RESUMEN

El principal consumo de acero en la industria del automóvil es en forma de láminas, tanto de aceros al carbono convencionales como aceros avanzados de alta resistencia. Es indispensable que existan métodos sencillos y de fácil aplicación que permitan caracterizar el comportamiento, las propiedades mecánicas y la tenacidad de fractura de estos materiales. Para el caso de las propiedades mecánicas existen distintas normativas ampliamente conocidas. Para caracterizar la tenacidad de fractura no existen métodos sencillos, rápidos y económicos. El trabajo esencial de fractura es un método de fácil aplicación que permite caracterizar la tenacidad de fractura de materiales en forma de láminas. Este método se basa en la separación del trabajo para propagar una grieta en dos contribuciones, el trabajo real de fractura (llamado esencial) y el trabajo plástico (llamado no esencial).

El objetivo de este trabajo es comparar la tenacidad de fractura de cuatro diferentes tipos de acero en forma de láminas (acero de alta embutibilidad DC03, aceros de dos fases DP780 y DP1000, aceros de transformación inducida por plasticidad TRIP800) utilizados en la industria automovilística, a través del método de trabajo esencial de fractura (TEF).
INDICE GENERAL

RESUMEN.. 1
INDICE GENERAL .. 3
INDICE DE TABLAS... 5
INDICE DE FIGURAS.. 7
INTRODUCCIÓN... 9
2. OBJETIVOS .. 11
 2.1. GENERALES... 11
 2.2. ESPECÍFICOS .. 11
3. MARCO TEÓRICO ... 15
 3.1. Tenacidad de fractura... 15
 3.2. Transición en el modo de fractura: Tensión plana vs deformación plana..... 16
 3.3. Trabajo esencial de fractura .. 18
 3.4. Protocolo de la European Structural Integrity Society 21
 3.4.1. Dimensiones de las probetas y velocidad del ensayo 22
 3.4.2. Rango de longitud del ligamento ... 22
 3.5. Clasificación de los aceros .. 23
 3.5.1. Acero de alta embutibilidad... 23
 3.5.2. Aceros avanzados de alta resistencia (AHSS). 23
4. MATERIALES ... 29
 4.1. Acero DC03 ... 29
 4.2. Aceros Dual-Phase ... 30
 4.3. Aceros TRIP ... 31
5. METODOLOGÍA EXPERIMENTAL .. 33
 5.1. Preparación de las probetas doblemente entalladas 33
 5.2. Determinación de la longitud de ligamento máxima 35
TFM. José Ricardo Muñoz Medina
Aplicación del trabajo esencial de fractura en aceros usados en la ind. del automóvil 4

5.2.1. Desarrollo del método de simulación ..35
5.2.2. Medición de la zona deformación con microscopia confocal38
5.3. Ensayos de trabajo esencial de fractura (TEF)40
 5.3.1. Obtención del trabajo esencial de fractura (TEF)41
6. RESULTADOS ..47
 6.1. Ensayos de trabajo esencial de fractura (TEF)47
 6.1.1. Materiales de espesor 0,75 milímetros47
 6.1.2. Materiales de espesor 1 milímetro ..48
 6.1.3. Materiales de espesor 1,1 milímetros:48
 6.1.4. Materiales de espesor 1,5 milímetros:49
 6.1.5. Materiales de espesor 2 milímetros:50
7. DISCUSIÓN DE RESULTADOS ..53
8. CONCLUSIONES ..59
9. RECOMENDACIONES ..61
AGRADECIMIENTOS ..63
REFERENCIAS BIBLIOGRÁFICAS ..65
INDICE DE TABLAS

Tabla 1 Designación, propiedades mecánicas y composición de aceros de embutición .. 23
Tabla 2 Composición química del acero DC03 .. 29
Tabla 3 Propiedades mecánicas del acero DC03 .. 30
Tabla 4 Composición química de los aceros DP780 y DP1000 ... 30
Tabla 5 Propiedades mecánicas del DP780 y DP1000 ... 31
Tabla 6 Composición química del acero TRIP800 .. 31
Tabla 7 Propiedades mecánicas TRIP800 longitudinal y transversal .. 31
Tabla 8 Cantidad de probetas por material ... 34
Tabla 9 Resumen de propiedades mecánicas y TEF de aceros de 1,5 mm espesor ... 54
INDICE DE FIGURAS

Figura 1 Deformación tridimensional en la punta de una grieta (13) 15
Figura 2 Tenacidad de fractura en función del espesor (13) .. 17
Figura 3 Zonas plástica y de proceso en una probeta DENT (3) .. 18
Figura 4 Curva típica de \(w_f \) vs \(l \) para LLDPE de 300\(\mu \)m (5) 21
Figura 5 Curvas carga (kN) vs desplazamiento (mm) para distintos ligamentos (17) 21
Figura 6 Esquema de los aceros AHSS (Color) comparado con aceros de baja resistencia (Gris oscuro) y los aceros tradicionales de alta resistencia (Gris claro) (18) 24
Figura 7 Esquema que muestra islas de martensita en una matriz de ferrita para acero DP (18) .. 24
Figura 8 Esquema de la microestructura de un acero TRIP (18) ... 25
Figura 9 Microestructura del acero DC03. 500X, nital 2% ... 29
Figura 10 Microestructura acero usados. a) DP780, b) DP1000. 1000x, nital 2% 30
Figura 11 Microestructura acero TRIP800, 200X, Bisulfito sódico 32
Figura 12 Probeta DENT usada en los ensayos ... 33
Figura 13 Probeta DENT y útil usado en los ensayos .. 34
Figura 14 Geometría modelada. Corresponde a un octavo de la probeta DENT 36
Figura 15 Vista general de la malla empleada en la simulación .. 36
Figura 16 Vista en detalle de la malla en la zona de la entalla ... 37
Figura 17 Condiciones de contorno aplicadas a la probeta. Las flechas indican la superficie sobre la que se ha aplicado la condición de contorno de desplazamiento 37
Figura 18 Resultado de la simulación del DC03. Se observa que el ligamento está totalmente plastificado en el momento de romper ... 38
Figura 19 Zona de la probeta DENT analizada por microscopía confocal 39
Figura 20 Mapas de la superficie para cada material obtenido por microscopía confocal ... 40
Figura 21 Maquina de tracción utilizada en los ensayos de TEF 41
Figura 22 Curva de fuerza vs desplazamiento obtenida en ensayos de TEF para DC03 ... 42
Figura 23 Grafico de esfuerzo máximo (\(\sigma_{\text{máx}} \)) vs Ligamento 43
Figura 24 Grafico de trabajo esencial de fractura (\(w_e \)) vs longitud de ligamento 43
Figura 25 Rectas de regresión de trabajo específico de fractura para DC03 y DP780 espesor 0,75 mm ... 47
Figura 26 Rectas de regresión de trabajo específico de fractura para TRIP800 y DP1000 espesor 1,0 mm ... 48
Figura 27 Rectas de regresión de trabajo específico de fractura para DC03 y DP780 espesor 1,1 mm ... 49
Figura 28 Rectas de regresión de trabajo específico de fractura para todos los aceros de espesor 1,5 mm ... 49
Figura 29 Rectas de regresión de trabajo específico de fractura para todos los aceros de espesor 2,0 mm ... 50
Figura 30 Trabajo esencial de fractura para diferentes espesores de material 51
Figura 31 Trabajo esencial de fractura vs deformación a rotura 54
Figura 32 Trabajo esencial de fractura vs resistencia máxima de tracción 55
INTRODUCCIÓN

