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4. SPECTRAL ANALYSIS 
 

4.1. Introduction 

The spectral analysis is widely used in the analysis of noise-like signals because it provides 
a frequency decomposition in harmonics the behaviour of which can be studied separately. For that 
reason, it has become more important than the pure statistical analysis of the surface elevation 
itself and therefore is quite important to find a probability distribution which depends on spectral 
parameters which can be predicted. 

Different methods exist in order to determine the spectral density function from a discrete 
time record. The Fast Fourier Transform (FFT), which is an algorithm for calculating the Discrete 
Fourier Transform (DFT), is the most used. 

 

4.2. Fourier theory 

4.2.1. Continuous function 

Joseph Fourier (1768-1830) demonstrated that almost any function can be represented as a 
linear combination of an infinite number of harmonic oscillations. Therefore, the surface elevation, 
with a zero mean level, can be written as: 
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where ( )tη  is the surface elevation, if  the frequency of the i -harmonic and α the phase. 

Using trigonometric identities the last expression can be written as: 

[ ]
1

( ) cos(2 ) sin(2 )i i i i

i

t A f t B f tη π π
∞

=

= +∑  (4.2) 

with 2 2

i i ia A B= +  and tan i
i

i

B

A
α = −  

For a record of durationD , the amplitudes 
iA  and 

iB  can be determined with the Fourier 

Integrals: 
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The notion of a Fourier series can also be extended to a complex function: 
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where nX denotes the complex amplitude. 

4.2.2. Discrete function 

In practice, the surface elevation is recorded at discrete moments in time. Then, the Fourier 
Integrals of Eq. (4.3) and (4.4)  become sums: 
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where N is the length of the discrete time series. 

From Eq. (4.6) the real amplitudes na can be calculated as: 

2 22 Re( ) Im( )n n na X X= +  (4.7) 

 

4.3. The wave spectrum 

4.3.1. Theoretical definition 

From the amplitudes ia  and phases iα  associated with a certain if , the amplitude and 

phase spectrum can be determined. In deep water, linear theory is assumed. The phase is 
Uniformly distributed between 0 and 2π  (see Chapter 5). The amplitude is considered as a 
random variable too. To remove the corresponding sample character of the estimated spectrum 

one option would be considering ia  (from different records of surface elevation under statistically 

identical conditions). Instead, rather than the amplitude, the variance density is considered. The 

main reasons for this consideration are two. In the first place, 1

2

2

ia  is a measure of the variance 

(see Chapter 5) and therefore is a more representative statistical parameter of the surface 
elevation and it is, according to linear theory, proportional to the energy of the waves. In the 

second place, the variance spectrum is discrete (only the frequencies if  are present) but, in fact, 

all the frequencies are present in real waves. To account for this, the variance density 1

2

fai ∆2  is 

defined for the interval Df 1=∆ . Finally, because of the jumps from one frequency band to the 

next, the following limit is taken (in which the averaged value is replaced by the expected value): 
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4.3.2. Practical limitations 

First of all, the theoretical limit of Eq. (4.8) cannot be taken because of the finite duration of 
the record (taking the limit 0f∆ →  implies an infinite duration). That leads to a finite frequency 

resolution, removing details at a frequency scale Df 1=∆ . The frequency resolution can be 

improved by using a longer duration. However, the duration cannot be very long; otherwise, the 
record would not be stationary. 
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If one considers the amplitudes obtained from a single record ( 2

ia  instead of 2

ia ), one 

makes an error of approximately 100% in the estimation of a spectrum (Holthuijsen, 2007) because 
of the estimation of the mean from a single value. Such an error is unacceptable. In fact, with the 

assumption of the linear theory (see Chapter 5), the estimated variance density is 2χ  distributed 

with 2 degrees of freedom. This is logical; the spectrum is proportional to the square amplitude, 
which, according to linear theory, is Rayleigh distributed. 

