1. INTRODUCCIÓ ... 4

2. LA INDUSTRIA COSMÈTICA .. 5
 2.1. Productes de la indústria cosmètica .. 5
 2.2. El mercat de la indústria cosmètica .. 6
 2.3. Normativa reguladora .. 7
 2.3.1. Productes fabricats a Espanya .. 7
 2.3.2. Productes fabricats en la U.E .. 8

3. TEORIA DE LES EMULSIONS ... 10
 3.1. Conceptes generals: l'emulsió ... 10
 3.2. Tipus d'emulsions .. 10
 3.3. Elaboració de les emulsions .. 12
 3.3.1. Emulsions O/W .. 12
 3.3.2. Emulsions W/O .. 15
 3.4. Propietats físico-químiques de les emulsions ... 18
 3.4.1. La fase grassa .. 18
 3.4.1.1. Els emulsionants ... 18
 3.4.1.2. Els agents espessants .. 19
 3.4.1.3. Els ols o emol·lients .. 20
 3.4.1.4. Principis actius .. 21
 3.4.2. La fase aquosa .. 21
 3.5. Sistemes emulsionants ... 22
 3.5.1. Acció emulgent .. 28
 3.5.2. Poder escumant .. 29
 3.5.3. Acció humectant ... 29
 3.5.4. Acció detergent .. 29
 3.5.5. Acció solubilitzant ... 30
 3.5.6. Criteris de selecció d'un emulsionant ... 30
 3.6. Estabilitat en les emulsions ... 33
 3.6.1. Tipus de problemes o inestabilitats en les emulsions 34
 3.6.1.1. Creaming i sedimentació ... 35
 3.6.1.2. Floculació ... 36
 3.6.1.3. Coalescència ... 38
 3.6.1.4. Difusió molecular o Ostwald ripening .. 39
 3.6.1.5. Inversió de fases .. 39
 3.7. Criteris de validació de les emulsions cosmètiques ... 40
 3.7.1. Qualitats organolèptiques .. 40
 3.7.2. Característiques físico-químiques .. 41
 3.7.3. Propietats reològiques .. 44
 3.7.4. Control químic ... 48
 3.8. Avaluació de la seguretat dels cosmètics ... 48
 3.8.1. Control microbiològic .. 48
 3.8.2. Toxicitat ... 49
 3.8.3. Reaccions al·lèrgiques ... 50
 3.8.3.1. La irritació primària .. 50
 3.8.3.2. La sensibilització ... 50
 3.8.3.3. Irritants i sensibilitzants cosmèticos .. 50
3.8.3.4. Mecanisme i fisiologia de la irritació .. 51
3.8.3.5. Mecanisme i fisiologia de la sensibilització .. 52
3.8.3.6. Assajos d’irritació i sensibilització ... 54
3.8.3.7. Prova del pegat per avaluar la reacció de la pell ... 54

4. INTRODUCCIÓ ALS EXTRACTES VEGETALS .. 55
4.1. Concepte de droga ... 56
4.2. Què és un principi actiu? ... 56
4.3. Obtenció .. 56
4.3.1. Drogues obtingudes del regne vegetal .. 56
 4.3.1.1. Flora espontània ... 57
 4.3.1.2. Cultius .. 57
4.3.2. Drogues obtingudes del regne animal .. 58
4.3.3. Drogues obtingudes del regne marí ... 58
4.3.4. Obtenció biotecnològica .. 58

5. IDENTIFICACIÓ DE DROGUES I PRINCIPIS ACTIUS .. 60
5.1. Mètodes d’assaig .. 60
 5.1.1. Assaigs organolèptics ... 60
 5.1.2. Assaigs botànics .. 61
 5.1.3. Estudis morfològics o característiques macroscòpiques 61
 5.1.4. Anàlisi microscòpica o característiques microscòpiques 62
 5.1.4.1. Talls histològics .. 62
 5.1.4.2. Drogues polvoritzades .. 63
 5.1.5. Assaigs fisicoquímics ... 63
 5.1.5.1. Mètodes qualitatius .. 64
 5.1.5.2. Anàlisi cromatogràfic .. 65
 5.1.6. Assaigs farmacodinàmics i biològics ... 68
 5.1.7. Electroforesi .. 69

6. CONTROL DE QUALITAT I PURESA DE DROGUES .. 70
6.1. Assaigs fisicoquímics quantitatius generals .. 70
 6.1.1. Percentatge d’humitat ... 70
 6.1.1.1. Mètode gravimètric .. 71
 6.1.1.2. Mètode volumètric .. 71
 6.1.1.3. Mètode de Karl Fisher ... 71
 6.1.2. Contaminació microbiològica .. 72
 6.1.3. Residus de productes fitosanitaris ... 72
 6.1.4. Naturalesa i taxa d’elements estranys .. 72
 6.1.5. Determinació de cendres ... 73
 6.1.6. Determinació de metalls pesats ... 73
 6.1.7. Determinació d’olis essencials ... 74
 6.1.8. Índex de refracció ... 74
6.2. Assaigs fisicoquímics quantitatius específics .. 75
 6.2.1. Mètodes volumètrics ... 75
 6.2.2. Mètodes espectrofotomètrics ... 75
 6.2.3. Espectroscòpia RMN .. 76
 6.2.4. Fluorimetria .. 76
 6.2.5. Mètodes combinats ... 77
6.3. Assaigs biològics ... 77

7. EXTRACTE BOSWELLIA SERRATA ... 79
 7.1. Història ... 79
 7.2. Origen .. 79
 7.3. Obtenció .. 80
 7.4. Composició química ... 80
 7.5. Aplicació farmacològica ... 80
 7.5.1. Activitat de l’enzim 5-lipoxigenasa ... 82
 7.6. Els àcids Boswellics ... 83
 7.6.1. Estructura dels tipus d’àcids Boswellics .. 84
 7.6.2. Anàlisi de la resina Boswellia Serrata per HPLC 85
 7.6.2.1. Productes per a l’estudi ... 85
 7.6.2.2. Procediment d’extracció de la mostra 85
 7.6.2.3. Paràmetres del HPLC ... 85
 7.6.2.4. Resultats i conclusions ... 86
 7.7. Els terpens .. 88
 7.7.1. Tipus de terpens ... 89
 7.7.2. Biosíntesi dels terpens .. 90