El principal consumo de acero en la industria del automóvil proviene del acero en forma de láminas, tanto de aceros al carbono convencionales como de los aceros avanzados de alta resistencia. Para conocer las propiedades mecánicas de estos materiales en forma de lámina existen ensayos normalizados que son sencillos y de fácil aplicación. Para caracterizar la tenacidad de fractura, la resistencia a la propagación de una grieta, en láminas no existen métodos sencillos y fácil aplicación que permiten obtener estos valores.

El método de trabajo esencial de fractura es un método sencillo y económico que permite caracterizar la tenacidad de fractura de los materiales en forma de láminas. Este método se base en separar el trabajo necesario para propagar una grieta, en términos de trabajo real de fractura (llamado esencial) y el trabajo plástico (llamado no esencial), lo que permite dividir las distintas contribuciones al proceso de fractura (1).

Este método fue desarrollado inicialmente por Cotterel y Reddel para aceros dúctiles, pero ha sido aplicado satisfactoriamente en polímeros, y metales como cobre, zinc, aluminio, aceros de bajo carbono, aceros de alta resistencia (1; 2; 3; 4: 5; 6; 7; 8; 9).

En la actualidad existe un protocolo desarrollado por la European Structural Integrity Society (ESIS), en donde se especifican los distintos parámetros que se deben de cumplir para llevar a cabo la método de trabajo esencial de fractura. Este protocolo fue tomado en consideración para desarrollar los ensayos de esta investigación.

El objetivo de este estudio es comparar la tenacidad de fractura de cuatro diferentes tipos de acero en forma de laminas (acero de alta embutibilidad DC03, aceros de dos fases DP780 y DP1000, aceros de transformación inducida por plasticidad TRIP800) utilizados en la industria automovilística, a través del método de trabajo esencial de fractura (TEF).
2. OBJETIVOS

2.1. GENERALES

Comparar la tenacidad de fractura de cuatro diferentes tipos de acero en forma de láminas (acero de alta embutibilidad DC03, aceros de dos fases DP780 y DP1000, aceros de transformación inducida por plasticidad TRIP800) utilizados en la industria automovilística, a través del método de trabajo esencial de fractura (TEF).

2.2. ESPECÍFICOS

- Determinar la tenacidad de fractura del acero de alta embutibilidad DC03, a través del método esencial de fractura, variando los espesores del acero de 0,75mm, 1,1 mm y 1,5 mm.
- Determinar la tenacidad de fractura del acero de dos fases DP780, a través del método esencial de fractura, variando los espesores del acero de 0,75mm, 1,1 mm y 1,5 mm.
- Determinar la tenacidad de fractura del acero de dos fases DP1000, a través del método esencial de fractura, variando los espesores del acero de 1 mm, 1,5 mm y 2 mm.
- Determinar la tenacidad de fractura del acero de transformación inducida por plasticidad TRIP800, a través del método esencial de fractura, variando los espesores del acero de 1 mm, 1,5 mm y 2 mm.
- Comparar el grado de tenacidad de fractura de los cuatro diferentes tipos de aceros estudiados, de acuerdo a los diferentes espesores seleccionados (0,75mm, 1mm, 1,1mm, 1.5 mm y 2mm).
Marco teórico
3. MARCO TEÓRICO

3.1. Tenacidad de fractura

Según ASTM, la tenacidad de fractura en deformación plana se puede definir como la resistencia que tiene un material a la extensión de una grieta bajo condiciones de deformación plana en la punta de la grieta \(^{(10)}\). Esta definición se podría extender a condiciones de tensión plana en la punta de la grieta.

Los estados de deformación plana y tensión plana se refieren a un estado en el cual una tensión principal o una deformación principal son nulas. En una placa de espesor \(B\) como se muestra en la Figura 1, si se carga en modo I (Se refiere a la separación de las caras de la grieta bajo acción de las tensiones normales) el estado tensional en cualquier punto cercano a la superficie libre es de tensión plana \(^{(11)}\).

Cerca de la grieta el material está sometido a esfuerzos más altos que en lugares alejados y como el sólido se deforma plásticamente en la dirección \((y)\), tiende a contraerse en las direcciones \((x)\) y \((z)\), aunque esta deformación se vea impedita por el material elástico circundante. Esta constricción lateral es particularmente importante para espesores grandes, lo que genera un estado triaxial de tensiones cerca de la punta de la grieta.

Cuando la zona plástica \((r_p)\) en frente de la punta de una grieta es mucho mayor que \(B\), las condiciones que prevalecen en interior de la placa son de deformación plana. Las condiciones de deformación plana cambian gradualmente a la de tensión plana en la superficie de la probeta debido a la ausencia de material que imponga dicha constricción lateral \(^{(11)}\).

![Figura 1 Deformación tridimensional en la punta de una grieta \(^{(11)}\)](image)
El tamaño de la zona plástica \(r_p \) enfrente de la punta de la grieta varía en función del factor de intensidad de tensiones y el esfuerzo de fluencia del material. Para condiciones de tensión plana la zona deformada en la punta de la grieta se puede estimar mediante la siguiente aproximación:

\[
r_y = \frac{1}{2\pi} \frac{k^2}{\sigma_{ys}} \quad \text{ecuación 1}
\]

En donde \(K \) es el factor de intensidad de tensiones y \(\sigma_{ys} \) es el límite elástico del material.

Para condiciones de deformación plana en donde el campo de triaxialidad de tensiones reduce el tamaño de la zona deformada, el radio de la zona plástica en deformación plana es más pequeño y puede ser estimado por:

\[
r_y = \frac{1}{6\pi} \frac{k^2}{\sigma_{ys}} \quad \text{ecuación 2}
\]

En donde \(K \) es el factor de intensidad de tensiones y \(\sigma_{ys} \) es el límite elástico del material

3.2. Transición en el modo de fractura: Tensión plana vs deformación plana

El tamaño de la zona plástica depende del estado de tensiones que actúan en la punta de una grieta. Cuando un material es grueso en dirección paralela al frente de la grieta, un gran esfuerzo \(\sigma_{zz} \) (Figura 1) puede ser generado restringiendo la deformación plástica en esa dirección, tal como lo muestran las ecuaciones 1 y 2, el tamaño de la zona plástica en deformación plana es más pequeña que la zona en tensión plana \(^{12}\).

