
MASTER THESIS:

GPU VOXELIZATION

Student: Carlos Tripiana Montes

Advisor: Carlos Antonio Andújar Gran

September, 8th 2009

Course: Master in Computing

LSI Department

Polytechnic University of Catalonia

To the best of my life: Anna; to my family and friends. They are the reason

of who I am.

Contents

1 State of the art 1

1.1 Problem de�nition . 1

1.2 OpenGL rasterization in depth 2

1.2.1 Depth computation . 2

1.2.2 Polygon rasterization . 7

1.2.3 Antialiasing by multisampling 10

1.3 Characterization of voxelization algorithms 12

1.4 Implemented work . 13

1.4.1 Fast 3D triangle-box overlap testing (Akenine-Möller, 2001) 13

1.4.1.1 Main idea . 13

1.4.1.2 The method . 14

1.4.1.3 Implementation issues 16

1.4.2 Fast Scene Voxelization and Applications (Eisemann &

Décoret, 2006) . 16

1.4.2.1 Main idea . 16

1.4.2.2 The method . 16

1.4.2.3 Implementation issues 18

1.4.3 Single-Pass GPU Solid Voxelization for Real-Time Appli-

cations (Eisemann & Décoret, 2008) 18

1.4.3.1 Main idea . 18

1.4.3.2 The method . 19

1.4.3.3 Implementation issues 19

1.4.4 Real-time Voxelization for Complex Polygonal Models (Dong

et al. , 2004a) . 20

1.4.4.1 Main idea . 20

1.4.4.2 The method . 20

1.4.4.3 Implementation issues 23

1.4.5 Conservative Rasterization (Hasselgren et al. , 2005) . . . 23

1.4.5.1 Main idea . 23

1.4.5.2 The method . 23

I

1.4.5.3 Conservative depth 26

1.4.5.4 Implementation issues 27

2 Exact GPU Voxelization 29

2.1 Main idea . 29

2.2 The method . 29

2.3 Implementation issues . 33

3 Comparison 35

3.1 Considerations . 35

3.2 Execution time . 36

3.3 Accuracy . 40

3.3.1 Number of voxels detected 40

3.3.2 Missing voxels . 45

3.3.3 Spurious voxels . 48

4 Conclusion 52

5 Future work 53

6 Acknowledgments 55

Bibliography 56

A Exact GPU Voxelization shader code 58

A.1 Vertex shader . 58

A.2 Geometry shader . 58

A.3 Fragment Shader . 61

II

Introduction

During the last few decades, several algorithms have been proposed to convert

a 3D model into a voxel representation. This process involves identifying which

voxels are intersected by the surface of the model.

Voxelizations are used in a variety of �elds. Two main examples are assign-

ing volumetric attributes and distance �eld computation; with applications in

crowd simulation, fast path �nding, boolean operations and modeling continu-

ally varying heterogeneous materials.

This process is done traditionally in CPU, using geometrical computations to

perform the intersection tests. However, in the last few years, several algorithms

have been proposed to to dynamically calculate a voxel-based representation

of a scene using programmable graphics hardware (GPU), allowing the real-

time creation of voxelizations even for complex and dynamic scenes containing

more than one million polygons. GPU-based voxelization algorithms exploit the

rasterization process of current graphic cards, which is a highly optimized task,

taking advantage of hardware parallelism.

In contrast, GPU-based voxelization algorithms have a number of limita-

tions. The most remarkable one is the lack of accuracy: all GPU-based algo-

rithms proposed so far (even the so called conservative ones) provide only an

approximate solution to the problem, failing to identify all intersected voxels,

or identifying as intersected voxels that do not intersect.

These problems are related mainly with the rasterization process. This pro-

cess involves determining what pixels will be drawn in the screen, and what color

have. To do this, for each primitive it is necessary to know the pixels that are

intersecting the primitive and what is the distance between the camera and the

primitive for each pixel. But the rasterization stage in GPU does not capture

all the pixels that intersect the primitive, only those with their center inside

the primitive. Also, if a perspective camera is used, the normalized distance

�depth� between the camera and the primitive for each pixel it is non-uniform

distributed.

The main contributions of this thesis are:

III

• A comparison and evaluation of state-of-the-art GPU-based voxelization

algorithms, in terms of running time and accuracy, with respect to an

exact, CPU-based, reference algorithm.

• A new GPU-based algorithm which, unlike competing approaches, com-

putes the voxelization in an exact way.

• A numerical comparison of our new algorithm with competing approaches,

using a variety of test models and grid resolutions. Our experiments show

that our approach is much faster than the CPU-based algorithm. The ro-

bustness of our algorithm makes it suitable for those applications requiring

a high level of accuracy.

IV

Chapter 1

State of the art

1.1 Problem de�nition

Given a triangulated model, we want to identify which voxels of a voxel grid

are intersected by the boundary of this model. There are other branch of im-

plemented voxelizations, in which not only the boundary is detected, also the

interior of the model.

Often these voxels are cubes. But it is not a restriction, there are other

presented techniques in which the voxel grid is the view frustum, and voxels are

prisms.

There are di�erent kind of voxelizations depending on the rasterization be-

havior. Approximate rasterization is the standard way of rasterizing fragments

in GPU. It means only those fragments whose center lies inside the projection

of the primitive are identi�ed. Conservative rasterization (Hasselgren et al. ,

2005) involves a dilation operation over the primitive. This is done in GPU

to ensure that in the rasterization stage all the intersected fragments have its

center inside the dilated primitive. However, this can produce spurious frag-

ments, non-intersected pixels. Exact voxelization detects only those voxels that

we need.

1

1.2 OpenGL rasterization in depth

We start by discussing some key aspects of the OpenGL 3D API which directly

impact GPU-based voxelization algorithms.

1.2.1 Depth computation

Figure 1.1 shows the process of computing the depth value for a given vertex.

Figure 1.1: OpenGL transformation pipeline. A 3D point is transformed as
if the origin of the coordinate system will be placed in the eye point. After
that the point is projected onto the near plane. Coordinates are normalized
to perform a fast frustum clipping after the perspective division. Finally the
window coordinates will be computed.

OpenGL has some parameters to perform this computation. Let F be the

�eld of view, we use the following notation:

• origx (int): Window coordinate system origin for X axis.

• origy (int): Window coordinate system origin for Y axis.

The pixel (0, 0) is the bottom left window pixel.

• sizex (sizei): Window size -in pixels- for X axis -width-.

• sizey (sizei): Window size -in pixels- for Y axis -height-.

• Depth range: Window depth range and behavior (Shreiner et al. , 2005,

p. 141). Values must lie inside [0, 1]:

� dNear (clampd): Value that indicates �the most closest to the cam-

era�.

� dFar (clampd): Value that indicates �the most farthest to the cam-

era�.

2

The camera parameters are:

• Extrinsic:

� OBS (double): The camera's location.

� V RP (double): Reference point which this camera is pointing.

� V UV (double): A vector that indicates the camera's rotation over Z

axis.

• Intrinsic:

� Perspective:

∗ FOV (double): The camera's vertical �eld of view.

∗ AR (double): Aspect ratio.

∗ Clipping planes: Inside this planes (perpendicular to the view

direction) the geometry is rendered but out of there.

· zNear (double): Distance between OBS and the near plane.

· zFar (double): Distance between OBS and the far plane.

These parameters are being used to compute the view frustum which

is de�ned as a truncated pyramid. The bottom is on the far plane

and the top is the OBS point but it is truncated by the near plane.

� Perspective/Orthogonal:

∗ l, r, b, t (double): Distances between the view's center and the

left, right, bottom and top clipping planes. This distances are

being measured on the far plane.

∗ Clipping planes: Inside this planes (perpendicular to the view

direction) the geometry is rendered but out of there.

· zNear (double): Distance between OBSand the near plane.

· zFar (double): Distance between OBSand the far plane.

An orthogonal camera is a degenerated perspective case with the

camera placed at the in�nity.

3

Given the previous parameters and given qo =
(

xo yo zo wo

)
⇒ qT

o =
xo

yo

zo

wo

 a point in object coordinates, this is the coordinate transformation

process (Segal & Akeley, 2006, pp. 40�46):

• qT
e =


xe

ye

ze

we

 = MqT
o in camera coordinates (C.C.).

� M is the viewing matrix.

• qT
c =


xc

yc

zc

wc

 = PqT
e in clip coordinates (projected and normalized in

range [−1, 1]. Used to perform the frustum clipping).

� P = Pproj =


2zNear

r−l 0 r+l
r−l 0

0 2zNear

t−b
t+b
t−b 0

0 0 −zF ar−zNear

zF ar−zNear

−2zF arzNear

zF ar−zNear

0 0 −1 0

 (Shreiner

et al. , 2005, p. 755).

� P = Portho =


2

r−l 0 0 −r−l
r−l

0 2
t−b 0 −t−b

t−b

0 0 −2
zF ar−zNear

−zF ar−zNear

zF ar−zNear

0 0 0 1

 (Shreiner

et al. , 2005, p. 755).

qT
cproj

=


xc

yc

zc

wc

 = Pprojq
T
e =


2zNearxe

r−l + r+l
r−lze

2zNearye

t−b + t+b
t−bze

−zF ar−zNear

zF ar−zNear
ze + −2zF arzNearwe

zF ar−zNear

−ze

.

qT
cortho

=


xc

yc

zc

wc

 = Porthoq
T
e =


2xe

r−l + −r−l
r−l we

2ye

t−b + −t−b
t−b we

−2ze

zF ar−zNear
+ −zF ar−zNear

zF ar−zNear
we

we

.

4

• qT
d =

 xd

yd

zd

 =


xc

wc
yc

wc

zc

wc

 in normalized display coordinates.

qT
dproj

=

 xd

yd

zd

 =


−2zNearxe

(r−l)ze
− r+l

r−l
−2zNearye

(t−b)ze
− t+b

t−b
zF ar+zNear

zF ar−zNear
+ 2zF arzNearwe

(zF ar−zNear)ze

.

qT
dortho

=

 xd

yd

zd

 =


2xe

(r−l)we
− r+l

r−l
2ye

(t−b)we
− t+b

t−b
−2ze

(zF ar−zNear)we
− zF ar+zNear

zF ar−zNear

.

We can see this step is the responsible of providing more resolution to the

nearest z values and less to the farthest (only for perspective cameras �see

below�).

• qT
w =

 xw

yw

zw

 =


sizex

2 xd + ox
sizey

2 yd + oy

dF ar−dNear

2 zd + dF ar+dNear

2

 .

ox, oy represents the �center� point of the viewport which is computed as:

� ox = origx + sizex

2 .

