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Abstract

One big problem of the communication between two parties is the secrecy. That means how

much information a third party can obtain by intercepting the messages transmitted from

one honest party to the other one. Therefore cryptography offers a wide range of proto-

cols to ensure security with assumptions on the eavesdropper. So one was looking for an

information-theoretical description of the scenario to get unconditional secure communica-

tion. In this scenario we are considering two honest parties that want to communicate over

an authenticated channel that the eavesdropper is wiretapping.

This scenario introduced the definition of the intrinsic information and the secret-key rate

which are a measure of the secrecy in this setting. Later because of strong analogies to quan-

tum mechanics it turned out that this description was lacking a phenomena called bound

information which is the disability of a probability distribution to create a secret-key even

though it has predicted secrecy.

Nearly ten years of research have shown the existence of bound information for the mul-

tipartite case where several parties are communicating but not yet for the bipartite case.

Hence the approach of non-distillability seems a very promising one to find this conjecture.

Motivated by this the approach we implemented this tool and simulated some distributions

that have conjectured bound information. Thereby we improved the tool to reduce its calcu-

lation time and to get closer to the aim.
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1 Secret key agreement

For the discussion of information-theoretical key agreement it is necessary to explain the

basic concepts of information theory. In the following we explain the measure for the in-

formation of one source and the measure for the correlation between two sources. With this

we can introduce the scenario and the discussion of secret key agreement in the subsequent

sections of this chapter.

1.1 Introduction to information theory

The first description of information theory was introduced by Shannon in 1948 [2] who

defined the information I of an event x as:

I(x) = log
1

P(x)
(1.1)

This measure associates the information of the event with its uncertainty, given by its prob-

ability. That means the less often this event occurs, the larger is its information. When

we have a source of the discrete alphabet X with elements {x1, x2, ..., xN} we can compute

the average amount of information given from this source by its expectation value. Thus

Shannon introduced the entropy H like:

H(X) = E[I(X)] =

N
∑

i=1

P(xi) · I(xi) =
N

∑

i=1

P(xi) · log
1

P(xi)
(1.2)

with 0 ≤ H(X) ≤ logN where the maximal value belongs to a uniform distribution.

Now, we can introduce the conditional entropy which is the entropy of a source X given the

side information from source Y as:

H(X|Y) =
∑

x∈X

∑

y∈Y
P(x, y) log

1

P(x|y)
= H(X, Y) − H(Y) (1.3)

where P(x, y) is the joint distribution of X and Y and P(x|y) the conditional distribution of X
given Y .

A measure for the correlation between two random variables X and Y distributed according

1



2 1. SECRET KEY AGREEMENT

to the probability distribution P(x, y) is given by the mutual information I(X, Y).

I(X, Y) =
∑

x∈X

∑

y∈Y
P(x, y) log

P(x, y)

P1(y)P2(y)

= H(X) − H(X|Y)

When we introduce a third random variable in the scenario the conditional mutual informa-

tion that gives us the amount of correlation between the two random variables X and Y given

the information of the third one is given by:

I(X, Y |Z) = H(X|Z) − H(X|Y, Z) (1.4)

=
∑

z∈Z
PZ(Z = z) · I(X, Y |Z = z) (1.5)

To summarize these results we want to give a graphical representation of the relations be-

tween the (conditional) entropy and the (conditional) mutual information. Therefore have a

look at figure 1.1 (a) where you can see a diagram for the bipartite case of the two alphabets

X and Y . When we expand this scenario to the tripartite case we can derive the relation-

(a) Bipartite case (b) Tripartite case with R(X, Y, Z) := I(X, Y) − I(X, Y |Z)

Figure 1.1: Graphical representation of the entropy, the conditional and the mutual informa-

tion

ship shown in figure 1.1 (b), where all arguments in R can be interchanged because of their

symmetry.

For further details we want to refer to appendix A at this point.

1.2 Motivation for secret-key agreement

It is an old problem that two honest parties, called in what follows Alice and Bob, want to

communicate secure messages in a real environment. The known methods like Secure Shell
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(SSH) or Pretty Good Privacy (PGP) are based on computational security, namely they are

secure against an eavesdropper, Eve, who is assumed to have limited computational capabili-

ties. The improvement of computational capabilities, and in particular the advent of quantum

computation, sheds light on the medium- or long-term applicability of these methods. Thus,

it is desirable to design alternative cryptographic protocols having a stronger form of secu-

rity, information-theoretic security. Contrary to the previous schemes, the security of these

protocols can be proven using concepts from Information Theory.

The first formulations in this field were done by Shannon [3] in 1949 who suggested to

encrypt a plaintext message M with a secret key S to the ciphertext C. This system is said to

be perfect secure if the ciphertext does not reveal any information about the plaintext or in

information theoretical writing: I(M,C) = 0.

This was based on a proposal by Vernam [4] where the honest parties use a pre-established

private key to encrypt and decrypt the binary message, by making a modulo 2 sum with this

key. More precisely, the emitter, say Alice, sums her message with the key, which is only

known by the honest parties, and sends the resulting string of bits to Bob via the insecure

channel. At the receiver side, Bob performs a second modulo 2 sum and obtains the message.

This scheme is known as the one-time pad because perfect security is possible only when

the key is used once. Moreover the key has to be at least as long as the message or in a more

precise way: H(S ) ≥ H(M).

As already stated, we do need a secret key to encrypt and decrypt a message to communicate

secretly between the honest parties Alice and Bob. Somehow, this is just a reformulation of

the initial problem, since now the main question is how to distribute the initial secret key in

a secure way. This defines the key-agreement problem.

1.3 The scenario

In the next lines, we introduce the standard key-agreement scenario considered throughout

this work. The two honest parties and the eavesdropper receive correlated symbols, denoted

by the random variables X, Y and Z, respectively, distributed according to the probability

distribution PXYZ. The goal of the honest parties is to map these symbols into a secret key,

which will later be used for secure information transmission via one-time pad. In order to do

that, Alice and Bob exchange information over an authenticated but insecure communication

channel. The channel is authenticated but insecure because Eve can receive the whole com-

munication, but cannot tamper it. A more general scenario is given by a completely insecure

channel where Eve can also modify and introduce messages. However, here we will not

consider this possibility as there are easy mechanisms to check the integrity of the messages.
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Thus we can introduce a model like shown in figure 1.2.

Figure 1.2: Communication model used in this thesis

An example of a probability distribution PXYZ is given in table 1.1. Here Alice and Bob have

a binary random variable X and Y , while Eve’s variable belongs to an alphabet of size equal

to three. Note that when Eve obtains the value 3, she knows for sure that Alice’s random

variable is equal to one and Bob’s to zero. Hence for this specific outcome, which occurs

with probability β, Alice and Bob have no secrecy. But if Eve gets Z = 1, 2, she does not

have perfect knowledge on Alice and Bob’s variables. This might open the possibility for

secret correlations between Alice and Bob that could be distilled into a secret key.

X

Y (Z)
0 1

0 (1) α (3) β

1 (2) γ
(1) δ

(2) ε

Table 1.1: Arbitrary distribution PXYZ. Condition α + β + γ + δ + ε = 1.

The one-time pad allows us to reduce the problem of information-theoretical secure com-

munication to the information-theoretical secure key agreement. So the question is if the

two honest parties are able to use independent realizations of a given distribution to obtain a

secret key.
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1.4 Unconditional secret key agreement

As mentioned above, the main goal for Alice and Bob is to transform the initial probabil-

ity distribution PXYZ, into a secret key, namely a list of perfectly correlated symbols about

which Eve has no information. In order to do that, they can apply local operations to their

symbols and exchange messages over the insecure channel. These protocols define the set

of local operations assisted by public communication, briefly denoted by LOPC. To get un-

conditional secrecy we have to show in information-theoretical terms that there is no or at

least asymptotically no correlation between the adversary and the secret key. Hence we aim

at finding a LOPC protocol transforming N realizations of the initial distribution PXYZ into a

new distribution arbitrarily close to M secret bits, defined as the tripartite probability distri-

bution S XYZ = S XYPZ , that is P
(N)

XYZ
−−−−→
LOPC

S
(M)

XYZ
, where S is given in table 1.2.

H
H

H
H

H
H

H
Y

X
0 1

0 1/2 0

1 0 1/2

Table 1.2: Distribution S between Alice and Bob for a secret bit

The secret key rate of the initial probability distribution corresponds to the rate for the opti-

mal protocol, that is, the maximum of M/N over all LOPC protocols. This was formulated

in a more rigorous way in [5] and [6].

Definition 1 The secret key rate of X and Y with respect to Z, denoted by S (X, Y ||Z), is the
maximum rate at which Alice and Bob can agree on a secret key S in such a way that the

amount of information that Eve obtains about S is arbitrarily small. In other words, it is the

maximal R such that for every ǫ > 0 and for all sufficiently large N there exists a protocol,

using public discussion over an insecure but authenticated channel, such that Alice and Bob

who receive XN = [X1, · · · , XN] and YN = [Y1, · · · , YN], respectively, compute the same key

S with probability at least 1 − ǫ satisfying

I(S ,CZN) ≤ ǫ (1.6)

H(S ) ≥ log |S | − ǫ (1.7)

1

N
H(S ) ≥ R − ǫ (1.8)

where C denotes the communication, i.e. the collection of all messages M, sent over the

channel and |S | denotes the alphabet of S .1

1All logarithms throughout this thesis are to the basis 2
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That means that: (1.6) the correlation (mutual information) between N copies of Eve’s ran-

dom variable, the communication C and the key S is arbitrary small, (1.7) the entropy of the

secret key is arbitrary close to its maximum, namely an uniform distribution and (1.8) the

rate is non-zero in the limit of large blocks.

Based on this definition it is hard to find the secret-key rate for a given distribution. Hence it

is very useful to establish more easily computable upper and lower bounds for this quantity.

It seems quite reasonable that the rate at which Alice and Bob agree on a secret bit cannot

be lower than their shared information degraded by the mutual information between Eve and

one of them. In other words the secret-key rate must be larger than what Eve knows about

one random variable of the honest parties.

max {I(X, Y) − I(X, Z), I(Y, X) − I(Y, Z)} ≤ S (X, Y ||Z) (1.9)

This bound is reachable using LOPC protocols where all the communication goes in one

direction, say from Alice to Bob [7] if max {I(X, Y) − I(X, Z), I(Y, X) − I(Y, Z)} = I(X, Y) −
I(X, Z). Indeed, Alice and Bob can first use error correction to eliminate their errors and

agree on a perfectly correlated list of symbols and then apply privacy amplification (see

also [8]) to the new list to obtain an unconditionally secure key. Privacy amplification is

a map of a K-bit string to L bits, where K > L, by universal hash functions. It is known

however that two-way communication protocols are more powerful than one-way, since it

was shown in [5] - and we will prove it in chapter 1.5 - that it is even possible to create a

positive secret-key rate in situations where I(X, Z) > I(X, Y) and I(Y, Z) > I(X, Y).

