to 

improvements. 

 

The major objectives of the current work have been achieved: the study of the 

speech signal and its relations to the speaker dependencies, the study of mixing 

new information into a multimodal system, and the application of these novelties 

to a real scenario. The need of updating the real scenario simulations and the 

work on the meeting room was occupying more than the expected time for it in 

the whole work schedule, but it was satisfying given the bad results on the 

research side of the work.  

 

There are no successful results in the current work, which was pretty 

discouraging. Some parts of the work are even trying to analyze why the 

improvements are hard to achieve. Finalization of the work and presentation 

was done before the typing of this document. It was finalized later, by mixing a 

lot of documents and handwritten types related to all mentioned simulations. 

The creation of the document was delayed in part trying to achieve good 

results; but the author decided bad results were as good and notable as good 



results, and finalized the current work with the relation of all the unsuccessful 

but important simulations; which resulted the common routine of this work. 



6. Further work 
 

The extraction of articulatory features in the current work was mainly based on 

MFCC, even when using a wider set of filters, there must be a better way of 

extracting articulatory features from voice segments, and the methods have 

been enumerated in the discussion section of this work. 

 

Though the usability of temporal-dependencies of articulatory features was 

demonstrated, the exact importance of its behavior is to be studied. The periods 

while these features are relevant, the differences in time-level between them or 

even which of them are less time-oriented are good questions to be analyzed in 

the future. The articulatory features were included in GMM/HMM models in this 

work, using other models should be analyzed. Particularly, domain 

transformations could be applied to the features before fitting them to the 

model. 

 

Approaching the multimodal integration, the theoretical study showed how the 

shapes of models and decision boundaries were based on PDF shapes, though 

they were not necessarily the same. Then studying the performances of 

different functions families in the integration step would be a nice simulation to 

be run in the future. 

 

Application of supervised learning and monte-carlo methods to the decision 

step is a conclusion extracted from the starting bibliography than the author of 

the project is willing to revisit and apply to the last step of our classification 

process. 

 

When thinking about the CommVision project, and mixing the theoretical 

experience acquired in the current work, the sampling of the ML source 

localization function with the estimated people location would be a nice start 

point to try to improve the system’s performance.  

 



An accurate people tracking system could be as well useful in the CommVision 

project, since the people-track established in the latter simulations was very 

simplistic, and maintained because of the nice performance in the main 

database. Addition of spatial information in statistical models for a better spatial 

classification would improve the overall performance as well. 
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8.1. ICAASP’ 05 Paper 

 

The paper presented at ICAASP 2006 in Toronto is appended to this work in the 

following pages 

 

8.2. Presentation plots 

 

Because of the nature of the evaluation process of this thesis, the images and 

plots used in the oral defense of the project are also appended. 
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ABSTRACT

Our long-term objective is to create Smart Room Technologies that
are aware of the users presence and their behavior and can be-
come an active, but not an intrusive, part of the interaction. In this
work, we present a multimodal approach for estimating and track-
ing the location and identity of the participants including the ac-
tive speaker. Our smart room design contains three user-monitoring
systems: four CCD cameras, an omnidirectional camera and a 16
channel microphone array. The various sensory modalities are pro-
cessed both individually and jointly and it is shown that the mul-
timodal approach results in significantly improved performance in
spatial localization, identification and speech activity detection of
the participants.

1. INTRODUCTION

New developments in communications technologies have brought
to light a number of exciting and challenging applications that
promise to change the way people communicate and interact. An
application that has recently gained significant attention in the lit-
erature is the development of multimodal, unobtrusiveSmart Room
Technologies(SRT): monitor and infer important clues about users
in specific environments such as their spatial position, identities
and behavior. This is a challenging multidisciplinary application
that involves research in diverse topics including object tracking,
speaker activity detection, speaker identification, human action
recognition and user behavior modeling.

One of the well-studied areas in SRT is thedetection and track-
ing of user locations. Two important sources of information are the
visual and the acoustic modality. Within a multimodal framework,
these two sources have been used to track a single active speaker
using methods such asSequential Monte Carlo[1] [2], Kalman
filtering [3] and Dynamic Bayesian Networks(DBN) [4], taking
advantage of the complementary information represented by these
two modalities.

