III. Hidrocarburs Aromàtics Policíclics
III. HIDROCARBURS AROMÀTICS POLICÍCLICS

1. Introducció

Els Hidrocarburs Aromàtics Policíclics (HAPs) han estat presents com contaminants des dels inicis de la vida de l'home, ja que són compostos naturals presents en el mediambient. Tot i així, el creixement industrial ha suposat un augment de gran nombre de contaminants en l'entorn natural, entre ells, els HAPs.

L'estudi científic dels HAPs i els seus efectes va començar el 1775, a l'ésser detectat càncer als netejadors de xemencies exposats a sutge i cendres. Investigacions posteriors van suggerir que els agents causants del càncer eren els HAPs continguts en el sutge.

En el segle XX, durant als anys 30 es va demostrar que alguns dels HAPs presentaven un fort potencial cancerigen, mentre s'estudiaven similars propietats d’altres.

La família dels HAPs és un grup d'hidrocarburs amb 2 o més anells aromàtics de 6 carbonis fusionats; tenen en comú una baixa solubilitat en aigua, ja que són lipòfils.

La seva presència en el mediambient pot ser deguda a diverses fonts, tant naturals com antropogèniques. Generalment, els HAPs són produïts per combustió que pot ser natural (com per exemple els incendis forestals) o antropogènica (combustió en automòbils). Alguns dels HAPs són de fabricació específica, com el naftalè que s'utilitza com a insecticida, però la seva producció està en descens ja que es van substituint per compostos clorats.
L'interès de l'estudi d'aquestes substàncies és degut a la seva àmplia distribució en el medi ambient i a la seva possible inducció al càncer en organismes exposats. Els HAPs poden incorporar-se a l'organisme per ingestió, inhalació i absorció dèrmica.

Com a conseqüència de la seva baixa solubilitat en aigua i elevada en substàncies de naturalesa lipídica, s'acumulen en els organismes i en la matèria orgànica de partícules i sediments, poden restar així per a llargs períodes de temps, tot garantint la seva biodisponibilitat. La lentitud amb la que es degraden aquests compostos provoquen la seva acumulació en plantes, peixos i invertebrats aquàtics i terrestres, incorporant-se a la cadena alimentària.

2. Estructura i comportament

Cada membre d'aquesta família consisteix en un nombre d'anells de benzè fusionats a través de 2 o més àtoms de carboni. El nombre de possibles HAPs és enorme, però s'ha considerat aquí especialment alguns dels que es troben més àmpliament dispersos per la natura.
Taula III.- 1.

<table>
<thead>
<tr>
<th>HAP</th>
<th>Pes molecular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftalè</td>
<td>128.2</td>
</tr>
<tr>
<td>Fenantrè</td>
<td>178.2</td>
</tr>
<tr>
<td>Antracè</td>
<td>178.2</td>
</tr>
<tr>
<td>Fluorantrè</td>
<td>202.2</td>
</tr>
<tr>
<td>Pirè</td>
<td>202.2</td>
</tr>
<tr>
<td>Benzoantracè</td>
<td>228.2</td>
</tr>
<tr>
<td>Benzo(a)pirè</td>
<td>252.3</td>
</tr>
<tr>
<td>Perilè</td>
<td>253.3</td>
</tr>
<tr>
<td>Coronè</td>
<td>300.4</td>
</tr>
</tbody>
</table>

Com es pot observar en les estructures de la *Fig III.- 1*, el naftalè és el més simple dels HAPs, mentre, que el coronè és el de major pes molecular amb una significació mediambiental. Tot i que la majoria d’ells contenen anells de benzè fusionats, també alguns tenen anells fusionats de cinc carbonis (com el benzo(a)pirè i el benzo(a)antracè). Existeixen també HAPs heterocíclics (que contenen àtoms d’oxigen, sofre o nitrogen).

Els HAPs es troben habitualment en un estat sòlid, donant-li a la seva estructura d’anells aromàtics conjugats una particular resistència a agents químics i d’altre tipus d’atacs.

La solubilitat en l’aigua decreix en augmentar el pes molecular augmenta alhora el caràcter lipòfil. Els HAPs amb més significació en el medi ambient, són tots lipòfils, i per això són potencialment bioacumulats i concentrats en sediments i sòls, en una extensió que depèndrà de cada medi.