De esta manera se puede decir que la tenacidad de fractura de un material dependerá del volumen de material capaz de deformarse delante de la punta de la grieta antes que ocurra la fractura, por lo tanto se puede decir que la resistencia de una material a la propagación inestable de fisuras varía con el espesor.

Para espesores delgados (B1), en donde, el grado de constricción plástica existente en la punta de la grieta es pequeño (prevalecen condiciones de tensión plana) el material exhibe
valores de tenacidad mayores siendo conocido este valor como K_c o tenacidad de fractura en tensión plana. Para espesores más grandes (B_2), en donde la plasticidad en la punta de la grieta está cada vez más limitada, resulta en una transición a condiciones de deformación plana, y por lo tanto, a valores menores de tenacidad de fractura también conocida como K_{IC} o tenacidad de fractura en deformación plana (ver Figura 2)\(^{(11)}\).

Un aspecto muy importante es que los valores de K_{IC} no varían con el aumento del espesor de material (Figura 2), siendo un valor que puede ser usado para aplicaciones ingenierriles ya que representa un valor conservador bajo el punto de vista de diseño\(^{(12)}\).

Por otra parte, los valores de tenacidad de fractura en deformación plana, K_c, están relacionados con la geometría de la pieza y las condiciones metalúrgicas del material, mientras K_{IC} depende solo de las condiciones metalúrgicas del material\(^{(12)}\). Se ha encontrado que la tenacidad de fractura de láminas de cobre comercialmente puro aumenta con el espesor de material\(^{(4)}\), adicionalmente han sido obtenidos resultados similares en aluminio, acero inoxidable, bronce, etc.\(^{(6,13)}\).

Ciertas experiencias han demostrado que cuando $r_y/t \geq 1$, en donde r_y es calculada con la ecuación 2, condiciones de tensión plana prevalecen y la tenacidad es alta. Por otro lado, si $r_y/t < 1/10$ las condiciones que prevalecerán serán las de deformación plana. En ambos casos, el espesor necesario de material para que se desarrolle la condición de tensión plana o deformación plana dependerá del esfuerzo de fluencia del material (σ_{ys}), ya que este controla r_y a un nivel de intensidad de tensiones dado\(^{(12)}\).
Se han obtenido resultados experimentales que demuestran que variando el esfuerzo de fluencia del material, así como el coeficiente de endurecimiento por deformación, entre otros factores, la tenacidad del material es modificada (7; 9).

3.3. Trabajo esencial de fractura

El concepto de trabajo esencial de fractura fue por primera vez desarrollado por Broberg quien sugirió que la región no elástica en la punta de una grieta puede ser dividida en una región final llamada zona de proceso (FPZ), en donde toma lugar el proceso de fractura, y una región externa (zona plástica), en donde la deformación plástica es necesaria para acomodar las grandes deformaciones de la región final (Figura 3) (2).

En una placa fina la FPZ coincide con la región plástica localizada (Una placa es “fina” cuando el tamaño de la zona plástica delante de la punta de la grieta es mucha más pequeña que el espesor (9)). La zona plástica difusa y la zona plástica localizada coexisten en forma de estricción en la punta de la grieta, rodeada por una zona plástica grande (6). Los parámetros de tenacidad de fractura macroscópica como se definen en la literatura intentan separar de una forma u otra, el trabajo gastado en la zona de proceso (FPZ) de la otra contribución extrínseca a la energía total.

![Figura 3 Zonas plástica y de proceso en una probeta DENT](image)
Cotterell y Reddel continuando con las afirmaciones de Broberg desarrollaron un método denominado trabajo esencial de fractura dúctil en tensión plana (en adelante TEF), en donde se establece que el trabajo requerido para fracturar \((W_f)\) una probeta doblemente entallada DENT (Figura 3) puede ser separado en dos componentes. Una componente llamada trabajo esencial \((W_e)\), realizado en la zona de proceso (FPZ), y la otra denominada trabajo no esencial \((W_p)\) desarrollado en la región plástica (ecuación 3 \(^{(2)}\)).

\[
W_p = W_e + W_p \quad \text{ecuación 3}
\]

Ha sido propuesto por muchos investigadores que el valor de trabajo esencial \(W_e\) (Trabajo por unidad de área gastado en la zona de proceso) está compuesto por dos contribuciones: un trabajo plástico de estricción \(W_n\) y un trabajo de separación del material \(W_o\) \(^{(9)}\). En algunos casos el trabajo para producir la estricción es grande, comparado con la energía gastada en formar las superficies \(^{(6; 14)}\). El trabajo plástico puede ser escrito como:

\[
W_f = W_e + W_p = W_o + W_n + W_p \quad \text{ecuación 4}
\]

El trabajo esencial \(W_e\) se asume que es proporcional a la sección transversal del ligamento inicial \(l*t\), mientras que la segunda componente, \(W_p\), es la medida de la cantidad de energía gastada en plasticidad difusa (o no esencial) y es proporcional a \(\ell*t\). El trabajo total de fractura \(W_f\) se puede expresar de la siguiente forma:

\[
W_f = l * t * w_e + l^2 * \beta * t * w_p \quad \text{ecuación 5}
\]

En donde:

\(l\) = Longitud del ligamento

\(t\) = Espesor de la probeta DENT

\(w_e\) = Trabajo esencial de fractura

\(w_p\) = Trabajo plástico de fractura
Si se divide el trabajo total de fractura \((W_f)\) entre el área del ligamento inicial \((l^* t)\), se obtiene el trabajo específico de fractura \((w_f)\) expresado de la siguiente forma:

\[
w_f = w_e + l \cdot \beta \cdot w_p \quad \text{ecuación 6}
\]

Siendo \(w_e\) el trabajo esencial específico de fractura, \(w_f\) es el trabajo promedio por unidad de volumen gastado en la zona plástica difusa, y \(\beta\) un factor de forma (Es igual a \(\pi/4\) para una zona plástica circular) \(^6\). La geometría y el trabajo consumido en la zona plástica depende de la geometría de la probeta y del modo de carga, por lo tanto, \(w_p\) no se puede considerar una propiedad del material.

Se ha demostrado que \(w_e\) es una propiedad del material para un espesor dado, además es independiente de la geometría de la probeta \(^3\) y aumenta con el espesor \(^4; 5; 6\). Si la ecuación 6 es representada en un gráfico \(w_f\) vs \(l\), \(w_e\) puede ser calculada como el corte de la línea recta con el eje \(y\) \((w_f)\) (Figura 4).