� oy = origy + sizey

2 .

qT
wproj

=

 xw

yw

zw

 =


sizex

2

(
−2zNearxe

(r−l)ze
− r+l

r−l

)
+ origx + sizex

2

sizey

2

(
−2zNearye

(t−b)ze
− t+b

t−b

)
+ origy + sizey

2

dF ar−dNear

2

(
zF ar+zNear

zF ar−zNear
+ 2zF arzNearwe

(zF ar−zNear)ze

)
+ dF ar+dNear

2

.

qT
wortho

=

 xw

yw

zw

 =


2xe

(r−l)we
− r+l

r−l
2ye

(t−b)we
− t+b

t−b

dF ar−dNear

2

(
−2ze

(zF ar−zNear)we
− zF ar+zNear

zF ar−zNear

)
+ dF ar+dNear

2

.

5

The general depth value in window coordinates is, following the OpenGL

speci�cation:

zwproj = dF ar−dNear

2

(
zF ar+zNear

zF ar−zNear
+ 2zF arzNearwe

(zF ar−zNear)ze

)
+ dF ar+dNear

2

zwortho
= dF ar−dNear

2

(
−2ze

(zF ar−zNear)we
− zF ar+zNear

zF ar−zNear

)
+ dF ar+dNear

2

Assuming we = 1, these are the �nal equations:

zwproj =
dFar + dNear

2
+

dFar − dNear

2

(
zFar + zNear

zFar − zNear
+

2zFarzNear

(zFar − zNear) ze

)
(1.1)

zwortho
=

dFar + dNear

2
− dFar − dNear

2
zFar + zNear + 2ze

zFar − zNear
(1.2)

For a �xed OpenGL state �suppose a common one such as dNear = 0, dFar =
1, zNear = 0.5, and zFar = 1�, all variables of these equations were �xed unless

ze �commonly it takes negative values�. This variable in the equations makes

the following distribution for zwproj and zwortho
for values of ze ∈ [−0.5,−1]:

Figure 1.2: Distributions. Left projective, right orthogonal.

As we mentioned above the z resolution has linear distribution for orthogonal

cameras.

The OpenGL speci�cation assumes that the zw is represented as an integer

with as many bits as the depth bu�er has (let N be this number of bits). Each

value in the representation k maps the range k
2N�1 , k ∈

{
0, 1, . . . , 2N�1

}
.

Finally, the conclusion is that, for each window coordinate (x, y) the depth
bu�er value is computed as:

zdepth buffer =
(
2N − 1

)
zw (1.3)

6

Please, note that the window is de�ned as an integer number of pixels but

window coordinates in OpenGL are double. This is also important to multisam-

pling techniques and other questions. But it is clear that in this description the

xw and the yw are double.

1.2.2 Polygon rasterization

Rasterization can be de�ned as the process by which a primitive is converted

to a two-dimensional image (Segal & Akeley, 2006, pp. 108�110). Each point

of this image contains information such as color and depth. Thus, rasterizing a

primitive consists of two parts:

• Determine which squares of an integer grid in window coordinates are

occupied by the primitive.

• Assign a depth value and one or more color values to each such square.

The results of this process are passed on to the next stage (per-fragment oper-

ations), which uses the information to update the appropriate locations in the

framebu�er.

The color values assigned to a fragment are initially determined by the ras-

terization operations and modi�ed by either the execution of the texturing,

color sum, and fog operations, or by a fragment shader. The �nal depth value

is initially determined by the rasterization operations and may be modi�ed or

replaced by a fragment shader.

A grid square along with its parameters of assigned colors, z (depth), fog

coordinate, and texture coordinates is called a fragment. A fragment is located

by its lower left corner, which lies on integer grid coordinates. Rasterization

operations also refer to a fragment's center, which is o�set by (1
2 ,

1
2) from its

lower left corner (and so lies on half-integer coordinates). Grid squares need not

actually be square in the OpenGL. Rasterization rules are not a�ected by the

actual aspect ratio of the grid squares. Display of non-square grids, however, will

cause rasterized points and line segments to appear fatter in one direction than

the other. We assume that fragments are square, since it simpli�es antialiasing

and texturing. The way OpenGL rasterizes polygons is very important for GPU

voxelization since this process determines which fragments will be generated and

hence which voxels are detected.

Filtering primitives: A polygon results from a polygon Begin/End object,

a triangle resulting from a triangle strip, triangle fan, or series of separate tri-

angles, or a quadrilateral arising from a quadrilateral strip, series of separate

quadrilaterals, or a Rect command.

7

The �rst step of polygon rasterization is to determine if the polygon is back

facing or front facing. This determination is made by examining the sign of the

area computed by equation

A =
1
2

n−1∑
i=0

xi
wyi⊕1

w − xi⊕1
w yi

w (1.4)

where xi
w and yi

w are the x and y window coordinates of the ith vertex of

the n-vertex polygon (vertices are numbered starting at zero for purposes of this

computation) and i ⊕ 1 = (i + 1) mod n. The interpretation of the sign of this

value is controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the

projected polygon in window coordinates) indicates that if a ≤ 0, then the color

of each vertex of the polygon becomes the back color computed for that vertex

while if a > 0, then the front color is selected. If dir is CW, then a is replaced

by −a in the above inequalities. This state is initially set to CCW.

This determination is used in conjunction with the CullFace enable bit and

mode value to decide whether or not a particular polygon is rasterized. The

CullFace mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling

is enabled or disabled with Enable or Disable using the symbolic constant

CULL_FACE. Front facing polygons are rasterized if either culling is disabled or

the CullFace mode is BACK while back facing polygons are rasterized only if

either culling is disabled or the CullFace mode is FRONT. The initial setting of

the CullFace mode is BACK. Initially, culling is disabled.

If we are interested in rasterize all the primitives when performing a vox-

elization, culling must be disabled.

Rasterization Process: The rule for determining which fragments are pro-

duced by polygon rasterization is called point sampling. The two-dimensional

projection obtained by taking the x and y window coordinates of the polygon's

vertices is formed. Fragment centers that lie inside of this polygon are produced

by rasterization. Special treatment is given to a fragment whose center lies on

a polygon boundary edge. In such a case we require that if two polygons lie on

either side of a common edge (with identical endpoints) on which a fragment

center lies, then exactly one of the polygons results in the production of the

fragment during rasterization. As for the data associated with each fragment

produced by rasterizing a polygon, we begin by specifying how these values are

produced for fragments in a triangle. De�ne barycentric coordinates for a tri-

8

angle. Barycentric coordinates are a set of three numbers, a, b, and c, each in

the range [0, 1], with a + b + c = 1 (absolute barycentric coordinates). These

coordinates uniquely specify any point p = (x, y) within the triangle or on the

triangle's boundary as

p = apa + bpb + cpc

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found

as

a =
A(ppbpc)
A(papbpc)

, b =
A(ppapc)
A(papbpc)

, c =
A(ppapb)
A(papbpc)

where A(lmn) denotes the area in window coordinates of the triangle with

vertices l, m, and n. Denote an associated datum at pa, pb, or pc as fa, fb,

or fc, respectively. Then the value f of a datum at a fragment produced by

rasterizing a triangle is given by

f =
afa

wca
+ bfb

wcb
+ cfc

wcc

a
wca

+ b
wcb

+ c
wcc

where wca , wcb
and wcc are the clip w coordinates of pa, pb, and pc, respec-

tively. a, b, and c are the barycentric coordinates of the fragment for which

the data are produced. a, b, and c must correspond precisely to the exact

coordinates of the center of the fragment.

The value for this datum is:

fproj =
afa

−zea
+ bfb

−zeb
+ cfc

−zec

a
−zea

+ b
−zeb

+ c
−zec

=
afa

zea
+ bfb

zeb
+ cfc

zec

a
zea

+ b
zeb

+ c
zec

(1.5)

fortho =
afa

wea
+ bfb

web
+ cfc

wec

a
wea

+ b
web

+ c
wec

Since pa, pb, and pc are points, wea = 1, web
= 1 and wec = 1, so for

orthogonal case then,

fortho =
afa + bfb + cfc

a + b + c
= afa + bfb + cfc (1.6)

Once again we can see the e�ciency bene�ts of a orthogonal camera. Since

it has a linear z distribution is not necessary to revert this situation. It is good

to avoid precision errors and make interpolation process fast.

However, depth values for polygons must be interpolated by

zw = azwa + bzwb
+ czwc (1.7)

9

where zwa , zwb
, and zwc are the depth values of pa, pb, and pc, respectively.

The z values which OpenGL needs are in window coordinates: is not necessary

to revert its distribution. Vertices has zw computed by the transformation

process, however for fragments it must be interpolated. Remember that now

these z values are integers but a, b, and c.

For a polygon with more than three edges, we require only that a convex

combination of the values of the datum at the polygon's vertices can be used

to obtain the value assigned to each fragment produced by the rasterization

algorithm. That is, it must be the case that at every fragment

f =
n∑

i=1

aifi (1.8)

where n is the number of vertices in the polygon, fi is the value of the f at

vertex i; for each i 0 ≤ ai ≤ 1 and
∑n

i=1 ai = 1. The values of the ai may di�er

from fragment to fragment, but at vertex i, aj = 0, j 6= i and ai = 1.

1.2.3 Antialiasing by multisampling

In Segal & Akeley, 2006, pp. 92�95 multisampling is de�ned as a mechanism to

antialias all OpenGL primitives: points, lines, polygons, bitmaps, and images.

The technique is to sample all primitives multiple times at each pixel, modifying

the default OpenGL behavior: to sample the fragment's center. The color

sample values are resolved to a single, displayable color each time a pixel is

updated, so the antialiasing appears to be automatic at the application level.

Because each sample includes color, depth, and stencil information, the color

(including texture operation), depth, and stencil functions perform equivalently

to the single-sample mode.

An additional bu�er, called the multisample bu�er, is added to the frame-

bu�er. Pixel sample values, including color, depth, and stencil values, are stored

in this bu�er. Samples contain separate color values for each fragment color.

When the framebu�er includes a multisample bu�er, it does not include depth

or stencil bu�ers, even if the multisample bu�er does not store depth or sten-

cil values. Color bu�ers (left, right, front, back, and aux) do coexist with the

multisample bu�er, however.

Multisample antialiasing is most valuable for rendering polygons, because

it requires no sorting for hidden surface elimination, and it correctly handles

adjacent polygons, object silhouettes, and even intersecting polygons. If only

points or lines are being rendered, the �smooth� antialiasing mechanism provided

by the base GL may result in a higher quality image. This mechanism is designed

to allow multisample and smooth antialiasing techniques to be alternated during

10

the rendering of a single scene.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives

is changed, and is referred to as multisample rasterization. Otherwise, prim-

itive rasterization is referred to as single-sample rasterization. The value of

SAMPLE_BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed

in two ways. First, each fragment includes a coverage value with SAMPLES bits.

The value of SAMPLES is an implementation-dependent constant, and is queried

by calling GetIntegerv with pname set to SAMPLES.