Aquesta diferència de persistència segons el tipus de compostos és la que va fer decidir sobre la major o menor capacitat de bioacumulació de cadascun d’ells. Com a regla general la persistència del compost en augmentar la grandària de la molècula.
Per exemple, la relativa baixa persistència del naftalè i d’altres compostos de baix pes molecular és degut a l’escassa capacitat de bioacumulació i d’altra banda, els compostos de més pes molecular, per exemple benzo(a)pirè, són altament persistents i per tant bioacumulables.

La principal via de degradació d’aquests compostos inclou processos químics (cloració i ozonització), fotològics o metabòlics associats a microorganismes. En alguns casos se’n donen conjuntament més d’una, depenent de les condicions que imperen com la temperatura, l’oxigen així com el tipus de microorganismes. La cloració i la ozonització de l’aigua són els principals processos químics que s’apliquen; fotològics, l’acció conjunta de l’oxigen i la llum solar.

L’activitat dels microorganismes es desenvolupa normalment mitjançant un co-metabolisme dels HAPs amb matèria orgànica nutrient. La biodegradació dels HAPs per bacteries de sistemes aquàtics és desigual, mentre que el benzo(a)pirè presenta una vida mitja superior a 300 setmanes, la del naftalè és de només 5 setmanes.

3. Origen i formació d’HAPs

Existeix una gran varietat de fonts naturals de formació d’HAPs, com per exemple els incendis forestals i l’activitat volcànica, que són les principals fonts naturals. L’aportació d’aquests focus és de difícil estimació, degut a la naturalesa esporàdica dels mateixos.

Les principals fonts d’origen antropogènic de més contribució a la presència d’HAPs en l’entorn són en ordre decreixent d’importància: processos industrials, calefacciions domèstiques, fonts mòbils d’emissió (transports), incineradores i plantes de generació elèctrica. Dins de les fonts antropogèniques cal destacar el consum de tabac, tot i que és insignificant com a font en general, és de gran importància com a font d’exposició directa de fumadors i dels propers a aquests. El càncer induït per el tabac no és únicament efecte de la nicotina, tot i que aquesta és tòxica, sino a l’exposició a HAPs produïts per la combustió del tabac.
Una combustió completa de la matèria orgànica donaria com a resultat l’obtenció de diòxid de carboni i aigua. Això tindria lloc en condicions d’alta temperatura i suficient oxigen. Tot i així, sovint l’oxigen hi és en defecte, i com a conseqüència alguns fragments orgànics reaccionaràn amb d’altres propers formant-se una gran varietat de HAPs, depenent de les condicions que existeixin en aquell moment. Per exemple, la formació de HAPs es veurà més afavorida quan la disponibilitat d’oxigen sigui petita en a l’ambient per a completar la combustió.

La quantitat de HAPs dependrà també de la temperatura amb la qual es dugui a terme la combustió i de la naturalesa de la matèria orgànica (cellulosa, tabac, carbó, polietilè i d’altres materials polimèrics) s’obté de la mateixa proporció de HAPs si la reacció es desenvolupa a una temperatura definida, éssent els més habituals refluxats en la taula anterior (TaulaIII.- 1).

Durant la formació geològica dels carburants fòssils, els HAPs es formen mitjançant diferents processos. La formació de carbó i petroli es duu a terme per ruptura de la matèria orgànica provocada per pressió a temperatures moderades. Sota aquests condicionants, el mecanisme de formació dels HAPs és similar al descrit en les combustions, però les transformacions s’escauen en proporcions molt menors com a conseqüència de les baixes temperatures. D’aquesta forma, en l’utilització de combustibles fòssils, els HAPs generats durant la formació del petroli i el carbó alguns són alliberats a l’atmosfera sense experimentar canvis, altres són transformats durant la reacció de combustió en altres HAPs, i per últim són també alliberats els HAPs que es generen com a conseqüència de la propia combustió.