El método experimental es sencillo y fácil de aplicar, consiste en ensayar a tracción hasta la rotura probetas (DENT) con diferentes longitudes de ligamento. Mientras las probetas son ensayadas, son registrados los valores de carga y desplazamiento hasta rotura. Los valores experimentales obtenidos se grafican (Figura 5), y se calcula el área bajo la curva \((w_f)\) para cada longitud de ligamento \((l)\) de la probeta DENT. Estos valores de trabajo específico de fractura \((w_f)\) se grafican para cada longitud de ligamento (Figura 4).
3.4. Protocolo de la European Structural Integrity Society

El comité TC4 de fractura de polímeros y compuestos de European Structural Integrity Society (ESIS) ha realizado un protocolo basado en la experiencia de un gran número de laboratorios y empresas en donde formalizan una serie de pautas que se deberían cumplir para obtener reproducibilidad en los resultados obtenidos mediante el método de trabajo esencial de fractura. Los parámetros más importantes se describen brevemente a continuación.
3.4.1. Dimensiones de las probetas y velocidad del ensayo

El tipo de probeta que más se recomienda para los ensayos de trabajo esencial de fractura es la doblemente entallada DENT (Figura 3), debido a que favorece la reproducibilidad de los resultados \(^{(3)}\). Según el protocolo desarrollado por ESIS las dimensiones de la probeta no influyen en los resultados.

La longitud total de la probeta DENT no se especifica en este protocolo. Se recomienda que la velocidad de aplicación de la carga debe ser 0.2 veces la longitud calibrada \(Z\) señalada en la Figura 3.

3.4.2. Rango de longitud del ligamento

El protocolo de la ESIS estipula que es necesario controlar la longitud de ligamento para asegurar que existe un estado de tensión plana. Para definir las dimensiones del ligamento existen algunos criterios para la longitud mínima y la longitud máxima. Estos criterios se comentan a continuación:

3.4.2.1. Criterios de longitud de ligamento mínimo

La longitud mínima necesaria para asegurar el estado de tensión plana depende de cada material a estudiar. Por ejemplo, en Nylon 66 se ha usado una longitud de ligamento mínima de tres veces el espesor de material, en LLDPE (Polietileno lineal de baja densidad) la longitud mínima ha sido de catorce veces el espesor de material \(^{(3)}\).

En aceros de baja aleación laminado en frío, la longitud mínima de ligamento que ha sido usado es de seis milímetros \(^{(2)}\), en una aleación de zinc se ha usado de tres a cinco veces el espesor de la probeta \(^{(5)}\). Como línea general y de acuerdo al protocolo de la ESIS, el rango a usar debe estar comprendido entre tres veces el espesor de la probeta y cinco milímetros.

3.4.2.2. Criterios de longitud de ligamento máximo

Para la longitud de ligamento máximo, ESIS sugiere que sea como mínimo un tercio del espesor de probeta \((W, \text{figura } 3)\) ó dos veces la longitud de la zona plástica \(r_p\) delante de la punta de la grieta (ver ecuación 7). El valor de un tercio el espesor es para evitar efectos de borde y el valor de dos veces \(r_p\) es para garantizar que el ligamento este totalmente deformado antes del crecimiento de la grieta \(^{(3)}\).
3.5. Clasificación de los aceros

3.5.1. Acero de alta embutibilidad

El acero de alta embutibilidad es un acero convencional al carbono, que no posee ningún elemento de aleación y es diseñado para aplicaciones de embutido profundo y extra profundo. Es muy usado en partes visibles y partes estructurales en automóviles.

El acero DC03 (Norma europea 10130:2006) es un acero que está clasificado dentro de los aceros de alta embutibilidad, posee un límite elástico bajo, resistencia a tracción baja y alta ductilidad como se detalla en la Tabla 1.

<table>
<thead>
<tr>
<th>Designación</th>
<th>Límite elástico (MPa)</th>
<th>Resistencia Máxima (MPa)</th>
<th>Deformación a rotura (%)</th>
<th>Composición química</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC01</td>
<td>140-280</td>
<td>270-410</td>
<td>28</td>
<td>0,12 0,045 0,045 0,06</td>
</tr>
<tr>
<td>DC03</td>
<td>140-240</td>
<td>270-370</td>
<td>>34</td>
<td>0,1 0,035 0,035 0,15</td>
</tr>
</tbody>
</table>

3.5.2. Aceros avanzados de alta resistencia (AHSS)

Los aceros avanzados de alta resistencia son aceros que presentan múltiples fases dentro de su microestructura. Estas fases pueden ser ferrita, martensita, bainita y/o austenita retenida en cantidades muy bien controladas.

Los AHSS presentan valores de resistencia máxima a tracción mucho más alta que los aceros convencionales y los aceros de alta resistencia, y a su vez altos valores de elongación (ver Figura 6).

Todos los aceros avanzados de alta resistencia se fabrican controlando la velocidad de enfriamiento desde las fases austenita o austenita más ferrita. Dentro de los AHSS se encuentran los Dual Phase (DP) o dúplex, Transformation Induced-Plasticity (TRIP), Complex-Phase, entre otros. La designación usada en estos aceros se hace a partir de su resistencia máxima a tracción y su microestructura. Un ejemplo de la designación es DP780, este acero está referido a un Dual-Phase con 780 MPa de resistencia máxima a tracción.
3.5.2.1. **Aceros Dual-Phase (DP)**

Los aceros Dual-Phase o dúplex son aceros que presentan una matriz ferrítica con islas de martensita en su microestructura final (Figura 7). Estos aceros ofrecen una excelente combinación entre resistencia y embutibilidad como resultado de su microestructura, exhibiendo una alta capacidad de endurecimiento por deformación \(^{(16)}\).

![Diagrama de ferrita-martensita DP](image)

Figura 7 Esquema que muestra islas de martensita en una matriz de ferrita para acero DP \(^{(16)}\)

En los aceros dúplex se pueden controlar las propiedades mecánicas variando la fracción en volumen de la martensita. Para controlar la fracción en volumen de martensita se puede variar la composición química y el enfriamiento desde la fase austenita más ferrita o desde la fase ferrita más martensita.
Dada su alta capacidad de absorción de energía y resistencia a la fatiga, los aceros DP deformados en frío son adecuados para partes estructurales y de seguridad así como partes visibles (17).

3.5.2.2. **Aceros TRIP**

Los aceros **TRIP** (transformation induced plasticity) son aceros que están formados por una matriz de ferrita con fases duras de martensita, bainita y austenita retenida (16). Estos aceros típicamente requieren un tratamiento isotérmico a una temperatura intermedia, lo cual produce alguna cantidad de bainita. Los altos contenidos de silicio y carbono promueven una importante fracción en volumen de austenita retenida en su microestructura final (Figura 8). Esta austenita retenida se transforma a martensita durante la etapa de deformación.

Las características de los aceros TRIP son una alta elongación, excelente conformabilidad y alta absorción de energía, promoviendo su uso en partes estructurales por proporcionar elevada absorción de energía en condiciones de impacto (16).

![Esquema de la microestructura de un acero TRIP](image)

Figura 8 Esquema de la microestructura de un acero TRIP (16)
Materiales y Metodología Experimental
4. MATERIALES

En esta sección se presentan las microestructuras, propiedades mecánicas y dureza vickers de todos los aceros usados en este estudio.