8. SOOTHEX® .. 92
 8.1. Propietats fisicoquímiques ... 92
 8.2. Aplicacions cosmètiques .. 93
 8.3. Seguretat ... 94
 8.4. Anàlisi del Soothex® per HPLC ... 95
 8.4.1. Productes per a l’estudi .. 95
 8.4.2. Paràmetres del HPLC ... 96
 8.4.3. Resultats i conclusions ... 96
 8.5. Proves test amb Soothex® ... 99
 8.5.1. Estudi 1- Efecte del Soothex® en una crema depilatòria 99
 8.5.1.1. La fórmula .. 99
 8.5.1.2. Aplicació de la fórmula ... 99
 8.5.1.3. Mesura de la vermelló de la pell ... 100
 8.5.1.4. Resultats .. 101
 8.5.1.5. Discussió .. 102
 8.5.2. Estudi 2- Efecte del Soothex® en una formulació antitranspirant 102
 8.5.2.1. La fórmula .. 102
 8.5.2.2. Aplicació de la fórmula ... 103
 8.5.2.3. Mesura de la vermelló de la pell i resultats 104
 8.5.2.4. Discussió .. 105

9. CONCLUSIONS ... 107

10. BIBLIOGRAFIA .. 109

ANNEX1. Reglamentació cosmètica
ANNEX2. Articles relacionats amb el Boswellia Serrata
ANNEX3. Dades de l’estudi antitranspirants amb Soothex®
1. INTRODUCCIÓ

Al llarg d'aquest projecte, és pretèn donar una visió objectiva i acurada del món de la cosmètica des de la seva basant tècnica, centrant-se en la utilització de l'extracte d'origen vegetal anomenat Soothex.

Per tal de poder comprendre les diferents peculiaritats d'aquest món, el projecte s'ha subdividit en dos grans blocs.

En el primer bloc, es fa un estudi de la indústria cosmètica al segle XXI, es parla dels productes cosmètics i de l'evolució del mercat amb dades econòmiques per tal de poder mostrar de forma coherent un marc orientatiu per al projecte.

Seguidament, realitza un exhaustiu recorregut pel complex món de les normatives i les regulacions d'aquesta indústria, per tal de poder entendre la importància de la sistematització i normalització de tots els processos implicats en la creació de qualsevol producte de la indústria cosmètica.

Un cop definit l'entorn real, el projecte es centra en la base d'aquesta indústria, les cremes. Es mostren els principis teòrics i pràctics de la creació d'aquest producte cosmètic, començant per la teoria de les emulsions i recorrent tot els diferents processos involucrats en la creació de un producte estàndard de mercat fins arribar als actius, l'objectiu principal, ja que les diferents característiques que poden tenir les emulsions estan totalment supeditades als principis que es facin servir en la elaboració de qualsevol producte.

En el segon bloc es donen a conèixer els diferents passos a seguir per obtenir els extractes vegetals. Els diferents estudis que es porten a terme en les plantes que tenen els principis actius, per veure si estan correctes i realment contenen aquest actiu. Els análisis de qualitat i pureza de les drogues i per últim els mètodes d'extracció i separació per poder identificar-lo i quantificar-lo.

Un cop aclarits aquest passos, es tracta el Soothex, l’actiu objecte del projecte, procedent de la resina del Boswellia Serrata. En aquest apartats s’expliquen la seva història, d’on s’obté i totes les seves característiques i les propietats, demostrades científicament, així com les aplicacions que se li ha donat des de molts anys abans de que es potencies el seu ús en la indústria cosmètica fins als nivells actuals.

Amb tot aquest projecte els objectius que s’intenten assolir són:

- Fer una introducció clara i entenadora del desconegut món de la cosmètica.
- Adquirir un coneixement en profunditat de les propietats i aplicacions en la indústria cosmètica dels extractes vegetals, especialment del Boswellia Serrata, conegut amb el nom comercial de Soothex ®.
2. LA INDUSTRIA COSMÈTICA

La cosmètica és un món en constant evolució gràcies als desenvolupaments bioquímics dels últims anys. És un sector amb moltes possibilitats ja que disposa d’un gran mercat: laboratoris, farmàcies, perfumeries, supermercats, professionals de la salut, instituts de bellesa, etc. A més és un sector que inverteix grans quantitats de diners en llançaments i promocions de nous productes d’alt valor afegit.

En els següents apartats es dóna una visió global i es senyalen els diferents aspectes de la indústria cosmètica, s’explica què és un cosmètic, quins tipus hi ha, quina és la seva importància en el mercat químic, com ha evolucionat, quines són les exigències de fabricació, així com la seva normativa reguladora.

2.1. Productes de la indústria cosmètica

La Normativa va establir clarament el concepte de producte cosmètic dins el RD 1599/1997, el qual el defineix com:

“Tota aquella substància o preparat destinat a ser posat en contacte amb les diverses parts superficials dels cos humà (epidermis, sistema pilós i capil·lar, ungles, llavis i òrgans genitals externs) o amb les dents i les mucoses bucales, amb la fi exclusiva o principal de netejar-los, perfumar-los o modificar el seu aspecte i/o corregir les olors corporals i/o protegir-los o mantenir-los en bon estat”.

D’aquesta definició, es dedueixen clarament les accions pròpies d’un producte cosmètic i entre la gran quantitat de productes i aplicacions d’aquest es poden destacar:

- Cremes, emulsions, locions, gels i olis corporals
- Productes per el maquillatge i desmaquillatge de la cara i el ulls
- Productes per la cura i el maquillatge d’ungles
- Sabons i xampús
- Productes per al bany i la dutxa (sals, escumes, olis, gels)
- Desodorants i antitranspirants
- Productes capil·lars
- Productes depilatoris
- Productes per el rasurat (sabons, escumes, locions, after-shaves)
- Productes per als llavis
- Productes per la higiene bucal i dental
- Productes per la higiene intima
- Productes solars
- Productes bronzejadors
-

2.2. El mercat de la indústria cosmètica

Si s’analitza el mercat, es pot veure que els cosmètics són productes que tenen un gran valor afegit i que estan en continu ascens, això fa que el negoci de la indústria cosmètica mogui xifres de diners molt grans.

Aquest és un sector que gasta anualment grans quantitats de diners en publicitat i marketing, per el que no es estrany que existeixi un poderós mercat internacional que promociona i difon unes consignes estètiques, a través d’un sofisticat engranatge publicitari i mediàtic sense precedents en la mercadotecnia contemporània. Per aconseguir augmentar el nombre d’usuaris d’aquests productes, les empreses estan invertint molt en campanyes publicitàries molt concretes i específiques dirigides per segments als diferents tipus de compradors (gent gran, gent jove, homes, dones, etc.).

És un mercat que actualment encara té com principal usuari les dones, ja que si es pren com a referència el consum espanyol en productes de bellesa, només el 12% són productes específics per als homes, tot i que això poc a poc està canyint gràcies a les promocions de cosmètica masculina.

