Contents

<table>
<thead>
<tr>
<th>Chapter 1. Introduction</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>1.2 Applicability of the method</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2. Plastic analysis of structures under uniaxial stress – Fundamentals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Uniaxial Stress-Strain Relations</td>
<td></td>
</tr>
<tr>
<td>2.2 Plastic Bars and Yield Hinges</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Plastic Moment</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Plastic Hinge</td>
<td></td>
</tr>
<tr>
<td>2.3 Limit analysis</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Theorems of Limit Analysis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3. Plastic Limit Analysis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Plastic Potential</td>
<td></td>
</tr>
<tr>
<td>3.2 Upper Bound Theorem</td>
<td></td>
</tr>
<tr>
<td>3.3 Finite Element Solution</td>
<td></td>
</tr>
<tr>
<td>3.4 Lower Bound Evaluation</td>
<td></td>
</tr>
<tr>
<td>3.5 Refinement procedure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4. Continuous beam under pure plastic bending.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>4.2 Discretisation</td>
<td></td>
</tr>
<tr>
<td>4.3 Plastic element dissipation</td>
<td></td>
</tr>
</tbody>
</table>
4.4 External loads work.

4.5 Optimization problem.

4.6 Solving the nonlinear system. Picard’s method. Upper bound evaluation.

4.7 Lower bound evaluation. Element equilibrium

4.8 Refinement process

4.9 Examples

Chapter 5. Plastic analysis of structures under uniaxial stress. Combined plastic bending and compression or tension.

5.1 Generalized plastic hinge.

Chapter 6. Continuous beam and frames under the combination of plastic bending and compression (or tension).

6.1 Introduction

6.2 Discretisation

6.3 Plastic element dissipation

6.5 Plastic element dissipation. Double T cross section.

6.6 External loads work.

6.7 Examples

Chapter 7. Conclusions and recommendations

REFERENCES
Acknowledgements

I would like to thank Professor J. Bonet for his guidance and help.

I would like to thank the University of Wales Swansea for letting me to use its facilities.

Also, I would like to thank Sonia Fernandez and the whole department of Matematica Aplicada III at UPC for making possible that I could develop my thesis abroad.
Nomenclature

\[\sigma \quad \text{Stress} \]
\[\sigma_y \quad \text{Yield stress} \]
\[\varepsilon \quad \text{Total strain} \]
\[\varepsilon_e \quad \text{Elastic strain} \]
\[\varepsilon_p \quad \text{Plastic strain} \]
\[\varepsilon' \quad \text{Plastic strain rate} \]
\[D_{int} \quad \text{Plastic dissipation per unit of volume} \]
\[M_p \quad \text{Plastic moment} \]
\[h \quad \text{height} \]
\[b \quad \text{width} \]
\[l^e \quad \text{Element length} \]
\[\varepsilon_p \quad \text{Plastic extension} \]
\[D_{int} \quad \text{Plastic dissipation} \]
\[\theta \quad \text{Rotation} \]
\[W_{ext} \quad \text{External work} \]
\[\dot{W}_{ext} \quad \text{Unitary external work (per unit of load multiplier)} \]
\[\mathbf{b} \quad \text{Volume loads vector} \]
\[\mathbf{t} \quad \text{Surface loads vector} \]
\[\mathbf{F} \quad \text{Point loads vector} \]
\[\mathbf{v} \quad \text{Nodal displacements vector} \]
\[\mathbf{f} \quad \text{External loads vector} \]
\[\hat{f} \quad \text{Unitary external loads vector} \]
\[\mu \quad \text{Load multiplier} \]
\[\mathbf{d} \quad \text{Deformation tensor} \]
\[\varepsilon(\mathbf{d}) \quad \text{Equivalent strain rate given by Lubliner (1990)} \]
\[\mathbf{d}' \quad \text{Deformation deviator tensor} \]
\[\mathbf{u} \quad \text{Collapse mechanism} \]
\[X \quad \text{Space of motions compatible with boundary conditions} \]
\[\hat{X} \quad \text{Reduced space of } X \]
\[X_H \quad \text{Solution space when we consider a mesh the body studied} \]
\[\hat{X}_H \quad \text{Reduced space of } X_H \]
\[X_h \quad \text{Reference mesh} \]
\[\hat{X}_h \quad \text{Reduced space of } X_h \]
\[\hat{X}_h^* \quad \text{Broken space} \]
\[\hat{X}_h^* \quad \text{Reduced spate of } \hat{X}_h \]
\[\mathbf{u}_h \quad \text{Collapse mechanism in the reduce space } \hat{X}_h \]
\[\mathbf{q} \quad \text{Edge forces vector} \]
\[\mathbf{p}_H \quad \text{Particular choice of } \mathbf{q} \]
\[Z_h^* \quad \text{Reduced space of one macroelement} \]
Collapse mechanism of one reduced space of one macroelement

g Gap

g^e Gap of one element

η^e Contributions of one element to the gap

v(x) Displacement normal to the bar

u(x) Displacement longitudinal to the bar

(vᵢ, θᵢ) Degrees of freedom of node i

Nᵢ Shape function i

N Shape functions vector

B Second derivation respect x of N

F_e External nodal loads

k^e Stiffness matrix of one element

v^e Nodal degrees of freedom of one element

K Stiffness matrix of the structure

Cᵢ Gauss-Legendre factors

ξᵢ Gauss-Legendre points

t Tolerance

t_v Tolerance respect v

t_u Tolerance respect u

e_v Relative error related to v

e_u Relative error related to u

T Internal loads vector

u_r Rigid body displacement vector

(uᵢ, vᵢ, θᵢ) Degrees of freedom when we consider contribution of normal forces

N_u Shape functions vector associated with u

N_v Shape functions vector associated with v

B_u Second derivation respect x of N_u

B_v Second derivation respect x of N_v

yᵢ Coordinate integration point

eᵢ Plastic extension for y = yᵢ