4.1. Acero DC03

La microestructura del acero DC03 es presentada en la Figura 9. Este material consta de una matriz ferrítica (Fase blanca) con colonias de perlita (Fase oscura). Se observan los granos de ferrita alargados en sentido de laminación.

La composición química del acero DC03 es presentada en la Tabla 2. El hierro y el carbono son sus principales elementos aleantes. Las propiedades mecánicas obtenidas (Según norma europea EN10002-1) son presentadas en la Tabla 3.

![Figura 9 Microestructura del acero DC03. 500X, nital 2%](image)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>%C</th>
<th>%Si</th>
<th>%Mn</th>
<th>%P</th>
<th>%S</th>
<th>%Cr</th>
<th>%Mo</th>
<th>%Ni</th>
<th>Al%</th>
<th>%Nb</th>
<th>%B</th>
<th>%Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC03</td>
<td>0,078</td>
<td>0,01</td>
<td>0,294</td>
<td>-</td>
<td>-</td>
<td>0,016</td>
<td>-</td>
<td>0,031</td>
<td>0,036</td>
<td>0,009</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

La dureza vickers (Según norma EN ISO6507-1) del acero DC03 es $94,7 \pm 3$ HV1 kg.
4.2. Aceros Dual-Phase

En la Figura 10a y 10b se presentan las microestructuras de los aceros DP780 y DP1000 usados en este estudio. Se observa la ferrita (Color blanco) e islas de martensita (Color oscuro). La composición química de los dos aceros está tabulada en la Tabla 4. Se puede observar que la composición química de cada material es distinta.

![Figura 10](image)

Tabla 3 Propiedades mecánicas del acero DC03

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Límite elástico 0,2% (MPa)</th>
<th>Esfuerzo máximo de tracción (MPa)</th>
<th>Deformación Homogénea (%)</th>
<th>Deformación a rotura (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC03</td>
<td>181</td>
<td>321</td>
<td>25,31</td>
<td>48,53</td>
</tr>
</tbody>
</table>

Tabla 4 Composición química de los aceros DP780 y DP1000

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>%C</th>
<th>%Si</th>
<th>%Mn</th>
<th>%P</th>
<th>%S</th>
<th>%Cr</th>
<th>%Mo</th>
<th>%Ni</th>
<th>Al%</th>
<th>%Nb</th>
<th>% B</th>
<th>%Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP780</td>
<td>0,13</td>
<td>0,209</td>
<td>1,892</td>
<td>0,023</td>
<td><0,001</td>
<td>0,179</td>
<td>0,008</td>
<td>0,037</td>
<td>0,0264</td>
<td>0,011</td>
<td>-</td>
<td>0,021</td>
</tr>
<tr>
<td>DP1000</td>
<td>0,165</td>
<td>0,478</td>
<td>1,555</td>
<td>0,012</td>
<td>0,001</td>
<td>0,05</td>
<td>0,005</td>
<td>0,045</td>
<td>0,046</td>
<td>0,024</td>
<td>-</td>
<td>0,003</td>
</tr>
</tbody>
</table>

Las propiedades mecánicas son presentadas en la Tabla 5, se observa una diferencia entre todos los valores. Esto se debe que aunque son aceros DP, el DP1000 presenta propiedades mecánicas superiores que el DP780.
La dureza vickers (Según norma EN ISO 6507-1) del acero DP780 es de 257 ± 4 HV 10kg y DP1000 332 ± 6 HV 10kg.

4.3. Aceros TRIP

En este estudio se uso un acero TRIP800 que tiene como principales elementos aleantes: Carbono (0,201%C), Silicio (1,614%Si) y Manganeso (1,729%Mn) (Tabla 6).

La microestructura del acero TRIP800 es presentada en la Figura 11. Este acero consta de ferrita, martensita y austenita retenida. Las propiedades mecánicas (Medidas según norma europea EN10002-1) del TRIP800 fueron ensayadas en dirección longitudinal y transversal al sentido de laminación (Tabla 7). No se observa una variación significativa entre las propiedades mecánicas medidas longitudinalmente y transversalmente al sentido de laminación en el acero TRIP800.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>%C</th>
<th>%Si</th>
<th>%Mn</th>
<th>%P</th>
<th>%S</th>
<th>%Cr</th>
<th>%Ni</th>
<th>Al%</th>
<th>%Nb</th>
<th>%B</th>
<th>%Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIP800</td>
<td>0,201</td>
<td>1,614</td>
<td>1,729</td>
<td>0,016</td>
<td><0,001</td>
<td>0,024</td>
<td><0,005</td>
<td>0,032</td>
<td>0,042</td>
<td>0,01</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Límite elástico 0,2% (MPa)</th>
<th>Esfuerzo máximo de tracción (MPa)</th>
<th>Deformación Homogénea (%)</th>
<th>Deformación a rotura (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIP800 (Long)</td>
<td>522</td>
<td>840</td>
<td>25,4</td>
<td>31,6</td>
</tr>
<tr>
<td>TRIP800 (Trans)</td>
<td>546</td>
<td>844</td>
<td>24,3</td>
<td>30,3</td>
</tr>
</tbody>
</table>
Figura 11 Microestructura acero TRIP800, 200X, Bisulfito sódico
5. METODOLOGÍA EXPERIMENTAL

5.1. Preparación de las probetas doblemente entalladas

Las probetas doblemente entalladas (DENT) fueron obtenidas de láminas de acero DC03, DP780, DP1000 y TRIP800. Los contornos de las probetas fueron fresados hasta obtener rectángulos de 55 mm ancho x 240 mm de largo. Las entallas fueron mecanizadas a las diferentes dimensiones de ligamento con una máquina de corte por hilo. El radio de entalla de las probetas DENT fue de 0,25 mm. Todas las probetas se obtuvieron de láminas del mismo espesor inicial para garantizar que no hubiera diferencias en su microestructura final.

La orientación de las probetas se realizó de manera que garantizara que las entallas fueran longitudinal a la dirección de laminación, excepto para el TRIP800, el cual fue ensayado en dirección longitudinal y transversal (ver Figura 12).

Las probetas DENT fueron perforadas con cuatro orificios en cada extremo tal como se muestra en la figura 12. Esto se realizó para evitar problemas de deslizamiento en las mordazas y facilitar la alineación. En los orificios de las probetas DENT se le acopló un útil (Figura 13).

![Figura 12 Probeta DENT usada en los ensayos](image-url)
Los espesores de chapa ensayados en DC03 y DP780 fueron 0,75mm, 1,1mm y 1,50mm. Para los aceros TRIP800 y DP1000 se ensayaron espesores de 1mm, 1,5mm y 2 mm. En la Tabla 8 se especifican las dimensiones de ligamentos (l) y cantidad de probetas para cada material ensayado.