Furthermore it seems quite intuitive that the secret-key rate cannot exceed the mutual in-

formation between Alice and Bob because that is the total amount of information they share.

It cannot be larger either than the mutual information between the honest parties conditioned

on the eavesdropper. Thus, one has:

S (X, Y ||Z) ≤ min {I(X, Y), I(X, Y |Z)} (1.10)

But what happens if Eve performs any kind of local operation on her random variable? Then

she is able to change the conditional mutual information and hence we get a tighter bound on

the secret-key rate. This operation can be described through a channel characterized by the

conditional probability PZ |Z with Z being the input and Z being the output random variable.

Definition 2 Given a distribution PXYZ the intrinsic (conditional mutual) information is de-

fined as

I(X, Y ↓ Z) := inf
P
Z|Z















I(X, Y |Z) : PXYZ =
∑

zǫZ

PXYZ · PZ |Z















(1.11)
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This leads to a stronger upper bound on the secret-key rate

S (X, Y ||Z) ≤ I(X, Y ↓ Z) ≤ I(X, Y |Z) (1.12)

Another quantity to classify the correlations of Alice and Bob was introduced in [9] that is

the rate at which Alice and Bob can generate a distribution by public communication that is

at least as good as PXYZ.

Definition 3 Let PXYZ be the joint distribution of three discrete random variables X, Y and

Z. The information of formation of X and Y given Z, denoted by I f orm(X, Y |Z), is the infimum
of all numbers R ≥ 0 with the property that for all ε > 0 there exists N0 such that for all

N ≥ N0, there exists a protocol between Alice and Bob with communication C and achiev-

ing the following: Alice and Bob, both knowing the same random ⌊RN⌋-bit string S , can

finally compute X′ and Y ′, respectively, sucht that there exist random variables XN , YN and

ZN jointly distributed according to (PXYZ)
N (this is the distribution corresponding to n-fold

independent repetition of the random experiment PXYZ) and a channel PC|ZN sucht that

Prob
[

(X′, Y ′,C) = (XN , YN ,C)
]

≥ 1 − ε (1.13)

holds.

This shows that the synthesis of our distribution is somehow only depending on PN
XY

because

the communication C can be simulated by an Eve knowing the corresponding ZN . From this

we can also formalize the fact, that Eve does not gain any information by observing C.

It was also proven that the information of formation is lower bounded from the intrinsic

informtion. This means that the intrinsic information bounds the minimum number of secret

bits required to create the desired distribution. Hence we have for every distribution PXYZ

S (X, Y ||Z) ≤ I(X, Y ↓ Z) ≤ I f orm(X, Y |Z) (1.14)

We want to remark here that a distribution can be established by LOPC if and only if

I f orm(X, Y |Z) = 0 [10]. If I f orm(X, Y |Z) > 0, the distribution requires the use of secret corre-

lations for its generation.

Before concluding this section, we would like to discuss other possible bounds on the secret-

key rate. One may for instance consider how the secret-key rate is affected when Eve gets

some additional side information U from an oracle. This can be formulated as Z′ = [Z,U]

and would only affect equation (1.6) in the way that I(S ,CZ′N) ≤ ǫ. But this formulation is

already included in I(S ,CZN) ≤ ǫ and hence we can follow:

S (X, Y ||[Z,U]) ≤ S (X, Y ||Z) (1.15)
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Another interesting question is what happens if Alice or Bob perform local maps PX|X and

PY |Y . This can be described as the following: Let X, Y , Z, X and Y be random variables

jointly distributed like PXYZXY = PXYZ · PX|X · PY |Y . Then we can state due to the fact that the

secret-key rate is the maximum rate taken over all possible protocols between Alice and Bob

that

S (X, Y ||Z) ≥ S (X, Y ||Z) (1.16)

This shows us that Alice and Bob cannot increase their secrecy by applying any kind of local

operation which leads us to another interesting quantity the binarization of the alphabet of

the honest parties which is the reduction of one’s alphabet X or Y , respectively, to a binary

one BA or BB. It is shown in [6] and [1] that the restriction of the ranges: X → X̃ with

X̃ ≤X and Y → Ỹ with Ỹ ≤ Y does not increase the secret-key rate.

Lemma 4 Let X, Y and Z be random variables with ranges X , Y and Z and joint distri-

bution PXYZ. For X̃ ⊂ X and Ỹ ⊂ Y , we define a new random experiment with random

variables X̃ and Ỹ (with ranges X̃ and Ỹ , respectively). If Ω is the event that X ∈ X̃ and

Y ∈ Ỹ , then the joint distribution of X̃ and Ỹ with Z is defined as follows:

PX̃ỸZ(x, y, z) :=
PXYZ(x, y, z)

PXYZ[Ω]
(1.17)

for all (x, y, z) ∈ X̃ × Ỹ × Z. Then

S (X, Y ||Z) ≥ PXYZ[Ω] · S (X̃, Ỹ ||Z) (1.18)

This follows from the definition of the secret-key rate which is already the maximal rate for

key generation.

In the next section, we introduce the most commonly used key distillation protocol and then

discuss how it can be used for secret key distillation in a relevant scenario.

1.5 Protocol: Advantage distillation

Advantage distillation is an LOPC protocol for key agreement that uses two-way communi-

cation. It may allow distilling a key even in situations when standard one-way communica-

tion techniques fail [5,6]. Although initially presented in the binary case, the protocol works

for variables of arbitrary size. It works as follows: Alice locally generates a random variable

C of the same size d as X. Then, she take N realizations of X and computes the N values Mi

satisfying

C = Mi + Xi,
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where the sum is modulo d. The N variables Mi are then transmitted to Bob over the public

channel. Bob receives the bit-string Mi and performs the same sum with his corresponding

set of variables Yi:

Yi + Mi.

Bob will accept the codeword only if all these sums give the same result, D, which he keeps

as his new symbol.

We will now give an example showing how this protocol can distill a key from a probability

distribution where Eve’s information on Alice and Bob’s variables is larger than the correla-

tions between the honest parties. We will see how it enables mapping the initial probability

distribution into a new probability distribution where equation (1.9) is positive. Thus, the

honest parties can apply error correction and privacy amplification to the new distribution,

obtained after advantage distillation, and obtain an unconditional secure key.

Consider the situation in which the joint distribution is coming from a broadcasted signal

with random variable R and PR(0) = PR(1) = 1/2 as shown in the figure 1.3. This signal

arrives at Alice, Bob and Eve with different error probabilities PX|R(1, 0) = PX|R(0, 1) = ǫA/2,

PY |R(1, 0) = PY |R(0, 1) = ǫB/2 and PZ|R(1, 0) = PZ|R(0, 1) = ǫE/2 Moreover δA = 1 − ǫA,
δB = 1 − ǫB and δE = 1 − ǫE being the probabilities of a correct transmission.

Without loss of generality we can assume that ǫA = ǫB = ǫ and hence δA = δB = δ, i.e. Alice’s

and Bob’s channels are identical2. Hence all three parties have a different knowledge about

the transmitted bits and this is reflected by the probability distribution 1.3. In this scenario,

one can see that no one-way communication protocol enables secret-key distillation if Eve’s

error is smaller than Alice and Bob’s.

Figure 1.3: Model of the cascaded channels used in the broadcasting scenario

Let’s analyze how the initial distribution changes after application of the advantage distil-

2If e.g. ǫA < ǫB we can cascade another channel with error probability (ǫB − ǫA)/(1 − 2ǫA) to obtain ǫA = ǫB
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lation protocol previously described. After this protocol, the probability that Bob accepts a

message correctly is given by the fidelity F

F N = (δ2 + ǫ2)N (1.19)

and in the case of a false accepted message we obtain the disturbanceD

DN =
(

1 − (ǫ2 + δ2)
)N

(1.20)

Moreover we can say that Bob accepts a message in general with the probability

paccept = F N +DN (1.21)

and thus we can derive Bob’s overall error probability, getting:

βN =
DN

F N +DN
(1.22)

We are now interested in the conditional probability γN that Eve decides the wrong message

X

Y (Z)
0 1

0
(0) δF · F2
(1) (1 − δF ) · F2

(0) δD · D2
(1) (1 − δD) · D2

1
(0) (1 − δD) · D2
(1) δD · D2

(0) (1 − δF ) · F2
(1) δF · F2

Table 1.3: Resulting distribution after receiving the broadcasted signal

under the condition that Bob accepts the correct one. Therefore we introduce the probability

δF = P(Z = X|X = Y) that Eve makes a right decision given that Bob accepts the correct

one.

δF = δ
2δE + ǫ

2ǫE (1.23)

Thus we can derive the probability when Eve decides a wrong bit given that Bob accepts the

correct one P(Z , X|X = Y) as

1 − δF = δ2ǫE + ǫ2δE (1.24)

The other case can be described as, given that Bob accepts a wrong bit Eve can either

decide for the correct one (δD = P(Z = X|X , Y) = δǫǫE + ǫδδE) or the false one

(1 − δD = δǫδE + ǫδǫE). This leads us directly to table 1.3 which illustrates the probabilities

of a correct decision on Bob’s side (fidelity and disturbance) as well as the conditional prob-

abilities of Eve based on the outcome of Bob for each bit broadcasted.
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We can now conclude Eve’s error probability for the whole message as the following:

γN =
1

2
· 1

paccept
·

N
∑

i=N/2

(

N

i

)

(

δiF (1 − δF )N−i + δiD(1 − δD)N−i
)

(1.25)

≥ 1

2
· 1

paccept
·
(

N

N/2

)

(

δ
N/2

F (1 − δF )N/2 + δN/2D (1 − δD)N/2
)

(1.26)

As one can easily see δ
N/2

D (1 − δD)N/2 = (δǫ)N which is a very small value that we can also

neglect. Moreover when using the Stirling formula (see [6]):
(

N

N/2

)

≥ 1√
2πN
· 2N , we can

rewrite (1.26) as:

γN ≥
1

2
√
2πN

· 1

paccept
·
(

2
√

δF (1 − δF )
)N

(1.27)

For ǫ < 1/2 and with equalities (1.23) and (1.24) we can show that:

√

δF (1 − δF ) =
√

(1 − 2ǫ + ǫ2 − ǫE + 2ǫǫE)(ǫ2 − 2ǫǫE + ǫE)
≥ ǫ(1 − ǫ) (1.28)

which is equal for ǫE = 0 and maximal for 1/2. From equation (1.20) we can conclude

D = 2 · (ǫ − ǫ2). This leads us to the result:

γN >
1

2
√
2πN

· 1

paccept
· DN (1.29)

=
1

2
√
2πN

· βN (1.30)

This shows that Bob’s error decreases exponentially with the number of copies compared to

Eve’s.