Second, each fragment includes SAMPLES depth values, color values, and sets

of texture coordinates, instead of the single depth value, color value, and set

of texture coordinates that is maintained in single-sample rendering mode. An

implementation may choose to assign the same color value and the same set of

texture coordinates to more than one sample. The location for evaluating the

color value and the set of texture coordinates can be anywhere within the pixel

including the fragment center or any of the sample locations. The color value

and the set of texture coordinates need not be evaluated at the same location.

Each pixel fragment thus consists of integer x and y grid coordinates, SAMPLES

color and depth values, SAMPLES sets of texture coordinates, and a coverage

value with a maximum of SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable

with the symbolic constant MULTISAMPLE.

If MULTISAMPLE is disabled, multisample rasterization of all primitives is

equivalent to single-sample (fragment-center) rasterization, except that the frag-

ment coverage value is set to full coverage. The color and depth values and the

sets of texture coordinates may all be set to the values that would have been

assigned by single-sample rasterization, or they may be assigned as described

below for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives di�ers

substantially from single-sample rasterization. It is understood that each pixel

in the framebu�er has SAMPLES locations associated with it. These locations are

exact positions, rather than regions or areas, and each is referred to as a sample

point. The sample points associated with a pixel may be located inside or

outside of the unit square that is considered to bound the pixel. Furthermore,

the relative locations of sample points may be identical for each pixel in the

framebu�er, or they may di�er.

If the sample locations di�er per pixel, they should be aligned to window, not

screen, boundaries. Otherwise rendering results will be window-position speci�c.

The invariance requirement is relaxed for all multisample rasterization, because

the sample locations may be a function of pixel location. Also, it is not possible

11

to query the actual sample locations of a pixel.

We can conclude that for some voxelization techniques this improves its

accuracy, but it has an overhead associated. And this multisampling cannot be

used to ensure an exact or conservative voxelization.

1.3 Characterization of voxelization algorithms

There are multiple ways of classifying voxelization algorithms, Table 1.1 is a

possible classi�cation:

RESPECT TO OPTIONS

Processing unit CPU
GPU

Voxel data binary
non-binary

Identi�ed voxels boundary voxels
boundary + in voxels

View dependence view-independent
view-dependent

Render passes number of render passes needed
Accuracy approximate

conservative
exact

Table 1.1: Classi�cation of voxelization.

Voxelization algorithms are classi�ed in two main groups, CPU-based and

GPU-based. In our implemented work, an e�cient CPU-based voxelization

(Akenine-Möller, 2001) is used as the reference one.

On the one hand, voxelization algorithms can be characterized by the in-

formation associated to voxels. A binary voxelization is when there are only

information is about presence (voxel is present/not present). Non-binary vox-

elizations are when voxels store additional data.

In the other hand, boundary voxelization algorithms are those which only

voxels intersected by the surface of the model are detected. There are vox-

elization algorithms capable to detect voxels lying completely inside the model,

performing what is known by a solid voxelization.

GPU-based voxelization algorithms are classi�ed in two branches, namely:

view-dependent and view-independent. View-dependent algorithms get di�er-

ent results depending on how the camera is placed, while view-independent

voxelization algorithms get the same result because the camera is used as is

12

needed: the user do not have the possibility to place the camera. We remark

also how many render passes are needed to complete the voxelization process

for GPU-based algorithms.

The accuracy of a voxelization algorithm has three levels: approximate, con-

servative and exact. When we talk about approximate voxelization algorithms

we assume these methods miss voxels or add spurious ones. When we talk about

conservative voxelization we can ensure these processes do not miss any voxel

while adding spurious (we are talking about over-conservative voxelizations).

There are semi-conservative algorithms: some GPU-based algorithms have a

di�erent process to overestimate each axis.

An exact voxelization algorithm ensures theoretically perfect results. This

is restricted by �oating point errors. Please, note that all kind of voxelization

algorithm has some precision errors.

1.4 Implemented work

Table 1.2 summarizes the features of the voxelization algorithms we analyzed

(described in detail below). We have included the most representative GPU-

based voxelization algorithms, and one CPU-based exact voxelization algorithm

to be used as reference. We use the criteria introduced in Table 1.1.

TECH. UNIT DATA IDENT. VIEW PASSES ACCUR.

Akenine-Möller, 2001 CPU binary boundary independent 0 exact

Eisemann & Décoret, 2006 GPU binary boundary dependent 1 approx.

Eisemann & Décoret, 2008 GPU binary boundary+in dependent 1 approx.

Dong et al. , 2004a GPU binary boundary independent 3 approx.

Hasselgren et al. , 2005 GPU (rasterization method) conserv.

Table 1.2: Classi�cation of voxelizations.

1.4.1 Fast 3D triangle-box overlap testing (Akenine-Möller,

2001)

1.4.1.1 Main idea

This work presents an algorithm for applying the separate axis theorem to per-

form a single triangle-box intersection test.

As pointed-out by Akenine-Möller, it is possible to use this technique to

perform a CPU voxelization. Given a model represented as a triangle mesh,

13

and a voxel grid, the algorithm allows to compute which voxels are intersected

by the surface of the model.

1.4.1.2 The method

In a common sense we develop an e�cient way to apply the triangle-box test.

Given a model and a voxel grid declared in a common world coordinate system,

the algorithm performs the following steps:

1. Get the X, Y and Z of the three vertices.

2. Compute what are the MINX , MINY and MINZ , and MAXX , MAXY

and MAXZ , of the AABB of the triangle.

3. Compute the intersection between this AABB and the voxel grid to iden-

tify those voxels potentially intersecting the triangle.

4. Perform a triangle-box test with the triangle and each of these voxels.

Mark the voxel as occupied if an intersection is detected.

The above process is repeated for each triangle of the model. The triangle-box

test is executed only if the voxel is not marked as occupied, so as to avoid doing

redundant tests. This algorithm gets an exact computation of a voxelization (of

course, it is exact without considering small precision ��oating point� errors).

The triangle-box test itself is based on the Separate Axis Theorem (SAT),

which can be stated as follows:

Theorem. Two convex polyhedra, A and B, are disjoint if they can be separated

along either an axis parallel to a normal of a face of either A or B, or along an

axis formed from the cross product of an edge from A with and edge from B.

We focus on testing an axis-aligned voxel (AAVOX), de�ned by a center c,

and a vector of half lengths, h, against a triangle 4u0u1u2. To simplify the

tests, we �rst move the triangle so that the box is centered around the origin,

i.e., vi = ui − c, i ∈ {0, 1, 2}.

14

Figure 1.3: Notation used for the triangle-box overlap test. To the left the initial
position of the box and the triangle are shown, while at the right, the box and
the triangle have been translated so that the box center is at the origin.

Based on SAT, we test the following 13 axes:

1. [3 tests] e0 = (1, 0, 0), e1 = (0, 1, 0), e2 = (0, 0, 1) (the normals of the

AAVOX). Test the AAVOX against the minimal AABB around the trian-

gle.

2. [1 test] n, the normal of 4. We use a fast plane/AABB overlap test,

which only tests the two diagonal vertices, whose direction is most closely

aligned to the normal of the triangle.

3. [9 tests] aij = ei × fj , i, j ∈ {0, 1, 2}, where f0 = v1 − v0, f1 = v2 − v1,

and f2 = v0 − v2. These tests are very similar and we will only show the

derivation of the case wherei = 0 and j = 0. a00 = e0×f0 = (0,−f0z, f0y)
so, now we need to project the triangle vertices onto a00 (hereafter called

a):

p0 = a · v0 = (0,−f0z, f0y) · v0 = v0zv1y − v0yv1z

p1 = a · v1 = (0,−f0z, f0y) · v1 = v0zv1y − v0yv1z = p0

p2 = a · v2 = (0,−f0z, f0y) · v2 = (v1y − v0y)v2z − (v1z − v0z)v2y

Normally, we would have had to �nd min(p0, p1, p2) and max(p0, p1, p2),
but fortunately p0 = p1, which simplify the computations. Now we only

need to �nd min(p0, p2) and max(p0, p2), which is faster.

After the projection of the triangle onto a, we need to project the box

onto a as well. We compute a �radius�, called r, of the box projected on a

as

r = hxj |axj | + hyj |ayj | + hzj |azj | = hyj |ayj | + hzj |azj |

15

where the last step comes from that ax = 0 for this particular axis. Then

this axis test becomes:

if (min(p0, p2) > r ormax(p0, p2) < −r) return false;

Now, if all these 13 tests pass, then the triangle overlaps the box.

1.4.1.3 Implementation issues

A robustness issue appears when the normal of the triangle is computed; n =
f0×f1. If the triangle has an area close to zero, then the normal computation is

not robust, and the above code does not solve that problem. However, in most

applications thin long triangles are best avoided.

1.4.2 Fast Scene Voxelization and Applications (Eisemann

& Décoret, 2006)

1.4.2.1 Main idea

The main idea of this algorithm is to achieve a voxelization based on a slicing

method of a scene with one rendering pass.

1.4.2.2 The method

The algorithm takes as input a polygonal scene. Now they de�ne a grid by

placing a camera in the scene and adjusting its view frustum to enclose the

area to be voxelized. The camera must be placed at any position outside the

zone of interest. Then, they associate a viewport to the camera with (w, h)
dimensions which indicate the resolution of the grid in the X and Y directions,

so the voxelization is constructed over the framebu�er. A pixel (x, y) represents
a column in the grid using the color bu�er. Each cell within this column is

encoded via the RGBA value of the pixel considering this value as a vector of

32 bits, each one representing a cell in the column.

Now the corresponding image represents a w × h × 32 grid with one bit of

information per cell. We will use that bit to indicate whether a primitive passes

through a cell or not. The union for all columns of voxels corresponding to a

given bit de�nes a slice. Consequently, the image/texture encoding the grid is

called a slicemap.

16

Figure 1.4: Encoding of a grid in the viewport of a camera. For clarity 4 bits
per channel in the color bu�er (16 slices) are assumed.

Procedure: Given a model, we will rasterize it, and for each fragment they

determine which slice is intersected by the underlying primitive. Since the frag-

ment's position is implicit and hence does not need to be computed. The �rst

step is to clear the framebu�er, create the transformation matrices according

to the desired camera position and frustum, and set the viewport resolution

properly. After that, the render process can be started.

Rasterizing the primitive will produce a single fragment for each of the

columns intersected and the depth d of that fragment indicates in which slice it

falls. This depth value �in window coordinates� are in the range [0, 1]. The au-
thors say that the distribution of this range is not uniform in world coordinates,

however, using this depth for slices would put too much resolution close to the

near plane and not enough close to the far plane. We must apply to this a�r-

mation some corrections: As OpenGL speci�cation describes this is only valid

if the used camera is perspective. In contrast, if the camera is orthographic

the distribution is linear (Segal & Akeley, 2006). In the rest of the description,

because the above assumption, we consider that the authors used a perspective

camera.