Tabla 8 Cantidad de probetas por material

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Espesor</th>
<th>$l=5$</th>
<th>$l=7$</th>
<th>$l=9$</th>
<th>$l=11$</th>
<th>$l=13$</th>
<th>$l=15$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC03</td>
<td>0,75</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1,1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1,50</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>DP780</td>
<td>0,75</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1,1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1,50</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>DP1000</td>
<td>1,0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>TRIP800 (Longitudinal)</td>
<td>1,0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>TRIP800 (Transversal)</td>
<td>2,0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
</tbody>
</table>
5.2. Determinación de la longitud de ligamento máxima

Para determinar la longitud del ligamento máxima que garantizara que la zona alrededor del ligamento estuviera en deformación plástica, tal como lo exige el método de trabajo esencial de fractura (3), se realizó la simulación de las probetas de acero DC03 y DP780 de espesor 1,5 mm con los datos obtenidos del ensayo de tracción usando el software ABAQUS versión 6.8 (18).

Adicionalmente, la superficie de la zona de ligamento de la probeta DENT después de haber sido ensayadas fue estudiada con microscopia confocal para comprobar la deformación plástica.

5.2.1. Desarrollo del método de simulación

La condición de plastificación total del ligamento antes del inicio de la fractura impone sobre el ligamento de la probeta DENT la siguiente limitación:

\[l \leq 2r_p = 2 \times \frac{1}{2\pi} \times \frac{K_c^2}{\sigma_0^2} \]
ecuación 7

El valor de Kc no es conocido y por lo tanto no se puede usar esta expresión directamente. Se podría suponer un valor de Kc por analogía con algún material de propiedades parecidas al que se está estudiando y tenacidad conocida.

Otra opción es usar la simulación para determinar el radio plástico. Esta segunda aproximación es la que se ha utilizado en este estudio. Se simuló el ensayo de tracción de la probeta DENT imponiendo una condición aproximada de fractura. Se estudió la evolución de la zona plástica delante de la entalla hasta el momento en que se inicia la fractura, basados en este resultado se determina la \(l_{\text{max}} \).

5.2.1.1. Definición del modelo

Aprovechando las simetrías de la probeta DENT se ha modelado sólo un octavo de la probeta, la geometría modelada se muestra en la Figura 14. El espesor será el correspondiente a la chapa a estudiar.

El material se considero homogéneo e isótropo. El modelo de material que se ha usado ha sido el elastoplástico. Las curvas de material utilizadas se han obtenido en el laboratorio. LA geometría de la probeta ha sido mallada usando elementos hexaédricos en las zonas cercanas a la entalla y tetraédricos en las zonas donde se esperaban gradientes de esfuerzo.
y deformación poco importantes. Se refino especialmente la zona de la entalla con un mallado fino. La malla empleada se muestra en las Figura 15 y Figura 16.

Figura 14 Geometría modelada. Corresponde a un octavo de la probeta DENT

Figura 15 Vista general de la malla empleada en la simulación
El ensayo se ha simulado imponiendo una condición de contorno de desplazamiento en la parte superior de la probeta (Figura 17), el problema se resolvió en formulación implícita.

Se considero que la zona plástica en cada momento del proceso era aquella en la que el esfuerzo de Von Mises era mayor al límite elástico del material. Se estudió el crecimiento de esta zona a medida que se alargaba la probeta.
Dado que no se tenía ningún criterio de fractura válido, se ha usado un criterio aproximado. Se consideró el inicio de la fractura en un elemento cuando su tensión de Von Mises superaba la de fractura en el ensayo de tracción.

En las Figura 18 se muestran los resultados de la simulación para el DC03 de longitud de ligamento 15 mm y espesor 1,5 mm. Se ve claramente que todo el ligamento está plastificado antes de iniciarse la fractura, satisfaciendo la condición del método. El mismo resultado se obtuvo para el DP780 con longitud de ligamento 15 mm y espesor 1,5 mm.

5.2.2. **Medición de la zona deformación con microscopía confocal**

Para comprobar que la zona del ligamento sufrió deformación plástica antes de la rotura, se realizó el análisis de la superficie de la probeta DENT en todos los materiales estudiados con microscopía confocal. Se analizaron las probetas DENT con longitud de ligamento de 15 mm y espesores de 1,5 mm en el DC03, DP780 y 2 mm en el TRIP800 y DP1000.

La microscopía confocal es una técnica de análisis de superficies que permite estudiar la topografía de una superficie sin necesidad de tener un contacto directo con la superficie. Esta técnica ha sido utilizada satisfactoriamente en estudios de desgaste en superficies (19). En la técnica se realiza un barrido de la zona a estudiar, en donde se adquieren puntos de los distintos picos y valles. Luego estos puntos son analizados por un software que realiza un mapa de toda la superficie analizada.
Para realizar el mapa de la superficie se utilizó un microscopio confocal marca: Sensofar®, modelo: PLµ-2300, con un objetivo de 10X. Este equipo está ubicado en el laboratorio de análisis de superficies del Centre Tecnòlogic de Manresa (CTM).

La probeta DENT fue analizada realizando un barrido de la superficie en sentido paralelo a la entalla en la zona del ligamento (ver Figura 19)

Los mapas de las superficies de las probetas DENT que han sido analizadas por microscopía confocal se muestran en la Figura 20. En todos los aceros se obtuvo deformación plástica en la zona del ligamento.
5.3. Ensayos de trabajo esencial de fractura (TEF)

Los ensayos de TEF consisten en ensayar a tracción hasta que rompieran las probetas DENT de los distintos aceros y longitudes de ligamento. Los ensayos se llevaron a cabo en una maquina de ensayos universal marca Instron® modelo 5585 (Figura 21).

Esta máquina de ensayos estaba dotada de una célula de carga de 200 KN, mordazas neumáticas y un software de procesamiento de datos BlueHill® 2.0. Los ensayos fueron realizados a temperatura ambiente (20°C aproximadamente) y a una velocidad de desplazamientos del cabezal de la máquina de 1,0 mm/min.

La distancia entre mordazas fue de 100 mm. Para obtener los datos experimentales de desplazamiento se utilizó un videoextensómetro marca Instron® con distancia calibrada de...
50 mm. En los ensayos fueron registrados los valores de carga y desplazamiento del videoextensómetro usando el software de adquisición de datos BlueHill® 2.0.