Recently, [5] and [6] extended these approaches to track multiple
speakers using particle filtering, while at the same time achieving
active speaker detection, which is another important aspect of smart
room technologies. In [7], visual clues were used to track users and
a microphone array to select the active speaker by computing the
distance between the visual and acoustic results.

Another important aspect of SRT isspeaker identification(SID),
in which the identity of the user is detected. There are several
additional possible biometric systems for smart room applications
(e.g.,retina, fingerprint), although most of them are impractical due
to their invasive nature. One feasible option is to classify the user
according to acoustic speech features [8] or through face recogni-
tion.

In this paper, we propose a real time multimodal approach to de-
termine the spatial position of the user, detect speaker activity, and
additionally determine the speaker’s identity aimed at applications
such as remote video-conferencing and audio-video indexing and
retrieval for tasks such as meetings.

Our conference room contains three user monitoring systems:
four synchronized cameras located in the corners of the room, a
full-circle 360 degree camera located at the center of the table, and
an array of sixteen microphones located at the end of the table.
The location of each user is computed based on (i) the 3D polygon
surface model from 4 synchronized cameras and (ii) a face detec-
tion technique using a full-circle 360 degree camera. Subsequently
a dynamic model, under the Gaussian distribution assumption, is
used with a moving window to combine the above information and
localize the participants. The Speaker ID, operating on far-field
sound obtained from the microphone array, algorithm employs a
standard Gaussian Mixture model based on MFCCs. Finally, the
active speaker’sidentity and locationis estimated by fusing all the
information channels.

The long-term objective of this project is to create a system
which is cognizant of the users and can become an active but non-
intrusive member of the interaction. The specific goal of this pa-
per is to present a smart room design suitable for real time multi-
speaker remote video-conferencing, with augmented information
channels containing speaker IDs and relative location of the partic-
ipants and the active speaker. Moreover, the extracted information
can be used in a number of other applications such as video index-
ing and retrieval, human posture inference [9], modeling of human
behavior, and as the device technologies further mature, for appli-
cations such as audio-visual speech and emotion recognition [10].

2. THE SMART ROOM

The present initial design primarily comprises microphones and
cameras for activity sensing. The microphone array consists of
16 omnidirectional microphones that process sound at 48kHz sam-
pling frequency. Fourteen microphones are distributed on a square
frame of 50×50cm and two microphones are raised in the middle
of the frame to allow for vertical plane localization. The room is
acoustically treated on three walls and has a full-wall glass window
on the other side, and has ceiling panels and carpeting on the floor.

The 3D camera system consists of 4 firewire CCD cameras near
the corners on the ceiling that overlook the meeting area around the
main table and capture the image sequences of the meeting from
multiple angles. Each camera provides 1024× 768 images at 15
frames per second, but we scale them to 320× 240 for real time
processing. The room is lighted with halogen lights.

At the center of the meeting table, a full-circle omnidirectional
(360◦) camera captures the faces of all participants. The size of the
original omnidirectional image is 1280×960.

The next subsection describes the algorithms used to process
each of these raw information sources.

2.1. Microphone array
One modality of localization is the sound source localization using
a microphone array. The principle of sound source localization is
based on theTime Difference of Arrival(TDOA) of the sound to the
various sensors and the geometric inference of the source location



Fig. 1. Four firewire CCD cameras

from this TDOA. In this microphone array implementation we first
estimate the pair-wise delays [11] and then employ a least-squares
estimation procedure for the source localization[12].

Georgiouet al[11] have demonstrated the impulsive nature of
audio signals and introduced a time delay estimation approach to
mitigate its effects. The algorithm calledFractional Lower Order
Statistics-Phase Transform Method(FLOS-PHAT) is based on a
signed-non linearity on the input signal that reduces the detrimental
effects of outliers.

As is common practice, this implementation of the FLOS-PHAT
algorithm employs memory in order to approximate the expectation
in the lower order statistics, and additionally the memory varies as
a function of time to mitigate temporal propagation of errors.