The distance between the camera's COP and 3D position of the vertex,

computed by applying the modelview matrix �the ze value� is passed to the

fragment shader as texture coordinates. This decision is chosen in order to

apply the on-surface interpolation �this process occurs in eye coordinates, which

is linear space� to this distance which is also in eye coordinates, and get the

distance for each fragment, not only for vertices. This process creates the correct

z value in [−znear, zFar]. They used to map this value to linear [0, 1] range the
following function

z′ =
z + zNear

zNear + zFar
(1.9)

17

This normalized distance is used to perform a texture lookup in a 1D texture

that gives the 32 bits mask corresponding to the slice in which z′ falls. The

resulting texture will be referred to as the cellmask texture. Its format is RGBA

with 8 bits per channel. Note that it is independent of the actual voxel grid's

position and is computed only once. The convention for the cellmask texture

implies that the values in the mask are between 20 for the nearest one and 231

for the farthest cell.

With the color/bitmask they apply the logical operation OR over the color

bu�er to set inside it the position of the voxel. Of course initially the fragment

color is set to (0, 0, 0, 0) �black�.

1.4.2.3 Implementation issues

This method relies in using the color bu�er to perform a binary voxelization,

so it is limited to 32 voxels' depth. Since we want to perform high resolution

voxelizations we decided to use a multiple render targets (MRT) technique,

based on the framebu�er object (FBO) extension. Each FBO has a �xed number

of color bu�ers (the MRTs). This number of MRTs depends on the GPU model.

For each render pass the program can write to the MRTs, and it is necessary

to perform one pass for each needed FBO. How many resources we will need

depends only in the voxel resolution.

It is also important to remark that the resolution is bounded as well by the

maximum texture resolution. More resolution can be used performing a texture

patching method. The process basically is to split the width and height in more

textures. This can by easily mixed with the previous technique to increase the

grid resolution, using as many MRTs and FBOs as the GPU allows.

As we explained in Paragraph 1.2.2, if a polygon is almost parallel to the view

direction then probably its projection wont capture any fragment's center. This

implies that primitive wont be rasterized. Also, if an intersecting fragment does

not have the (X,Y) coordinates of its center inside the primitive's projection

wont be detected at fragment stage.

1.4.3 Single-Pass GPU Solid Voxelization for Real-Time

Applications (Eisemann & Décoret, 2008)

1.4.3.1 Main idea

Based on the previous work (Eisemann & Décoret, 2006) this article has the

same underlying idea. The only di�erence becomes from the fact that this

article talks about how to perform a solid voxelization, instead of boundary

one. As a consequence, the algorithm requires a solid, watertight model as

18

input.

1.4.3.2 The method

To perform this voxelization there are now some changes. The �rst one is the

color bu�er logic operation that performs OpenGL when applies a color over

the bu�er. Now we will use a XOR operation. The second modi�cation is the

values of the texture mask. Now, each textel has enabled all the bits which are

corresponding to the previous voxels (mask [0] = 0, mask [1] = 1, mask [2] = 3,
. . .).

Now when we apply the mask for a given voxel depth, we mark as 1 the

whole column �nishing in the previous voxel. Of course the XOR operation

modi�es this as the next picture shows:

Figure 1.5: Solid Voxelization for a column in the slicemap. To simplify the
illustration, only one framebu�er with two bit color channels is shown. Left:
The scene, consisting of two watertight objects, is voxelized in the column along
the view direction. 1-4): During rendering, fragments can arrive in an arbitrary
order. For each fragment, a bitmask (upper row) is computed in the shader
which indicates all voxels that lie in front of the current fragment. This mask
is accumulated in the framebu�er (bottom, initialized at zero) using a XOR
operation. Once the rendering is complete (4), the framebu�er contains a center
sampled solid voxelization in a grid shifted by half a voxel.

Due to the way rasterization is performed on current cards and the choice

of the bitmask, the voxelization samples centers of a voxel grid shifted by half

a voxel along the z-axis. There is no imprecision introduced due to the XOR

operator. The shift comes from the fact that they choose the bitmask based

on the voxel the fragment falls into. Thus, the separations are naturally at the

boundary between two column voxels. The o�set can be counteracted though

by a adding half a voxel to the fragments distance, thus virtually shifting the

column.

1.4.3.3 Implementation issues

To this technique the same issues as in Eisemann & Décoret, 2006 appear. But

it has other problems.

19

This voxelization only detects those voxels with their center inside the model

(not only by its (X, Y) coordinates, Z as well). Some of those detected voxels

are completely inside the model but others are intersecting the boundary. Due

to the XOR blending, some detected boundary voxels �see Figure 1.5� are lost.

This imposes a second pass with a boundary voxelization technique to obtain a

better voxelization, but we didn't implemented.

As we mentioned above, the original models must be watertight. This en-

sures an even number of intersections over each column. If we are voxelizing a

non-watertight model, unexpected results may be obtained.

1.4.4 Real-time Voxelization for Complex Polygonal Mod-

els (Dong et al. , 2004a)

1.4.4.1 Main idea

The objective is to avoid projection problems in the rasterization stage per-

forming three passes, each of those viewing the scene in front of one of each

axis direction. The coordinate system will be placed at the center of the voxel

grid, with their axis parallel to the grid edges. This method uses an orthogonal

camera, which implies linear distribution of depth.

1.4.4.2 The method

The algorithm takes as input a triangulated geometric model. Now we sup-

pose that this model is inside its axis-aligned bounding box and it describes a

discretization of the space that lies inside itself. These discretization has the

form of a 3D regular grid. Let be B a bounding box, it is number of voxel is

V = WHD where W is the width �over x axis�, H the height �over y axis�,

and D the depth �over z axis� of B.

The bounding box is split following the depth axis in slabs �suppose it is z

axis�. Each slab �which is the same as a slice� has the above width an height, an

its depth range is related to the number of bits one texture element (textel) has.

Let be C the maximum value of the depth range of each slab. The representation

does not �x how many data is stored for each voxel, but they develop their

explanation using binary surface voxelization. Moreover they use standard 32

bits �8 per color channel� per texel 2D textures, so these parametrization falls

to be C = 32.
Now we can use one slab to store WHC voxels. In order to �ll the bounding

box completely the number of used slabs is N =
⌈

D
C

⌉
. All the slabs merged into

one same texture called �sheet bu�er�. Each slab mapped into the texture is a

�patch�.

20

Figure 1.6: Mapping example.

They now have three of these sheet bu�ers one for each axis direction. Finally

one more texture called �composed worksheet� is made from the contents of those

three others. This resultant texture is indeed the �nal result and, of course, the

voxelized model.

Figure 1.7: Elements of the representation.

Procedure: The voxelization process has three steps: Rasterization, texeliza-

tion and synthesis.

1. Rasterization involves the triangle rasterization and a process to determine

which voxels are being intersected with the triangle. For these voxels their

3D coordinates are being computed.

2. Texelization step determines in which sheet bu�er, and texel the voxel is

stored and what are the correct o�set inside the texel.

3. Synthesis stage gets the three sheet bu�ers as an input and as an output

takes the worksheet. Rasterization and texelization are done �rst.

21

For each axis direction, 1. and 2. must be accomplished, so it is possible to

rasterize the whole model three times, but this is time-hard. To avoid this

situation the authors say that they adds a preprocess stage before. It consists

in reorder the geometry in groups as follows:

• One group for each axis direction. One triangle goes to the group on which

its projection over this axis direction has the maximum projected area.

• Inside each axis group have one group for each slab. One triangle goes to

group if it intersects with this slab.

This sorting process is done on CPU before execute the voxelization algorithm.

Now they rasterize each axis group separately, storing the resulting voxels

into the corresponding sheet bu�er. For each of these groups, they rasterizes

slab by slab, adjusting the near and far clipping planes to the slab boundary

to get accurate results. They do not say nothing about what type of camera

they used or how they avoid the z distribution problem so we think that an

orthogonal camera is a good choice.

To be able to write one bit on a texture they used a lookup texture as follows:

• To store a bit into a component, an 8× 1 texture is created. Its sth texel

stores 2s. By setting the alpha blending operation as addition and the

source/destination blending factors as one/one, the required bit value can

be put at correct location during rasterization.

This way of rendering a model has the advantage of traverse more or less one

time the whole model. Of course, this is only correct in some sense, since all the

triangles that lies on the interior boundary of a slab must be in two slab groups.

Due to this way of rendering, there are some other problems. These boundary

triangles has some vertices outside the slab and in order to put the near and

far plane, these vertices must taken into account. Other problem is the voxel

repetition because if the same triangle is rasterized two times it generates its

voxels twice.

The last step is to merge the three sheet bu�ers in one. Since one triangle

is only in one axis group, there are no repetition problems here. The idea here

is get all the texture information, reproduce the 3D volume coordinates and

�nally map its to the worksheet. It isn't necessary to do this process in this two

steps, moreover they say that takes the z-axis sheet bu�er as the reference and

maps the two others, but the process is almost the same if other axis is taken

as the reference. In this situation, the reference �z� sheet bu�er maps directly,

the other two trough have to be mapped.

22

1.4.4.3 Implementation issues

We decided to implement the method over the MRT-FBO technique. Each

target is a slab. When a render pass is �nalized, a readback process is done to

map all patches in the active worksheet.

We know the addition blending would be a problem if two triangles intersect

the same voxel.

1.4.5 Conservative Rasterization (Hasselgren et al. , 2005)

1.4.5.1 Main idea

This work presents a technique for conservative rasterization. There are two

types of conservative rasterization, overestimated and underestimated. For our

interest only the overestimated one is necessary. Therefore, only overestimated

way is explained here.

In addition, this work presents an over-conservative computation for the

depth.

The main goal using conservative rasterization for voxelizations is to recog-

nize some of those voxels which lie in the boundary of a polygon (by using those

fragments which intersect the boundary of the projection). We assume that if

the input model is not a triangulated mesh, before start the rasterization, a

triangulation process is performed.

We use this technique inside the previously presented techniques to know

how it �ts in voxelization process and how well the presented algorithms handle

conservative rasterization. To know how it �ts read Chapter 3.

Figure 1.8: Comparison between standard and overestimated conservative ras-
terization.

1.4.5.2 The method

The exact bounding polygon that contains exactly those fragments which inter-

sects the boundary of a triangle will be computed. This is an example of exact

23

bounding polygon:

Figure 1.9: This polygon is the result of the mathematical dilation operator.

To compute this new polygon, we get the vertices of the triangle, and for each

one we compute how many new vertices appear and which is its positions. The

position for a new vertex is always one corner of a virtual fragment cell centered

on the triangle vertex. There are intuitively three possible cases, denoted as if

one, two, or three vertices are created. Given two edges e1 and e2 connected in

a vertex v, the three cases are the following:

• If the normals of e1 and e2 lie in the same quadrant, the convex hull is

de�ned by the point found by moving the vertex v by the semi-diagonal

in that quadrant (Figure 1.10a).

• If the normals of e1 and e2 lie in neighboring quadrants, the convex hull

is de�ned by two points. The points are found by moving v by the semi-

diagonals in those quadrants (Figure 1.10b).

