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Abstract

This project aims to develop nobels algorithms to model protein-protein complexes, a very
important aspect in biophysics. The algorithm presented based only on geometrical arguments, is
intended to be a first and fast approach to get the most probable configurations. The algorithm finds
the best positions producing only a small number of solutions (over 250 solutions). The method is
based on 2D FFT (fast fourier transform) and orthographic projections of the proteins. The method
allows us to find solutions around 15 Å of Cα root mean square deviation for proteins with low
electrostatic interactions.
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1 Introduction

The 3D structures of protein complexes are im-
portant to understand molecular systems. The
prediction of the final protein-protein complex
using computer algorithms is complicated because
there are many factors to take into account such
as hydrophobicity, electrostatics, Van der Waals
forces, etc. Most of the docking methods aim to
reproduce these physics interactions with successful
results in only a few cases(1).
The standard method of computer algorithms
for protein-protein docking are based on shape
complementarity(2). Some studies are based on
matching surface(3) while others focus on match-
ing the position of surface spheres and surface
normals(4). The shape complementarity is mea-
sured using scoring functions which sometimes
include electrostatics interactions(5) and hydropho-
bic effects are included.
Some methods include solutions to take into
account the flexibility problem. The unbounded
and bounded proteins have different conformations
because the shape changes minimize the global
energy of the complex. This produces enormous
problems because variations in geometry implies
changes in the solution. Some authors define grids
with two surfaces where the external surface is less
important than the internal one to allow a small
superposition simulating flexibility(6).

Critical Assessment of Prediction of Interactions
(CAPRI)(7) is a community-wide experiment for
protein protein docking. Research groups around

the word tries to find the new experimental
complex proposed by CAPRI with his algorithms.
The average percentage of acceptable solutions
(RMSD<10) to predictor groups of the last nine
proteins used in rounds 14, 15, 16, 17, 18 and 19
has been 7,4 %.

The method proposed here studies the rigid body
case without any flexibility. This algorithm uses a
grid discretization combined with surface recogni-
tion using a new coefficient called orthographic pro-
jection coefficient (OP). This reduces the number of
solutions proposed and shows the regions geometri-
cally favorable for protein interactions.
All protein protein docking methods are composed
of two parts: Global and local search. The algo-
rithm proposed here is focalized to global search
generating a few structures using OP coefficient.
The refinement part produces a local search but it
could be improved with other known methods. Lo-
cal methods work well when the initial structure is
close to the experimental solution and spend a lot
of time per solution. This algorithm tries to find a
small set of solutions per protein with a group of
solutions close to the experimental complex.

2 Algorithm

2.1 Identify Surfaces

The algorithm developed to identify surfaces con-
sists of producing collisions between the protein
and a spherical bullet which simulates the action
of water molecules. The bullets are shot from many
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Figure 1: Scheme of the main algorithm. The algorithm is divided in two different parts. First part
computes the better OP coefficients and the second part produces a refinement to generate the final
complex.

points in six space directions with a linear trajec-
tory from a far distance to detect the first collition.
Then, the atoms detected with the collisions are
considered the surface atoms of the protein. The
size chosen for the bullet is the size of the water
molecule 1.4 Å.
This method can not detect every surface atom spe-
cially when there are deep holes into the protein
because the linear trajectory does not explore ev-
erything. But the number of solutions lost are very
small and it is a fast and useful method.

2.2 Surface complementarity using
crosscorrelation

The main algorithm is developed to work in com-
plexes of two proteins identified by A and B (nor-
mally B is the smaller one). The real docking prob-
lem has to take into account two or more proteins
at the same time but the algorithm is designed for
the simplest system - two elements.