Subsequently, based on the TDOA estimates, a computationally
simple algorithm presented by Huanget al[12], calledOne Step
Least Squares(OSLS), can be used to spatially locate the source
using these pairs of delays.

The resulting localization algorithm is quite robust, but as ex-
pected, not very accurate in range due to the small aperture of the
array (aprox. 70%, see Fig 6)). We expect, however, that this
shortcoming will be countered by the visual modalities, which have
higher accuracy in the horizontal plane.

2.2. Speaker ID

Speaker identification was implemented by analyzing the short-
time spectrum (through mel frequency cepstral coeeficients,
MFCCs) of the spoken phrases. In speaker recognition, theGaus-
sian Mixture Model(GMM), a weighted sum of Gaussian distribu-
tions, has been found to be good to capture the speaker informa-
tion in MFCCs, and hence a GMM with 16 mixtures was used as
a speaker model. Model training was accomplished by the stan-
dardExpectation-Maximization(EM) algorithm. All frames were
initially divided into 16 clusters. An initial model was obtained
by parameter estimation for mean and covariance matrices, which
were estimated from the vectors in each cluster. The prior weights
of GMM can be simply set by the proportion of feature vectors
in each cluster. Next, the feature vectors are clustered by the
Maximum Likelihood(ML) method using the previously estimated
model. This process is iteratively executed until the model parame-
ters converged. Additionally, we have created a silence/background
noise model.

The speech signal was obtained through beamforming from the
microphone array (see Fig. 4). The result of the speaker identifica-
tion was in terms of pairs, (Si ,Pi), wherePi refers to the probability
of speech activity of speakerSi given for all speakersi. This infor-
mation is evaluated and transmitted to the fusion algorithm every 1
second.

We should note that the acoustic signal processed is a reverber-
ant, far-field signal corrupted by noise, and so the performance of
this method is expected to be lower compared to a case when clean
signal from a close-talking microphone is to be used.

Fig. 2. Omnidirectional image from 360◦camera and its panoramic
transform

2.3. Video detection

The goal of visual tracking is to detect and track the 3D locations of
the participants in the meeting room using video streams acquired
by multiple synchronized cameras.

We use a Gaussian background-learning model to segment mov-
ing regions in the scene. When large variations from the learned
Gaussian models are detected the foreground pixels are extracted.
These pixel changes are then merged into regions. However, this
method will segment actual people as well as their shadows and re-
flections. In our indoor setting, the shadow regions cast by diffused
light do not have strong boundaries. We eliminate the shadows by
combining the foreground pixels detection and the edge features
detection [9] for segmenting into moving regions and correspond-
ing cast shadows. The resulting regions are the silhouettes of the
moving objects in the room.

The detected silhouettes across the views are integrated for infer-
ring the 3D visual hulls of people in the room [13]. The silhouette
contour is converted to a polygon approximation and a visual hull
with polyhedral representation is then computed directly from these
polygons [14]. This polygonal 3D approximation of the shapes is
fast and is done in real-time. In detecting the locations of the people
in the meeting room, we only need an estimation of general location
of blobs of shapes instead of a precise reconstruction. Furthermore,
we want the detection to cover an area as large as possible given a
limited number of cameras. For this purpose we use a variation of
the visual hull method proposed by [15]: the polyhedral visual hull
is required to be the integration of only a subset (at least 3 out of 4)
of the silhouettes instead of all of them. The resulting visual hull
shape is less accurate, but the 3D shape of all people in the room
can be approximated.

The computed visual hull is in a polygonal representation. We
randomly sample points on the polygon surface and construct a
height map of those points. This map assumes the XY plane in
the Cartesian space is the meeting room floor and the Z coordinate
represents the height. The local maxima of the height are then de-
tected and considered as heads of the meeting participants. In this
process some thresholds are applied to eliminate small regions such
as moving chairs.