• If the normals of e1 and e2 lie in opposite quadrants, the convex hull is

de�ned by three points. Two points are found as in the previous case, and

the last point is found by moving v by the semi-diagonal of the quadrant

between the opposite quadrants (in the winding order) (Figure 1.10c).

Figure 1.10: Computing an optimal bounding polygon.

24

Procedure: We must rasterize the whole model, and for each triangle the

above considerations are used to create the new bounding polygon. After this,

this new polygon replaces the original triangle on the pipeline process, and the

per-fragment operations are done over it.

Since a vertex program cannot create new geometry, we cannot create these

new vertices and we cannot remove the original ones. We need to send more

vertices to the vertex program. Exactly, for each vertex it may generate one, two

or three new vertices. Using the original as a new one we need two more. The

model is modi�ed before start this process in order to create these geometry.

We create, for each triangle, a triangle fan, from three vertices to nine vertices

�three for each� which is the worst case. There are three vertices with the same

coordinates. This fan of triangles has coordinate coherence with the original

but if you think how a triangle fan is drawn (sharing the �rst vertex as the �rst

of all) you may note that knowing how is the previous and the next matters

since there are not edge information at vertex level:

Figure 1.11: The triangle fan before modi�cations.

For each vertex we send the previous an the next coordinates as texture

coordinates as well as the local index in the range [0, 2] (local means which of

the three points in the same position it is). The positions and indices are needed

to compute which case and which semi-diagonal to use when computing the new

vertex position.

The simpler cases from Figure 1.10, resulting in only one or two vertices, are

handled by collapsing two or three instances of a vertex to the same position

and thereby generating degenerate triangles.

Finally, we output the modi�ed triangle fan from vertex shader, it passes the

interpolation process and goes to the per-fragment step. Without any more spe-

cial, the process ends since we created a new polygon that contains all fragment

centers that we need, so we convert the problem to the point-inside-triangle

problem which is the policy to create fragments.

In cases with input triangles that have vertices behind the eye, we can get

projection problems that force tessellation edges out of the bounding polygon in

25

its visible regions. To solve this problem, we perform basic near-plane clipping

of the current edge. If orthographic projection is used, or if no polygon will

intersect the near clip plane, we skip this operation.

1.4.5.3 Conservative depth

When performing conservative rasterization, you often want to compute conser-

vative depth values as well. By conservative depth, we mean either the maximum

or the minimum depth values, zmax and zmin, in each pixel cell.

When an attribute is interpolated over a plane covering an entire pixel cell,

the extreme values will always be in one of the corners of the cell. We therefore

compute zmax and zmin based on the plane of the triangle, rather than the

exact triangle representation. Although this is just an approximation, it is

conservatively correct. It will always compute a zmax greater than or equal to

the exact solution and a zmin less than or equal to it. This is illustrated in

Figure 1.12.

Figure 1.12: A view frustum (in black), with pixel cells (blue lines) and a triangle
(orange), as seen from above. The dashed line is the plane of the triangle, and
the orange arrow indicates its normal. The range of possible depth values is also
shown for the rasterized pixels. The direction of the normal can be used to �nd
the position in a pixel cell that has the farthest depth value. In this case, the
normal is pointing to the right, and so the farthest depth value is at the right
side of the pixel cell.

The depth computation is implemented in a fragment program. A ray is

sent from the eye through one of the corners of the current pixel cell. If zmax is

desired, we send the ray through the corner found in the direction of the triangle

normal; thezmin depth value can be found in the opposite corner. We compute

the intersection point between the ray and the plane of the triangle and use its

coordinates to get the depth value. In some cases, the ray may not intersect the

plane (or have an intersection point behind the viewer). When this happens,

we simply return the maximum depth value.

26

We can compute the depth value from an intersection point, if the projec-

tion matrix is simple (as produced by glFrustum) in a simpler way. Under the

assumption that the input is a normal point with we = 1 (eye-space w com-

ponent), we can compute the zw (window-depth) component of an intersection

point from the ze (eye-space z) component. For a depth range [dFar, dNear], we
compute zw as:

zwproj =
dFar + dNear

2
+

dFar − dNear

2

(
zFar + zNear

zFar − zNear
+

2zFarzNear

(zFar − zNear) ze

)
(1.10)

zwortho
=

dFar + dNear

2
− dFar − dNear

2
zFar + zNear + 2ze

zFar − zNear
(1.11)

They propose use wc instead ze. We propose to change this. If depth com-

putation is done in a fragment program, the available values to compute this

must be passed. So it better to pass ze since it enables to compute conservative

depth for orthogonal projections as well (they use zwproj equation because inside

this zeis the value of wc but wc does not appear in zwortho
).

1.4.5.4 Implementation issues

We describe algorithm in window space, for clarity, but in practice it is impos-

sible to work in window space, because the vertex program is executed before

the clipping and perspective projection. Fortunately, our reasoning maps very

simply to clip space. For the moment, let us ignore the z component of the

vertices (which is used only to interpolate a depth-bu�er value). Doing so al-

lows us to describe a line through each edge of the input triangle as a plane in

homogeneous (xc, yc, wc)-space. The plane is de�ned by the two vertices on the

edge of the input triangle, as well as the position of the viewer, which is the

origin, (0, 0, 0). Because all of the planes pass through the origin, we get plane

equations of the form

axc+byc+cwc = 0 ⇔ a(xdwc)+b(ydwc)+cwc = 0 =⇒ axd+byd+c = 0 (1.12)

The planes are equivalent to lines in two dimensions. In many of our compu-

tations, we use the normal of an edge, which is de�ned by (a, b) from the plane

equation.

The algorithm is robust in terms of �oating-point errors but may generate

front-facing triangles when the bounding polygon is tessellated, even though

27

the input primitive was back-facing. To solve this problem, we �rst assume

that the input data contains no degenerate triangles. We introduce a value, e,

small enough that we consider all errors caused by e to fall in the same category

as other �oating-point precision errors. If the signed distance from the plane

of the triangle to the viewpoint is less than e, we consider the input triangle

to be back-facing and output the vertices expected for standard rasterization.

This hides the problems because it allows the GPU's culling unit to remove the

back-facing polygons.

28

Chapter 2

Exact GPU Voxelization

We now present a novel GPU-based algorithm for computing theoretically exact

voxelizations �without considering precision errors�. Its strength raises from its

simplicity, that minimizes �oating point errors and makes it faster than a CPU

method.

This method exploits high-end hardware capabilities such as geometry shaders,

framebu�er objects or multiple render targets. This enables us to obtain a high-

resolution voxelization with less render passes and less complexity.

Hereafter, our method is referred also as �Tripiana, 2009�.

2.1 Main idea

We start with the idea that the AABB of a triangle can be computed very

quickly. For each input triangle, we compute its AABB on the �y (in a geometry

shader) and pass it to the rasterization pipeline (instead of the triangle), to

rasterize a 2D rectangle that covers all pixels corresponding to voxels potentially

intersected by the triangle.

The fragment shader will identify which voxels in voxel grid are intersected.

We use the color bu�er of the framebu�er to store a bit �ag identifying which

voxels are intersected at some (x, y, z) object coordinates �(x′, y′) pixel, bit

z′ ∈ [0, 31]�. This is also called a slicing method of voxelization, because if we

want more depth resolution than 32, we need more elements.

2.2 The method

We start with a triangulated surface-based model M . Let L be the length of its

optimal axis aligned bounding cube (AABC) , and let res be the desired grid

resolution. Each voxel has l = L
res as edge length.

29

We use an orthographic camera (which implies fast and simple computa-

tions), and this enables us to forget about depth distribution problems �see

Subsection 1.2.1 and Paragraph 1.2.2�. The camera is placed in front of the

AABC's center, the view direction is parallel to the Z axis and has the same

direction of it. We �rst assume that the grid resolution is small, and it is pos-

sible to perform the whole process in a single render pass. So we create a view

frustum that matches the AABC of M and zNear and zFar match as well with

the AABC.

Figure 2.1: An example for res = 32 showing how to place the camera. The
view frustum matches with the blue voxel grid.

The viewport is made of res × res pixels with a depth range of [0, 1] as
[zNear, zFar]. Then, we start an OpenGL render pass. This pass has three

steps, namely: vertex, geometry and fragment, which corresponds with the

kind of programs OpenGL has. Figure 2.2 shows the whole process.

FRAGMENT SHADER

V0
V1

V2

T

VERTEX SHADER

Vi

(object coord) (window coord)

Vox j

(object coord)

GEOMETRY SHADER

(object coord) (clip coord)

Vc0 Vc1

Vc2

(window coord)

V1

V2

V0

T

zy

x

Figure 2.2: Vertices pass trough the vertex shader. Next, in geometry shader,
the bounding rectangle and the depth range are computed using the triangle. In
fragment shader we use the previous data to know those voxels which potentially
intersect the triangle. Finally, the triangle is checked against these voxels to
know its intersections.

30

Vertex Shader

The vertex program in OpenGL is mainly designed to perform operations at

vertex level, and to transform the vertex to clip space. But now we omit this

transformation and we pass the untransformed vertex to the next stage �see

Section A.1�.

Geometry Shader

The geometry shader receives the three vertices of the triangle. This triangle is

used in two ways. On the one hand, we get the X, Y and Z of each vertex and

pass it to the next stage �in object coordinates�, so that the fragment shader

will know about the triangle's geometry.

On the other hand, the triangle vertices are transformed to clip coordinates,

which is convenient for the upcoming computations. A vertex in clip coordinates

maps to the projection plane its X, Y and the Z, but values are between the

range [−1, 1]. So the clip X and Y coordinates are the 2D projection that will be

used to determine which pixels must be in use. These 2D coordinates are used

to compute the axis aligned bounding rectangle (AABR) of the 2D projected

triangle. Once we get this AABR, we expand it by a half of a pixel size in clip

coordinates (1
res). This is important to guarantee that all fragments' centers of

the potentially intersecting fragments are covered. If we omit this expansion,

some fragments wont be present at fragment stage �see Section A.2�. The

resulting 2D rectangle is what OpenGL will rasterize for this primitive.

Figure 2.3: The initial triangle is replaced by its AABB. Once it is replaced, its
AABB is expanded by a half of a pixel size.

The geometry shader also computes the depth range for that triangle. We

transform the Z coordinate for a given vertex from clip to window space. We se-

lect the maximum and minimum values �it is similar to the AABR computation�

and now the range is expanded by a half of a voxel size but in window coordi-

nates (1
2res). Using this information and the AABR we get the AABB of the

31

triangle. Now we have the X and Y in clip and the Z in window coordinates

�we �x the Zs for AABRs in the middle of the view frustum, z = 0, to make

it visible�. The AABR replaces the triangle in the rasterization pipeline, so

this is the geometry that will be rasterized. The depth range is passed for each

vertex of the new primitive identically. This avoids the interpolation process for

fragment's values. The initially mentioned triangle vertices are as well passed

identically for each vertex.