L’evolució del mercat dels cosmètics en Espanya es pot definir com un creixement sostingut. Segons un informe realitzat per l’Associació Nacional de Perfumeria i Cosmètica (STANPA), Espanya va ser el cinquè productor europeu de productes cosmètics en 2006, any en el que es va arribar a una facturació de 7.443 milions d’euros que va suposar un increment del 4,62% respecte a l’exercici anterior.

Aquest estudi revela que els productes que van registrar el major volum de vendes van ser el de cura de la pell, amb un benefici de 1.230 milions d’euros que representen un augment del 7%. La perfumeria i els productes per el cabell van ocupar la segona i la tercera posició, amb una facturació de 1.050 milions en cadascun d’ells. Per països, els principals receptors dels productes fabricats en Espanya són França, Alemanya i el Regne Unit, que van sumar el 34% de les exportacions totals en 2006.

L’informe també assenyala que al voltant de 230 empreses espanyoles treballen en el sector de la cosmètica. El 60% d’elles són de tamany mig o petit, tenen una estructura familiar i es dediquen majoritàriament a la producció de marques blanques.

A més, segons s’extreu d’aquest estudi, el creixement de l’especialització en l’oferta de productes propiciarà que en Europa es registri un augment del 25% anual en els pròxims anys. Per sectors, serà el dels tractaments facials el que experimentarà un augment més gran de la demanda. Per la STANPA, el sector viu una conjuntura molt favorable gràcies a la progressiva expansió internacional de les empreses espanyoles.
2.3. Normativa reguladora i requisits per la comercialització de productes cosmètics

Els productes cosmètics en Espanya, es regeixen per el Real Decret 1599/1997, on es determinen les condicions tècnic-sanitàries que han de reunir aquests productes, el control sanitari i els requisits que han de complir les instal·lacions on s’elaboren. És la normativa qui regeix pel que fa als productes d’importació, i també fa esment sobre l’etiquetatge i publicitat dels productes procedents de fora d’Espanya. També defineix la inspecció, les infraccions i les sancions corresponents.

En els següents apartats es desenvolupen amb més profunditat tots aquest punts, a més a més en l’annex 1 es troba la normativa íntegrament transcrita. També s’inclou com annex una llista negativa de substàncies prohibides i la seva composició. Així doncs, a Espanya, si un compost no està específicament prohibit, es podrà utilitzar. Això comporta que aquesta llista negativa estigui continuament revisant-se i ampliant-se a mesura que augmenten els coneixements toxicològics i farmacològics, i es descobreixen noves substàncies perjudicials per la salut i el medi ambient. Les ordres que van ser publicades posteriorment al DR 1599/1997 que complementen a aquest són les següents (veure annex 1):

- Ordre del 4 de juny de 1998 per la que s’adapten al progrés tècnic els Annexes del DR 1599/1997 (BOE 12-6-98).
- Ordre del 26 d’abril de 1999 per la que s’adapten per segona vegada al progrés tècnic del RD 1599/1997 (BOE 6-5-99).
- Ordre del 3 d’agost de 2000 per la que s’adapten per tercera vegada al progrés tècnic del RD 1599/1997 (BOE 17-8-00).
- Ordre del 3 d’agost de 2000 per la que s’aplaça la data a partir de la qual queden prohibits els experiments amb animals, per ingredients o combinacions d’ingridents de productes cosmètics (BOE 17-8-00).

Els mètodes d’anàlisi estan en un recull d’una publicació del Ministeri de Sanitat i Consum “Metodos oficiales de análisis de los productos cosméticos”.

Per comercialitzar un producte cosmètic a Espanya, els tràmits a seguir són diferents segons si el producte està fabricat en Espanya, la Unió Europea (U.E.) o fora d’aquesta.

2.3.1. Productes fabricats a Espanya

La fabricació de cosmètics o alguna de les seves etapes del procés com l’envàs, el condicionament, el control, etc., han de realitzar-se en empreses amb autorització expressa, per aquestes activitats, atorgada per la Direcció General de Farmàcia i Productes Sanitaris (DGFPS).

Aquesta autorització es concedirà un cop s’hagi comprovat que l’empresa sol·licitant té les instal·lacions, mesures, elements i personal adequats per dur a terme aquestes activitats.
En general, la Direcció General de Farmàcia i Productes Sanitaris demana:

- Un Director Tècnic.
- Una memòria tècnica, especificant el tipus i les característiques del producte.
- Uns plànols de la instal·lació amb les característiques tècniques que marca el Ministeri d’Indústria, i dels mecanismes de control de l’activitat a desenvolupar.
- Un laboratori de Control de Qualitat per garantir que els productes compleixen els requisits del RD 1559/1997.
- Sotmetre’s a una visita d’inspecció i renovació de la llicencia cada 5 anys.

L’empresa sol·licitant haurà de complimentar els següents requisits:

a) Informació a efectes del tractament mèdic

S’haurà d’enviar a la DGFPS tota la documentació necessària recollida en l’Article 8 del RD 1559/1997, no més tard del dia en el que s’efectuarà la sortida al mercat del producte.

b) Registre d’empreses sol·licitants, per conèixer els productes fabricats a Espanya

- El responsable, si esta ubicat a Espanya, haurà d’enviar a l’organisme regulador segons la comunitat autònoma on tingui la seu social, una relació dels productes que fabrica i els llocs de fabricació d’aquests. Aquesta relació, ha d’incloure tots els productes que es comercialitzen al mercat comunitàri i ha d’actualitzar-se quan es produeixi qualsevol canvi en les dades del responsable, del fabricant, quan s’iniciï una nova fabricació d’un nou producte o acabi la fabricació d’algun altre. Una copia d’aquest document serà enviada per la comunitat autònoma a la DGFPS.

- Si el responsable esta ubicat en la U.E. però fabrica productes per Espanya, ha d’enviar la relació de productes que fabrica junt amb la ubicació dels llocs de fabricació d’aquests. Aquesta relació ha de ser actualitzada en els mateixos aspectes que l’anterior.

2.3.2. Productes fabricats en la U.E.

El responsable del llançament al mercat haurà de complimentar els següents requisits:

a) Informació a efectes del tractament mèdic

El responsable de comercialitzar productes cosmètics a Espanya haurà d’enviar a la DGFPS la informació recollida en l’Article 8 del RD 1559/1997.
b) Registre de responsables

L’empressa sol·licitant del llançament del producte al mercat, haurà de:

- Comunicar a la DFGPS el lloc on s’ha fabricat el producte.
- Complimentar el tràmits reglamentaris al país on es fabrica.
3. TEORIA DE LES EMULSIONS

Les cremes i locions fluides o llets, són productes cosmètics que es formulen majoritàriament sobre la base d’emulsions, d’aquí la importància d’explicar què és, quins tipus hi ha i les seves característiques físic-químiques.