2.4. Full-circle 360-degree camera
We have added an omnidirectional (360◦) camera on the meeting
table to capture faces of all participants in order to get thumbnail
representation of ”who’s talking”. The image of the omnidirec-
tional (360◦) camera is the result of the projection of the surround-
ing scene into a hemisphere. We can unroll the captured original
image and project it back onto a cylinder as in Fig. 2.



Fig. 3. Detection of participants’ faces with the 360◦camera
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Fig. 4. The system is distributed running over TCP, with informa-
tion exchange as depicted above.

To detect the foreground region, we use adaptive Gaussian
background-learning model. All pixels in a new frame are com-
pared to the current color distribution in order to detect moving
blobs prior to capturing the faces. Morphological operators are
used to group detected pixels into foreground regions, and small re-
gions are eliminated. Pixel color distributions are updated in these
regions for adapting the background model to slow variations. In
these moving regions, we perform face detection. The face de-
tector is based on Haar-like features and is implemented using In-
tel’s open source computer vision library [16]. To accurately detect
faces under low light level conditions, the color histogram of de-
tected regions is normalized beforehand. Detected regions are then
tracked using a graph-based tracking approach [17]. These regions
correspond to the upper body of the meeting participants. Spatial
and temporal information of tracking regions are combined as a
graphical structure where nodes represent the detected moving re-
gions and edges represent the relationship between two moving re-
gions detected in two separate frames. Each newly processed frame
generates a set of regions corresponding to the detected moving ob-
jects. The size of original omnidirectional image is 1280×960 and
the panoramic image resolution is 848×180. The average size of
detected faces is approximately 30× 30. The faces are detected
and tracked at approximately 13 FPS in a 2.8 GHz Pentium4 PC.
In Fig. 3 we show an example of detection and tracking of the par-
ticipants’ faces during a meeting.

2.5. Synchronization

Each modality was initially processed independently and asyn-
chronously. Therefore, the estimated 3D coordinates from the
polygonal representation (Xv) and from the microphones array
(XMA), the angles of the faces detected (Xθ ), and the speaker in-
formation from the acoustic analysis (Si ,Pi) are sent to the fusion
algorithm for integration. Although the results are received in an
asynchronous manner, they are transformed and processed in a syn-
chronous fashion.

3. MULTIMODAL INTEGRATION

The various modalities are subsequently received and processed by
a fusion algorithm for the purpose of finding and tracking the par-
ticipants’ spatial locations and identifying where and who the cur-
rent active speaker is. Fig. 4 shows the information flow between
the various modules, and what information is used for each deci-
sion.

Fig. 5. Microphone Array Distribution

3.1. Participant localization
It is well known that visual tracking algorithms have better spatial
resolution than acoustic localization techniques [7, 6]. Hence, our
algorithm for localization of all the participants’ location employs
a dynamic visual approach that uses only information obtained by
camerasX = (Xv,Xθ ). Based on the distribution of the samples
X, we model the position of each speaker as a multidimensional
Gaussian distribution.

A single distribution with covarianceK of a significant spread
and meanM is initialized at the center of the room. As data are
obtained, the variance and mean converge to the detected object’s
location. When information is received for a location scoring be-
low a certain threshold of belonging to the existing distribution, a
new multidimensional Gaussian is initialized at(M,K). The pro-
cess continues sequentially until all the speakers are detected, with
new data points either spawning new participant models or adapt-
ing the existing ones. In addition, temporal filtering ensures that
false participant detections are identified and removed. This proce-
dure allows us to determinate not only the spatial positions of the
participants(XP), but also the number of participants in the room
(NP).

3.2. Participant Identification
The spatial location of the current speaker (XMA+P) as obtained
from the microphone array (XMA) and participants’ location infor-
mation (XP), as well as the speaker ID from the GMM algorithm
(Si ,Pi) are used to determine the identities of the participants. The
goal is to detect who the participants are and also correlate their
identity with their location in space (derive the “seating arrange-
ment”).

Fig. 5 shows a sample scatter plot of the raw microphone array
localizationXMA, and as can be observed, the range information is
highly noisy. For simplicity, we modelP(Ci |XMA), the probability
that the acoustic source comes from clusteri givenXMA, as a multi-
dimensional Gaussian distribution centered at the locationsXP and
with a large variance in range and smaller variance in the other two
dimensions.