Fragment Shader

Each execution of the fragment program knows the coordinates of the fragment's

center (by gl_FragCoord), which corresponds to the (X, Y) of the center of a
voxel row in window space. We �rst set to black �(0, 0, 0, 0)� the fragment's

color for this fragment, which is the same as mark as unused the whole voxel

row �Figure 2.4�.

Z win

Figure 2.4: The initial voxel row (simpli�ed with 2 bits per color channel).

We also know the depth range for that voxel row, and it is used to create a

loop stopping in each zk which is corresponding to a center of a voxel in window

coordinates. These coordinates are transformed to object space, getting the

voxel's center in object space �Figure 2.5�.

Z win

Figure 2.5: The loop range in the column row, detected the depth range, are
colored in white in this picture, but still are set to 0.

32

We pass also the voxel's edge half-length, which is constant, to the fragment

shader. Using the voxel's center, the triangle's vertices, and the edge half-

length we apply the separate axis theorem (SAT) to test if a voxel intersects

the triangle. If the voxel intersects the triangle we set the kth bit of the color

bu�er to 1 �Figure 2.6�.

Z win

Figure 2.6: Intersected voxels inside the depth range.

To make that possible, we use a 1D texture bitmask of 32 texels, each of those
with a value between

[
20, 231

]
, for the kth bit mask is 2k. Also, as we possibly

are setting more than 1 bit to 1 in this voxel row, we need to sum the previous

value in the bu�er to the current one in the loop. This is not a problem since

each step in the loop corresponds to one voxel of the row (a bit in the bu�er),

so the addition does not make carry bit operations �see Section A.3�. The

last operation is to merge the current value of the color bu�er in the fragment

shader with the old one from previous executions (other triangles). This can

be easily accomplished by the OR logic operation that OpenGL provides in the

color bu�er.

2.3 Implementation issues

In our case the depth resolution limitation is solved by setting more color bu�ers

to a FBO �MRT technique�. And, if we need more, we use more than 1 FBO.

For each FBO we perform a single render pass. For example, given a GPU

with up to 8 color bu�ers for each FBO, we can perform a voxelization of

256×256×256 in a single rendering pass. Please, note that X and Y coordinates

could grow as high as the maximum texture size. Inside the fragment program

it is possible to use the current color bu�ers for a given FBO transparently

using gl_FragData[gl_MaxDrawBuffers]. Other example, a high-resolution

33

voxelization, such as 2048 × 2048 × 2048 needs 2048
256 = 8 render passes. We use

in our implementation vertex bu�er objects (VBO), to store the whole geometry

in GPU one time and use it to perform multiple render passes quickly. Also,

performing multiple render passes with FBOs is more e�cient than using the

framebu�er because we don't need to restore the framebu�er status for each

render pass.

For each FBO we set the near and far planes �zNear, zFar� to enclose only

the voxelized area. This enables us to simplify the computation and get small

values, also guarantying more bits to the fractional part, so as to minimize

�oating point errors. But the best improvement is to discard triangles in ge-

ometry stage. If all triangle's vertices have the Z coordinate less than −1 or

all are greater than 1 (in clip space), then this triangle is completely outside

the current [zNear, zFar] range. There are no discard instruction in geometry

shading, but we can modify the Z coordinates of the AABR vertices to put the

geometry outside the frustum. The current hardware has the early z-cull test,

which means that all the geometry outside the Z planes is clipped and wont

generate fragments. This improvement greatly improves the performance of the

algorithm, as the hardest task in our algorithm is the triangle-voxel intersection

test done in the fragment shader.

In fragment shader the SAT is used to test the intersection against the

portion of the voxel row identi�ed by one fragment. When we are testing one

voxel against the minimal AABB around the triangle, we apply the Z axis �rst,

because for these three tests this is the most frequent failing test.

34

Chapter 3

Comparison

3.1 Considerations

Some of the algorithms we discussed are view-dependent (i.e. Eisemann &

Décoret, 2006 and Eisemann & Décoret, 2008). We have implemented and

tested also these algorithms but, in order to perform comparison test, these

techniques do not �t well with the view-independent ones. View-dependent

algorithms use the current view frustum as the voxel grid, and thus the grid

wont be axis-aligned. The usage of a perspective camera would replace cubic

voxels by prisms.

To be able to compare these techniques, we have developed new algorithms

(modi�cations of the original ones). These algorithms use an orthogonal camera,

and the camera's position is �xed parallel to the Z axis, looking to the center

of the bounding cube of a given model.

The implemented conservative rasterization (Hasselgren et al. , 2005) works

without conservative depth.

In Subsection 3.3.2 and Subsection 3.3.3 we have computed the voxels that a

technique misses or adds compared with the CPU voxelization, that we take as

ground truth (Akenine-Möller, 2001). The Eisemann & Décoret, 2008 technique

is omitted here. The algorithm is used to detect the interior voxels for a given

model, so it is not possible to compare the results.

We have tested our work in a workstation with an Intel i7 processor at

2.93 GHz, with 3 GB of RAM type DDR3 and 2 GB of SWAP. The system

is equipped with a nVIDIA GeForce GTX 295 with 896 MB of GRAM type

DDR4 for each GPU -it has two-. Only one GPU for each connected screen can

be used with the current OpenGL implementation. We developed our testing

application in C++ �ISO/IEC 14882:1998 compliant� over a Linux x32 OS �

kernel 2.6.28-15 i686 SMP�. Our graphic card supports up to 8 color bu�ers

35

for each FBO. To test possible hardware/driver issues we decided to sample our

tests with those voxel resolutions that match with a �xed number of complete

FBOs and the following one, which is the same number of complete FBOs, and

1 more FBO with only 1 target in use (resolutions are in the succession 32 �1
FBO with 1 target�, 256 �1 FBO with 8 targets�, 288 �2 FBO, 8 + 1 targets�,

512 �2 FBO, 8 + 8 targets�, . . .).

Table 3.1 shows the models we used in the evaluation.

MODEL KNOW ISSUES No. OF TRIANGLES

Stanford Bunny non-manifold 69,451
Armadillo none 345,944

Skeleton hand high depth complexity 654,666
Happy Buddha through holes & geometry cracks 1,087,716
Turbine blade geometrically complex 1,765,388

Table 3.1: Tested model.

3.2 Execution time

Figures from 3.1 to 3.5 show the execution time of the implemented techniques

for the di�erent test models.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 32 288 544 800 1056 1312 1568 1824 2080

ex
ec

ut
io

n
tim

e
(m

s)

grid resolution

Stanford bunny (69,451 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Eisemann 08
Eisemann 08-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

Figure 3.1: Timing result for �Stanford Bunny�.

36

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 32 288 544 800 1056 1312 1568 1824 2080

ex
ec

ut
io

n
tim

e
(m

s)

grid resolution

Armadillo (345,944 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Eisemann 08
Eisemann 08-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

Figure 3.2: Timing results for the �Armadillo�.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 32 288 544 800 1056 1312 1568 1824 2080

ex
ec

ut
io

n
tim

e
(m

s)

grid resolution

Skeleton hand (654,666 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Eisemann 08
Eisemann 08-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

Figure 3.3: Timing result for the skeleton hand.

37

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 32 288 544 800 1056 1312 1568 1824 2080

ex
ec

ut
io

n
tim

e
(m

s)

grid resolution

Happy buddha (1,087,716 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Eisemann 08
Eisemann 08-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

Figure 3.4: Timing results for the �Happy Buddha�.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000

 32 288 544 800 1056 1312 1568 1824 2080

ex
ec

ut
io

n
tim

e
(m

s)

grid resolution

Blade (1,765,388 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Eisemann 08
Eisemann 08-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

Figure 3.5: Timing result for the �Turbine blade� model.

From the timing results, we can conclude that our method is always faster

than the CPU method. The inherent parallelism of the GPU gives to our method

a speed-up of ×4 approximately for the �Turbine blade� model.

38

Our method is a bit slower that other GPU-based approaches, but as it

is shown in accuracy tests, our method is exact. This implies generate more

fragments, so it is obvious it will take some more time to �nish the process.

Other methods approximates the voxelization, the lower number of detected

voxels make these algorithms faster.

For Eisemann & Décoret, 2008 in combination with Hasselgren et al. ,

2005, up to some resolution (depending on the model) becomes slower than

our method. We know this solid voxelization works similarly as the boundary

one (Eisemann & Décoret, 2006). The only thing to make slow the execution is

the XOR blending, and this is hardware/driver dependent.

39

3.3 Accuracy

3.3.1 Number of voxels detected

Figures from 3.6 to 3.10 show the number of detected voxels, including those

which may be erroneous.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Stanford bunny (69,451 triangles)

CPU
Tripiana09

Eisemann 06
Eisemann 06-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Stanford bunny (69,451 triangles)

Eisemann 08
Eisemann 08-Hasselgren 05

Figure 3.6: Voxels detected for �Stanford Bunny�.

40

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Armadillo (345,944 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Armadillo (345,944 triangles)

Eisemann 08
Eisemann 08-Hasselgren 05

Figure 3.7: Voxels detected for the �Armadillo�.

41

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Skeleton hand (654,666 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Skeleton hand (654,666 triangles)

Eisemann 08
Eisemann 08-Hasselgren 05

Figure 3.8: Voxels detected for the skeleton hand.

42

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Happy buddha (1,087,716 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Happy buddha (1,087,716 triangles)

Eisemann 08
Eisemann 08-Hasselgren 05

Figure 3.9: Voxels detected for the �Happy Buddha�.

43

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Blade (1,765,388 triangles)

CPU
Tripiana 09

Eisemann 06
Eisemann 06-Hasselgren 05

Dong 04
Dong 04-Hasselgren 05

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 32 288 544 800 1056 1312

nu
m

be
r

of
 d

et
ec

te
d

vo
xe

ls

grid resolution

Blade (1,765,388 triangles)

Eisemann 08
Eisemann 08-Hasselgren 05

Figure 3.10: Voxels detected for the �Turbine blade� model.

Our algorithm detects the same number of voxels as the CPU-based reference

algorithm, while others do not detect properly all the intersecting voxels.

The multipass technique (Dong et al. , 2004a) has the same accuracy for

conservative or non-conservative. This is because it is rasterizing each triangle

to the plane in which it has its maximum projection. This is more or less as

if we are doing a conservative voxelization. But this technique uses the alpha

blending technique to store voxel bits, and this has carry bit problems. This is

the reason to get less voxels than other methods.

44

3.3.2 Missing voxels

Figures from 3.11 to 3.15 show the number of missed voxels, i.e. voxels labeled

as non-intersecting which are detected as such by the reference algorithm.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 m

is
si

ng
 v

ox
el

s

grid resolution

Stanford bunny (69,451 triangles)

Tripiana09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.11: Missing voxels for �Stanford Bunny�.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 m

is
si

ng
 v

ox
el

s

grid resolution

Armadillo (345,944 triangles)

Tripiana 09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.12: Missing voxels for the �Armadillo�.