3.1. Conceptes generals: l’emulsió

S’ha de dir que l’emulsificació no és una ciència exacta que es regiixi per unes normes estrictes, si no que realment es basa en l’experiència mitjançant prova-error. Existeixen diferents tipus de definicions per les emulsions i normalment depèn de les seves propietats físiques, químiques o la combinació d’ambdues i del propi autor que la defineixi.

Aquí es defineix l’emulsió com una dispersió, més o menys estable de dos líquids immiscibles entre ells. Un dels líquids, el que s’anomena fase dispersa, interna o discontínuà, es dispersat en forma de gotícules en un altre al que s’anomena fase contínua.

3.2. Tipus d’emulsions

Per diferenciar els tipus d’emulsions que hi ha s’ha de valorar la naturalesa de la fase externa i del sistema estabilitzant que es farà servir, també s’ha de tenir en compte el número de fases, en el cas de que es tracte d’emulsions múltiples (W/O/W, O/W/O...) i el tamany de partícula de la fase interna (nano-emulsions, micro-emulsions, o emulsions convencionals mínim 1 micron).

Com s’ha esmentat abans, es pot fer una primera classificació de les emulsions basant-se en el tamany de les gòtiques dispersades.

<table>
<thead>
<tr>
<th>Diàmetre mitjà</th>
<th>Aspecte</th>
<th>Exemple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fins a 500μm</td>
<td>Partícules visibles a simple vista</td>
<td>Sorra molt fina</td>
</tr>
<tr>
<td>Fins a 100μm</td>
<td>Límit de visibilitat</td>
<td>Almidó de patata</td>
</tr>
<tr>
<td>Fins a 10μm</td>
<td>Opac lletós</td>
<td>Llet natural</td>
</tr>
<tr>
<td>Fins a 1μm</td>
<td>Lletós blanc</td>
<td>Llet homogeneitzada</td>
</tr>
<tr>
<td>Fins a 100nm</td>
<td>Lletós blavós</td>
<td>Emulsions molt fines</td>
</tr>
<tr>
<td>Fins a 50nm</td>
<td>Transparent blavós</td>
<td>Microemulsions</td>
</tr>
<tr>
<td>Fins a 10nm</td>
<td>Transparent</td>
<td>Microemulsions</td>
</tr>
<tr>
<td>[6, 2nm]</td>
<td>Transparent</td>
<td>Medis miscel·lars</td>
</tr>
<tr>
<td>[1, 0.1nm]</td>
<td>Transparent</td>
<td>Molècules, àtoms...</td>
</tr>
</tbody>
</table>

Taula 3.1. Classificació de les emulsions segons el tamany de partícula.
En les emulsions sempre es troben dues fases, una aquosa i una altra grassa o oliosa. D’aquí que les emulsions es divideixin en dos tipus segons la naturalesa de la seva fase externa:

- l’emulsió oli en aigua (O/W) (oil-in-water)
- l’emulsió aigua en oli (W/O) (water-in-oil)

Les primeres s’anomenen olio-aquoses, són petites gotes d’oli envoltades d’una fase externa aquosa. Les W/O s’anomenen hidro-aquoses i és al contrari, són petites gotes d’aigua envoltades d’una fase externa d’oli.

El tipus d’emulsions que es forma depèn, en part, de les proporcions relatives d’oli i aigua en la formulació. Si els olis constitueixen la menor proporció, al voltant d’un 20% de fase interna o dispersa, donarà lloc a emulsions O/W, són emulsions molt fluides. Si el contingut en olis és d’un 50-60% de la fase dispersa, és fàcil que es formi una emulsió W/O.

En l’apartat 3.7.2. s’expliquen els diferents mètodes per determinar els tipus d’emulsió.

Les emulsions també es poden classificar segons quina sigui la seva utilitat:

- Es fan servir com a vehicle per la transmissió d’un principi actiu, per exemple en les cremes de tipus farmacològic, com analgèsic muscular o també en cosmètics com cremes depilatòries ifiltres solars.
- S’utilitzen per la neteja de la pell, com desmaquillants o netejadors.
- Com cremes per tractaments, per exemple anti-cel·lulítiques o anti-edat.
- Com cremes de protecció, com les solars.
- Com cremes decoratives i estètiques, com els maquillatges.
3.3. Elaboració de les emulsions

Existeixen tres mètodes d’elaboració d’emulsions:

- Emulsió directa per emulsions O/W.
- Emulsió indirecta o d’inversió de fases per emulsions O/W.
- Emulsió directa per emulsions W/O.

3.3.1. Emulsions O/W

En aquestes emulsions la fase interna de la gotícula és oli i està envoltat d’aigua, que és la fase externa (oil-in-water).

En emulsions O/W que el mètode d’emulsió sigui directa o indirecta dependrà de la temperatura d’emulsificació, del ratio del volum de la fase interna, de la concentració, del tipus d’emulsionant que es faci servir, de l’homogenització i del mètode d’elaboració.

Per elaborar una emulsió O/W els ingredients bàsics que es necessiten són:

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Dosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Emulsionant primari (*HLB>8)</td>
<td>5.0-10.0%</td>
</tr>
<tr>
<td>2. Co-emulsionant (HLB<4)</td>
<td>0.5-1.0%</td>
</tr>
<tr>
<td>3. Olis (emol·lients)</td>
<td>10.0-40.0%</td>
</tr>
<tr>
<td>4. Espessants/estabilitzants</td>
<td></td>
</tr>
<tr>
<td>- Alcohols/Àcids grassos (fase grassa)</td>
<td>0.5-2.0%</td>
</tr>
<tr>
<td>- Goma xanthan (fase aquosa)</td>
<td>0.1-0.5%</td>
</tr>
<tr>
<td>- Carbómers (fase aquosa)</td>
<td>0.05-0.20%</td>
</tr>
<tr>
<td>- Silicas- NeosilCT11 (fase aquosa)</td>
<td>3.0-5.0%</td>
</tr>
</tbody>
</table>

*Taula 3.2. Ingredients de les emulsions O/W.

*HLB és l’equilibri entre la fase grassa i l’aquosa, s’explica en l’apartat 3.5. Sistemes emulsionants.