The first part consists of finding the surface
atoms of A and B proteins. Then, to each atom
of the surface it computes a discrete orthographic

projection using a grid size per cell of 1 Å. The or-
thographic projection corresponds to a plane with a
orthogonal vector generated between the geometri-
cal center (GC) of the protein and the surface atom
chosen to this projection. The space point of the
plane is the position of GC and the values put into
the grid matrix are the orthogonal distance of the
atoms to the plane. The B protein has to be in-
verted changing the sign in all grid elements (par-
ity inversion) because crosscorrelation computes the
similarity between them. To find the best docking
complementarity between both grids the algorithm
includes a 2D rotation of A grid to score more ori-
entations with these two projections. Then, the
highest crosscorrelation result obtained from this
process with all the B projections are saved in a
file with the information to reproduce the complex
found. The last step is to divide the best result by
the autocorrelation of A grid to scale the coefficient.
It allows us to compare between grids with different
number of elements (see figure 1).
Crosscorrelation is computed with discrete fast
fourier transform (DFT) using the convolution
theorem(8). Using it the speed of the algorithm in-
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creases as nlog(n), where n is the size of the grid.
The number of DFT that the algorithm has to do
follows the next equation

NFFT = NANB ∗
[(

360
α

)]
(1)

Where NA and NB are the number of atoms at
the surface A and B, respectively. α is the angle
of rotation chosen to rotate the grid and we have
used α = 15 in these simulations.

2.3 Reconstruction of the solution

The second part of the process consists of generat-
ing the 3D structure associated with these results
and comparing it with the right solution using root
mean square deviation (RMSD). The crosscorrela-
tion algorithm fits the best position giving us an
optimum bidimensional position in the plane of
the orthographic projections but the real structure
is tridimensional. The reconstruction algorithm
computes the closest separation between A and
B proteins computing the optimal radial distance
avoiding overlap by fixing some parameters.
The reconstruction algorithm puts the complex
(A and B proteins) into the GC. It rotates the
proteins putting the surface atoms with the best
crosscorrelation found with the previous algorithm
in the opposite position in the same axis (180 de-
grees of rotation). The next step, is to separate the
proteins a large distance and then apply the X-Y
shift found previously. The last step consists of re-
ducing the separation in Z axis progressively to get
a minimum distance between a pair of atoms of 5 Å.

The structure generated by the reconstruction al-
gorithm has an small error associated with the res-
olution of the grid and rotation angle. To minimize
it the reconstruction algorithm produces a small ex-
ploration of the solution around the result given by
surface recognition to find the deeper solution with
a minimum distance between a pair of atoms of 5
Å. The method to explore consist in rotations of 15
degrees around the line between geometrical cen-
ters of both proteins and translations of 5 Å. This
method is slow, it should be applied when there are
a reduced number of solutions.

2.4 Computing RMSD

The root mean square deviation is a usefull
measurement in the protein-protein docking
problems(9). The value is a measure of the prox-
imity to the real result when comparing to an
experimental structure. As usual in this type of
calculations, the RMSD is computed only with
α-carbons of the B proteins when experimental
complex and solution proposed are superposed.
The aminoacid side-chains have conformational
changes when the proteins are bound and to avoid
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Figure 2: Complex 1CGI. Six local maximums of
OP coefficient has coincidences with 6 local mini-
mums of RMSD. Four local maximums goes to the
right space region.

masking good results they are excluded from
RMSD computation.

RMSD =

√∑n
i=1 (~r1i − ~r2i)

n
(2)

Where n is the number of α-carbons and 1 means
reference and 2 means solution proposed.

3 Results

The algorithm has been checked with seven com-
plex. Chymotrypsinogen and trypsin, Bowman-
Birk inhibitor and trypsin, MT-SP1/matriptase,
beta-trypsin and CMTI-I, uracil-DNA glycosylase
and uracil glycosylase inhibitor, eglin-c-subtilisin
Carlsberg and CI-2-subtilisin Novo, colicin E7 and
Im7 protein called in protein data bank as 1CGI,
1D6R, 1EAW, 1PPE, 1UDI, 2SNI and 7CEI, re-
spectively. These proteins have been chosen from
a data set of known proteins with bound and un-
bound structures found experimentally.
The number of outputs of the program is equal to
the number of atoms at the surface of A protein.
Standard methods in protein-protein docking show
results using rankings of RMSD vs solutions pro-
posed. All programs produce many solutions and
these are sorted using scoring functions (normally
based on total energy). The proposed algorithm
uses OP coefficient (see equation 3 ) to study the
solutions and reduce its number. We have found a
relation between the increase of this coefficient and
the decrease of RMSD (see figure 2). It means that
one can reduce the number of solutions proposed
without losing the best solutions. The method used
to reduce the number of solutions consists of find-
ing local maximums of the OP coefficient and stor-
ing only a range of solutions around the maximum
value. The mean number of local maximums per
protein is over 12.
The reduced number of results allows to use an im-
proved version of the reconstruction algorithm re-
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Complex Nlm Nfm Nright