We proof later that secret key agreement is only possible if

D
1 −D < 2

√

δF (1 − δF ) (1.31)

Now we have to show that with βN < γN the secret-key rate is positive. Therefore consider

the scenario that we want to construct the random variables X̃ and Ỹ from our XN and YN

random variables exchanged over the authenticated channel. Then it suffices to show that

I(X̃, Ỹ) − I(X̃, Z̃) = H(X̃ |Z̃) − H(X̃ |Ỹ) > 0 (1.32)

where Z̃ = [ZN ,V] with V being the collection of all messages over the public channel. Then

we define X̃ and Ỹ as follows: If Bob accepts X̃ = C and Ỹ = C′ and if he rejects publicly
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X̃ = Ỹ = ”re ject”. Given that Bob accepts Alice’s bit and given that βN = bN we can state

that:

H(C|C′) = h(βN) ≤ 2bN · log(1/bN) = 2bN · N · log(1/b) < γN (1.33)

for sufficiently large N and h(p) = −p log p − (1 − p) log(1 − p) being the binary entropy.

The first inequality in (1.33) is derived from −p log p ≥ −(1 − p) log(1 − p) for p ≤ 1/2 and

the second one from the Jensen’s inequality .

Eve’s side can be described as

H(C|Z̃) =
∑

z̃

PZ̃(z̃)H(C|Z̃ = z̃) = E[h(q(Z̃))] ≥ E[q(Z̃)] = γN (1.34)

where q(z̃) denotes the probability of Eve guessing C incorrectly with her optimal strategy,

i.e. q(z̃) ≤ 1/2 and h(q(z̃)) > q(z̃).

For Bob’s public rejection we have

H(X̃ |Ỹ) = H(X̃ |Z̃) = H(X̃ |V) = 0 (1.35)

Concluding this we get I(X̃, Ỹ) − I(X̃, Z̃) > 0 which proofs the information-theoretical secu-

rity of this protocol.

Now we proof that condition (1.31) leads to secret key agreement by showing that the con-

trary condition that means
D

1 −D ≥ 2
√

δF (1 − δF ) (1.36)

leads to non-distillability. Therefore we consider our distribution of table 1.3 where Alice

and Bob are independent and hence I(X, Y |Z) = 0 which is a sufficient condition for non-

distillability if

PXYZ(0, 0|z) · PXYZ(1, 1|z) = PXYZ(0, 1|z) · PXYZ(1, 0|z) (1.37)

For z = 0 (and z = 1 respectively) we obtain from the previous condition that

δF (1 − δF ) ·
F 2

4
= δD(1 − δD) ·

D2

4

By the definition of δD we see that δD = 1 − δD and this concludes the equality of (1.36).

It remains to show the inequality of (1.36). Herefore we assume that Eve performs the maps

PZ̃|Z(0, 0) = p, PZ̃ |Z(1, 0) = 1 − p, PZ̃|Z(1, 1) = q and PZ̃ |Z(0, 1) = 1 − q. It is easy to check

that this leads to the conditions D
1−D =

√

δ2F + (1 − δF )2 which is included in condition 1.36

and this concludes the proof.

The protocol explained here does not claim to be the most efficient one. It shall only il-

lustrate the mechanisms.



2 Bound information

2.1 Motivation

Given a probability distribution, it is not easy to check whether it is distillable since the com-

putation of the secret-key rate requires a maximization over all possible LOPC protocols.

Clearly, the positivity of the intrinsic information is a necessary condition for a probability

distribution to be distillable (see equation (1.12)). However, it is an open problem whether

this condition turns out to be sufficient. If this was the case, all probability distributions

that could not be created by LOPC would be distillable. On the other hand, the existence of

non-distillable probability distributions with positive intrinsic information would imply the

existence of an irreversible form of secret correlations, as (i) some sort of secrecy is needed

for the preparation of the distribution but (ii) this secrecy cannot be distilled into a secret key.

This irreversible form of secret correlations is known as bound information.

A similar phenomenon was observed in quantum physics, concerning the problem of dis-

tilling pure-state entanglement from an entangled quantum state. There, it was shown that

the distillation of an entangled quantum state into a maximally entangled state is not always

possible. This irreversible form of entanglement is known as bound entanglement1.

The strong analogies between entanglement distillation and secret-key agreement motivated

the conjecture that there may also exist probability distributions containing secret correla-

tions, in the sense that its formation by LOPC is impossible, that cannot be used for secret

key agreement. These distributions would be the classical cryptographic analog of bound

entangled states. The relation between bound entanglement and bound information has been

discussed in previous articles and is beyond the scope of this thesis. We refer to references [1]

and [11] for details.

Before proceeding, let us precisely define bound information.

Definition 5 A distribution contains bound information when (i) its formation by LOPC is

impossible and (ii) no secret key can be distilled out of it by LOPC.

1Entanglement is the term usually employed to name quantum correlations. We would like to refer to appendix

B for an introduction to quantum physics

13
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This definition is general and applies to scenarios with more than two honest parties, as it

will be discussed below. However, in this thesis we mainly consider the standard case of two

honest parties plus the eavesdropper. Then, the existence of bound information is equivalent

to finding a probability distribution such that:

S (X, Y ||Z) = 0 I f orm(X, Y |Z) > 0 (2.1)

The first condition means that the distribution is useless for key distribution, while the second

one implies that the formation of the distribution by LOPC is impossible. This last condition

can also be replaced by I(X, Y ↓ Z) > 0, since I(X, Y ↓ Z) > 0 if and only if I f orm(X, Y |Z) > 0.

2.2 Example of conjectured bound information

We give in what follows an example of a probability distribution which is conjectured to

have bound information. The distribution was presented in [1] and was constructed from a

bound entangled quantum state. The distribution reads (to be normalized):

X

Y (Z)
1 2 3

1 (0) 2 (4) 5-α (3) α

2 (1) α (0) 2 (5) 5-α

3 (6) 5-α (2) α (0) 2

Table 2.1: Distribution PXYZ coming from example 3 in [1]

In the following we will show that distribution PXYZ is distillable, non-distillable and has

conjectured bound information for different ranges of α [1].

Initially we calculate the conditional mutual information of this distribution, having

I(X, Y |Z) = PZ(0) · I(X, Y |Z = 0) +

6
∑

z=1

PZ(z) · I(X, Y |Z = z)

=

∑

x,y PXYZ(x, y, 0)
∑

x,y,z PXYZ(x, y, z)
·

3
∑

i=1

PXYZ(i, i, 0)
∑

x,y PXYZ(x, y, 0)
log

∑

xy PXYZ(x, y, 0)

PXYZ(i, i, 0)
+ 0

=
6

∑

x,y,z PXYZ(x, y, z)
log 3 (2.2)

> 0 (2.3)

Our first goal is to see when the distribution has positive intrinsic information. Therefore we
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Figure 2.1: Map on Eve’s side to reduce the secret key rate

consider the maps by Eve of figure 2.1: she maps all values of her alphabet except zero onto

themselves with probability p or p′, depending on their probability of occurrence, given in

PXYZ, and onto zero with probability (1 − p) and (1 − p′). The conditions in figure 2.1 result

from the fact that all PXYZ(x, y, z = 0) = 2 in table 2.1.

Thus we end in a distribution that we can split in PXYZ1 and PXYZ2 like shown in table 2.2:

PXYZ =

X

Y (Z)
1 2 3

1 (0) 2 (0) 2 (0) 2

2 (0) 2 (0) 2 (0) 2

3 (0) 2 (0) 2 (0) 2

+

X

Y (Z)
1 2 3

1 (0) 0 (4) q′ (3) q

2 (1) q (0) 0 (5) q′

3 (6) q′ (2) q (0) 0

Table 2.2: PXYZ1 and PXYZ2 after the map of Eve

One can see that the intrinsic information of these two distributions PXYZ1 and PXYZ2, and

thus also for our distribution PXYZ, is zero. So we can state:

S (X, Y ||Z) ≤ I(X, Y ↓ Z) = I(X, Y |Z) = 0 (2.4)

This is however only possible for 2 ≤ α ≤ 3 because only then all values PXYZ(x, y, z) ≥ 2

and hence can be mapped to PXYZ(x, y, z = 0) = 2. What happens for 0 < α < 2?

In this case, we consider a generic map by Eve Z → Z, as shown in 2.3. Here she maps

every value of her alphabet onto arbitrary symbols labeled by i.

Applying these maps leads us to the distribution PXYZ of table 2.4 which shows us the slice

of one specific i.
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channel probability restriction

PZ|Z(i, 0) = ai
∑

i ai = 1

PZ|Z(i, 1) = bi
∑

i bi = 1

PZ |Z(i, 2) = ci
∑

i ci = 1

PZ |Z(i, 3) = αi

∑

i αi = 1

PZ |Z(i, 4) = βi
∑

i βi = 1

PZ|Z(i, 5) = γi
∑

i γi = 1

PZ |Z(i, 6) = δi
∑

i δi = 1

Table 2.3: Generalized maps for the intrinsic information with 0 < i < 6

Z = i X

Y
1 2 3

1 2 · ai (5 − α) · βi α · αi

2 α · bi 2 · ai (5 − α) · γi
3 (5 − α) · δi α · ci 2 · ai

Table 2.4: Distribution PXYZ obtained from a general map of PXYZ

The question we will follow now is if distribution PXYZ can be transformed in an indepen-

dent one for the range 0 < α < 2. Taking into account the condition of independency of

two random variables and by linear combination and substituting α, β, γ and δ we end up in

a distribution only depending on ai, bi and ci presented in table 2.5.