La següent formulació d’una crema de dia anti-edat, és un exemple d’emulsificació directa O/W. On es pot veure quin és el mètode a seguir per elaborar-la i quins ingredients porta.
CREMA ANTI-EDAT O/W
 (pells sensibles)

<table>
<thead>
<tr>
<th>Nom comercial</th>
<th>INCI</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Brij 72</td>
<td>(Steareth-2)</td>
<td>3.00</td>
</tr>
<tr>
<td>Brij 721</td>
<td>(Steareth-21)</td>
<td>2.00</td>
</tr>
<tr>
<td>Arlamol E</td>
<td>(PPG-15 Stearyl Ether)</td>
<td>4.00</td>
</tr>
<tr>
<td>Arlamol HD</td>
<td>(Isohexadecane)</td>
<td>5.00</td>
</tr>
<tr>
<td>Ecorol 68/30 f</td>
<td>(Cetearyl Alcohol)</td>
<td>1.00</td>
</tr>
<tr>
<td>Pristerene 9559</td>
<td>(Stearic Acid)</td>
<td>1.50</td>
</tr>
<tr>
<td>BRB Silcare DM 100</td>
<td>(Dimethicone)</td>
<td>1.00</td>
</tr>
<tr>
<td>Soothex</td>
<td>(Dipropylene Glycol, Boswellia Serrata Gum)</td>
<td>2.00</td>
</tr>
<tr>
<td>B. Aigua destil·lada</td>
<td>(Aqua)</td>
<td>100.00</td>
</tr>
<tr>
<td>Pricerine 9091 (1)</td>
<td>(Glycerin)</td>
<td>4.00</td>
</tr>
<tr>
<td>C. Glycolic Acid, 70%</td>
<td>(Glycolic Acid)</td>
<td>7.00</td>
</tr>
<tr>
<td>D. Sharomix DMP</td>
<td>(Propylene Glycol, Diazolidinyl Urea, Methylparaben, Propylparaben)</td>
<td>1.00</td>
</tr>
<tr>
<td>E. Perfume</td>
<td>(Parfum)</td>
<td>q.s.</td>
</tr>
<tr>
<td>F. NaOH (25%)</td>
<td>(Sodium Hydroxide)</td>
<td>pH=4.5</td>
</tr>
</tbody>
</table>

Elaboració:
1. Escalfar fases A i B a 70-75°C
3. Homogenitzar AB durant 1½ (Silversón: 3.000rpm)
4. Deixar refredar sota agitació lenta fins a 40º
5. Afegir fase C, D i E progressivament.
6. Ajustar pH amb F. Refredar a temperatura ambient agitant lentament.

⇒ **Viscositat (25°C):** 17.225 mPa·s (Brookfield LVT, Spindle C, 12 rpm)
 pH=4.5-5.0

Els avantatges que comporta aquest tipus d’emulsions són:

- El temps i l’energia necessària d’homogenització són baixos (1½ minuts i 3000 rpm).
- És de fàcil manipulació.
- La temperatura d’emulsificació és baixa (70-75°C).
Els desavantatges d’aquest mètode són:

- S’han d’incorporar olis amb punts de fusió elevats.
- El tamany de partícula és menys uniforme.

El següent és un exemple d’una formulació O/W elaborada de manera indirecta o d’inversió de fases. La diferencia amb l’anterior es troba en la forma de fer l’emulsió.

LOCIÓ CORPORAL O/W HIDRATANT (sprayable)

<table>
<thead>
<tr>
<th>Nom comercial</th>
<th>INCI</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Arlasilk Phospholipid EFA</td>
<td>(Linoleamidopropyl PG-Dimonium Chloride Phosphate) (Aqua)</td>
<td>2.00</td>
</tr>
<tr>
<td>Aigua destil·lada</td>
<td></td>
<td>100.00</td>
</tr>
<tr>
<td>B. Brij 76</td>
<td>(Steareth-10)</td>
<td>1.50</td>
</tr>
<tr>
<td>Arlatone 983</td>
<td>(…)</td>
<td>1.50</td>
</tr>
<tr>
<td>Mineral Oil</td>
<td>(Mineral Oil)</td>
<td>8.00</td>
</tr>
<tr>
<td>Arlamol E</td>
<td>(PPG-15 Stearyl Ether)</td>
<td>3.50</td>
</tr>
<tr>
<td>C. Kemaben 2</td>
<td>(Propylene Glycol,Diazolidinyl Urea, Methylparaben, Propylparaben)</td>
<td>1.00</td>
</tr>
<tr>
<td>D. Perfume</td>
<td>(Parfum)</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

Elaboració– “mètode PIT”:

1. Escalfar fases A i B a 85-90ºC.
2. Afegir lentament fase A sobre B (mantenint la temperatura a 85ºC) agitant intensament fins que es doni la inversió de fase.
3. Deixar refredar fins a 40-45ºC agitant intensament.
4. Afegir fase C i D.
5. Deixar refredar a temperatura ambient.

⇒ Viscositat (25ºC) : aquós
pH=6.04

Els avantatges d’aquesta emulsificació són:

- Es poden elaborar emulsions semi-calentes.
- Hi ha uniformitat en el tamany de partícula.
- Es poden obtenir emulsions líquides després del punt d’inversió.
Extracte Boswellia Serrata en formulacions cosmètiques

En contra però, estan els desavantatges, que són més nombrosos que en l’emulsificació directa:

- Es necessita una elevada energia mecànica i tèrmica.
- Pot tenir un màxim de 25% de fase grassa.
- Es necessari un equip especial d’agitació.
- Es produeix a una elevada temperatura d’emulsificació (+10ºC PIT)
- No garanteix la completa inversió.
- El grau de refredament influeix en la viscositat.
- Es difícil d’elaborar a gran escala.

3.3.2. Emulsions W/O

En aquestes sistemes l’aigua és la fase interna de la gotícula i està envoltada per l’oli, que és la fase externa (water-in-oil)

Per elaborar una emulsió W/O els ingredients que es necessiten són:

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Dosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Emulsionant primari (HLB<4)</td>
<td>2.0-5.0%</td>
</tr>
<tr>
<td>2. Co-emulsionant (HLB>8)</td>
<td>0.5-1.0%</td>
</tr>
<tr>
<td>3. Olis (emol·lients)</td>
<td>10.0-40.0%</td>
</tr>
<tr>
<td>4. Espessants/ estabilitzants</td>
<td></td>
</tr>
<tr>
<td>- Ceres- microcristalina, candelilla (f.grassa)</td>
<td>0.5-2.0%</td>
</tr>
<tr>
<td>- Oli de rici hidrogenat</td>
<td>0.5-2.0%</td>
</tr>
<tr>
<td>- Cutina (f.grassa)</td>
<td></td>
</tr>
</tbody>
</table>

Taula 3.3. Ingredients de les emulsions W/O.