4. Toxicitat dels HAPs

Alguns d’aquests compostos induixeixen la formació de càncer en els organismes exposats. Alguns HAPs tenen una major activitat cancerígena, particularment el benzoantracè (en animals) i benzo(a)pirè (en humans). Cal assenyalar que es considera a tots els HAPs suspitosos de ser cancerígens en un cert grau, fins i tot en concentracions molt baixes.
El procés d’induïció de càncer en mamifers produeix per els HAPs, involucra un grup d’enzims que són capaços de convertir els compostos xenobiòtics lipòfils (inclosos els HAPs) en productes solubles en aigües. Aquest tipus d’enzims són les “Mixes Function Oxidasas” (MFO) que pertanyen al grup citocrom P450. Aquest sistema enzimàtic és estimulat dins d’un organism per exposició a compostos lipòfils persistentes. Reptides exposicions a aquests compostos donen com a resultat la induïció de quantitats incrementades d’aquests enzims. La capacitat d’induïció d’aquests enzims depèn de cada organisme.

Els mamífers, per exemple tenen una gran capacitat inductiva, i com a resultat una bona capacitat de degradació de compostos lipòfils persistentes. Altres com els peixos, tenen una capacitat molt limitada d’induïció de MFO, i per tant una capacitat limitada de degradació. El procés de transformació d’un compost lipòfil a compost soluble en aigua suposa la inserció d’un àtom d’oxigen en l’estructura del compost en forma d’epòxid, amb la consegüent hidròlisis que ho transforma en didriol epòxid.

És aquesta la forma en què els HAPs són capaços d’unir-se a zones de molècules com l’ADN o l’hemoglobina, i tenen capacitat de causar la formació d’un tumor. S’ha de tenir en compte, que aquesta última reacció de transformació es pot dur a terme en més o menys temps i que és un mecanisme que no es coneix amb profunditat.

Els efectes tòxics que tenen els HAPs sobre els organismes aquàtics venen reflexats en la següent taula en funció de la LC50 (1). (Taula III.- 2)

Està comprovat que la toxicitat augmenta en augmentar el pes molecular, alhora el caràcter lipòfil del compost, i que els organismes aquàtics són els més afectats.

S’ha comprovat que la radiació solar eleva significativament la toxicity en organismes aquàtics. Es creu que és degut a la fotoactivació de les molècules de HAPs presents.
Taula III.- 2

<table>
<thead>
<tr>
<th>HAP</th>
<th>ORGANISME</th>
<th>LC$_{50}$ (96 hr) (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftalè</td>
<td>Peixos crustacis</td>
<td>0.1-0.81</td>
</tr>
<tr>
<td>Acenaftè</td>
<td>Peixos</td>
<td>0.6-3.0</td>
</tr>
<tr>
<td>Fenantrè</td>
<td>Peixos</td>
<td>0.04-0.6</td>
</tr>
<tr>
<td>Benzo[a]pirè</td>
<td>Peixos</td>
<td><0.024</td>
</tr>
</tbody>
</table>

(1)LC$_{50}$: Concentració letal per al 50% dels organismes exposats als HAPs.

Existeix una àmplia informació sobre els efectes crònics de HAPs en organismes aquàtics tant pel què fa a sistemes naturals com en assaigs de laboratori. Generalment, exposició a nivells d’HAPs subletals, produeixen desenvolupaments morfològics i fisiològics anormals, així com els defectes en la reproducció (menor nombre de naixements i alteracions de larves).

Pel què fa a efectes mutagènics i cancerígens, s’ha demostrat que el benzo(a)pirè induceix a aberracions microsomals en els peixos, aquests compostos en general provoquen hiperplasia i neoplasia epidermal.

Algunes espècies de peixos exposats als HAPs han desenvolupat càncer de fetge.

El benzo(a)pirè és l’hidrocarbur aromàtic policílic més estudiat ja que és representatiu dels efectes dels compostos d’aquest grup, s’acostuma a expressar l’impacte ocasionat per els hidrocarburs aromàtics policílics, en termes d’equivalència amb el benzo(a)pirè.
Si és ben sabut que el benzo(a)pirè és un contaminant atmosfèric amb efecte cancerígen, amb prou feines s'ha definit el valor límit i l'estàndard ambiental. Degut a què el benzo(a)pirè s'introduïx en el cos humà des de diferents fonts, és imprescindible mantenir els aliments i l'aigua potable lliure d'aquesta substància.