1CGI 11 6 4
1D6R 12 5 2
1EAW 14 6 4
1PPE 12 7 5
1UDI 8 5 4
2SNI 12 6 3
7CEI 6 0 0

Table 1: Nlm is number of local maximums of the
OP coefficient. Nfm is number of local maximums
with a RMSD local minimum associated. Nright

is the number of maximums that produce solutions
with the lowest RMSD.

ducing the errors associated to this new list of re-
sults. We have observed an increased of the num-
ber of solutions close to the right solution with this
modification.
OP coefficient is a method to normalize crosscor-
relations between different projections and it is de-
fined by equation 3.

OPij =
C(Ai, Bj)
C(Ai, Ai)

(3)

Where Ai, Bj means grid projection of i, j serial
atom of the surface respectively.

The algorithm has been checked with 7 proteins
and the results are similar in six cases. The values
depicted in the table 2 show results around 15 Å
RMSD for the best solution. 7CEI protein has
a large electrostatic interaction and this may be
the reason for less accurated results closest to the
reference (see table 1 and discussions). Table 2
shows the value of OP coefficient to the bound and
unbound reference in column 1 and 2, respectively.
The third column in table 2 shows the OP result
obtained from the algorithm (see figure 2) for the
solution with lowest RMSD. The forth column
shows the OP result for refined solution. Column
5 is the number of solutions found with a RMSD
less than 20 Å after refinement obtained applying
the algorithm of the reference to the best result
obtained. Column 6 and 7 show the RMSD found
with the bounded and unbounded structures,
respectively. The last column shows the rank
position of the lowest RMSD solution found in the
final list.

The local maximums of OP where you have
best solutions are less than the global maximum
because the best geometrical docking is not the
real docking. In some cases, the value between
bounded and unbounded is similar because the
deformation produced in the process is small.

Figure 2 shows the relation found between OP
and RMSD for 1CGI protein as well as the fluctu-
ation of RMSD and OP with the atom index. The

spreading of OP and RMSD is produced by the
error associated with the discretization of rotations
and positions but the global behaviour gives us the
important information. Table 1 shows a summary
of results found with the seven proteins tested.
The best protein is 1PPE with 5 coincidences and
table 1 also depicts the lower RMSD in this protein.

4 Discussions and Conclusions

The docking method presented is only based
on geometrical parameters. The method tries
to find the best docking position using a FFT
analisis of the surface shape with orthographic
projections. The main objective is to produce
solutions close to the experimental solution iden-
tifying the better regions of complementary quickly.

The common accepted values for RMSD in a
docking program is less than 10 Å. This method
produces results close to be accepted and the
proportion with low RMSD allows us to combine
it with other slower docking methods. The appli-
cation of the algorithm to one protein produces a
number of solutions close to 2000 as seen in figure
2. This figure indicates a substantial correlation
with the OP score and the local RMSD minima.
Thus, the OP coefficient allows us reduce the
number of solutions around 250 without loosing
the best results. This new coefficient reduces on
average 10 times the number of solutions and gives
us the information of the better region for the A
protein to attach B protein using only geometrical
information. This coefficient can be combined
with other established methods to rank and refine
these results. The reconstruction of the solution
produces a refinement using a small translation
and rotation to check the deepest position between
the proteins.