Using (S,P), the probabilistic identity of the participant along
with P(C|XMA), the probabilistic location of the current speaker,
over time and with physical constraints1 we estimate the partici-
pants seating arrangement (L).

3.3. Speaker Identification and Localization
We compute activity speaker detection by employing all modali-
ties: XMA+P, which is derived from the visual modality and the
microphone array, and(S,P) obtained from the acoustic analysis of
the signal. The information is fused as described in (1), wherer i j
is the correlation measure between the probabilities of the current
speaker belonging in clusterj and being speakeri.

1Such that a participant can only be at one point in space at a time, and
one position can only be occupied by one participant at a time
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A Speaker ID (GMM based)
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2 56.70% 58.40% ID

B Microphone Array + Video
1 68.10% 69.50%

2 71.00% 72.00%

C
1 73.20% 76.50%

2 77.90% 79.50%

D
1 73.80% 77.60%

2 74.90% 76.70%

E Speaker-location learned through data (L)
1 93.30% L

2 94.90% L
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Fig. 6. All of the above results are obtained in real time, and include
the whole length of the meeting, withno time given for initial con-
vergence.A: Speaker ID as obtained purely from the speech signal
using a GMM;B: Localization obtained by the two visual informa-
tion channels and the microphone array;C: Speaker Identification
& Localization based on all information channels. Assumes per-
fect knowledge of L, the seating arrangement of the participants;
D: As C, but the mapping of speaker-location, L, is continuously
estimated from the data;E: Speaker Location mapping, L.

P(Si) = Pi ·
n

∑
i

r i j ·P(Cj |XMA) (1)

4. RESULTS & DISCUSSION

The experiments were performed using two meetings (each 5
minute long) with four participants, processed in real time. Off-line
computations were also performed later for comparison purposes.
The conversation in the meetings was casual with many interup-
tions, overlaps and short utternaces, making this an extremely chal-
lenging task for both the microphone array and the Speaker ID. We
used two criteria: strong decision, in which the detection was con-
sidered correct if the speaker was active at least 50% of the time
interval, and weak decision, in which the detection is considered
correct if the speaker was active in any part of the time interval.

The participants localization algorithm takes about 3 seconds per
participant to converge during the start of the meeting. As can be
observed from the results in Fig. 6 (rows C & D), the speaker identi-
fication and localization based on all the modalities is fairly robust,
achieving about 70% performance. This is a significant improve-
ment of about 30% compared to the speaker ID based purely on the
speech signal as shown in row A, which suffers from the far field
and noisy nature of the data.

Similarly, there is a significant improvement in the accuracy of
localization (row B) as contrasted to the performance based purely
on the microphone array. The microphone array as a single modal-
ity is very unreliable when it comes to the range of the speaker (as
can be observed from Fig. 5), both due to the noisy environment as
well as the range errors due to the aperture of the array. The multi-
modal localization accuracy is also further improved by the acous-
tic speaker ID modality, as the correlation between active speaker
and sound source location is providing additional information. This
results in about 10% improvement when comparing all modalities
(row C & D) versus the visual and microphone array only (row B).

Finally, the identification of the participants’ spatial arrangement
(row E) is extremely accurate, a fact that explains the very close
results observed in rows C & D.

5. CONCLUSION

In this paper, we have presented the first results from the smart
room that we are developing at USC. We have demonstrated that
complementary modalities can increase the general participant
identification and localization (without any prior knowledge of the
number of participants) including the active speaker identification
and localization.

Our goal of increasing the system’s awareness of the users in
the space has many more challenges ahead. In our future work we

propose to investigate further integrated recognition technologies
including face recognition, gesture recognition and head pose esti-
mation. Additionally we plan to collect and share with the research
community a multimodal data corpus from this testbed.
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Robust Feature Extraction for 
Multimodal Speaker Recognition
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Overview

New scenarios for speaker recognition 
Meeting rooms

Meetings indexation
Remote access to a meeting

New constraints
Low SNR
Fast speaker changes

Old algorithms are not enough for 
these new problems



Current Solutions

Feature-Based approach
A set of features can define all properties of 
speech

Multimodal approach
New sources can add new information to 
the classification problem

Both solutions are based on a posterior parallel 
classification.