La formulació d’una crema hidratant que es presenta tot seguit, serveix com exemple per saber com és el procés d’emulsificació W/O i que el diferencia del O/W.
CREMA HIDRATANT W/O
(pell seca)

<table>
<thead>
<tr>
<th>Nom comercial</th>
<th>INCI</th>
<th>% w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Arlacel P135</td>
<td>(PEG-30 Di polyhydroxystearate)</td>
<td>2.00</td>
</tr>
<tr>
<td>Arlamol HD</td>
<td>(Isohexadecane)</td>
<td>6.00</td>
</tr>
<tr>
<td>Estol 3609</td>
<td>(Triethylhexanoin)</td>
<td>4.00</td>
</tr>
<tr>
<td>Prisorine 3631</td>
<td>(Pentaerythrityl Tetraisostearate)</td>
<td>2.00</td>
</tr>
<tr>
<td>Pripure 3759</td>
<td>(Squalane)</td>
<td>5.00</td>
</tr>
<tr>
<td>Thrixcin R</td>
<td>(Trihydroxystearin)</td>
<td>0.60</td>
</tr>
<tr>
<td>B. Aigua destil·lada</td>
<td>(Aqua)</td>
<td>100.00</td>
</tr>
<tr>
<td>Pricerine 9091</td>
<td>(Glycerin)</td>
<td>5.00</td>
</tr>
<tr>
<td>MgSO₄ · 7H₂O</td>
<td>(Magnesium Sulphate)</td>
<td>0.80</td>
</tr>
<tr>
<td>Alpantha</td>
<td>(Panthenol, Allantoin)</td>
<td>0.50</td>
</tr>
<tr>
<td>C. Gel Base BSM5</td>
<td>(Cyclomethicone, Dimethicone, Phenyl Trimethicone)</td>
<td>3.00</td>
</tr>
<tr>
<td>Hydromide Blend</td>
<td>(Glycine Soya (Soybean) Seed Extract, Ceramide 2)</td>
<td>2.00</td>
</tr>
<tr>
<td>D. Sharomix DMP</td>
<td>(Propylene Glycol, Diazolidinyl Urea, Methylparaben, Propylparaben)</td>
<td>1.00</td>
</tr>
<tr>
<td>E. Perfume</td>
<td>(Parfum)</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

Elaboració:
1. Escalfar fases A i B a 90°C.
3. Afegir progressivament fases C i D a AB.
4. Homogenitzar ABCD durant 2 minuts (Silversón: 4.000rpm).
5. Deixar refredar fins a 40-45°C agitant intensament.
6. Afegir el perfum i deixar refredar a temperatura ambient agitant intensament.

⇒ Viscositat (25°C): 14.875 mPa·s (Brookfield LVT, Spindle C, 12 rpm)

Els avantatges d’aquesta emulsificació són:
- Es poden elaborar emulsions amb un alt contingut d’olis.
- El tamany de partícula és uniforme.

Els inconvenients que es troben alhora d’elaborar aquestes emulsions són:
- El temps i l’energia necessària d’homogenització són alts (2 minuts i 4000rpm).
La temperatura d’emulsificació és alta (85-90°C).

En l’esquema es resumeix i aclareix l’elaboració de les diferents emulsions, O/W i W/O.

<table>
<thead>
<tr>
<th>Emulsions O/W</th>
<th>Emulsions W/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase A: fase oliosa</td>
<td>Fase A: fase oliosa</td>
</tr>
<tr>
<td>Fase B: fase aquosa</td>
<td>Fase B: fase aquosa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emulsió:</th>
<th>Emulsió:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase A</td>
<td>Fase B</td>
</tr>
<tr>
<td>Fase B</td>
<td>Fase A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Homogenitzar:</th>
<th>Homogenitzar:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.000rpm / 1 ½ minuts</td>
<td>4.000rpm / 2 minuts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emulsionants O/W (HLB↑):</th>
<th>Emulsionants W/O (HLB↓):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arlacel 165FL., Arlatone 983/985, Brij’s, Tween’s, Arlatone 2121...</td>
<td>Arlacel 581/582, Arlacel P135, Prisorine 3700, Span’s...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-emulsionants:</th>
<th>Co-emulsionants:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span’s, Myrj’s...</td>
<td>Arlatone TV, Arlacel 989, Tween’s...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Espessants:</th>
<th>Espessants:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols grassos (C₁₆, C₁₈, C₁₆-C₁₈...), àcids grassos (esteràric, isoesteràric...), carbomers, goma xanthan...</td>
<td>Ceres, estaearat magnèsic, cutina HR, aerosil...</td>
</tr>
</tbody>
</table>

Taula 3.4. Esquema resum d’elaboració d’emulsions.
3.4. Propietats físic-químiques de les emulsions

Les propietats de les emulsions varien segons quina sigui la seva fase externa, oliosa o aquosa.

Propietats físiques generals de les emulsions O/W:
- La fase externa és aquosa, s’evapora fàcilment i deixa una sensació fresca i seca de la pell.
- Tenen millor estabilitat a temperatures baixes.
- Són fàcils d’esbandir, degut a que són solubles en aigua.
- Són fàcils de fabricar, ja que es pot fer servir matèries primes barates.
- Deixen transpirar la pell, així que es poden aplicar en grans zones de la pell.

Propietats físiques generals de les emulsions W/O:
- Degut a que la fase externa és oliosa, deixen una sensació grassa a la pell.
- Crea una barrera protectora.
- Són antitranspirants, mantenen la humitat de la pell.
- Poden portar ingredients lipofílics perquè la pell els pugui absorbir fàcilment.

El tamany de partícula és un factor a tenir en compte, ja que en depenen altres característiques importants. La concentració i el tipus d’emulsionant escollit també afecten a les característiques de l’emulsió.

Dins la fase aquosa i grassa hi ha altres elements constitutius que són els responsables que es puguin formar les emulsions, que aquestes siguin estables i tinguin les propietats desitjades.

3.4.1. La fase grassa

Els elements que es descriuen a continuació són els que constitueixen la fase grassa de les emulsions.

3.4.1.1. Els emulsionants

En aquest apartat es tractaran més superficialment i posteriorment, donada la seva importància a l’apartat 3.5 es parla d’ells d’una forma més detallada.

Els emulsionants són tensioactius que s’afegeixen a la fase grassa per fer més estable una emulsió. A més, aporten les següents característiques:
- Sensació agradable sobre la pell.
- Millor extensibilitat sobre la pell.
- Compatibilitat cutània.
- Estandarització de les formules.
Aquestes substàncies per la seva condició de tensioactius es poden classificar com iònics (catiònics i aniònics), no-iònics i anfoters:

- **Aniònics**: els més utilitzats són els sabons, els alquilsulfats i els fosfats.
 - Sabons són tensioactius que es coneixen des de l’antiguitat. Són del tipus sòdic, potàssic o derivats d’etanolamines, substituïts per àcids grassos, normalment formant-se in-situ en l’emulsió amb l’àcid de la fase oliosa i l’àlcali en l’aquosa.
 - Alquilsulfats s’utilitzen per obtenir emulsions estables.
 - Fosfats són compostos d’esters ortofosfòrics d’alcohols grassos oxietilats, però es fan servir poc.