X

Y (Z)
1 2 3

1 2ai (5 − α) (2ai)
2

α(5−α)bi α
(2ai)

3

α3bici

2 αbi 2ai (5 − α) (2ai)
2

α(5−α)ci
3 (5 − α) α2bici

(5−α)2ai αci 2ai

Table 2.5: Distribution only depending on ai, bi and ci under the condition that X and Y are

independent (to be normalized)

Nowwe will derive a contradiction in this distribution from which we can follow that it is not

possible to make the random variables X and Y independent and concluding I(X, Y ↓ Z) > 0

for α < 2.

Therefore we compare the entries X = 3 and Y = 1 in tables 2.1 and 2.5 and conclude
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the following inequality:

1 ≥
∑

i

(

2

α

)3
a3
i

bici
(2.5)

Without loss of generality we can state the
∑

i

a3
i

bici
= 1 if ai ≡ bi ≡ ci. Then inequality (2.5)

is satisfied for α ≥ 2 which equivalent to the case prooven above. For ai . bi . ci we can

show that
∑

i

a3
i

bici
> 1 following an analogy given in [1] and then the lower bound for α is

even bigger. That means Eve cannot map our distribution to a uniform one for α < 2 and

concluding I(X, Y ↓ Z) > 0.

Now we introduce a possible protocol which shows that the secret key rate is positive

for 0 ≤ α < 1. Therefore Alice and Bob binarize their sets and only accept the values

X, Y ∈ {1, 3} and obtain the following distribution:

X

Y (Z)
1 3

1 (0) 2 (3) α

3 (6) 5-α (0) 2

Table 2.6: Binarization of the distribution PXYZ from 2.1

As we know it is sufficient for the advantage distillation protocol to show that Alice and

Bobs’ error probability is lower than 1/2. In this case by the usage of many copies (N ≫ 0)

the error probability tends to zero and the honest parties end up in a probability distribu-

tion having only non-zero values at X = Y . To show this we consider the disturbance

D = PXYZ(1, 3, z) + PXYZ(3, 1, z):

βN =
DN

DN + F N

N≫0−−−→



















0 forD < 1/2

1 forD > 1/2
(2.6)

If we also manage to distribute P(X = Y |Z) uniformly, the secrecy becomes obvious because

that means whenever Eve obtains one value she is not able to distinguish whether Alice and

Bob both have a one or a three.

This is achieved if Alice and Bob perform the local maps PX|X(1, 0) = PX|Y(0, 1) =
5−2α
14−2α

and leave it otherwise. This leads to the distribution of table 2.7.

One can see the uniform distribution between (X, Y) = (1, 1) and (3, 3) and with α < 1 we

can show that P(X = Y) > 1/2. Then applying the advantage distillation protocol leads to a

positive secret-key rate.
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X

Y (Z)
1 3

1
(0) 2 · 9

14−2α
(6) (5 − α) · 9

14−2α ·
5−2α
14−2α

(0) 2 · 2 · 5−2α
14−2α

(6) (5 − α) ·
(

5−2α
14−2α

)2

(3) α

3 (6) (5 − α) ·
(

9
14−2α

)2 (0) 2 · 9
14−2α

(6) (5 − α) · 9
14−2α ·

5−2α
14−2α

Table 2.7: Maps of Alice and Bob to exclude Eve

For α > 1 this protocol cannot be applied and there has not been found any other that leads

to positive secret-key rate in this range.

The results obtained for this example are summarized and illustrated in figure 2.2 where

one can also see the strong relation from the classical and the quantum world.

Figure 2.2: Overview over the ranges of separability/entanglement and distillability/non-

distillability

2.3 Multipartite bound information and activation

The example examined in chapter 2.2 showed that there exists a range for the distribution

where one cannot say certainly that secret key-agreement is possible. The existence of

bound information for this range could only be conjectured. Further investigations ( [10,12])

showed that the existence of bound information can be proven in the multipartite scenario,

where the number of honest parties is larger than two.
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The first example of a tripartite distribution containing bound information was presented

in [10] and is shown in table 2.8.

A B C E P1(A,B,C,E)

0 0 0 0 1/6

0 0 1 1 1/6

0 1 0 2 1/6

1 0 1 3 1/6

1 1 0 4 1/6

1 1 1 0 1/6

Table 2.8: Distribution for a tripartite scenario

In the following we summarize the proof of the existence of bound information for this dis-

tribution. This proof exploits the connection between the secrecy properties of the initial

distribution and those of the bipartite distributions obtained by splitting the parties into two

groups, where all the parties in each group are considered as a single party.

First, assume that two of the N > 2 honest parties, denoted by Ai and A j are able to distill

a secret key in the multipartite scenario. Then, the same holds for all bipartite splittings for

which these two parties belong to different groups. Indeed, they should simply follow the

same protocol as in the multipartite scenario (which, however, is not necessarily optimal for

secret-key generation in the corresponding bipartite scenario).

This means that the intrinsic information has to be positive for all bipartite splittings of the

parties for which Ai and A j are separated. On the other hand, assume that the correlations in

the multipartite scenario can be generated by LOPC. Then, the same is true for all bipartite

distributions obtained from it. Again, for each bipartite splitting, the parties should simply

apply the same LOPC protocol for the formation as in the multipartite case. Consequently,

the intrinsic information has to be zero for all these bipartite distributions.

Let us now apply all these arguments to the probability distribution P1 of table 2.8. Con-

sider first the bipartition AB−C, where A and B are together. We have that I(AB;C|E = e) =

0∀e ∈ {1, ..., 4} so we only have to consider the case of e = 0 which is represented in the

distribution P2 given in table 2.9.

Here P2(a, b, c, e) = P1(a, b, c|e = 0) = P1(a,b,c,e)
∑

a,b,c P1(a,b,c,e=0)
. The conditional mutual information

is calculated as I(AB;C|E) = 1
3
. Now Eve performs the following maps: 1 → 0 and 4 → 0

with a remaining partial distribution P3:
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A B C E P2(A,B,C,E)

0 0 0 0 1/2

1 1 1 0 1/2

Table 2.9: Distribution P2 showing the part with positive conditional mutual information of

P1

A B C E P3(A,B,C,E)

0 0 0 0 1/4

0 0 1 0 1/4

1 1 0 0 1/4

1 1 1 0 1/4

Table 2.10: Distribution P3 after Eve’s map

Now we obtain for the intrinsic information:

I(AB;C ↓ E) = 1

3
·
(

2 · 1
2
log2 2 + 2 ·

1

2
log2 2 − 4 ·

1

4
log2 4

)

= 0 (2.7)

Note that the same results hold for AC − B because of symmetry. Therefore, none of the

parties is able to distill a key. Indeed if this was the case, the intrinsic information could not

be zero for both the AB −C and AC − B splittings.

If we now consider the last bipartition, where B and C are together, the resulting probability

distribution becomes distillable. Indeed, it is enough for the single BC party to announce

those cases where their symbols coincide. This leads us, with probability 1/3, to distribution

P4 in table 2.11.

A BC B=C E P4(A,B,C,E)

0 00 1 0 1/6

0 01 0 1 1/6

0 10 0 2 1/6

1 01 0 3 1/6

1 10 0 4 1/6

1 11 1 0 1/6

Table 2.11: Distribution P4 obtained for those cases where B = C
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Now, the resulting probability distribution is precisely equal to a perfect secret bit, as Al-

ice and Bob-Charlie’s symbols are perfectly correlated and Eve has no information at all.

Therefore, the secret-key rate for the initial A − BC distribution is at least equal to 1/3. But

this is precisely equal to the conditional mutual information, so we have that the mutual

information, the intrinsic information and the secret-key rate coincide and are

I(A; BC|E) = I(A; BC ↓ E) = 1

3

As we have positive intrinsic information for one of the bipartite splittings, the LOPC gen-

eration of P1 by the three honest parties is impossible. However, none of the parties is able

to distill this secrecy into a secret key. Hence following the definition, we have found bound

information for distribution P1. Moreover this protocol shows a way to activate the secret

correlations in the distribution, since this secrecy become distillable when B and C are to-

gether.
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3 A non-distillability criterion

The examples that have conjectured (chapter 2.2) and provable multipartite bound infor-

mation (chapter 2.3) have been derived from quantum states having a very similar charac-

terization. However, the existence of bipartite bound information still remains open. As

mentioned, the main difficulty comes from the fact that one has to prove that no LOPC pro-

tocol can distill a key from a given probability distribution. In the quantum case, this was

possible because there exists an easily computable criterion for non-distillability, namely the

positivity of partial transposition (see appendix B.3). However, in the classical cryptographic

case, we lack such a simple criterion.

The first step in this direction was provided in [13]. There, a possible criterion for detecting

the non-distillability of a given probability distribution was proposed. Potentially, it could

detect the presence of bound information. Therefore, the purpose of this work is to apply the

criterion to some examples of probability distribution with conjectured bound information

and see how it performs. The main hope was to prove bound information, but, unfortunately,

this has not been the case. Actually, as we discussed later, it is also possible that the criterion

is useless for detecting bound information.

In this chapter, we first present the concept of secret-bit fraction in Section 3.1, which plays

a key role in all what follows, and then discuss in Section 3.2 the non-distillability crite-

rion proposed in [13]. Later, we will apply the criterion to some candidates of probability

distributions having conjectured bipartite bound information.

3.1 General ideas

As mentioned, to derive the criterion we first need to introduce the concept of secret-bit

fraction.

Definition 6 Given a distribution PABE.The secret bit fraction is given by:

λ [PABE] = 2

∑

emin{PABE(0, 0, e), PABE(1, 1, e)}
∑

a,b,e PABE(a, b, e)
(3.1)

23
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and the maximal extractable secret bit fraction is calculated by:

Λ [PABE] = sup
MA,NB

λ [MANBPABE] (3.2)

over all linear mapsMA and NB acting on the spaces HA and HB respectively in the way:

MA : HA → BA and NB : HB → BB where B denotes the binary output space of each

alphabet.

The secret bit fraction represents the minimal part of a distribution where A and B share the

same binary output value. The denominator in equation (3.1) ensures the normalization of

the distribution.

The range of the maximal extractable secret bit fraction is given by Λ ∈ [1
2
, 1] where

1/2 is related to the case of uniformly distributed parties A and B, means PABE(a, b, e) =
1
4
∀(a, b) ∈ {0, 1}. This is related to the worst case because it means that the honest par-

ties are independent and hence share no (secret) correlations. The best scenario is given by

PABE(0, 0, e) = PABE(1, 1, e) = 1/2. Then the secret bit fraction will give the value one.