Joint classification

Problem appears when new features are 
added for classification
A set of measures can join the same 
classification space with the previous ones, 
or create a different classification space.

Feature-level combination
Semantic-level combination

A few questions to solve
What performance can be reached with semantic 
or feature-level combination?
Which methods and algorithms can be applied to 
joint classification?



Bayes bound

Bayes classification; optimal statistical solution
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Semantic bound

Having access just to posterior probabilities, 
the classification can not be as accurate as 
feature-level classification
Solution is a function of prior probabilities 
given by previous classifiers

There's a need to analyze how accurate the 
solution is
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Simple example (I)

To evaluate bounds, the example is taken
Bayes bound is set assuming joint Gaussian 
distribution for both noises.

Semantic bound can be analytically found.
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Simple example (II)

Bayes bound
Semantic bound

Probability of Error Vs 
Cross-correlation

Sum rule
Product rule

Joint performance Vs 
single performances
1

2 3

1  Bayes
2  Sum rule
3  Product rule



Conclusions
Correlation of input noise sources doesn't 
necessary mean correlation of errors
Hard to deal at semantic level with 

Dependencies between input data 
Classifiers with disperse performances

Product rule is not that bad
Ensures better performance than alone classifiers
Incorrelation in multimodality is usual

Proposed method: supervised learning
The searched f is a high order function
A parametric function f can be trained in order to 
fit joint pdf
Because of the lack of the pdf, usually output of 
training data is used to compute error function

Feature-based approach
MFCC are the basic features from speech
Noise affects to features. It has a strong effect 
over classification performance
Speaker dependant statistics need long-term 
analysis. Length of test frame

Performance Vs SNR

MFCC
Mean substr

Performance Vs 
Test utterance length



Addition of features
Basically there are two reasons to add new features 
to a system

Addition of new information
Robustness against noise

Procedure to evaluate a new set of features
Intra-speaker dependency. Utility for classification
Mutual information. Joint classification
Robustness to noise

Questions to solve
Does exist a set of features completely representative 
of the speech signal?
Which representations or methods to extract these 
features are less affected by noise?

Possible speech features
Classical speech production model is based 
on a sound source and a vocal tract filtering

Filter properties are well represented by MFCC
Source properties have been modeled and used for 
speaker recognition. Pitch and energy dynamics

Other features have been applied to 
speaker ID. Most of them used text 
transcription

Phonetic, lexical and conversational statistics
Articulatory features has not been used for 
speaker recognition

They are expected to add robustness to acoustic-
based current systems



Noise on MFCC
AWGN added to speech contaminates MFCC
SNR is equal along MFCCs

DCT concentrates energy of speech and voice 
shapes in the same coefficients

Selective spectral-shape information compaction 
could separate robust and noisy features

Speech and noise 
Components after filters

Speech and noise 
components after DCT

MFCC Baseline
NIST Database

Noisy meeting
30% for training, 70% testing

Acoustical statistics
GMM with 16 mixtures
MFCC 24 filters

Evaluation
Assuming ideal silence detector 73%
Modeling silence with GMM 61%



Articulatory features (I)
Features extracted

Voicing: voiced-voiceless
Place: labial-dental-velar-glottal-alveolar-back-central-
frontal
Manner: approximant-stop-fricative-affricate-nasal-vowel
Vowels high: frontal, central, back
Vowels open, closed
Vowels rounding: rounded, unrounded

TIMIT database for training detectors.
32 speakers: 16 male and 16 females
10 utterances each speaker

Methods
MLP: 3-layer NNs applied to 39 coefficients(13 MFCCs
including energies and its 1st and 2nd derivatives)
HMM: 3-state and 24 mixtures applied to 39 coefficients

Articulatory features (II)
Switchboard database for Background 
model.