 

Figure 4.1 Chi-square probability density function for different degrees of freedom 

A reasonable solution is dividing the initial record into p  sub-records and to compute the 

variance density for each one. Such sub-records can be considered statistically identical and 
therefore one can calculate the average between their spectrums. By this manipulation the 

variance density spectrum is 2χ  distributed with 2p  degrees of freedom and the error is reduced 

by a factor p : 
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The price paid for the reduction of this error is the decrease of the spectrum resolution 
because the new frequency interval is f p fδ = ∆ . In conclusion, the choice of p may be made 

considering both the error and the resolution. It is recommendable to have a final resolution of 
about 0.01 Hz (for the Mediterranean data would imply 12p = ). However, a slightly higher factor 

has been considered in order to decrease the error. 

Table 4.1 Parameters of the averaged spectra 

Parameter Mediterranean Sea North Sea 
p  16 16 

f∆ (Hz) 8.33 10-4 9.77�10-4 

fδ (Hz) 0.013 0.016 

Error (%) 25 25 
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Figure 4.2 qualitatively illustrates the influence of the variation of the parameter p. Logically, 
for smaller values of p , the spectrum looks more “grassy”. The chosen value 16p = seems quite 

reasonable, avoiding such fluctuations.  
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Figure 4.2 Comparison of the variance density spectrum with different values of p 

In addition, the discrete character of the wave record introduces an error which is not so 
obvious. As illustrated in Section 4.2.2, the Fourier integrals are replaced by finite sums. The 
consequence is a phenomenon called aliasing, which consists of mirroring the energy of high 
frequencies around the so-called Nyquist frequency the value of which is: 
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in which t∆ is the sampling interval of the wave record. The “physical” reason is that in a 

discretized time record, two harmonic waves with different frequencies may pass through the same 
data points (see Figure 4.3). The aliasing phenomenon is caused by the inability to distinguish 
between them.  

 

Figure 4.3 Two harmonic waves with frequencies 
1f  and 

2f , given at a interval time of 
1 2

1/ ( )t f f∆ = +  are 

indistinguishable. 

In outline, the derivation of expression of Eq. (4.10) can be explained by Figure 4.4: the 
discrete spectrum is not the Fourier transform of the surface elevation (understanding it as the 
continuous surface elevation) but the transform of the product of the surface elevation by an 

___ p=6 

___ p=12 

___ p=16 

___ p=24 



Overview of ocean wave statistics 

22 
 

equally spaced delta series. The spectrum is therefore the convolution product of the true spectrum 
by a delta series with 1/ t∆  frequency interval, which leads to a mirroring effect and the 
superposition of energy at the frequencies near the Nyquist frequency. 

 

Figure 4.4 Sketch of the reason for the aliasing phenomenon (Holthuijsen, 2007) 

The sampling interval of the Tortosa buoy is slightly higher than the commonly used value of 
0.5 s. The reason for choosing, if possible, an interval of 0.5 s is that the Nyquist frequency 
becomes 1Hz. Therefore, for real sea waves, the aliasing effect on the main part of the spectrum is 
practically null. The problem arises when the spectrum is clearly bimodal due to the presence of 
sea and swell. In such a case, the energy of the higher frequencies of the storm waves may be 
added to the energy of the swell lower frequencies if the Nyquist frequency is similar to the one of 
the storm waves. In any case, the frequency domain of the calculated wave spectrum should be 
up-limited to the Nyquist frequency. For the analysed data the value of the Nyquist frequency is: 

Table 4.2 Time interval and Nyquist frequency 

Parameter 
Tortosa 

buoy 
Other 
buoys 

Lasers 

t∆  (s) 1/1.28 1/2.56 1 

Nf  (Hz) 0.64 1.28 0.5 

Moreover, a minimum frequency has to be considered too. The sensor of the buoy is not 
capable of properly measuring the surface elevation below a certain value due to changes in 
temperature, pressure, etc. The used lower value for the frequency is 1/D (Rotés, 2004). 
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4.3.3. Windowing  

It has been seen that a record of length D  can be mathematically described as the 
superposition of a number of sinusoidal waves, each having an exact number of periods in duration 

D  ( Df 1=∆ ). Nevertheless, the sea actually consists of a continuous spectrum of waves. The 

energy of a component wavelength which does not have the exact frequency of a harmonic of D , 
goes to the two nearest harmonics and a portion goes to more distant ones. This leaked energy is 
sometimes significant and may interfere with the results. This phenomenon can be explained by 
considering the finite signal as the product of the entire infinite signal and a rectangular function 
which equals one in the duration and zero outside the duration. Therefore, the spectrum of the 
finite signal is the convolution product of the real spectrum and the Fourier transform of the 
rectangular function. In Figure 4.5, the simple case of a sinus wave is illustrated. With a duration 
that is a multiple of the wave length, the estimated spectrum is not affected, contrary to the case in 
which the duration is not a multiple of the wave length. The transform of the rectangular function 
appears in both cases but in the first one it does not have any affect because of those points at 
which the spectrum is evaluated. 