It was also shown in [14] that a secret bit fraction bigger than 1/2 is always related to a

positive secret key rate or, in other words, any candidate for bound information should have

maximum secret bit fraction equal to 1/2.

Another property that this criterion makes use of is that every linear mapM : H1⊗H2 →H3

with positive coefficients can be split like:

M = UM′ (3.3)

with

- M′ : H1 →H3 ⊗H2

- U : (H3 ⊗H2) ⊗H2 →H3 whereUy3
x3x2y2 = δ

y3
x3δx2y2

Where upper indices are outputs and lower indices are inputs and the number indicates the

corresponding space. What U does is to compare the inputs x2 and y2 from H2 and only if

they are the same it passes the input x3 belonging to H3 and passes it to the output y3, while

M′ makes a map from x1 to x3 and x2, which are both used inU.

Figure 3.1 shows our usage of this property: We take two distributions with the spaces HA

and HB, respectively, and HE and HK which are of no importance in this consideration.

Now we apply each map as described in equation (3.3) on either space HA or space HB. We

can do the following assignments: H1 ≡HA(B) ⊗BA(B), H2 ≡HA(B) and H3 ≡ BA(B)

Summarizing this: we have two input distributionsGABE and QABK where we apply the maps

MA and NB on each alphabet. These maps are each split in the operations defined by the

map U that compares the two input alphabets and passes the binary aphabet and mapM′

which performs an arithmetic operation to calculate the binary output.
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Figure 3.1: Data flow diagram of the mapsMA and NB

3.2 The criterion

Having introduced the previous concept, we are in position of presenting the criterion for

non-distillability. The idea is to consider two distributions - the one, denoted by GABE, for

which the presence of bound information has been conjectured and an arbitrary second prob-

ability distribution,QABE′ . Then we study the secret bit fraction of QABE′ alone and in combi-

nation with the conjectured bound information distribution. One can then show that if GABE

does not improve the secrecy of any arbitrary distribution, then it cannot be used for secret-

key agreement, S (X, Y ||Z) = 0, and, thus, has bound information. An important aspect of the

criterion is that these conditions can be mapped into a linear programming problem, which

makes its numerical optimization feasible.

Let us now introduce the criterion. As stated in the previous chapter we know that a dis-

tribution is distillable if its maximal extractable secret bit fraction is bigger than 1/2. From

that we can derive the following two conditions:

Λ [QABE′] ≤ λ0 (3.4)

λ [UAUBQABE′ ⊗GABE] > λ0 (3.5)

That is, if a distribution GABE is distillable, there exists another distribution QABE′ , with

secret-bit fraction smaller than λ0 (3.4), such that its secret bit fraction is increased when

combined with GABE, see equation (3.5). Then, the distribution GABE is said to activate the

distribution QABE′ .



26 3. A NON-DISTILLABILITY CRITERION

To proof this we have to know that the distribution GABE is (secret-key) distillable if there

exists n, such that Λ[G⊗n
ABE

] > λ0 for each λ0 ∈ [1/2, 1). If we consider the mapsMA and NB

according to equation (3.3) we can define QABE′ =M′
AN ′BG⊗(n−1)ABE

. Because Λ is defined by

an optimization (see (3.2)) the following inequality holds:

Λ
[

G
⊗(n−1)
ABE

]

≥ Λ
[

M′
AN ′BG⊗(n−1)ABE

]

= Λ [QABE′] (3.6)

By the definition of n we know that Λ
[

G
⊗(n−1)
ABE

]

≤ λ0 which concludes inequality (3.4). The

properties of the maps show that

UAUBQABE′ ⊗GABE =MANBG
⊗n
ABE (3.7)

and we know that λ
[

MANBG
⊗n
ABE

]

> λ0 which concludes inequality (3.5). This implies not

only that the distribution GABE activates the distribution QABE′ , but moreover it activates it-

self.

Now, the aim of the criterion is to show that no such a distribution can exist, which can

be seen as an optimization problem. The problem is that Eve’s alphabet E′ is unbounded

which would lead to an endless search. However, as shown in [13], it is possible to (i)

bound Eve’s alphabet to a finite alphabet and (ii) map the optimization problem into a lin-

ear programming instance. These two properties make the optimization problem tractable

using standard numerical techniques. Moreover in the following we only consider the case

λ0 = 1/2 that belongs to minimal distillability.

At the same time we have to check all possible pairs of maps (Mi
A
,N i

B
) : i = 1, · · · ,M that

may improve the maximal extractable secret-bit fraction of QABE′ above λ0 which would vi-

olate equation (3.4).

For the linearization of equation (3.4) and (3.5) we rewrite them as

4
∑

e′

min
a∈{0,1}

{[

Mi
AN i

BQABE′

]

(a, a, e′)
}

−
∑

a,b,e′

[

Mi
AN i

BQABE′

]

(a, b, e′) ≤ 0 (3.8)

4
∑

e′,e

min
a∈{0,1}

{[

UAUBQABE′ ⊗GABE

]

(a, a, e′, e)
}

−
∑

a,b,e′,e

[

UAUBQABE′ ⊗GABE

]

(a, b, e′, e) > 0
(3.9)
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Let us now define the dimension of Eve in GABE as d (e = 1, ...d) and introduce the new

functions:

si(e
′) =

{

0 if
∑

a(−1)a[Mi
A
N i

B
QABE′](a, a, e

′) < 0

1 if
∑

a(−1)a[Mi
A
N i

B
QABE′](a, a, e

′) > 0
(3.10)

re(e
′) =

{

0 if
∑

a(−1)a[UAUBQABE′ ⊗GABE](a, a, e
′, e) < 0

1 if
∑

a(−1)a[UAUBQABE′ ⊗GABE](a, a, e
′, e) > 0

(3.11)

For clarification one may have a closer look at the specific example re(e
′) = 0. Then

[UAUBQABE′ ⊗GABE](0, 0, e
′, e) < [UAUBQABE′ ⊗GABE](1, 1, e

′, e)

which is equal to say that the distribution has the smaller value with a = 0. This is directly re-

lated to re(e
′) = 0 as stated above. Therewith we can replace the min function by substituting

a with si(e
′) in equation (3.8) and with re(e

′) in equation (3.9). This gives us

4
∑

e′

[

Mi
AN i

BQABE′

]

(si(e
′), si(e

′), e′) −
∑

a,b,e′

[

Mi
AN i

BQABE′

]

(a, b, e′) ≤ 0 (3.12)

and

4
∑

e′,e

[

UAUBQABE′ ⊗GABE

]

(re(e
′), re(e

′), e′, e)−
∑

a,b,e′,e

[

UAUBQABE′ ⊗GABE

]

(a, b, e′, e) > 0
(3.13)

respectively. Additionally we define the vector k(e′) like the following:

k(e′) = [r0(e
′), r1(e

′), ..., rd(e
′), s1(e

′), ..., sM(e
′)] (3.14)

and rewrite the distribution QABE′ like in table 3.1. Here one can see that several of the

possible infinite outcomes of E′ end up in the same vector k j of the alphabet j = 1, .., k with

the dimension k = 2d+M . If we now merge all coefficients with the same k j, like shown in

equation (3.15) we will get our new finite i.e. bounded distribution QABK.

QABK(a, b, k j) =
∑

e′:k(e′)=k j

QABE′(a, b, e
′) (3.15)

Finally we have to adjust our summations in equations (3.12) and (3.13) from e′ to the new

variable k and conclude the equations for the algorithm:

∑

k

(

4 ·
[

Mi
AN i

BQABK

]

(kd+i, kd+i, k) −
∑

a,b

[

Mi
AN i

BQABK

]

(a, b, k)

)

≤ 0 (3.16)

∑

k,e

(

4 ·
[

UAUBQABK ⊗GABE

]

(ke, ke, k, e)−

∑

a,b

[

UAUBQABK ⊗GABE

]

(a, b, k, e)

)

> 0

(3.17)
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QABE′ r0(e
′) r1(e

′) · · · rd(e
′) s1(e

′) · · · sM(e
′) k j

qab0 0 0 · · · 0 0 · · · 0

qab1 0 1 · · · 0 1 · · · 0 → k0

...
...

. . .
...

...

qabm 0 0 · · · 1 0 · · · 0

qabn 0 1 · · · 0 1 · · · 0 → k0

qabo 1 0 · · · 1 0 · · · 0
...

...
. . .

...

Table 3.1: Relation between distribution QABE′ and new variable k (illustrative)

For this transformation we still have to take into account the constraints coming from equa-

tions (3.10) and (3.11). Adjusted to our new notation we get:

∑

a

(−1)a[Mi
AN i

BQABK](kd+i ⊕ a, kd+i ⊕ a, k) < 0 (3.18)

∑

a

(−1)a[UAUBQABK ⊗GABE](ke ⊕ a, ke ⊕ a, k, e) < 0 (3.19)

Let me refer to chapter 4.1 for another analysis of this set of equations.

The aim as mentioned above is to find the distribution QABK by a linear programming such

that we maximize equation (3.17) and also fulfill equations (3.16), (3.18) and (3.19). Fur-

thermore we have the constraints from probability theory that QABK > 0 and
∑

abk QABK = 1.

If our maximization returns zero we can conclude that the distribution GABE does not ac-

tivate any arbitrary distribution (including itself!) and hence its secret key rate is equal to

zero. Now, if one is able to show that GABE has also positive intrinsic information, the exis-

tence of bound information can be established.

Remark If the maximization returns a positive value we cannot state anything because there

might always be the case that the specific pairs of maps (Mi
A
,N i

B
) that have to be choosen in

advance and show undistillability, were missing in the optimization.



4 Implementation and optimization

The implementation of the criterion explained in the previous chapter was done inMATLAB
c©

aiming for the use of its internal linprog algorithm. This function is a linear programming

algorithm that is defined by the formulation

max
q

f (q) : Aineq · q ≤ bineq

Aeq · q = beq

lb ≤ q ≤ ub

where capital letters represent a matrix and small letters a vector. Moreover lb and ub define

bounds on the coefficients of vector q.

4.1 Analysis and implementation of the tool

The goal as already mentioned is to find the maximum over the distribution QABK which

needs to be fit to the vector q.