El recorregut dels HAPs pel medi ambient depèn molt de la forma i la manera en què s'incorporen. Poden passar a les aigües superficials a través de l'atmosfera i de descàrrega d'efluents industrials (com les plantes de tractament de fusta), aigües residuals urbanes (amb continguts en els fangs de 0,5-10 mg/g de matèria seca), i l'eliminació inadequada d'olis de motors utilitzats. També han estat detectats en aigües freàtiques, com a resultat de la migració directa de les aigües superficials contaminades o com a conseqüència dels sòls contaminats.

Els compostos que tenen més persistència són acomulats en plantes, peixos i invertebrats terrestres aquàtics, incorporant-se a la cadena alimentària.

La dieta dels humans, es pot considerar com a probable font d'ingestió d'aquests compostos. El contingut de benzo(a)pirè en aliments oscilla en torn a 0,17-10,5 mg/Kg, depenent de l'aliment (un major contingut en greixos n'augmenta els nivells) o bé en el processament dels aliments (el peix fumat, conté nivells d'HAPs relativament elevats, 4-16 mg/Kg de benzo(a)pirè, com a conseqüència de la combustió de la fusta en la seva elaboració). A més, el contingut d'HAPs en els aliments, pot ser degut a la bioacumulació d'aquests al llarg de la cadena alimentària.

La vía respiratòria és una vía d'entrada d'aquests compostos a l'organisme. Les concentracions d'HAPs a l'atmosfera, varia desde 0,2 ng/m³ fins valors superiors a 100 ng/m³ en àrees properes a les principals fonts d' emissió antropogèniques (tràfic, calefaccions domèstiques), essent les concentracions superiors en els mesos d'hivern que ens els d'estiu. Degut a la combustió de tabaqu s'assoleixen de l'ordre de 11 ng/m³.
5. Anàlisi dels HAPs

Es determinen HAPs en aigües potables, ja que la legislació estableix uns màxims permesos. La tècnica emprada és la cromatografia líquida d’alta resolució (HPLC), que permet la separació i quantificació d’aquests compostos en els nivells que la legislació marca com a representatius del grup de PHAs (fluorantrè, benzoantrè, benzopirelè entre d’altres). També s’utilitza l’HPLC per la determinació de la qualitat de l’aire en l’ambient laboral de certes activitats (on l’exposició d’aquests agents és inevitable) i han d’ésser controlades.

S’han desenvolupat nombrosos mètodes per determinar les quantitats dels HAPs en sediments marins en algunes zones del planeta, on s’hi han trobat a nivells relativament elevats, principalment procedents de la contaminació per petroli i els seus derivats. De la mateixa manera també s’ha determinat dels continguts de HAPs en diferents tipus d’aliments (illet, formatge, peix, vegetals, etc). En aquests mètodes, l’investigació està centrada sobretot en l’optimització dels mètodes d’extracció dels contaminants de la matrícula dels conté.

La cromatografia de gasos-espectrometria de masses, HPLC-fluorescència, són entre d’altres, les tècniques més emprades en la determinació dels hidrocarburs aromàtics policíclics.

6. Normativa dels HAPs

6.1 Normativa dels HAPs per a aigües de consum públic.

Com s’ha comentat en l’apartat anterior, es troben en legislació els valors límits en aigües potables en un màxim de 0.2 µg/l d’HAPs totals (RD 1138 / 1.990).
Va sortir però, el 3 de novembre de 1998 una nova Directiva de la Unió Europea 98/83/CE (en realitat una modificació de la ja existent sobre aigües potables de consum públic), on el **valor límit d’HAPs permès és de 0.1 µg/l**.

S’ha de dir en primer lloc que també s’ha reduït notablement el nombre de paràmetres que han de ser analitzats en una aigua potable, passant dels 70 recollits en la Reglamentación Técnico Sanitaria (RTS) de 1.990, a ser només 50 els paràmetres recollits en la nova Directiva.

En segon lloc, la Directiva ha fet especial èmfasi al contingut i a la quantificació analítica per a molts compostos orgànics específics que abans no es consideraven. D’una forma global s’han establert valors de concentracions màximes sobre tots els paràmetres físic/químics, microbiològics i radiactivitat que són explícits en la Directiva, que abans no es consideraven en la normativa de 1.990.

La Directiva a tingut en compte les directrius de l’Organització Mundial de la Salut (OMS) sobre el tema.

