2 – HIPÒTESIS DE RUPTURA DE LA PRESA

2.1 DEFINICIÓ DEL PROBLEMA

En aquest apartat es tractaran els punts bàsics a tenir en compte per a la definició del problema a resoldre pel que fa a les hipòtesis a analitzar (Escenaris de Ruptura).

Un dels objectius del present anàlisi de la ruptura potencial de la presa és delimitar les zones progressivament inundables amb la propagació de l’ona d’avinguda a les valls i lleres aigües avall de la presa, així com els temps d’arribada de la mateixa ona de cabal al llarg del tram de riu de l’estudi.

La delimitació de les zones potencialment inundables per a la ruptura de la presa s’estableix utilitzant diverses hipòtesis de trencada, i en cada cas s’implantaràn els mapes d’inundació de les hipòtesis més desfavorables.

La idea en aquest estudi és aplicar les mateixes condicions de partida (rugositat, geomètrie, hidrogrames...) en els tres softwares i comparar els resultats de la propagació de l’ona d’avinguda. Per això, el que s’ha fet ha estat aplicar les diferents hipòtesis de ruptura al programa DAMBRK (veure Capítol 5), córrer el programa i prendre els hidrogrames de ruptura obtinguts en aquest programa a la secció inicial de la presa de Talarn per utilitzar-los com a hidrogrames d’entrada a la presa tant al HEC-RAS com al CARPA. D’aquesta forma els tres programaris parteixen de la mateixa condició de contorn aigües amunt i així consideren, d’alguna manera, el mateix volum d’aigua acumulat a l’embassament.

S’estudien, a part de les zones d’inundació, els diversos paràmetres hidràulics: calats de les làmines d’aigua, velocitats, temps d’arribada dels cabals de pic, així com el temps de l’inici de l’avinguda de ruptura als diversos punts o seccions més característics del riu.

Caldrà delimitar també les àrees inundades en temps progressius d’hora en hora, a excepció de la primera hora, que es dividirà en dos trams de trenta minuts a partir de l’inici de la ruptura de la presa.

2.2 ESCENARIS DE RUPTURA

De l’anàlisi de les diverses causes potencials de ruptura (avingudes, fallada estructural de la fonamentació, sismes, atempsats terroristes...), s’estableixen en aquest estudi tres escenaris extrems:

Hipòtesi R1: Escenari de ruptura de comportes.
Hipòtesi R2: Escenari de ruptura sense avinguda.
Hipòtesi R3: Escenari de ruptura en situació d’avinguda.
2.2.1 HIPÒTESI R1: ESCENARI DE RUPTURA DE COMPORTES

L’embassament de Talarn es troba al seu nivell màxim normal (M.E.N. = 500,95 m.s.n.m.), que és el màxim nivell que poden assolir les aigües de l’embassament en el seu règim normal d’explotació sense que el sobreexixidor de superfície estigui evacuant (llindar del sobreexixidor de la presa = 494.95 m.s.n.m.). Se suposa que la presa està desguàcant en el seu estat inicial un cabal de 66 m³/s, que és el del turbinat de la central de Talarn. En aquestes condicions les comportes, que són 7 de 10 m de longitud cada una, trenquen.

2.2.2 HIPÒTESI R2: ESCENARI DE RUPTURA SENSE AVINGUDA

L’embassament de Talarn es troba al seu nivell màxim normal (M.E.N. = 500,95 m.s.n.m.), que és el màxim nivell que poden assolir les aigües del pantà en el seu règim normal d’explotació sense que el sobreexixidor de superfície estigui evacuant (llindar del sobreexixidor de la presa =494.95 m.s.n.m.). Se suposa que la presa està desguàcant al seu estat inicial un cabal de 66 m³/s, que és el del turbinat de la central de Talarn. En aquestes condicions la presa trenca (Figura 2.1).

![Perfil dels nivells inicials de l’embassament per a R1 i R2](image)

Figura 2.1. Perfil dels nivells inicials de l’embassament per a R1 i R2

2.2.3 HIPÒTESI R3: ESCENARI DE RUPTURA EN SITUACIÓ D’AVINGUDA

Inicialment el nivell de l’embassament està a la cota M.E.N. (500,95 m.s.n.m.) i es presenta una avinguda extraordinària producte de l’escolament de la conca aigües amunt, que té una punta de 1634 m³/s. Quan el nivell de l’embassament assoleixi la cota de coronació de la presa (502,05 m.s.n.m.) la presa trenca (Figura 2.2).