But first we consider the implementation of this distribution and how we programmed the

maps. The distribution must be of three dimensions where the alphabets HA and HB must

be twice the size of the given distributionGABE due to the binarization done by the mapsMA

and NB. The approach was to write Alice and Bob’s alphabet on the y- and x-axis, respec-

tively, according to the graphical representation of the distributions given in this thesis. Eve

is represented by the z-axis. That produces a three dimensional matrix where each slice for

Z = z shows a distribution over Alice’s and Bob’s alphabet.

We want to emphasize at this point that all coefficients are real and we do not have to care

about complex numbers.

So we can create a two dimensional matrix for each value of Eve in the way shown in table

4.1 where dA = dim(HA) and dB = dim(HB) are the corresponding dimensions and α and β

the binary outputs of the maps.

One can think of QABK(a, b, k) ≡ Q
αβ

ABK
(α, β, a, b, k) to emphasize the binary output values.

Hence we rewrite equations (3.17), (3.16), (3.18) and (3.19) following this new notation.

29
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β ∈ {0, 1} 0 1

b ∈HB 0 · · · db 0 · · · db

α ∈ {0, 1} a ∈HA

0

0
...

da

QABK

1

0
...

da

Table 4.1: QABK arrangement for the use in the program

4.1.1 Combination of both distributions

max
QABK

∑

k,e

(

4 ·
∑

a,b

[

UAUBQ
αβ

ABK
⊗GABE

]

(ke, ke, a, b, k, e)

−
∑

α,β,a,b

[

UAUBQ
αβ

ABK
⊗GABE

]

(α, β, a, b, k, e)

)

= 0

(4.1)

Equation (4.1) takes each specific plane e in GABE and plane k in Q
αβ

ABK
and makes a product

between all values a and b. Therefore we take the corresponding quarter of Q
αβ

ABK
character-

ized by α and β (see table 4.1) and multiply it with GABE. Finally we make the sum over the

a and b values to get the probability.

The corresponding quarter of Q
αβ

ABK
for the first summand is depending on the value ke that

is deduced from the e-th coefficient in k. The second summand takes consecutively all parts,

i.e. for (α, β) = (0, 0) then (0,1), (1,0) and (1,1).

Thus we can say that every quarter section in Q
αβ

ABK
will be substracted by its correspond-

ing values inGABE. Moreover due to the tensor product we have to substract the sum over all

e for each corresponding (a, b)-pair as given in figure 4.1 line 24-27.

How do we include the first summand? We know that we only have to care about the parts

(α, β) = (0, 0) or (1, 1) which depend on ke. So we have to find for each k and e whether

ke = 0 or 1, then remember those indices (figure 4.1, line 15-18) and add the corresponding

range (figure 4.1, line 24 and 27).

Finally we reshape the matrix to the vector to introduce it in the linear programming which

is going to find the maximal values for the distribution Q
αβ

ABK
.
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Figure 4.1: Code implementation of equation (4.1)

4.1.2 Constraint on secret-bit fraction of Q
αβ

ABK

∑

k

(

4 ·
∑

a,b

[

Mi
AN i

BQ
αβ

ABK

]

(kd+i, kd+i, a, b, k)

−
∑

α,β,a,b

[

Mi
AN i

BQ
αβ

ABK

]

(α, β, a, b, k)

)

< 0

(4.2)

Equation (4.2) is the first constraint on our optimized distribution. Here we have nearly an

equivalent formalism to equation (4.1) except for the tensor product with GABE. The first

summand depends in this case on the (d + i)-th coefficient in k that is related to the i-th pair

of mapsMA andNB.

We will discuss the implementation of the maps in chapter 4.5. So far let us assume that

they are predefined matrices of the size 2 · dA × 2 · dB and stored in a structure data type

with corresponding matrices to each binary output combination denoted by mapped2_00,

mapped2_01, etc.

A linear map is characterized by a product of the mapping coefficient with the value. Hence

we have to arrange the maps according to the part (α, β) = (0, 0) or (1, 1) which is checked
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in figure 4.2, line 51.

The rest is a straight forward imlementation of equation (4.2) that is closed by the reshape

of the matrix to the vector notation. Finally we store everything in the matrix A_ineq which

contains all constraints on the optimized vector.

Figure 4.2: Code implementation of equation (4.2)

4.1.3 Additional constraint 1

∑

α

(−1)α
∑

a,b

[

Mi
AN i

BQ
αβ

ABK

]

(kd+i ⊕ α, kd+i ⊕ α, a, b, k) < 0 (4.3)

Equation (4.3) initially represents equation (3.10) that assures the min function condition

from equation (3.8). Here we are only looking at the parts (α, β) = (0, 0) or (1,1). Hence it is

enough to consider only one binary value, α in this case. Moreover we depend on the value

kd+i like in equation (4.2). The implementation of equation (4.3) is presented in figure 4.3,

line 92 and 93.

After that we adapt the matrix (MNQ_ineq) to our A_ineq matrix which contains all the

constraints for the linear programming. This is done by adding zeros before and after the

reshaped vector of MNQ_ineq as seen in figure 4.3, line 95 and 97.

Finally this condition has to be fulfilled for every i = 1, · · · ,M (in the code of figure 4.3

denoted as m) and every k = 1, · · · , 2d+M.
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Figure 4.3: Code implementation of equation (4.3)

4.1.4 Additional constraint 2
∑

α

(−1)α
∑

a,b

[

UAUBQ
αβ

ABK
⊗GABE

]

(ke ⊕ α, ke ⊕ α, k, e) < 0 (4.4)

Equation (4.4) has the same functionality for equation (3.9) as (4.3) for (3.8) and is a straight

forward implementation as done in the previous case.

The implementation of equation (4.4) is shown in figure 4.4, line 77 and 78 and has to

be adapted to the condition matrix A_ineq, line 80 and 82.

In this case we have to consider all combinations of e = 1, · · · , d and k = 1, · · · , 2d+M.

Figure 4.4: Code implementation of equation (4.4)

4.1.5 Remaining conditions and start of the optimization

Finally we have to add the bounds of probability theory that the sum over all values must be

equal one and that all values are positive like shown in figure 4.5. Moreover we create the

inequality vector b_ineq and then start the optimization (figure 4.6).
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Figure 4.5: Code implementation of the bounds from probability theory

Figure 4.6: Start of the linear programming

4.2 Implementation of the mapsMA and NB

As we know from equation (3.2) the mapsMA and NB perform a map to a binary alphabet

that is needed to calculate the secret-bit fraction. That means we perform a binarization of

our distribution QABK to α ∈ BA and β ∈ BB.

If we consider each alphabet separately we can implement the maps as shown in table 4.2.

There l is the probability of mapping a = 0 to α = 0, m the probability of a = 1 → α = 0

etc. o maps a = 0→ α = 1 and so on. Following this notation we can now create a mapping

α: 0 1

a: 0 1 · · · dA 0 1 · · · dA

l m · · · n o · · ·

Table 4.2: General view of a binarization map acting on one alphabet.

vector for each alphabet and by a simple vector multiplication we get the mapping matrix

that is used in the previous sections taking into account which alphabet is mapped to what

binary output value.
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4.3 Examined distributions

Now we introduce the distributions that we have examined with this tool. One is taken

from [15] and is represented in table 4.3. Another one that was detected through investiga-

tions and also seemed quite promising is shown in table 4.4.

X

Y (Z)
0 1

0

(1) (1 − δ)/4 + δ/2
(2) (1 − δ)/8 + δ/2
(3) δ/2

(4) δ/2

(1) (1 − δ)/8
(2) (1 − δ)/8

1
(3) (1 − δ)/8
(4) (1 − δ)/8

(1) δ/2

(2) δ/2

(3) (1 − δ)/8 + δ/2
(4) (1 − δ)/4 + δ/2

Table 4.3: Distribution D1 to show bound information

Both are good candidates to find bound information because depending on the particular

parameter, research showed that there are different limits for S (X, Y ||Z) > 0 and I f orm(X, Y |Z)
respectively I(X, Y ↓ Z) > 0.

So for distribution D1 one detected that the secret key rate is positive for δ & 0.093 but

the intrinsic information is positive for the whole range of δ ∈ [0, 1]. That means we have

the region [0, 0.093] where we assume to have bound information. Hence in this range the

algorithm should give us a zero as the maximal extractable secret bit fraction, which would

give us the proof for undistillability.

X

Y (Z)
0 1

0 (1) β/4 (3) (1 − β)/8

1 (2) (1 − β)/8
(1) (1 − β)/4
(2) (1 − β)/8
(3) (1 − β)/8

Table 4.4: Distribution D2 to show bound information

For the second distribution D2 we know that it is undistillable for β < 1/3 whereas the in-
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trinsic information is positive for β > 3 − 2
√
2 ≈ 0.17. Hence the interesting range here is

[0.17, 1/3].

4.4 Problems

The implementation of the formulas could be done straight forward following [13]. But the

matrices for the constraints of the linear programming reached too big dimensions because

when aligning our three dimensional matrixQABK we get a vector of length 2·dA×2·dB×2d+M .
That gives for distributionD1 : 256 ·2M and D2 : 128 ·2M. As one can see with the number of

pairs of maps M our vector dimension i.e. the number of variables to be optimized increases

exponentially.

Beginning with five pairs of maps, our q vector has length 8192 or 4096 respectively but with

nine pairs we already end up in 131072 or 65536.

Moreover the linear programming needs to take into account the M inequalities from con-

straint (4.2), d · 2d+M inequalities from (4.3) and M · 2d+M inequalites from (4.4).This creates

a matrix that is also increasing exponentially with the number of maps.

Hence due to memory limitations we are tied in the number of maps that we can introduce

to the optimization.

Another difficulty that occurs directly from the mathematical description of the algorithm

is the total amount of possibile maps one can perform from any alphabet to the binary one

namely infinite ones.

4.5 Solutions and improvements

4.5.1 Maps of 100% and 0%

Primarily due to simplification we considered only maps with a probability weight of 100%

or 0% to the binary output. For the tool we wanted to include as many pairs as possible, even

though the dimensions of the matrices and hence the calculation time increases exponentially

with this number. The maps for one alphabet HA → BA are described in table 4.5.

Let me remark here that the non-distillability criterion from chapter 3 does not need normal-

ized values because of the denominator in equation (3.1).

That means we have to check M = 24 · 24 pairs of maps to include all possibilites forMA

and NB. As mentioned above this is too much, so we had to improve the algorithm further.