45

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 m

is
si

ng
 v

ox
el

s

grid resolution

Skeleton hand (654,666 triangles)

Tripiana 09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.13: Missing voxels for the skeleton hand.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 m

is
si

ng
 v

ox
el

s

grid resolution

Happy buddha (1,087,716 triangles)

Tripiana 09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.14: Missing voxels for the �Happy Buddha�.

46

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 32 288 544 800 1056 1312

nu
m

be
r

of
 m

is
si

ng
 v

ox
el

s

grid resolution

Blade (1,765,388 triangles)

Tripiana 09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.15: Missing voxels for the �Turbine blade� model.

Note that other techniques miss a large number of intersected voxels, as

Subsection 3.3.1 tests show as well, but our algorithm keeps all the voxels.

These algorithms has some problems. On the one hand, non-conservative

methods have projection/non-conservative rasterization problems. In the other

hand Dong et al. , 2004a has the alpha blending issue.

Conservative rasterization (Hasselgren et al. , 2005) enables a better approx-

imation in use with Eisemann & Décoret, 2006, but still have problems with the

Z axis direction.

Figure 3.16 shows a detailed comparison of Eisemann & Décoret, 2006 (using

conservative rasterization) and Dong et al. , 2004a between our method for the

�Stanford Bunny� model.

Figure 3.16: From left to right. The �Stanford Bunny� voxelized at 2883 with
our method, Eisemann 06-Hasselgren 05 and Dong 04.

47

3.3.3 Spurious voxels

Figures from 3.17 to 3.21 show the number of spurious voxels, i.e. voxels labeled

as intersected which are not detected as such by the reference algorithm.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 32 288 544 800 1056 1312

nu
m

be
r

of
 s

pu
rio

us
 v

ox
el

s

grid resolution

Stanford bunny (69,451 triangles)

Tripiana09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.17: Spurious voxels for �Stanford Bunny�.

48

 0

 20

 40

 60

 80

 100

 120

 140

 32 288 544 800 1056 1312

nu
m

be
r

of
 s

pu
rio

us
 v

ox
el

s

grid resolution

Armadillo (345,944 triangles)

Tripiana 09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.18: Spurious voxels for the �Armadillo�.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 32 288 544 800 1056 1312

nu
m

be
r

of
 s

pu
rio

us
 v

ox
el

s

grid resolution

Skeleton hand (654,666 triangles)

Tripiana 09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.19: Spurious voxels for the skeleton hand.

49

 0

 50

 100

 150

 200

 250

 300

 32 288 544 800 1056 1312

nu
m

be
r

of
 s

pu
rio

us
 v

ox
el

s

grid resolution

Happy buddha (1,087,716 triangles)

Tripiana 09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.20: Spurious voxels for the �Happy Buddha�.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 32 288 544 800 1056 1312

nu
m

be
r

of
 s

pu
rio

us
 v

ox
el

s

grid resolution

Blade (1,765,388 triangles)

Tripiana 09
Eisemann 06

Eisemann 06-Hasselgren 05
Dong 04

Dong 04-Hasselgren 05

Figure 3.21: Spurious voxels for the huge �Turbine blade� model.

A detailed graph of spurious voxels shows that our process adds some non-

intersecting voxels. These number of spurious voxels is similar to the number

of missing voxels. This a�rmation is only valid for our method.

50

We detect, in our resulting data set, that these spurious voxels are 26-
neighbor of a missing one. We think this is due to �oating point errors, coming

from the interpolation process or the machine error ε of our graphic card. We

use the CPU method as reference, but it is a�ected by the ε errors as well as

our method. We think the fact of one voxel detected by our method and not

by CPU probably wont be a problem since it is possible that this voxel may be

detected properly. Of course we may still having other spurious voxels coming

from the interpolation process.

Conservative algorithms add some voxels, because it is an overestimating

rasterization, but the multipass technique (Dong et al. , 2004a) has the same

number of spurious voxels for conservative or non-conservative rasterization.

Figure 3.22 shows a comparison between the CPU method and the Dong

et al. , 2004a (using conservative rasterization). These pictures show one spuri-

ous voxel which is not present in the CPU method.

Figure 3.22: From left to right. The �Armadillo� voxelized at 323 with CPU
method and Dong04.

51

Chapter 4

Conclusion

We have studied, implemented and tested the most remarkable GPU-based vox-

elization algorithms in the literature over a variety of model and test cases. We

have shown that current GPU-based voxelization algorithms provide only an

approximate solution to the problem, with many missing voxels and even some

spurious voxels. This lack of accuracy makes these algorithms less attractive for

real use.

We have presented a novel GPU-based voxelization achieving exact voxeliza-

tions. Our algorithm performs much faster than a state-of-the-art CPU-based

reference version and provides an accurate voxelization. Previously developed

GPU-based voxelization algorithms are far from achieving an exact solution but

our method produces it.

We created a multi-purpose, extensible voxelization API with about 15,000

lines of code, including all implemented techniques as well as an interface to

load, store and handle 3D models and their voxelizations. We used it to test

our work and we will probably use our API in future projects.

52

Chapter 5

Future work

There are several lines to extend our work.

We hypothesize that most of our �oating point errors (di�ering from those

which CPU has) come from the interpolation process done for the varying vari-

ables which are used to make the triangle vertices available to the fragment

shader. We know OpenGL 3.2 supports GLSL 1.50. This version makes it

possible to declare output variables from one shader as an input to the next

shader with a �at quali�er. This quali�er disables the interpolation process: in

fragment stage the value for this variable is the value assigned to the provoking

vertex. Also GLSL 1.50 lost the concept of varying to add a new concept of in-

put/output variables. This follows the Cg behavior. With this, the interpolation

deviation will be solved.

Our algorithm can be improved in a number of ways. In the implemented

version, it checks in a loop those voxels, for a given voxel row, that potentially

intersect the triangle. This loop runs over a portion of the voxel row. In rare

cases this loop will become long, but we have devised an easy way to speed-up

this loop. The loop is split in half, and we execute one step of these new loops at

each step. If both steps detect intersection or non-intersection for a given index

we will continue running both branches, but if both are non-intersecting and

one becomes intersecting the other branch is discarded. On the other hand, if

both are intersecting and one becomes non-intersecting this branch is �nished.

It would be also interesting to explore a multi-GPU based algorithm, which

appears to be simple to implement. It is well know nowadays there are multi-

GPU cards and also the possibility to interconnect many graphic cards between

then (for example the LSI). It is a good improvement. Our test platform o�ers

to us this possibility. To make it possible, we can use the �alternate frame ren-

dering� (AFR) technique developed by nVIDIA. The concept of frame rendering

matches with an OpenGL render pass easily, and it is optimized to do it with

53

VBOs and FBOs, as our algorithm uses.

We also plan to extend our work to identify also in/out voxels.

54

Chapter 6

Acknowledgments

We would like to acknowledge the authors of those work that we have imple-

mented. Inside each work, we discovered great ideas, and some problems also.

With each of those, we learned a lot.

We also acknowledge to the �Stanford 3D Scanning Repository� and �Large

Geometric Models Archive at Georgia Tech� maintainers.

The student wants to thank his family and friends the support they have

o�ered, and the encouragement and con�dence they have shown. He would

like to acknowledge also the good work of the teacher sta� who makes possible

the visual computing intensi�cation of this master. Their great job is the best

reference, and the student has his knowledge due to them.

Finally my last words are for my advisor. I have learned working with you

that if you like something, if you want it, there are no reasons, and there are no

things, that will keep you o� the way of achieving this.

55

Bibliography

Akenine-Möller, Thomas. 2001. Fast 3D triangle-box overlap testing. Journal

of Graphics Tools, 6(1), 29�33.

Akenine-Möller, Tomas, & Aila, Timo. 2005. Conservative and Tiled Rasteri-

zation Using a Modi�ed Triangle Set-Up. Journal of Graphics Tools, 10(3),

1�8.

Dong, Zhao, Chen, Wei, Bao, Hujun, Zhang, Hongxin, & Peng, Qunsheng.

2004a. Real-time Voxelization for Complex Polygonal Models. Pages 43�

50 of: Proceedings of 12th Paci�c Conference on Computer Graphics and

Applications, vol. 0. IEEE Computer Society.

Dong, Zhao, Chen, Wei, Bao, Hujun, Zhang, Hongxin, & Peng, Qunsheng.

2004b. A Smart Voxelization Algorithm. Pages 73�78 of: Proceedings of 12th

Paci�c Conference on Computer Graphics and Applications, vol. 0. IEEE

Computer Society.

Eisemann, Elmar, & Décoret, Xavier. 2006. Fast Scene Voxelization and Appli-

cations. Pages 71�78 of: Proceedings of the 2006 Symposium on Interactive

3D Graphics and Games. Association for Computing Machinery, Inc.

Eisemann, Elmar, & Décoret, Xavier. 2008. Single-Pass GPU Solid Voxeliza-

tion for Real-Time Applications. Pages 73�80 of: Proceedings of Graphics

Interface. Canadian Information Processing Society.

Hasselgren, Jon, Akenine-Möller, Tomas, & Ohlsson, Lennart. 2005. Conserva-

tive Rasterization. GPU Gems, no. 2. Addison-Wesley Professional. Chap. 42,

pages 677�690.

Hsieh, Hsien-Hsi, Lai, Yueh-Yi, Tai, Wen-Kai, & Chang, Sheng-Yi. 2005. A

Flexible 3D Slicer for Voxelization Using Graphics Hardware. Pages 285�288

of: Proceedings of the 3rd International Conference on Computer Graphics

and Interactive Techniques in Australasia and South East Asia. Association

for Computing Machinery, Inc.

56

Kessenich, John. 2006 (September). The OpenGL(R) Shading Language (Ver-

sion 1.20, rev. 8). Tech. rept. 3Dlabs, Inc. Ltd.

Llamas, Ignacio. 2007. Real-Time Voxelization of Triangle Meshes on the GPU.

Page 18 of: ACM SIGGRAPH 2007 Sketches. Association for Computing

Machinery, Inc.

Martz, Paul. 2006. OpenGL(R) Distilled. Addison-Wesley Professional.

Martz, Paul. 2007. OpenSceneGraph Quick Start Guide: A Quick Introduction

to the Cross-Platform Open Source Scene Graph API. Skew Matrix Software.

Rost, Randi J. 2005. OpenGL(R) Shading Language (2nd Edition). Addison-

Wesley Professional.

Segal, Mark, & Akeley, Kurt. 2006 (December). The OpenGL(R) Graphics

System: A Speci�cation (Version 2.1). Tech. rept. Khronos Group.

Shreiner, Dave, Woo, Mason, Neider, Jackie, & Davis, Tom. 2005. OpenGL(R)

Programming Guide: The O�cial Guide to Learning OpenGL(R), Version 2

(5th Edition). Addison-Wesley Professional.