- **Catiònics**: són compostos d’amoni quaternari, es fan servir en sistemes O/W i per fer cremes i acondicionadors capil·lars.

- **No iònics**: són els més utilitzats. Hi ha solubles en aigua per formar emulsions O/W i solubles en oli per les emulsions W/O. Aquests emulsionants tenen grans avantatges sobre els anteriors degut al seu caràcter no polar:
 - Són emulsionants/emulgents neutres que donen lloc a cremes amb pH neutres, si no es que s’afegeixen altres components que modifiquin el pH.
 - Poden associar-se amb altres emulsionants iònics i no-iònics.
 - Són més immunes a l’acció dels electrólits que els iònics.

- **Anfoters**: tenen un comportament catiònic o aniònic segons el medi en que es troben. Habitualment no es fan servir per elaborar una emulsió cosmètica.

3.4.1.2. Els agents espessants

Els agents espessants principalment es fan servir per donar viscositat a la crema. Que sigui més o menys viscosa dependrà dels olis que es facin servir i del pes molecular que tinguin aquest. A mesura que augmenti el pes molecular, augmentarà la viscositat. Normalment s’utilitzen esters d’àcids grassos o alcohols grassos d’alt pes molecular, com per exemple, l’alcohol cetil estearilic o el monoestearat de glicerina.

Les principals característiques d’aquests compostos són:

- Augmentar la viscositat de l’emulsió.
- Aportar estabilitat a l’emulsió.
- Donar sensació de suavitat i protecció a la pell.
3.4.1.3. Els olis o emol·lients

Dins els emol·lients es poden incloure un número molt heterogeni de substàncies com esters, olis vegetals, silicones..., però en qualsevol cas són substàncies que aporten les característiques sensorials a un producte. Les seves principals característiques són:

- Tenen acció lubricant.
- Són agents re-engrasants.
- Prevenen la pèrdua d’aigua.
- Donen cohesió a les cèl·lules epitelials.
- Tenen acció dissolvent.
- Solubilitzen filtres solars.
- Donen consistència i aparença a les emulsions.
- Poden donar estabilitat al sistema emulsionant.
- Donen extensibilitat i oclusivitat.
- Són vehicles d’actius.

Els olis utilitzats fonamentalment solen ser minerals i vegetals o sintètics. L’elecció d’un o altre depenen dels criteris econòmics, de marketing i tècnics.

Respecte als criteris tècnics dels olis utilitzats les seves propietats són:

Olis minerals: són hidrocarburs neutres i tenen:

- Gran estabilitat.
- Compatibilitat cutània.
- Són fàcilment emulsionants.
- Són oclusius.
- De fàcil absorció cutània.

Olis sintètics: són els substituts dels naturals i amb les mateixes propietats tenen una sèrie d’avantatges:

- Tenen millor preu i disponibilitat.
- Tenen un elevat grau de puresa.
- Substituteixen els olis d’origen animal, que ja no són disponibles degut a les mesures de protecció d’aquests.
- Eviten l’oxidació.

Químicament els emol·lients es poden classificar com polars i no polars. Els emol·lients polars es caracteritzen per permetre que la pell respirei i per no ser oclusius. Els emol·lients no polars exercen una funció de barrera protectora i són capaços de retenir la humitat de la pell i evitar la pèrdua transepídèrmica d’aigua. Si es té en compte l’estructura química de d’emol·lients es pot realitzar el següent esquema basant-se en el seu índex de polaritat.
3.4.1.4. Principis actius

Els principis actius són una sèrie de substàncies medicinals que elaboren les plantes en els seu metabolisme i que tenen diferents interessos en funció de les seves propietats, com per exemple:

- Boswellia Serrata: antiinflamatori
- Vainilla: hidratant
- Canyella: anti-edat
- ...

Molts principis actius tenen una estructura química perfectament definida, mentre que altres, al formar part de barreges complexes resulta difícil determinar quin és el seu compost actiu, aquest és el cas de molts olis essencials i substàncies resinoses.

En les formulacions cosmètiques són les responsables de donar les qualitats i propietats que caracteritzen cadascuna d’aquestes, com per exemple: hidratants, anti-arrugues, anti-acné, calmants, etc.

3.4.2. La fase aquosa

Esta formada principalment per aigua i per diferents ingredients solubles en aquesta. És molt important la puresa i la qualitat de l’aigua per garantir l’estabilitat de l’emulsió. Els elements que constitueixen la fase aquosa a més de l’aigua són:

- Glicols: són productes hidroscòpics que absorbeixen la humitat i ajuden a mantenir la hidratació de la pell. Els més utilitzats són la glicerina, el propilenglicol i l’hexilenglicol.
- Polímers hidrosolubles: són productes espessants i estabilitzants com els anteriors, també mantenien la hidratació cutània.

- Compostos solubles com alquilsulfats, esters de glicols, electròlits aminoàcids i extractes vegetals.

3.5. Sistemes emulsionants

Els primers conceptes que s’han de definir són el de tensió superficial i energia lliure superficial. Una molècula a l’interior d’un líquid es atreta per les forces d’atracció de totes les molècules que l’envolten, per tant no hi ha una força resultant en una direcció preferencial d’una força atractiva. En canvi a la superfície les forces d’atracció de la resta de molècules només es deuen a les que es troben per sota d’elles i als seus costats. L’efecte resultant és que la molècula es troba “subjecta” per la resta de molècules que “tiren” d’ella.

![Figura 3.2. Representació de les forces d’atracció intermolècular.](image)

Llavors, es defineixe la tensió superficial \(Y \) com la força necessària per contrarestar la que exerceix el líquid cap a l’interior en la seva superfície i l’energia superficial serà el treball necessari per augmentar en una unitat la superfície de la seva àrea.

\[
W = Y \cdot \Delta A \quad \text{Equació 3.1}
\]

Aquest fenomen és el que explica el perquè si es divideix un líquid en petites porcions, aquest sempre adoptarà la forma esfèrica ja que la tensió superficial intentarà que l’energia superficial sigui mínima i l’esfera és la forma superficial que té l’àrea més petита.

\[
A = 4 \cdot \pi \cdot r^2 \quad \text{Equació 3.2}
\]

Així doncs, es pot definir un tensioactiu com aquell compost que provoca una variació en la tensió superficial del medi on es troba.