Els compostos orgànics en el nou marc normatiu de la Unió Europea

Comparant les Taula III.- 3 i Taula III.- 4 es pot apreciar, per exemple, que les anàlisis de residu al cloroform, residu a l’èter, fenòls i detergents establerts en la RTS deixen de tenir aplicació en la nova Directiva.

Respecte els HAPs la nova directiva discrimina entre, el benzo(a)pirè i d’altra banda un grup de quatre substàncies (benzo(b)fluorantrè, benzo(k)fluorantrè, benzo(ghi)perilè i indè(1,2,3-cd)pirè).

La Taula III.- 4 recull els diferents compostos considerats en la nova Directiva, amb les seves concentracions màximes permeses (R.Marín Galvin y J.M. Rodríguez Mellado 1998).
Taula III.- 3.
Paràmetres de caràcter orgànic considerats en la RTS de 20-09-1.990 (Directiva 80/778 de la CEE)

<table>
<thead>
<tr>
<th>Paràmetres</th>
<th>Concentració màxima</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residu al cloroform (a)</td>
<td>0,1(c)</td>
<td>mg/l</td>
</tr>
<tr>
<td>Residu a l'èter (a)</td>
<td>10(d)</td>
<td>µg/l</td>
</tr>
<tr>
<td>Fenòls (a)</td>
<td>0,5(d)</td>
<td>µg/l</td>
</tr>
<tr>
<td>Detergents (a)</td>
<td>200(d)</td>
<td>µg/l</td>
</tr>
<tr>
<td>Trihalometans (a)</td>
<td>1(c)</td>
<td>µg/l</td>
</tr>
<tr>
<td>Plaguicides individuals (b)</td>
<td>0,1(d)</td>
<td>µg/l</td>
</tr>
<tr>
<td>Total plaguicides (b)</td>
<td>0,5(d)</td>
<td>µg/l</td>
</tr>
<tr>
<td>Hidrocarburs aromàtics policíclics (b)</td>
<td>0,2 (d)</td>
<td>µg/l</td>
</tr>
</tbody>
</table>

(a) Components no desitjables; (b) Components tòxics; (c) Nivell guia; (d) Concentració màxima.

Taula III.- 4.
Paràmetres químics de caràcter orgànic considerats en la Directiva 98/83/CE de 03-11-98

<table>
<thead>
<tr>
<th>Paràmetres</th>
<th>Concentració màxima</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrilamida</td>
<td>0,10</td>
<td>mg/l</td>
</tr>
<tr>
<td>Benzè</td>
<td>1,0</td>
<td>µg/l</td>
</tr>
<tr>
<td>Benzo(a)pirè</td>
<td>0,010</td>
<td>µg/l</td>
</tr>
<tr>
<td>1,2- dicloroetà</td>
<td>3,0</td>
<td>µg/l</td>
</tr>
<tr>
<td>Epiclorhidrina</td>
<td>0,10</td>
<td>µg/l</td>
</tr>
<tr>
<td>Plaguicides individuals</td>
<td>0,10</td>
<td>µg/l</td>
</tr>
<tr>
<td>Total plaguicides</td>
<td>0,50</td>
<td>µg/l</td>
</tr>
<tr>
<td>Hidrocarburs aromàtics policíclics</td>
<td>0,10</td>
<td>µg/l</td>
</tr>
<tr>
<td>Tetracoloetè i Trihalometans</td>
<td>10</td>
<td>µg/l</td>
</tr>
<tr>
<td>Total Trihalometans</td>
<td>100</td>
<td>µg/l</td>
</tr>
<tr>
<td>Colur de vinil</td>
<td>0,50</td>
<td>µg/l</td>
</tr>
</tbody>
</table>
Normativa dels HAPs en altres àmbits

La legislació considera que els HAPs presenten un risc per a la salut humana en altres àmbits.

D’altra banda, després d’haver contrastat en diversos estudis que l’absorció dèrmica dels HAPs, pot produir carciogènesis dèrmica i sistèmica, es prohibeix mitjançant la Directiva 97/45/CE l’ús de quitrans d’hulla bruts i refinats en els productes cosmètics.

Existeix també la normativa referent a les exposicions laborals d’aquests compostos, on els valors límits admissibles, estan legislatius aquí a Espanya a través del RD 665/1997.

El INSHT (Institut Nacional i Higiene en el Treball) cataloga alguns d’aquests compostos, com el benzo(a)pirè, com a mutagènic i teratogènic.