 

Figure 4.5 Comparison of the amplitude spectrum (logaritmic scale) between a sinus wave with a wave period a 
fraction of the duration (left) and any other period (right) (Lyons, 1998) 

The purpose of window functions (also known as taper functions) is to reduce the above 
leakage of energy to other frequencies, often visible as side lobes (see Figure 4.6). They consist in 
multiplying the wave record by a certain function, attenuating the value of surface elevation at the 
ends of the record. Most of the common window functions, depending on the type of the used 
function, are Hamming, Hanning, Tukey (partial cosine taper), etc. 
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Figure 4.6 Amplitude response spectrum (logaritmic scale) of : rectangular function (left) and partial cosine taper 
carried out over the first and last 10% of the record (right) (Tucker & Pitt, 2001) 

One of the disadvantages of window functions is that the beginning and end of the signal is 
attenuated. For that reason, the Tukey window has been considered in the present study because 
it is the one that least affects the original data. It consists of multiplying the extremes of the signal 
by a cosine wave. One example is illustrated in Figure 4.7. 
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Figure 4.7 Example of  a 50% cosine tapered record (25% at each end) 

The total tapered length is 10%, 5% at each end. However, as one can appreciate from 
Figure 4.8, the spectra obtained by different percentages of tapering are practically equal. 
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Figure 4.8 Spectrum of a partial cosine tapered record with different percentages of tapering. 

The used function ( )f k in the Tukey window (implemented in MATLAB) is: 
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in which k  is the index for each data point, r  is the proportion of tapering (0.1, 0.05 at each 

end), and N  the record length. The window multiplies the variance of the record by a factor: 

1 5 / 8G r= −  (4.12) 

Therefore, the final spectrum has to be divided by the above mentioned factor of Eq. (4.12). 

In Figure 4.9, the effects of both aliasing (due to discretisation of a signal) and leakage (due 
to truncation) are illustrated. 
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Figure 4.9 Aliasing (due to discrete record) and leakage (due to finite duration) (Brigham, 1988) 

 

4.4. Wave spectrum calculation 

In the present study, the FFT algorithm of MATLAB has been used, which implements the 
Fourier Transform of Eq. (4.6) (multiplied by a scale factor N ). The summation differs slightly from 

Eq. (4.6) because the numeration begins with 1. 
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As previously said, the analysis is organized by year-buoy. Each one is organized into a 
matrix with dimensions: length of the record x number of records. For example, in the 
Mediterranean data, the number of the analysed matrix totals 27 (number of year-buoys). The FFT 
is computed for each matrix, in which the Fourier Transform is calculated for each column.  

The calculation of Eq. (4.13) for all n -frequencies can be interpreted as the product of a 

matrix (the exponential part) multiplied by vector (the surface elevation).The efficiency of the FFT 
lies in the proper decomposition of such a matrix and other relevant permutations that considerably 
reduce the number of operations needed (for more detail information consult Birgham, 1988). The 
possible decompositions depend on the length of the vector. Therefore, the execution time and the 
required memory for the FFT (directly related to the required number of operations) depend on the 
length (in terms of number of data points) of η . The FFT is fastest for records in which the number 

of data points is a power of two and almost as fast for lengths that have only small prime factors. 
As the prime factors are smaller, the matrix can be further decomposed and a fewer number of 
operations are required. 
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This aspect may not seem relevant but it is. As the amount of data to be analysed increases, 
one has to consider these limitations. In fact, without taking into account the considerations 
explained below, in some “years-buoy” the FFT could not be computed in one step due to memory 
problems. 