Our idea was to take only the best maps, i.e. those maps that give the lowest maximal values
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α: 0

a: 0 1

1. 0 0

2. 0 1

3. 1 0

4. 1 1

×

α: 1

a: 0 1

1. 0 0

2. 0 1

3. 1 0

4. 1 1

=⇒

α: 0 1

a: 0 1 0 1

1. 0 0 0 0

2. 0 0 0 1

3. 0 0 1 0
... · · · ...

24. 1 1 1 1

Table 4.5: Maps of alphabet HA to BA with probabilities of 100% and 0%

after the optimization.

One way to implement this is to introduce a loop that checks the output of the linear pro-

gramming started with only one pair of maps. Thus the calculation time also decreases

exponentially and we get a rough sketch about the quality of each pair. Then we take the best

ones and start the main optimization where we can adjust the total number of used pairs and

hence the calculation time.

It is necessary to start the optimization with several maps, because the criterion considers

how one function can be maximized while its values are bounded by several other functions.

In figure (4.7) we illustrate the outcome of the optimization over the possible combinations

of maps. We can see that the majority ends in the same large value. Those ones do not

improve the tool and can thus be discarded. So we may choose only the best five pairs for

the main optimization.

Following this improvement we could run a general simulation round through both distri-

butions over the whole range of each parameter. These results are presented in chapter 4.6.1.

4.5.2 Decimal maps

Thereupon we expanded the maps further to introduce decimal mapping coefficients. I.e.

maps to the binary output alphabet in the manner, given in table 4.6. This gives us a set

of 114 = 14, 641 possible maps for the alphabet HA. The same number shall be applied

to the other alphabet which leads us to a total amount of possible maps - to be checked:

M′ = 114 · 114 = 214, 358, 881.

Refering to the fact that the criterion makes a normalization of the distribution itself and

including the basic maps of table 4.5, we are able to exclude due to redundancy the maps
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Figure 4.7: Single pair optimization over D2 for all 2
4 · 24 possible combinations

that follow the condition:

Pα|a(i, 0) = Pα|a(i, 1) for i = {0, 1}

and the same for alphabet HB. This gives us a set of m = 22 + 11 · 10 = 114 maps to α = 0.

Developing this strategy we have the same amount of maps to α = 1 and the whole number

of maps for the alphabet HB, too. That makes a total amount of possible pairs of maps:

M = m4 = 168, 896, 016 - to be checked individually. This represents a reduction to M′ of

21%.

The conclusions and results of this version of the tool are presented in chapter 4.6.2.

4.5.3 Including the eavesdropper

Another idea for an improvement has been to include Eve’s maps in the secret-bit fraction

formula, but it has been shown in [14] that this has no influence on the secret-bit fraction:

Let ΓẼ|E be an arbitrary operation Eve may perform on the distribution. Then

λ[ΓẼ|EPABE] = 2
∑

e′

min















∑

e

ΓẼ|E(e
′, e)PABE(0, 0, e),

∑

e

ΓẼ|E(e
′, e)PABE(1, 1, e)















≥ 2
∑

e′,e

ΓẼ|E(e
′, e) min [PABE(0, 0, e), PABE(1, 1, e)]

= 2
∑

e

min [PABE(0, 0, e), PABE(1, 1, e)] = λ[PABE]



4. IMPLEMENTATION AND OPTIMIZATION 39

α: 0 1

a: 0 1 0 1

1. 0 0 0 0

2. 0 0 0 0.1

3. 0 0 0 0.2
... · · · ...

9. 0 0 0 1

10. 0 0 0.1 0

11. 0 0 0.1 0.1
... · · · ...

(114 − 1). 1 1 1 0.9

114. 1 1 1 1

Table 4.6: Decimal maps for the binarization

The inequality comes from the min function and is independent on Eves’ actions.

4.6 Results

4.6.1 Maps of 100% and 0%

Following the description in chapter 4.5.1 we implemented the program and could obtain the

results described in this section.

For the distribution D1 shown in table 4.3 we checked the range: δ = {0.01, 0.02, · · · , 0.10}
and for the distribution D2 from table 4.4 we took: β = {0.1, 0.2, 0.3}.
The results for D1 are presented in figure 4.8 that shows the solutions of the linear program-

ming f val and additionally the conditional mutual information of distribution D1 for each

δ. We can see that there is no exceptional behaviour in the curve, neither for the distillable

region δ ∈ [0.093, 1], represented by δ = 0.1, nor for the uncertain range δ ∈ [0, 0.093).
Our goal of reaching f val = 0 and hence showing S (X, Y ||Z) = 0 could not be reached with

this family of maps.

The results for D2 were similar i.e. they did not return zero from the maximization. The

specific values can be taken from table 4.7 (range of conjectured bound information: β =

[0.17, 0.33]).
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Figure 4.8: Outputs of the optimization for distributionD1 over the uncertain range including

the maps of table 4.5

β 0.1 0.2 0.3

f val 0.012 0.025 0.037

Table 4.7: Results of the optimization of distribution D2

4.6.2 Decimal maps

After adapting the program to the specifications of chapter 4.5.2 we were able to measure

the following time consumptions with the given server details:

- Servers capacities:

. Quadcore processors with 2.2 - 2.8 GHz

. Main memory per node 8 - 24 GB

. Architecture: 64 bit

- After 17 hours the server passed 0.2% of all pairs of maps.

- That makes a total calculation time of 17h/0.002 = 8500h ≈ 350d.

- This measurement was based on a loop with a backup in each pass. By the profiler

function in MATLAB
c©we could detected that each backup takes 0.11ms, which has no

big influence at all on the complete optimization: t = 0.11ms∗1144/3600/24 = 0.21d.
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Concluding one can see that we were limited with the number of possible pairs that we could

check. So we decided to examine only a suitable part in the remaining time and with the

given capabilities.

Partial results

Even though we were not able to simulate a closed bigger range of pairs of maps we concen-

trated on simpler combinations between them. Therefore we concluded to use pairs where

two maps are always equivalent:

(1) same maps inside each alphabet:

a→ α = 0 ≡ a→ α = 1 and

b→ β = 0 ≡ b→ β = 1

(2) same maps to the same output value:

a→ α = 0 ≡ b→ β = 0 and

a→ α = 1 ≡ b→ β = 1

Therefore we were able to reduce the amount of pairs of maps to 1142 = 12996. The results

were quite similar for both distributions thus we consider only the results for distributionD2.

In figure 4.9 we plot the outcomes of the optimization for each pair of maps based on distri-

bution D2 and following the restriction of (2). One can see that there exists a periodicity in

the combination of maps that is due to the loops that start every pass with very low mapping

coefficients.

From both cases (1) and (2) we obtained the same optimized value for the distribution D2:

f val (β = 0.2) = 0.005

which is an improvement of 80% but still not enough to show our conjectured quantity. This

value has been obtained with the maps:

α: 0 1

a: 0 1 0 1

0.3 0.7 0.3 0.7

β: 0 1

b: 0 1 0 1

0.3 0.7 0.3 0.7

A more specific simulation around the best mapping vector combination mentioned above,

with a probability step size of 0.01 did not improve the result.
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Figure 4.9: Optimization over the partial pairs of maps over the distribution D2



5 Conclusion and outlook

The problem of secure communication is usually solved by making assumptions on the

eavesdropper’s computational power - the computational security. There is a however a

stronger form of security, known as information-theoretical security, where a protocol can

be shown to be secure using Information Theory terms. In this formalism, it is enough to

consider the part of the secret-key agreement because there are protocols that ensure the se-

cret communication given a secret-key. The standard key-agreement scenario consists of two

honest parties, that communicate over an authenticated channel, and the wire-tapper, all of

them sharing correlated random variables described by a joint probability distribution. One

of the main questions is to understand how, if possible, the honest parties can distill a secret

key out of their correlated variables. There exists strong evidence towards the existence of

distributions that contain an irreversible form of secrecy, i.e. secrecy that cannot be distilled

into a secret-key by local operations and public communication. This form of secrecy, known

as bound information, has been proven so far for the multipartite case, with more than two

honest parties, but is still an open question for the more natural bipartite case.

The main difficulty in proving the existence of bound information comes from the fact that,

given an initial probability distribution, one has to show that there is no protocol leading

to a secret key. Indeed, all the support so far to the existence of this quantity comes from

probability distributions containing secret correlations that cannot be distilled into a secret

key by any of the known protocols. The non-distillability criterion discussed in chapter 3

is a potentially promising approach to find this irreversible form of secrecy, as may allow

proving the non-distillability of a distribution.

The main goal of this thesis was first to implement this criterion, to test it and then to simulate

the most suitable distributions. From the theory we knew that the algorithm could be adapted

to a linear programming algorithm that was already available in the MATLAB
c© repository.

The adaptation did not turn out to be such a big problem, but it pointed out that the testing

was the bigger challenge. The condition that a non-distillable distribution has a secret-bit

fraction of 1/2 is necessary so we could not check the functionality by a distribution that is

known to be non-distillable. Therefore we had to revise the code step by step.

Once we were certain that the program worked well we faced the next problem of the bi-
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narization maps. With the number of maps we exceeded the memory of the simulation

machines and also the suitable limit of simulation time. So it was necessary to reduce the

number of pairs of maps. This was accomplished by the removal of redundant maps and a

pre-optimization to detect the most suitable ones.

Due to the limited remaining time we decided to simulate a part of all possibilities to ob-

tain meaningful results. Indeed we were able to show a big improvement towards the non-

distillability of our distribution, but none of the obtained results was conclusive.

For a complete test it is an option to split the missing part of the maps in several smaller

optimizations and combine those results to attempt to obtain the highest efficiency of the

program in an iterative way. This can also be automated by another program to facilitate the

process.

Another approach can be to find the best maps through another non-linear optimization. This

is non-linear because we have to find two matrices for alphabet A and B at the same time.

These results may be introduced as the starting point of the maximization of our linear pro-

gramming.

We would also like to mention that it is also possible that the proposed criterion is in fact

useless to prove the existence of bound information. The main idea of the criterion is to show

that the initial distribution, with conjectured bound information, cannot improve the secrecy

properties of any distribution. If this is the case, the distribution has to be non-distillable.

Recall however that bound information was introduced as a cryptographic analog of bound

entanglement, an irreversible form of quantum correlations observed in Quantum Informa-

tion Theory. In the quantum case, all bound entangled states have been shown to improve

the entanglement properties of another state. If the same was true for probability distribu-

tions, the analyzed criterion would be useless for the detection of bound information. This

is however a theoretical open question in the classical case that deserves further investigation.