Es considera un hidrograma d’avinguda d’entrada a la presa triangular, de tal manera que l’instant inicial coincideixi amb el pic de l’avinguda i un cop assolit el temps de concentració de la conca, el cabal del riu torna a ser el seu cabal habitual. Això implica que s’estudiï el cas més desfavorable possible per a la presa i ens situem del costat de la seguretat.
L’ hidrograma d’avinguda d’entrada a la presa considerat és el següent:

<table>
<thead>
<tr>
<th>Temps (h)</th>
<th>Cabal (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1634</td>
</tr>
<tr>
<td>(t_c = 5)</td>
<td>10</td>
</tr>
</tbody>
</table>

Taula 2.1. Hidrograma entrada R3

On \(t_c \) representa el temps de concentració calculat mitjançant la fórmula de Témez (2.1):

\[
t_c(h) = 0.3 \times \left(\frac{L}{J} \right)^{0.76}
\]

on:

\(L \) (km) = longitud del curs principal del riu.
\(J \) = pendent mitjà del curs principal \(\Delta H/L \).

A continuació es presenten les hipòtesis de ruptura estudiades per a la presa de Talarn:

<table>
<thead>
<tr>
<th>Definició de l’escenari</th>
<th>S’analitza</th>
<th>Justificació</th>
<th>Paràmetres</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1: Ruptura de comportes</td>
<td>sí</td>
<td>Existeixen comportes</td>
<td>(H) embassament = 500.95 m.s.n.m.</td>
</tr>
<tr>
<td>R2: Ruptura sense avinguda</td>
<td>sí</td>
<td></td>
<td>(H) embassament = 500.95 m.s.n.m.</td>
</tr>
<tr>
<td>R3: Ruptura en situació d’avinguda</td>
<td>sí</td>
<td></td>
<td>(H) embassament = 502.05 m.s.n.m. (Q) Avinguda = 1634 m³/s</td>
</tr>
</tbody>
</table>

Taula 2.2. Hipòtesis de ruptura estudiades per a la presa de Talarn
2.3 CARACTERÍSTIQUES DE LA RUPTURA

Els criteris generals per a fixar les característiques de la trencada, els modes i els temps de ruptura són els recomanats per la Guia Tècnica para la Elaboración de Planes de Emergencia de Presas.

Segons la guia, el mode de trencament, la forma i l’evolució de la ruptura depenen del tipus de presa, acceptant-se que en les preses de formigó i mamposteria es produeix una ruptura total o parcial casi instantània (total en preses bóveda, i parcial per blocs de construcció en preses de gravetat i contraforts), mentre que en preses de terres, el desenvolupament de la ruptura es produeix d’una forma més lenta bastant-se en la erosió del material.

La forma de la ruptura de la presa és un dels aspectes més crítics de la metodologia utilitzada degut a la seva influència en la magnitud de l’hidrograma de ruptura.

Per a una presa de gravetat la guia tècnica estableix els següents paràmetres per a la modelització de la ruptura:

- Tipus de presa: Gravetat
- Forma de la ruptura: Rectangular
- Amplada final de l’obertura: Per a R1 es considera l’amplada total de les comports, que en aquest cas és de 70 m. Per a R2 i R3, es pren el major valor d’entre un terç de la longitud de coronació i tres blocs de la presa. En el nostre cas, el valor més desfavorable és el primer, i equival a 60 m.
- Profunditat de la ruptura: Cota de la llara a la secció de la presa per a les hipòtesis R2 i R3 (435.08 m.s.n.m.) i lliurar del sobreexidor de les comports per a la hipòtesi R1 (494,95 m.s.n.m.).
- Talussos de la ruptura: 0 / 1
- Temps de formació de la ruptura: 0,10 hores (6 minuts) per a R1 i 0,25 hores (15 minuts) per a R2 i R3.