MATLAB offers the option of using a function called FFTW which optimises the FFT. This 
optimization is related to the chosen decomposition of the original length. Bear in mind that for the 
same length, the required number of operations varies, depending on the factorization used. For 
example, in a simple case of a length of 16, the base-4 algorithm requires approximately 30 % 
fewer multiplications than the base-2 algorithm (Brigham, 1988). The original lengths of the records 
are: 

Table 4.3 Original length of the records 

Parameter 
Tortosa  

(1991-2000) 
Tortosa  

(2001-2006) 
Other buoys Lasers 

Length 1536 1535 3072 1024 

Except in the case of Tortosa (2001-2006), the prime factors involved are small: 1536 
(=29�3), 3072 (=210�3) and 1024 (=210). However, the length of 1535 (5�307) cannot be 
decomposed into small prime numbers. For these records the zero padding technique is used. It 
consists of adding zeros until the desired length is achieved. In this case, only one zero is added in 
order to have a length of 1536. The only effect is the scaling of the results of Eq. (4.6). However, as 
the FFT implemented in MATLAB does not include the factor N  (see Eq. (4.13)), the results are 
not scaled. The spectrum therefore is obtained by considering the original length and the original 
frequency interval for the amplitude calculation and no scaling factor is required. 

Remark that by adding zeros the resolution is not increased (although the frequency band 
becomes smaller). Essentially, this is an interpolation procedure (Shiavi, 1991) (see Figure 4.10). 

 

Figure 4.10 Example illustrating the false resolution enhancement by adding zeros  (Brigham, 1988) 

From the complex amplitude nX  provided by the FFT, the real part is considered because it 

is directly related to the amplitude associated to each frequency (see Eq. (4.7)). In addition, only 

the amplitudes associated with the interval frequency 1/ ND f f< <  are considered (as explained 

in Section 4.3.2). The wave spectrum is calculated as:  
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However, this is not the final result. The final spectrum is found by averaging the amplitudes’ 
values in the interval band f p fδ = ∆ . This is mathematically the same operation as dividing the 

records in subrecords, computing the wave spectrum for each subrecord and taking the average 
(see Section 4.3.2). Figure 4.11 illustrates the difference between the initial and the final (i.e. 
averaged) wave spectrum. 
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Figure 4.11 Averaged spectrum (red) compared to the initial one (blue) (Tortosa: 21/09/1991 00:16 h) 

 

4.5. Spectral parameters 

The spectral parameters can be split in two groups, depending on whether  they 

characterize the surface elevation (
0m

H ,
mT ,

0T ,
cT ) or the spectral shape (ε ,ν ,

pQ ). In addition, 

the BFI  is computed, which is related to the occurrence of extreme waves such as, freak waves 
for example. 

In most of parameter calculations, spectral moments are used. They are defined as: 
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One of the most used is the zeroth-order moment, which is the variance of the surface 
elevation (see Chapter 5). 

4.5.1. Parameters related with the surface elevation 

First of all, note that the expressions shown bellow of the most important parameters are 
derived assuming linear theory. 

• Mean wave height 
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02meanH mπ=  (4.16) 

• Significant wave height 

04sH m≈  (4.17) 

• Root-mean-square wave height  

08rmsH m=  (4.18) 

• Expected maximum wave height: 
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• Mean zero-crossing period 
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m
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=  (4.20) 

• Mean wave period (inverse of the mean frequency), which is less dependent on 
high-frequency noise than the previous one. 
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m
=  (4.21) 

• Significant wave period 

s peakT T=         for swell 

0.95s peakT T=        for wind sea 
(4.22) 

where 
peakT  is the inverse of 

peakf  

4.5.2. Shape parameters 

• Goda’s parameter (Goda, 1970): 
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• Longuet-Higgins’s spectral width (1975): 
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• Cartwright and Longuet-Higgins (1956) defined another spectral width parameter: 
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which is used in the probability density function of the wave crest defined as local 
maxima. In general, ν  is preferable above ε  because it depends on lower order 
moments and therefore less on the tail of the spectrum. 

4.5.3. BFI 

For a more detailed explanation of this parameter see Chapter 6. The calculation of BFI 
is made according to the following expression (Goda, 1970; Janssen, 2003, 2005): 

01 02p mBFI Q k mπ=  (4.26) 

where pQ  is the peakedness parameter of Goda (Eq. (4.23)), 
01mk the mean wave 

number: 
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and 0T  the mean zero crossing period. 