5.3.1. Obtención del trabajo esencial de fractura (TEF)

Con los datos obtenidos provenientes de los ensayos de trabajo esencial de fractura (TEF) se realizaran las curvas de fuerza (N) versus desplazamiento (mm) tal como se muestra en la Figura 22 (Obtenidas previamente). El protocolo de la ESIS exige que se cumplan una serie de pasos para garantizar que los valores obtenidos de TEF sean lo más preciso posible. Los pasos a seguir se enumeran a continuación:

a) Se extrajeron los valores de carga máxima (N) para cada longitud de ligamento.

b) Se calculó el esfuerzo máximo ($\sigma_{\text{máx}}$) en cada probeta para cada longitud del ligamento. Esto se realizó dividiendo la carga máxima (N) obtenida en el paso anterior entre el área de cada ligamento ($l^*\ell$).

c) Se graficó el esfuerzo máximo ($\sigma_{\text{máx}}$) en función de cada ligamento (Figura 23). Se aplicó el criterio del esfuerzo máximo que consiste en calcular el
esfuerzo máximo medio (σ_m), luego se eliminaron todos los puntos de esfuerzo máximo ($\sigma_{\text{máx}}$) que estuvieran fuera del rango $(0.9\sigma_m, 1.1\sigma_m)$

d) Se calculó el trabajo específico de fractura (w_i) para cada probeta DENT (Área bajo la curva carga vs desplazamiento, Figura 22).

e) Se graficó los valores de trabajo específico de fractura (w_i) para cada ligamento. Se graficó el intervalo de confianza del 95% y los puntos fuera de este intervalo fueron eliminados. Luego se trazó la recta de regresión para cada material y se proyectó hasta la longitud de ligamento cero. El corte con el eje w_i es el trabajo esencial de fractura w_e (Figura 24).

Figura 22 Curva de fuerza vs desplazamiento obtenida en ensayos de TEF para DC03
Aplicación del trabajo esencial de fractura en aceros usados en la ind. automóvil

Figura 23 Grafico de esfuerzo máximo ($\sigma_{\text{máx}}$) vs Ligamento

Figura 24 Grafico de trabajo esencial de fractura (w_e) vs longitud de ligamento
Resultados y Discusión de Resultados
6. RESULTADOS

6.1. Ensayos de trabajo esencial de fractura (TEF)

Con la finalidad de determinar la tenacidad de fractura de cuatro diferentes tipos de aceros utilizados en la industria automovilística (DC03, DP780, DP1000, TRIP800), se empleó el método de trabajo esencial de fractura según el espesor de los materiales (0,75 mm, 1 mm, 1,1 mm, 1,5 mm, 2 mm). Los resultados son presentados de acuerdo al espesor del material.

6.1.1. Materiales de espesor 0,75 milímetros

El valor de trabajo esencial de fractura (w_e) para espesores de 0,75 mm fue de 236±10 kJ/m2 en el caso del acero DC03 y de 251±7 kJ/m2 para el acero DP780. Estos valores permitieron determinar que el comportamiento de ambos aceros a un espesor de 0,75 mm no varió considerablemente. Se pudo observar que la pendiente (Relacionada con el trabajo específico plástico de fractura βw_p en la zona de estricción difusa) de ambas rectas de regresión no varía apreciablemente.

![Figura 25 Rectas de regresión de trabajo específico de fractura para DC03 y DP780 espesor 0,75 mm](image.png)
6.1.2. Materiales de espesor 1 milímetro

El valor de trabajo esencial de fractura (w_e) para el TRIP800 de 1 mm de espesor fue 313±7 kJ/m2, y para el acero DP1000 de 1 mm de espesor de 270±5 kJ/m2. (Ver Figura 26). Se observó que en el acero TRIP800 el trabajo específico de fractura (w_f) para cada longitud de ligamento fue mayor que para el acero DP1000. Se apreció una ligera dispersión en los valores de w_f en el acero TRIP800, la pendiente de la recta del DP1000 fue más plana que en el TRIP800.

![Rectas de regresión de trabajo específico de fractura para TRIP800 y DP1000 espesor 1,0 mm](image)

Figura 26 Rectas de regresión de trabajo específico de fractura para TRIP800 y DP1000 espesor 1,0 mm

6.1.3. Materiales de espesor 1,1 milímetros:

El trabajo esencial de fractura (w_e) calculado por medio de la recta de regresión fue de 314±14 kJ/m2 en el acero DC03 de espesor 1,1 mm y de 212±7 kJ/m2 para el acero DP780 de espesor 1,1 mm (Figura 27). Se pudo apreciar, que hubo una diferencia significativa (32%) entre los valores de trabajo esencial de fractura (w_e) del acero DC03 en comparación con el DP780 de 1,1 mm de espesor. En las rectas de regresión de ambos aceros se aprecia, que el trabajo específico de fractura (w_f) para cada longitud de ligamento fue mayor en el acero DC03 que en el acero DP780 (Figura 27). Además, al observar los valores de trabajo específico de fractura w_f en ambos materiales, se pudo determinar que fue mayor la dispersión de los valores para el DP780.
6.1.4. **Materiales de espesor 1,5 milímetros:**

El trabajo esencial de fractura de los aceros ensayados de 1,5 mm de espesor fueron: en el acero DC03 326±15 kJ/m², DP1000 315±6 kJ/m², TRIP800 311±8 kJ/m² y DP780 276±7 kJ/m². El trabajo específico de fractura (\(w_f\)) en cada longitud de ligamento para el DC03 fue mayor en comparación con los demás aceros (ver Figura 28). Se observó que la pendiente de la recta del acero DC03 fue mayor que la pendiente de la recta de los aceros TRIP800, DP780 y DP1000.

![Figura 27 Rectas de regresión de trabajo específico de fractura para DC03 y DP780 espesor 1,1 mm](image1)

![Figura 28 Rectas de regresión de trabajo específico de fractura para todos los aceros de espesor 1,5 mm](image2)
6.1.5. Materiales de espesor 2 milímetros:

Los valores de trabajo esencial de fractura para los aceros de espesor 2 mm fueron: TRIP800 longitudinal 415±11 kJ/m², TRIP800 transversal 390±7 kJ/m² y DP1000 380±7 kJ/m². Adicionalmente, se observó que en las rectas de regresión, se pudo notar que el trabajo específico de fractura (w_f) para cada longitud de ligamento fue mayor para el TRIP800 longitudinal que para el TRIP800 transversal y DP1000 (ver Figura 29).

El valor de la pendiente de las rectas de regresión para el TRIP800 longitudinal fue mayor que en los aceros TRIP800 transversal y DP1000.

![Figura 29 Rectas de regresión de trabajo específico de fractura para todos los aceros de espesor 2,0 mm](image)

Los valores de trabajo esencial de fractura para cada acero ensayado en este estudio en función del espesor, son presentados en la Figura 30. Se notó que para los aceros DC03 y DP1000 el trabajo esencial de fractura aumentó al incrementar el espesor del material. Además, se observó que para el espesor de dos milímetros, el acero TRIP800 longitudinal presentó el mejor comportamiento.
Figura 30 Trabajo esencial de fractura para diferentes espesores de material
7. DISCUSIÓN DE RESULTADOS

Al efectuar los análisis del trabajo esencial de fractura en los aceros DC03, DP780, DP1000, TRIP800 de espesores 0,75 mm, 1 mm, 1,1 mm, 1,5 mm y 2 mm, y de comparar los valores de tenacidad de fractura que estos materiales presentaron, se pudo determinar que el acero DC03 presentó valores de trabajo esencial de fractura \(w_e \) de 314±14 kJ/m\(^2\) para el espesor de 1,1 mm y de 326±15 kJ/m\(^2\) con el espesor de 1,5 mm. Estos valores de \(w_e \) fueron mayores que los valores obtenidos en los distintos aceros ensayados. El comportamiento observado por el acero DC03, puede estar relacionado con los altos valores de ductilidad que este material presenta (Tabla 9).