![Figura 2.3. Esquema de la formació de la ruptura ideal](image)
A la taula següent es mostra el resum de la justificació realitzada:

<table>
<thead>
<tr>
<th>Escenaris</th>
<th>Forma de l’obertura</th>
<th>Paràmetres</th>
<th>Temps de la ruptura</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rectangular</td>
<td>Amplada final: 70 m. Cota final: 494,95 m.s.n.m. Talussos: 0 / 1</td>
<td>6 minuts</td>
</tr>
<tr>
<td>R2</td>
<td>Rectangular</td>
<td>Amplada final: 60 m Cota final: 435.08 m.s.n.m. Talussos: 0 / 1</td>
<td>15 minuts</td>
</tr>
<tr>
<td>R3</td>
<td>Rectangular</td>
<td>Amplada final: 60 m Cota final: 435.08 m.s.n.m. Talussos: 0 / 1</td>
<td>15 minuts</td>
</tr>
</tbody>
</table>

Taula 2.3. Resum dels paràmetres de ruptura per a cada hipòtesi

2.4 HIDROGRAMES DE LA RUPTURA

Els hidrogrames de ruptura obtinguts amb el programa DAMBRK per a les tres hipòtesis de ruptura i que posteriorment han estat emprats com a condicions de contorn aigües amunt tant al HEC-RAS com al CARPA són els que es presenten a continuació:

Figura 2.4. Hidrograma de ruptura a la secció de la presa per a la Hipòtesi R1
Figura 2.5. Hidrograma de ruptura a la secció de la presa per a la Hipòtesi R2

Figura 2.6. Hidrograma de ruptura a la secció de la presa per a la Hipòtesi R3
<table>
<thead>
<tr>
<th>Escenaris</th>
<th>Hidrograma de ruptura</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>$Q_{pic} = 1754 \ m^3/s$</td>
</tr>
<tr>
<td>R2</td>
<td>$Q_{pic} = 55107 \ m^3/s$</td>
</tr>
<tr>
<td>R3</td>
<td>$Q_{pic} = 56449 \ m^3/s$</td>
</tr>
</tbody>
</table>

Taula 2.4. Cabals pic de ruptura per a cada hipòtesi

2.5 RUGOSITAT

L’avaluació del coeficient de Manning és força complexa quan es tracta d’un riu natural: substrat heterogièn, geometria variable, vegetació, etc. Acceptant que és bastant complicat comprimir tots aquests aspectes en un sol valor, i de fet és així com es procedeix, també s’inclou altres efectes a aquest terme com són la curvatura de la llra, la presència d’obstacles, etc.

Problema de la determinació de n

Depèn de molts factors que a més a més estan relacionats entre sí. Si ens fixem per exemple amb Chow (1994):

- Rugositat superficial
- Vegetació
- Irregularitat del canal
- Alineació del canal
- Sedimentació i pèrdua de material per erosió
- Obstruccions
- Tamany i forma del canal
- Nivell d’aigua i cabal
- Canvis estacionales
- Material en suspensió i càrrega de fons

Existeixen una sèrie de mètodes d’ajuda per a la determinació del coeficient de Manning amb major o menor rigor conceptual, com són “taules de valors, arxius fotogràfics, fórmules polinòmiques o mètodes basats en observacions de camp.”

Val a dir que tots aquest mètodes no passen de proporcionar un ordre de magnitud, i que no ofereixen garanties de fiabilitat ni del marge d’error que es comet. En qualsevol cas, aquests són els mètodes més utilitzats habitualment. Per aquests motius, en aquest estudi s’ha optat per adoptar posicions conservadores en l’elecció del coeficient de Manning.

Tot seguit es presenta el mètode de les “fórmules polinòmiques”, mètode emprat per a la determinació del coeficient de Manning del nostre tram de riu, i que serà introduït amb el mateix valor en els tres programes.
Mètode de les fórmules polinòmiques

Aquest mètode rescata la idea de que el coeficient de Manning inclou informació sobre molts aspectes clarament diferenciables, tal com s'ha comentat anteriorment. En destaquen 6 d'ells com a fonamentals, i \(n \) s'obté amb la seva combinació segons:

\[
 n = \left(n_0 + n_1 + n_2 + n_3 + n_4 \right) \cdot m_5
 \tag{2.2}
\]

- \(n_0 \) : depèn del material de la microrugositat o rugositat de gra
- \(n_1 \) : efecte de les irregularitats superficiales
- \(n_2 \) : possibles variacions en la secció
- \(n_3 \) : existència d'obstruccions
- \(n_4 \) : existència de vegetació
- \(m_5 \) : indicador de la curvatura en planta

Tots aquests factors estan tabulats, tal com es mostra en la taula polinòmica següent (Figura 2.7) que es pot consultar en ??? (referència):