Pel que fa a la normativa existent sobre nivells màxims continguts en aliments, en diversos països existeix el màxim recomenat d’1 mg/kg de benzo(a)pirè en aliments, especialment en productes fumats.

A Espanya, recentment s’ha comprovat que la presència de determinats HAPs en olis d’orujo d’oliva són conseqüència de la biosíntesis en l’olivera, sinó degut a una contaminació externa, resultant d’aplicar una determinada tecnologia en l’extracció dels olis esmentats.

Com a conseqüència d’això, es publicà l’Ordre de 20 de Juliol de 2001, per la que s’estableixen límits de determinats HAPs en olis d’orujo d’oliva, així com també s’insta a establir pràctiques adequades que redueixin el seu contingut el màxim possible. Els límits màxims que s’estableixen para cada un dels vuit HAPs ha de ésser menor o igual a 2 mg/kg d’oli, i la suma total dels possibles analits quantificats a una concentració de 2 mg/kg d’oli i no han de superar en cap cas els 5 mg/kg.
També estableix aquest Ordre, que el límit de detecció per les tècniques analítiques aplicables als analits d’HAPs a determinar ha de ser de 1mg/kg, així com el mètode que s’utilitzi ha d’estar basat en determinats criteris, com és que l’anàlisi que s’ha dut a terme mitjançant HPLC amb detector de fluorescència.

7. Biorremediació dels HAPs

La biorremediació és un procés natural de degradació, mineralització o humificació.

Pot classificar-se, segons en el seu lloc d’aplicació com *ex situ* o *in situ*. En els tractaments a seguir es poden addicionar nutrients, afavorir la circulació de l’oxigen (en degradació aeròbia) o introduir microorganismes alòctons. Els microorganismes autòctons són més eficaçs per aquestes tasques. També es poden afegir microorganismes modificats genèticament.

Com ja s’ha esmentat en els apartats anteriors, els HAPs són contaminants que es consideren amb prioritat per ser estudiats, degut a les seves propietats mutagèniques tòxiques i cancerígenes. En els últims anys l’acumulació d’aquests han anat augmentant (Menzie et al., 1992).

Una gran varietat d’aquests compostos orgànics no volàtils poden ser trobats en el petroli contaminant del sòl on els nivells d’aquests varien, però generalment altes concentracions poden ser trobades en els vessaments industrials.

El sòl té la capacitat d’absoribir aquests compostos i molts són volatilitzats a l’atmosfera, però són els microorganismes els principals degradadors d’aquests compostos d’aquests compostos (Crawford et al., 1993).
Els HAPs com més anells de benzè tenen més resistent serà l’activitat enzimatèica (veure taula, on es descriuen les característiques físiques dels HAPs emprats en l’experiment d’aquest projecte). Lee and Ryan (Atlas, 1981) van notar que biodegradació del naftalè (2 anells) era 1000 vegades més gran que la del benzo(a)pirè (5 anells), en general les estructures que contenen 4 o més anells són difícils de degradar.

Taula III. – 5. Paràmetres físics dels HAPs (PM=pes molecular, PF=punt de fusió (°C), PE=punt d’ebullició (°C))

<table>
<thead>
<tr>
<th>Nom</th>
<th>Nombre d’anells</th>
<th>Fórmula</th>
<th>PM</th>
<th>PF</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftalè</td>
<td>2</td>
<td>C_{10}H_{8}</td>
<td>128.17</td>
<td>80</td>
<td>218</td>
</tr>
<tr>
<td>Acenaftè</td>
<td>3</td>
<td>C_{12}H_{10}</td>
<td>154.21</td>
<td>93-96</td>
<td>279</td>
</tr>
<tr>
<td>Antracè</td>
<td>3</td>
<td>C_{14}H_{12}</td>
<td>178.23</td>
<td>216</td>
<td>340</td>
</tr>
</tbody>
</table>

Els estudis de degradació dels HAPs van començar fa més de 80 anys quan Sohgen & Stormer van aïllar bacteris que eren capaces de degradar compostos aromàtics fent-los servir com a font de carboni (Atlas, 1981).

En ambients aquàtics els principals gèneres de bacteris i fongs trobats són els següents, Pseudomonas, Achromobacter, Arthrobacter, Micrococcus, Norcadia, Vibrio, Acinetobacter, Brevibacterium, Corynebacterium, Flavobacterium, Candida, Rhodotorula i Sporobolomyces.