16 speakers: 8 males and 8 females
90 seconds of speech each speaker

Performance over 2 speaker 
conversations

10-15% of error on 30% of pairs
40% of error on 70% of pairs
Overall performance is low

Joint Classification with MFCC reveals no 
new information in articulatory features



Discussion

The most of the 
classification
performance comes 
from a few features

Voicing and rounding are 
the most important 

Classification is 
accurate in male-
female pairs
Derivatives doesn’t 
improve the accuracy
Long test utterance is 
better

Histograms of features

Multimodal approach

Some scenarios can take advantage of 
information from other sources. Meeting 
Room
New sources for speaker recognition

Source and people localization
Video information

CommVision Lab
16-channel microphone array
4 cameras focusing the center of the room
One 360º camera in the center of the room



Front modules
Acoustic-based speaker recognition

Received prior probabilities of each of the speaker 
models in the database and silence model (1Hz)
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TDA-based source localization
Received most probable coordinates for incoming 
voice (12 Hz)

People localization
Received a set of coordinate vectors each frame 
(15 Hz)

Statistical models - Source localization

A parametric model is used for the received 
data from the microphone array

Position of the speaker and ‘noise centre’ help us to 
transform samples coordinates to new ones. Models 
assume them independent
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Statistical models - People localization

The way video data arrives is modeled

2,0

15,0

nd

fa

P
P

0330.000
00246.00
000232.0

)1(·)(1 txV

),|(
0

ii

N

i
iL

is a binary random variable being 0 for a false 
alarm with probability Pfa, and 1 otherwise.
is a three coordinates uniform random variable 
distributed along all the room space

is the number of speakers in the room
is the global probability of being speaking speaker i

N

i

i

i is the position of speaker i
is a fixed covariance matrix analyzed from the 
error generated by the video system

is the probability of a present speaker being not detected in a framendP

General scheme

Sound and physical space are two dimensions where a 
classification is possible
Configuration of the modules forces a semantic level 
approach
Position of people is needed as a first step. Reliable from 
video data 

Noise can create dependencies between spaces, then 
the fusion module should deal with this

Location Speaker ID

Post-processing

Multimodal joining of prior probabilities

MFCC
Speaker ID

MA source
localization

Video people
localization



People localization (I)
Steady state assumption
Noise filtering and mean estimation
State-search based, addition of misdetection state

Uniform assumptions for simplicity
State-transition weighting

Allows tracking
Minimizes lost of speakers
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People localization (II)

Speaker moving out hypothesis
5 continuous misdetections are assumed as a speaker 
lost

New speaker hypothesis
False alarms are used to train a spatial speaker model. 
In case it fits enough, it’s added to the room
Gaussian model updating

Variance lower than a threshold = new speaker
Convergence conditions and speed of convergence 
set the parameters
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Spatial speaker classification
Locations estimated from video used as MA 
parameters

Decision based on comparison of prior probabilities
Gaussian model added for silence

Statistical model for
a speaker

Decision zones in a
Plane of the space

Classes relation

Classes in spatial domain are not related to spectral-
shape domain classes

Need of a measure of correlation between them

Search of correct pairs through correlation matrix
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Joint classification

Selection of function forced by dynamic range of 
the prior probabilities given by both systems

Sweep of parameter values for a parameter 
selection

|||, MAaMAa xPxPxxP

Results
Database

2 conversations of 5 minutes to evaluate the total system
4 conversations, total of 20 minutes for spatial speaker 
recognition evaluation

People’s position estimation 
Initial time to converge 3s
Lost of speaker per minute 0,025

Spatial speaker recognition
Performance 78%

Joint classification
With previous classifiers working at 78% and 63%. Final 
accuracy of the system performed at 81%.



Future work
Joint classification

Study of performances of different functions families
Application of supervised learning and monte-carlo
methods

Features from speech 
New extraction methods for articulatory features
Evaluation of dynamics of articulatory features

CommVision Project
Sampling of the ML source localization function with the 
estimated people location
Accurate people tracking system
Addition of spatial information in statistical models
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