<table>
<thead>
<tr>
<th>COEFFICIENTE</th>
<th>CASUÍSTICA</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_0)</td>
<td>Tierra</td>
<td>0.020</td>
</tr>
<tr>
<td>Material</td>
<td>Excavado en roca</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>Grava fina</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>Grava gruesa</td>
<td>0.028</td>
</tr>
<tr>
<td>(n_1)</td>
<td>Liso</td>
<td>0</td>
</tr>
<tr>
<td>Irregularitats</td>
<td>Levo</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Moderado</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Severo</td>
<td>0.02</td>
</tr>
<tr>
<td>(n_2)</td>
<td>Graduales</td>
<td>0</td>
</tr>
<tr>
<td>Variacions de secció</td>
<td>Ocasionalment bruscas</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Frecuentemente bruscas</td>
<td>0.01-0.015</td>
</tr>
<tr>
<td>(n_3)</td>
<td>Irrelevantes</td>
<td>0</td>
</tr>
<tr>
<td>Obstruccions</td>
<td>Infrequents</td>
<td>0.01-0.015</td>
</tr>
<tr>
<td></td>
<td>Frecuentes</td>
<td>0.02-0.03</td>
</tr>
<tr>
<td></td>
<td>Continues</td>
<td>0.04-0.06</td>
</tr>
<tr>
<td>(n_4)</td>
<td>Poca</td>
<td>0.005-0.01</td>
</tr>
<tr>
<td>Vegetació</td>
<td>MEDIA</td>
<td>0.01-0.025</td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>0.025-0.05</td>
</tr>
<tr>
<td></td>
<td>Muy alta</td>
<td>0.05-0.1</td>
</tr>
<tr>
<td>(m_5)</td>
<td>Baja</td>
<td>1.00</td>
</tr>
<tr>
<td>CURVATURA</td>
<td>Mediana</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Figura 2.7. Taula polinòmica per determinació de \(n \)
En el cas del tram de riu Noguera Pallaresa s’han agafat els valors següents:

<table>
<thead>
<tr>
<th>n_0</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>n_4</th>
<th>m_5</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.028</td>
<td>0.005</td>
<td>0.005</td>
<td>0</td>
<td>0.022</td>
<td>1</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Taula 2.5. Paràmeters escollits per al càlcul del coeficient de Manning

Per tant es considerarà un coeficient de Manning igual a $n = 0.06$ en tot l’estudi.

Per a contrastar els resultats obtinguts amb el mètode anterior s’ha comparat amb el mètode d’arxius fotogràfics:

Mètode del arxius de fotogràfics

Les fotografies de segments senzills d’inundació on s’han verificat valors de n és un altre dels mètodes que pot utilitzar-se com a nivell de comparació per ajudar a assignar valors de n a planes d’inundació similars. S’associa una fotografia d’un tros de riu a un valor de n.

A tall d’exemple, el tipus de riu que Chow, V.T. proposa en el seu arxiu de fotografies per a un $n = 0.06$ són les que es mostren tot seguit (Figura 2.8.; Figura 2.9.; Figura 2.11), bastant similars a les del tram del riu Noguera Pallaresa en estudi (Figura 2.10; Figura 2.12):
Figura 2.9. Aigües avall de la primera secció del tram del Rock Creek Canal

Figura 2.10. La Noguera Pallaresa al seu pas per l’est de Tremp

Figura 2.11. Aigües avall de la darrera secció del tram del Rock Creek Canal
2.6 LÍMIT DE L’ESTUDI AIGÜES AVALL

Normalment, els estudis de propagació de l’ona d’avinguda es realitzen fins on els càlculs indiquin que ja no existeix perill per a poblacions i persones situades aigües avall.

No obstant, existeixen situacions que permeten acotar el límit d’estudi aigües avall, entre les quals poden destacar:

- Desembocadura de la llera al mar.
- Aconseguir un cabal màxim inferior a la capacitat de la llera, sense produir inundacions significatives ni al marges ni aigües avall.
- La no ocupació aigües avall del punt límit per vivendes, serveis o altres béns econòmics.
- Entrada en un embassament capaç de rebre l’ona total de ruptura sense produir abocaments d’aigua importants aigües avall, o amb l’abocament de cabals que puguin produir danys importants.

En aquest treball s’ha considerat el darrer punt del llistat anterior, i per tant, serà la presa de Terradets, situada uns 17 km aproximadament aigües avall qui marcarà el límit final de l’estudi.

El nivell umbral del sobreexidor de la presa de Terradets serà també qui marcarà la condició de contorn aigües avall.

Remarcar finalment que la presa de Terradets se suposará durant tot l’anàlisi que no trencarà i que romandrà amb les seves comports obertes per tal d’anar evacuant l’ona que li vagi arribant progressivament des de Talarn.