Pardoen et al, encontraron que en un material con alta ductilidad, existe una cantidad importante de energía consumida en el proceso de estricción delante de la grieta antes que ocurra la fractura \(^{(13)}\). Este trabajo consumido en la estricción es posiblemente el causante de la tenacidad que presenta este el acero DC03.

Una vez graficados los valores de trabajo esencial de fractura en función del espesor de cada material (Figura 30), se pudo observar una tendencia a que la tenacidad de fractura aumentara. Este incremento del trabajo esencial de fractura con el espesor de fractura, concuerda con lo reportado en estudios previos en cobre, zinc, aluminio \(^{(4\;5\;6)}\). Pardoen et al, argumentaron que el aumento de la tenacidad en función del espesor se debe al mayor trabajo requerido para estricción al aumentar el espesor de material \(^{(6)}\).

Los valores de trabajo esencial de fractura \(w_e \) de los aceros DC03 y DP780 de 0,75 mm no presentaron diferencias significativas, a pesar de que ambos aceros presentaron valores de deformación a rotura y de límite elástico muy diferentes (ver Tabla 3, Tabla 5). Este comportamiento no pudo ser contrastado con estudios previos.

Al comparar los valores de tenacidad de fractura \(\left(w_e \right) \) del acero DP1000 de espesor 1,5 mm, con los aceros TRIP800, DC03 y DP780 del mismo espesor, con la deformación a rotura (Figura 31) y resistencia máxima a tracción (Figura 32) de cada material, no se observaron diferencias significativas de los valores de \(w_e \), a pesar de que el acero DP1000 presentó valores de deformación a rotura menor y resistencia máxima de tracción mayor. El trabajo esencial de fractura consta de dos factores, el trabajo gastado en estricción y trabajo para separación de la superficie (sección 3.3).
En el DP1000 la tenacidad de fractura podría estar relacionada mayormente con el trabajo de separación de las superficies, que con trabajo gastado en estricción.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Espesor (mm)</th>
<th>Límite elástico 0,2% (MPa)</th>
<th>Esfuerzo máximo de tracción (MPa)</th>
<th>Deformación Homogénea (%)</th>
<th>Deformación a rotura (%)</th>
<th>Trabajo esencial de fractura (kJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC03</td>
<td>1,5</td>
<td>181</td>
<td>321</td>
<td>25,31</td>
<td>48,53</td>
<td>326 ± 15</td>
</tr>
<tr>
<td>DP780</td>
<td>1,5</td>
<td>585</td>
<td>816</td>
<td>14,54</td>
<td>22,14</td>
<td>276,5 ± 7</td>
</tr>
<tr>
<td>DP1000</td>
<td>1,5</td>
<td>782</td>
<td>1042</td>
<td>7,1</td>
<td>11,7</td>
<td>315 ± 6</td>
</tr>
<tr>
<td>TRIP800</td>
<td>1,5</td>
<td>522</td>
<td>840</td>
<td>25,4</td>
<td>31,6</td>
<td>311 ± 8</td>
</tr>
</tbody>
</table>

Figura 31 Trabajo esencia de fractura vs deformación a rotura

El acero TRIP800 de 1,5 mm exhibió un mejor comportamiento a tenacidad de fractura, medido como w_e que el DP780, a pesar de presentar la misma resistencia máxima a tracción. La deformación a rotura fue mayor en un 30% en el acero TRIP800 que el DP780. Numerosos estudios han revelado que el efecto TRIP mejora la resistencia y la ductilidad del estos aceros. Se puede considerar que el efecto TRIP le otorga alta capacidad de absorción de energía por deformación plástica a estos aceros, pudiendo proporcionar un valor de trabajo esencial de fractura mayor (9; 20).
Se observó que el trabajo esencial del TRIP800 de 2 mm de espesor mejoró en un 7% aproximadamente (ver Figura 30), cuando las entallas eran transversales al sentido de laminación. Esta mejora en la tenacidad de fractura podría estar relacionada con el hecho de que una grieta al propagarse es desviada en planos normales al crecimiento de la grieta, por efecto de los límites de grano, líneas de flujo e inclusiones que están alineadas paralelamente al sentido de laminación (12).
Conclusiones y Recomendaciones
8. CONCLUSIONES

- Los resultados obtenidos demuestran que el método de trabajo esencial de fractura puede ser aplicado para caracterizar la tenacidad de fractura de aceros dúctiles como el DC03 y aceros avanzados de alta resistencia como el DP780, DP1000 y TRIP800.
- El acero DC03 presentó el mayor valor de trabajo esencial de fractura en comparación con los aceros DP780, DP1000 y TRIP800 para los espesores de 0,75 mm, 1,1 mm y 1,5 mm.
- El trabajo esencial de fractura del acero TRIP800 transversal de 2 mm de espesor fue mayor que el TRIP800 longitudinal y DP1000 del mismo espesor.
- El sentido de laminación influye en los valores de trabajo esencial de fractura para el acero TRIP800 de 2 mm de espesor.
- Se encontraron valores de trabajo esencial de fractura en el acero DP1000 ligeramente inferiores a los encontrados en DC03 y TRIP800.
- No se encontró una relación directa de deformación a rotura y resistencia máxima de tracción de los aceros ensayados con el trabajo esencial de fractura.
- Se observó que el trabajo esencial de fractura tiene una tendencia a aumentar al incrementar el espesor de material.
9. **RECOMENDACIONES**

- Se recomienda realizar investigaciones de ensayos de trabajo esencial de fractura con entallas propagadas por fatiga, para estudiar la influencia del radio de entalla.

- Se recomienda ampliar la investigación modificando la velocidad del ensayo, la distancia calibrada en el videoextensómetro y aplicar otro método de adquisición de datos del desplazamiento, que permitan contrastar los resultados.

- Se recomienda ampliar el estudio utilizando una mayor cantidad de muestras y materiales.
AGRADECIMIENTOS

María Dolors Riera (Directora), por prestarme su colaboración y ayuda en la consecución de este trabajo.

Agradezco el gran respaldo y ayuda que me brindo en todo este tiempo al Ing. Toni Lara.

Por último quiero agradecer a todo el equipo del CTM que hizo posible la culminación de este trabajo. Especialmente a Marc Pla, Raúl Hervas, Albert Llobet Lorenzo, Dr. José Manuel Prado y al Dr. Daniel Casellas.
REFERENCIAS BIBLIOGRÁFICAS

17. **Mittal, Arcelor.** *Dual Phase and Complex Phase steels (Extract from the product catalogue - European edition 2008).* s.l. : Arcelor Mittal, 2008.

22. **Market Avenue.** [En línea] http://www.marketavenue.cn/Reports_Sample/MACG041108017.PDF.