One method to get more solutions is modifying
the main algorithm to accept a range of higher
crosscorrelation results per atom index and not
only the maximum crosscorrelation. This variation
of the method produces an improvement of 2 Å in
RMSD in the best solutions but increases a lot the
number of solutions proposed (data not shown).
The number of solutions is directly proportional to
the number of higher croscorrelations accepted.

In six of 7 complexes we do find the region in the
conformational 3D space where the proteins dock.
This is accomplished in less than 2 hours of CPU.
Thus OP coefficient can be used to find the geomet-
rical docking regions and reduce the number of so-
lutions proposed by some methods. As seen in table
2, however, the OP coefficient is not a good scoring
function. The results of the experimental complex
are usually worst that many different other. Fur-
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Complex OPref B OPref UB OPbestorg.
OPbest N. RMSD< 20 RMSDB RMSDUB Rank

1CGI 0.025 0.024 0.112 0.022 23 14.75 15.02 215
1D6R 0.011 0.012 0.35 0.046 13 16.28 17.39 9
1EAW 0.041 0.037 0.19 0.026 7 16.61 16.76 146
1PPE 0.039 0.013 0.11 0.010 54 10.87 10.68 191
1UDI 0.0041 0.009 0.012 0.017 6 18.82 19.47 178
2SNI 0.016 0.015 0.23 0.010 25 15.2 15.38 28
7CEI 0.100 0.07 0.28 0.104 0 20.02 20.07 98

Table 2: OPref B is the value of the OP coefficient in the experimental bounded reference. OPref UB is
the value of the OP in the unbounded proteins superposed in the experimental reference. OPbestorg.

is
the OP coefficient of the best solution found before local refinement. OPbest is the OP coefficient of the
best complex after refinement. N. RMSD < 20 is the number of solutions obtained with this condition.
RMSDB and RMSDUB is the best RMSD obtained with bounded and unbounded, respectively. Rank
means the position in the number of solutions obtained sorted by OP.

Figure 3: The representation structure of the best solutions found for 1CGI (left), 1D6R (center) and
1EAW (right) complexes. Yellow and white are the chain A and B of the bounded reference, respectively.
Red chain is the best solution found for the B chain starting from the unbounded complex. Blue region
in OP coefficient plot show us which maximum produces these solutions.

thermore, the best RMSD is ranked usually far from
the top 10. To improve this ranking, one can try to
develop another coefficient based on OP including
other interactions.

The experimental X-ray complex should be the
global minimum energy. An ideal accurate scor-
ing function would always rank it as the top pose.
For this purpose, we should add into our scor-
ing function more energy terms describing the real
interaction physics. For this reason, some re-
searchers use electrostatics and hydrophobic inter-
actions to improve the scoring eliminating bad ener-
getics results(10),(11) and improve the scoring. Our
next step will be to combine the geometrical results
of OP coefficient with electrostatics methods. One
way will be try to add electrostatics information to
the grids to improve the OP coefficient.

As seen in figure 3, the results of the algorithm
show in six proteins some solutions with an over-
lapping between experimental and proposed B pro-

tein. It implies good prediction for docking position
but not good orientation in the three Euler angles.
Thus, future improvement will include Monte Carlo
rotations to find the complex with a major number
of contacts between A and B proteins. Defining
one contact between proteins as a pair distance of
atoms between 10 Å and 4 Å. These distances define
a range where there is the minimum of Lennard-
Jones potential to pairs of atoms. The number of
contacts is proportional to the stability of the pro-
tein complex.

5 Technical information

The complete package consists of approximately
7500 lines written in C++ with object oriented pro-
gramming, bash and PERL. The code is designed to
run in a linux machine. The code uses the MIT li-
brary FFTW 2.1.5(12) written in C to compute the
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crosscorrelation. The parallelization has been im-
plemented with MPICH2 library and the speedup
is equal to the number of processors.
The time to compute a process depends of the size
of the protein. The average time to compute a set
of OP coefcients is 20 minutes in 8 processors Pow-
erPC 970 2300 MHz (9.2 GFlops). The time to
generate the solution with a refinement in a single
processor is 2 hours.
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