Zhang, Long, Chen, Wei, Ebert, David S., & Peng, Qunsheng. 2007. Conserva-

tive voxelization. The Visual Computer, 23(9), 783�792.

57

Appendix A

Exact GPU Voxelization

shader code

A.1 Vertex shader

#version 120

void voxelizationEngine(void)

{

gl_Position = gl_Vertex;

}

A.2 Geometry shader

#version 120

#extension GL_EXT_geometry_shader4 : enable

#define ZNEARCLIP vec3(-1.0)

#define ZFARCLIP vec3(1.0)

#define ZINSIDECLIP 0.0

#define ZOUTSIDECLIP -2.0

58

uniform float numVoxels;

uniform float halfVoxelSizeNormalized;

uniform vec2 halfPixelSize;

varying out vec3 vertex0;

varying out vec3 vertex1;

varying out vec3 vertex2;

varying out vec2 voxDepthRange;

void voxelizationEngine(void)

{

vec4 triV0, triV1, triV2, AABB;

vec3 depths;

float zd1, zd2;

vertex0 = gl_PositionIn[0].xyz;

vertex1 = gl_PositionIn[1].xyz;

vertex2 = gl_PositionIn[2].xyz;

triV0 = gl_ModelViewProjectionMatrix * gl_PositionIn[0];

triV1 = gl_ModelViewProjectionMatrix * gl_PositionIn[1];

triV2 = gl_ModelViewProjectionMatrix * gl_PositionIn[2];

depths = vec3(triV0.z, triV1.z, triV2.z);

AABB = triV0.xyxy;

if (all(lessThan(depths, ZNEARCLIP)) ||

all(greaterThan(depths, ZFARCLIP)))

59

{

voxDepthRange = vec2(ZOUTSIDECLIP);

gl_Position = vec4(AABB.xw, ZOUTSIDECLIP, 1.0);

EmitVertex();

gl_Position = vec4(AABB.xy, ZOUTSIDECLIP, 1.0);

EmitVertex();

gl_Position = vec4(AABB.zw, ZOUTSIDECLIP, 1.0);

EmitVertex();

gl_Position = vec4(AABB.zy, ZOUTSIDECLIP, 1.0);

EmitVertex();

}

else

{

AABB = vec4(min(min(AABB.xy, triV1.xy), triV2.xy),

max(max(AABB.zw, triV1.xy), triV2.xy));

AABB += vec4(-halfPixelSize, halfPixelSize);

voxDepthRange.xy = vec2(++triV0.z * 0.5);

zd1 = ++triV1.z * 0.5;

zd2 = ++triV2.z * 0.5;

voxDepthRange = vec2(min(min(voxDepthRange.x, zd1), zd2),

max(max(voxDepthRange.y, zd1), zd2));

voxDepthRange += vec2(-halfVoxelSizeNormalized,

halfVoxelSizeNormalized);

voxDepthRange = floor(clamp(voxDepthRange, 0.0, 1.0) *

numVoxels);

gl_Position = vec4(AABB.xw, ZINSIDECLIP, 1.0);

60

EmitVertex();

gl_Position = vec4(AABB.xy, ZINSIDECLIP, 1.0);

EmitVertex();

gl_Position = vec4(AABB.zw, ZINSIDECLIP, 1.0);

EmitVertex();

gl_Position = vec4(AABB.zy, ZINSIDECLIP, 1.0);

EmitVertex();

}

}

A.3 Fragment Shader

#version 120

#define INVDEPTH 0.03125

uniform float numRenderTargets;

uniform sampler1D bitmask;

uniform vec3 origBBox;

uniform float halfVoxelSize;

uniform float voxelSize;

varying in vec3 vertex0;

varying in vec3 vertex1;

varying in vec3 vertex2;

varying in vec2 voxDepthRange;

61

bool planeBoxOverlap(in vec3 normal, in float d, in float maxVox)

{

vec3 vMin, vMax;

if(normal.x > 0.0)

{

vMin.x = -maxVox;

vMax.x = maxVox;

}

else

{

vMin.x = maxVox;

vMax.x = -maxVox;

}

if(normal.y > 0.0)

{

vMin.y = -maxVox;

vMax.y = maxVox;

}

else

{

vMin.y = maxVox;

vMax.y = -maxVox;

}

if(normal.z > 0.0)

62

{

vMin.z = -maxVox;

vMax.z = maxVox;

}

else

{

vMin.z = maxVox;

vMax.z = -maxVox;

}

if (dot(normal, vMin) + d > 0.0) return false;

if (dot(normal, vMax) + d >= 0.0) return true;

return false;

}

bool triBoxOverlap(in vec3 voxCenter, in float voxHalfSize, in

vec3 vertex0, in vec3 vertex1, in vec3 vertex2)

{

vec3 v0, v1, v2, e0, e1, e2, fe0, fe1, fe2, normal;

float minValue, maxValue, p0, p1, p2, rad, d;

v0 = vertex0 - voxCenter;

v1 = vertex1 - voxCenter;

v2 = vertex2 - voxCenter;

e0 = v1 - v0;

e1 = v2 - v1;

e2 = v0 - v2;

63

fe0 = abs(e0);

// AXISTEST_X01(e0.z, e0.y, fe0.z, fe0.y)

p0 = e0.z * v0.y - e0.y * v0.z;

p2 = e0.z * v2.y - e0.y * v2.z;

if (p0 < p2)

{

minValue = p0;

maxValue = p2;

}

else

{

minValue = p2;

maxValue = p0;

}

rad = fe0.z * voxHalfSize + fe0.y * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

// AXISTEST_Y02(e0.z, e0.x, fe0.z, fe0.x)

p0 = -e0.z * v0.x + e0.x * v0.z;

p2 = -e0.z * v2.x + e0.x * v2.z;

if (p0 < p2)

{

minValue = p0;

maxValue = p2;

}

else

64

{

minValue = p2;

maxValue = p0;

}

rad = fe0.z * voxHalfSize + fe0.x * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

// AXISTEST_Z12(e0.y, e0.x, fe0.y, fe0.x)

p1 = e0.y * v1.x - e0.x * v1.y;

p2 = e0.y * v2.x - e0.x * v2.y;

if (p2 < p1)

{

minValue = p2;

maxValue = p1;

}

else

{

minValue = p1;

maxValue = p2;

}

rad = fe0.y * voxHalfSize + fe0.x * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

fe1 = abs(e1);

// AXISTEST_X01(e1.z, e1.y, fe1.z, fe1.y)

p0 = e1.z * v0.y - e1.y * v0.z;

p2 = e1.z * v2.y - e1.y * v2.z;

65

if (p0 < p2)

{

minValue = p0;

maxValue = p2;

}

else

{

minValue = p2;

maxValue = p0;

}

rad = fe1.z * voxHalfSize + fe1.y * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

// AXISTEST_Y02(e1.z, e1.x, fe1.z, fe1.x)

p0 = -e1.z * v0.x + e1.x * v0.z;

p2 = -e1.z * v2.x + e1.x * v2.z;

if (p0 < p2)

{

minValue = p0;

maxValue = p2;

}

else

{

minValue = p2;

maxValue = p0;

}

66

rad = fe1.z * voxHalfSize + fe1.x * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

// AXISTEST_Z0(e1.y, e1.x, fe1.y, fe1.x)

p0 = e1.y * v0.x - e1.x * v0.y;

p1 = e1.y * v1.x - e1.x * v1.y;

if (p0 < p1)

{

minValue = p0;

maxValue = p1;

}

else

{

minValue = p1;

maxValue = p0;

}

rad = fe1.y * voxHalfSize + fe1.x * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

fe2 = abs(e2);

// AXISTEST_X2(e2.z, e2.y, fe2.z, fe2.y)

p0 = e2.z * v0.y - e2.y * v0.z;

p1 = e2.z * v1.y - e2.y * v1.z;

if (p0 < p1)

{

minValue = p0;

maxValue = p1;

67

}

else

{

minValue = p1;

maxValue = p0;

}

rad = fe2.z * voxHalfSize + fe2.y * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

// AXISTEST_Y1(e2.z, e2.x, fe2.z, fe2.x)

p0 = -e2.z * v0.x + e2.x * v0.z;

p1 = -e2.z * v1.x + e2.x * v1.z;

if (p0 < p1)

{

minValue = p0;

maxValue = p1;

}

else

{

minValue = p1;

maxValue = p0;

}

rad = fe2.z * voxHalfSize + fe2.x * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

// AXISTEST_Z12(e2.y, e2.x, fe2.y, fe2.x)

p0 = e2.y * v1.x - e2.x * v1.y;

68

p1 = e2.y * v2.x - e2.x * v2.y;

if (p0 < p1)

{

minValue = p0;

maxValue = p1;

}

else

{

minValue = p1;

maxValue = p0;

}

rad = fe2.y * voxHalfSize + fe2.x * voxHalfSize;

if (minValue > rad || maxValue < -rad) return false;

// FINDMINMAX(v0.z, v1.z, v2.z, minValue, maxValue)

minValue = maxValue = v0.z;

minValue = min(min(minValue, v1.z), v2.z);

maxValue = max(max(maxValue, v1.z), v2.z);

if (minValue > voxHalfSize || maxValue < -voxHalfSize) return

false;

// FINDMINMAX(v0.x, v1.x, v2.x, minValue, maxValue)

minValue = maxValue = v0.x;

minValue = min(min(minValue, v1.x), v2.x);

maxValue = max(max(maxValue, v1.x), v2.x);

if (minValue > voxHalfSize || maxValue < -voxHalfSize) return

false;

// FINDMINMAX(v0.y, v1.y, v2.y, minValue, maxValue)

69

minValue = maxValue = v0.y;

minValue = min(min(minValue, v1.y), v2.y);

maxValue = max(max(maxValue, v1.y), v2.y);

if (minValue > voxHalfSize || maxValue < -voxHalfSize) return

false;

normal = cross(e0, e1);

d = -dot(normal, v0);

if (!planeBoxOverlap(normal, d, voxHalfSize)) return false;

return true;

}

void voxelizationEngine(void)

{

vec3 voxCenter;

float targetDepth, target;

for (int index = 0; index < int(numRenderTargets); ++index)

{

gl_FragData[index] = vec4(0.0);

}

voxCenter.xy = origBBox.xy + vec2(-voxelSize, voxelSize) *

gl_FragCoord.xy;

for (float index = voxDepthRange.x; index <= voxDepthRange.y;

++index)

{

voxCenter.z = origBBox.z + voxelSize * (index + 0.5);

if (triBoxOverlap(voxCenter, halfVoxelSize, vertex0,

vertex1, vertex2))

70

{

targetDepth = index * INVDEPTH;

target = floor(targetDepth);

if (target >= 0 && target < numRenderTargets)

{

gl_FragData[int(target)] += texture1D(bitmask,

fract(targetDepth));

}

}

}

}

71