En investigacions realitzades en el sòl van mostrar que 11 gèneres de fongs, entre els quals destaca el Phanerochaetes chrysosporium, és considerat un microorganisme prometedor degut a la producció de lignasa amb un alt potencial de degradar compostos insolubles d’alt pes molecular.
La degradació bacteriana d’aquests compostos normalment engloba la formació de cis, dihydrodiol observat per la formació d’un diàcid com l’àcid cis, cis –mucònic mentre que pels eucariotes com els fongs l’oxidació dóna la formació de trans, dihydrodiol, en ambdós casos un diol és un intermediari indispensable (Alexander, 1977).

Cerniglia i Heitkamp (1989) han suggerit els següents principis aplicats a la degradació dels HAPs.

1) Una gran varietat de bacteris, fongs i algues tenen l’habilitat de degradar-los.

2) La hidroxylació dels HAPs engloba la incorporació d’oxigen molecular.

3) Els microorganismes procariotes metabolitzen els HAPs amb un atac inicial d’una dioxigenasasa per donar cis, dihydrodiol que a més a més és oxidat per formar dihydroxids.

4) Els HAPs amb més de 3 anells de benzè no serveixen com a substrat pel creixement bacterià això fa que hagi d’estar subjecte a una transformació co-metabòlica.

5) Els HAPs de baixos pesos moleculars com el naftalè són degradats ràpidament mentre que aquells que tenen alt pes com l’antracè són més resistentes.

6) La biodegradació s’escau amb més eficiència en la interfació sediment/aigua.

7) L’adaptació microbiana pot ocórrer per contínues exposicions als HAPs. Últimament s’han desenvolupat tècniques de compostatge com a forma de biorremediació.

Ja que els microorganismes són capaços de degradar compostos tòxics, en la naturalesa és d’esperar que aquests facin el mateix que en un laboratori sota condicions òptimes. Aquest tractament consisteix en la formació d’un fang amb el material contaminat i aigua.
El tractament s’efectua en un bioreactor on es realitza el procés de forma controlada, és a dir, se subministra nutrients, s’inocula amb els microorganismes desitjats, s’aireja continuament així com el manteniment del pH i la temperatura.

En experiments en la Universitat d’Hèlsinki amb compostatge de sòls contaminats amb clorofenol es va observar una descontaminació dels mateixos. La concentració de clorofenol va ser reduïda de 212 mg/Kg a 30 mg/Kg durant 4 mesos de compostatge (Valo and Salkijona-Salonene, 1986), a més es va observar que el procés de descomposició s’accelerava si s’inoculava amb Rhodococcus chlorophenicus.

L’ambient que es genera en el compostatge es caracteritza per elevades temperatures (>50 °C), alta concentració de nutrients, suficient oxigen i un pH neutre.

Williams and Keenan (1993) indiquen que els microorganismes que degraden els contaminants no difereixen significativament entre el sòl i el compostatge. De totes maneres el potencial de transformació varia per diferents raons.

- Primerament l’elevada temperatura que es genera en el compostatge incrementa la cinètica enzimàtica que engloba el procés.
- En segon lloc, l’oportunitat per a la cooxidació pot ser augmentada degut a la varietat de substrats presentats.
- Tercer, les modificacions en el microambient físic i químic del compostatge pot servir per augmentar la diversitat microbiològica.
- Finalment, les altes temperatures augmenta la solubilitat i la transferència de massa, això fa que sigui més metabolitzat pels microorganismes.

Les altes temperatures són el factor més determinant en l’ambient del compostatge, això és degut a què la pressió de selecció sobre els bacteris es veu intensificada per l’aument de la temperatura.
Els bacteris termòfils són capaços de degradar hidrocarburs com per exemple, els del gènere *Thermomicrobium* i molts dels termòfils estan obligats a metabolitzar hidrocarburs.

S’ha descobert un bacteri termòfil *Bacillus licheniformis HAL*, el qual és molt efectiu per iniciar el compostatge. El seu rol seria el de prevenir la caiguda del pH en els estats primerens del compostatge i permetria el desenvolupament de la matèria orgànica en fase termòfila del compostatge (Kiyohiko et al., 1994).