To conclude, the existence of bound information, conjectured in 2000 by Gisin and Wolf,

is a nice and natural question in the key agreement scenario that remains open in spite of

years of research. In this work, we have tested the first proposed criterion for the detection

of non-distillable secret correlations. The obtained results somehow give more evidence for

the existence of this quantity but, unfortunately, cannot solve the problem.



A Appendix: Conditional mutual

information

The mutual information gives us some knowledge about the correlation between two parties

within their distribution. It can be written in the following forms:

I(X, Y) =
∑

x∈X

∑

y∈Y
P(x, y) log

P(x|y)
P(x)

= H(X) − H(X|Y)
= H(Y) − H(Y |X)
= H(X) + H(Y) − H(X, Y)

The conditional entropy for the tripartite scenario can be derived as:

H(X, Y |Z) = H(Y |Z, X) + H(X|Z)
= H(X, Y, Z) − H(Z)

And hence we can formulate the conditional mutual information as the correlation between

two parties given the information of a third one:

I(X, Y |Z) = H(X|Z) − H(X|Y, Z)

here we used the formulas for the n-dimensional case:

H(X1, ...Xn) =

n
∑

i=1

H(Xi|Xi−1, ...X1) (A.1)

H(X1, ...Xn|Y) =
n

∑

i=1

H(Xi|Y; X1, ...Xi−1) (A.2)
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B Appendix: Introduction to quantum

mechanics

Most of the distributions analyzed in this thesis are derived from measurements applied to

tripartite quantum states. The very same concept of bound information was indeed proposed

as a classical analog of bound entanglement, an irreversible form of quantum correlations

appearing in quantum information theory. For the sake of completeness, we provide in this

appendix a short introduction to the basic mathematical objects of quantum mechanics in

general and, later, quantum information theory. This chapter is not thought to be a complete

summary of quantum theory. Therefore we would like to refer those readers interested in

the quantum formalism to [16]. Indeed, most of the discussion in the next lines follows this

reference.

B.1 Postulates of quantum mechanics

In quantum mechanics on uses the bra 〈φ| and ket |φ〉 notation to represent a quantum states,

where ket is considered to be a columnvector and bra is the adjoint one, i.e. 〈φ| = (|φ〉∗)T ,
both having complex elements.

B.1.1 State space

Postulate Associated to any isolated physical system is a complex vector space with inner

product (that is, a Hilbert space) known as the state space of the system. The system is

completely described by its state vector, which is a unit vector in the system’s state space.

The simplest quantum mechanical system is the qubit, which corresponds to a two -

dimensional Hilbert space. Suppose |0〉 and |1〉 form an orthonormal basis for that state

space. Then an arbitrary state vector in the state space can be written as the superposition of

the basis vectors

|ψ〉 = a|0〉 + b|1〉, (B.1)

where a, b ∈ � and |ψ〉 is a new valid state of the system. This is main difference to a

classical bit which can only be in the zero or one state. Thus the qubit system is located in a
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2-dimensional state space with the computational basis states |0〉 and |1〉.
The condition that |ψ〉 is a unit vector, i.e. the inner product is one (〈ψ|ψ〉 = 1) which is

known as the normalization condition, leads to the formulation that |a|2 + |b|2 = 1. We can

talk about |a|2 and |b|2 as the probabilites related to the events that our qubit system is in state

|0〉 or |1〉, respectively.

B.1.2 Evolution

Postulate The evolution of a closed quantum system is described by a unitary transforma-

tion. That is, the state |ψ〉 of the system at time t1 is related to the state |ψ′〉 of the system at

time t2 by a unitary operator U which depends only on the times t1 and t2,

|ψ′〉 = U |ψ〉. (B.2)

A closed quantum system is defined by no interaction with its environment. This is a quite

unrealistic assumption because all systems interact with each other but nevertheless there

are systems that can be described to a good approximation as being closed. Some examples

of such unitary operators are the well known Pauli matrices that describe logical operations

in the quantum world. For example the Pauli matrix X =















0 1

1 0















describes a NOT gate,

because it transforms |0〉 → |1〉 and |1〉 → |0〉, thus it is also referred to as the bit flip matrix.

B.1.3 Measurements

Postulate A projective measurement is described by an observable, M, a Hermitian operator

on the state space of the system being observed. The observable has a spectral decomposi-

tion,

M =
∑

m

mPm, (B.3)

where Pm is the projector onto the eigenspace of M with eigenvalue m. The possible out-

comes of the measurement correspond to the eigenvalues, m, of the observable. Upon mea-

suring the state |ψ〉, the probability of getting result m is given by

p(m) = 〈ψ|Pm|ψ〉. (B.4)

Given that outcome m occurred, the state of the quantum system immediately after the mea-

surement is
Pm|ψ〉
√

p(m)
(B.5)
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In classical physics one can observe quantities like speed, energy, mass etc. without af-

fecting the system. In quantum mechanics whenever one party measures the system he or

she destroys it obtaining the desired measurement. This is known to be one of the basic

differences between quantum and classical physics.

B.1.4 Composite systems

Postulate The state space of a composite physical system is the tensor product of the state

spaces of the component physical systems. Moreover, if we have systems numbered 1

through n, and system number i is prepared in the state |ψi〉, then the joint state of the to-

tal system is |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.

B.2 Mixed states

As stated in Postulate 1, the state of a quantum system is described by a vector in a Hilbert

space. However, in most practical situations, the preparation of a quantum system is not

perfect, either because of limited resources or the presence of a noisy environment. The state

then is no longer pure because of the noise and it should be described by means of a mixed

state, also known as density operator.

B.2.1 Density operator

An imperfect preparation of the state of a quantum system implies that the quantum system

becomes a mixture of several states |ψi〉 with different probabilities pi. Then one uses the

description of the density operator or density matrix ρ which is calculated over the outer

product of each possible state weighted by its probability of occurrence:

ρ =
∑

i

pi|ψi〉〈ψi| (B.6)

This matrix representation of a system helps us to describe side-effects of noise in the chan-

nel.

Now we can state that a valid density operator has to satisfiy the two conditions:

1. Trace condition: Tr(ρ) = 1

Having an ensemble of quantum states the following is true Tr(ρ) =
∑

i piTr(|ψi〉〈ψi|) =
∑

i pi = 1
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2. Positivity condition: ρ is a positive operator.

Supposing |φ〉 is an arbitrary vector in the state space 〈φ|ρ|φ〉 = ∑

i pi〈φ|ψi〉〈ψi|φ〉 =
∑

i pi|〈φ|ψ〉|2 ≥ 0

Remark that all postulates given in chapter B.1 can be reformulated in the form of the density

matrix.

B.2.2 Pure and mixed states

Definition 7 If we can write a state in the form ρ = |ψ〉〈ψ| then Tr(ρ2) = 1 and we call the

state pure. If i > 1 in (B.6) we call the state mixed and Tr(ρ2) < 1.

Let |ψ〉 be a state vector of our system. Then Tr(ρ2) = Tr(|φ〉〈φ|φ〉〈φ|) = Tr(|φ〉〈φ|) = 〈φ|φ〉 =
1 where we used the normalization condition in equality two.

If the state is not pure we cannot write it in the state vector form. Instead we have: ρ =
∑

i piρi. Moreover Tr(ρ2) = Tr
(

(
∑

i piρi)
2
)

=
∑

i p
2
i Tr

(

ρ2i

)

< 1, due to the linearity of the

trace operation.

In the following we will refer to pure states by their state vector representation and to mixed

states by the density matrix representation.

B.3 Entanglement and separability

The combination of the superposition principle with the tensor product structure leads to the

appearance of entanglement. This is a very peculiar form of correlations, with no classical

analog, that appear in the quantum states of composite systems. A key mathematical tool in

the understanding of quantum entanglement is the Schmidt decomposition.

Definition 8 Let |φ〉 be a bipartite pure state of HA ⊗HB. Then we can represent the state

in the Schmidt decomposition

|φ〉 =

min[dim(HA),
dim(HB)]
∑

i=1

√

λi|αi〉 ⊗ |βi〉 (B.7)

with λi ≥ 0 being the Schmidt coefficients and |αi〉 and |βi〉 orthonormal vectors in each

space. The number of non-zero Schmidt coefficients is called the Schmidt rank of the state.

If we have a pure bipartite state with Schmidt rank one we call the state product or separable

because we can write it as the product of two pure states in HA and HB.

|φ〉AB = |ψ〉A ⊗ |ϕ〉B (B.8)



B. APPENDIX: INTRODUCTION TO QUANTUM MECHANICS 51

If the bipartite state has Schmidt rank greater than one we call the state entangled or non-

separable because one is not able to write it as the tensor product of two pure states from

each subspaces.

These definitions are generalized for mixed states as follows.

Definition 9 Given a density matrix ρAB acting on HA⊗HB. If we can write ρAB in the form

ρAB =
∑

i

λiρ
A
i ⊗ ρBi (B.9)

we call the state separable. If it is impossible to write a state in the form (B.9) we call it

entangled.

It has been shown in [17] that positive eigenvalues of the partial transpose (PPT) of a state is

a necessary condition for separability of a state. Moreover it is stated that in the cases �2×2

and �2×3 PPT is also a sufficient condition. This is illustrated in figure B.1 (a). But until now

we do not have a useful tool for higher dimensional systems, i.e. �2×k with k > 3 and �i× j

with i, j ≥ 3 systems. Here the relation illustrated in figure B.1 (b) is valid.

(a) For �2×2 and �2×3 systems

(b) For �2×k with k > 3 and �i× j with i, j ≥ 3 systems

Figure B.1: Relation of separability, PPT and entanglement

In chapter 3 we discuss another criterion for the separability of a system.

The most paradigmatic example of entangled pure states are the Bell states, that is the maxi-

mally entangled states of two qubits. An example of these states is:

|Φ+〉 = (|00〉 + |11〉) 1
√
2

(B.10)
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This state represents the basic unit of bipartite entanglement and allows, for instance, quan-

tum teleportation and secure quantum cryptography.

Entanglement distillability is a crucial question in the study of entangled states. Given an

noisy entangled state ρAB, shared by two separated parties, we would like to know whether

this state can be transformed into maximally entangled states of two qubits by local oper-

ations by the parties assisted by classical communication. Remarkably, there exist states

that, depite being entangled, cannot be distilled into maximally entangled states. This phe-

nomenon is called bound entanglement and gives a kind of irreversible form of entanglement.
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