Els tensioactius es classifiquen en funció de la velocitat de canvi de la tensió superficial a mesura que augmenta la concentració del tensioactiu.
Es pren com a referència la tensió superficial de l’aigua i s’afegeixen tensioactius, s’obtenen tres tipus de comportaments.

Figura 3.3. Variació de la tensió superficial en l’aigua en funció de la concentració de tensioactiu afegit.

Llavors segons la gràfica un emulgent serà aquell tensioactiu que actua des de la superfície del compost reduint la seva tensió superficial.

Com s’ha dit anteriorment, un tensioactiu es podia classificar en iònic, anfòter i apolar, però a més es pot afirmar que un emulgent, té la part lipòfila més forta que la part hidròfila i per tant s’orientarà cap a la fase oliosa.

En la següent taula es veuen els grups més representatius dins dels emulgents segons el grau de polaritat:
<table>
<thead>
<tr>
<th>Grups polars</th>
<th>Grups apolars</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Àcids grassos lliures</td>
<td>Cadenes carbonatades saturades</td>
<td>-CH₂-CH₂-CH₂-CH₂-...</td>
</tr>
<tr>
<td>Sals d’àcids grassos</td>
<td>Cadenes carbonatades no saturades</td>
<td>-CH₃-CH=CH-CH₂-...</td>
</tr>
<tr>
<td>(sabons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sals d’àcid sulfònic</td>
<td>Anells aromàtics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidroxil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Òter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxietilè</td>
<td>-CH₂-CH₂-O-</td>
<td></td>
</tr>
<tr>
<td>Oxiproplè</td>
<td>-CH₂-CH₂-CH₂-O-</td>
<td></td>
</tr>
<tr>
<td>Amoni quaternari</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula 3.5. Estructura polar dels emulgents més representatius.

Es pot tenir una millor classificació dels tensioactius en funció de la seva capacitat de disminuir la tensió superficial. El seu índex emulsionant ve donat per l’equilibri lipofilic-hidrofilic HLB (*Hidrophilic-Lipophilic Balance*), un concepte definit per Clayton (1943).

\[
HLB = \frac{H}{H + L} \times 20
\]

Equació 3.3

On,
H= massa molecular de la part hidròfila
L= massa molecular de la part lipòfila

Aquest número dóna una idea de l’equilibri entre la força hidròfila i lipòfila del tensioactiu. Amb aquestes dades es podrà seleccionar el més escaient per cada cas.
Grupos hidrófils	HLB	Grupos lipídicos	HLB
-\(\text{SO}_2\text{Na}\) | 38.7 | -CH- | -0.457
-\(\text{SO}_3\text{Na}\) | 37.4 | -CH\(_2\)- | -0.457
-\(\text{COOK}\) | 21.1 | -CH\(_3\)- | -0.457
-\(\text{COONa}\) | 19.1 | ==CH | -0.457
Amina terciaria | 9.4 | -\((-\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-O})\)- | -0.15
Ester del Sorbitol | 6.8 | -\(\text{CH}_2\text{-CH}_2\text{O-CH}_3\)- | -0.16
-\(\text{COO-}\) | 2.4 | Anell Bencé | -1.662
-\(\text{COOH}\) | 2.1 | -CF\(_2\) | -0.87
-\(\text{OH}\) | 1.9 |
-\(\text{O-}\) | 1.3 |
-\(\text{OH del Sorbitol}\) | 0.5 |
-\(\text{CH}_2\text{-CH}_2\text{-O-}\) | 0.32 |

Tabla 3.6. Valores de HLB per grups lipídicos i hidrófils.

Aquest és un paràmetre característic i molt important de cada emulsionant els millors estan compresos entre valors de 0 a 20.
<table>
<thead>
<tr>
<th>Nom Comercial</th>
<th>Nom INCI</th>
<th>HLB</th>
<th>Funció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span 85 V</td>
<td>Sorbitan Trioleate</td>
<td>1,80</td>
<td>Co-emulsionant o/w</td>
</tr>
<tr>
<td>Span 65</td>
<td>Sorbitan Tristearate</td>
<td>2,10</td>
<td>Co-emulsionant o/w</td>
</tr>
<tr>
<td>Lanolina anhidra EP8</td>
<td>Lanolin</td>
<td>4,00</td>
<td>Emol·lient</td>
</tr>
<tr>
<td>Span 80 V</td>
<td>Sorbitan Oleate</td>
<td>4,30</td>
<td>Emulsionant w/o</td>
</tr>
<tr>
<td>Span 60</td>
<td>Sorbitan Stearate</td>
<td>4,70</td>
<td>Co-emulsionant o/w</td>
</tr>
<tr>
<td>Brij 72</td>
<td>Steareth-2</td>
<td>4,90</td>
<td>Co-emulsionant o/w</td>
</tr>
<tr>
<td>Arlacel 989</td>
<td>PEG-7 Hydrogenated Castor Oil</td>
<td>4,90</td>
<td>Emulsionant w/o</td>
</tr>
<tr>
<td>Lanolina líquida</td>
<td>Lanolin Oil</td>
<td>5,00</td>
<td>Emol·lient</td>
</tr>
<tr>
<td>Brij 52</td>
<td>Ceteth-2</td>
<td>5,30</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Arlatone 2121 S</td>
<td>Sorbitan Stearate, Sucrose Cocoate</td>
<td>6,00</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Arlatone 2121</td>
<td>Sorbitan Stearate, Sucrose Cocoate</td>
<td>6,00</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Arlatone 985</td>
<td>(Steareth-2, PEG-8 Distearate)</td>
<td>7,50</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Brij 92 V</td>
<td>Oleth-2</td>
<td>8,60</td>
<td>Co-emulsionant w/o</td>
</tr>
<tr>
<td>Arlatone 983 P o S</td>
<td>(Glyceryl Stearate, PEG-30 Stearate)</td>
<td>8,70</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Tween 85 V</td>
<td>Polysorbate 85</td>
<td>11,00</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Arlacel 165 Flakes</td>
<td>Glyceryl Stearate, PEG-100 Stearate</td>
<td>11,00</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Brij 76</td>
<td>Steareth-10</td>
<td>12,40</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Brij 56</td>
<td>Ceteth-10</td>
<td>12,90</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Tween 60</td>
<td>Polysorbate 60</td>
<td>14,90</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Tween 80 V</td>
<td>Polysorbate 80</td>
<td>15,00</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Brij 78 P</td>
<td>Steareth-20</td>
<td>15,30</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Brij 58 P</td>
<td>Ceteth-20</td>
<td>15,30</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Brij 721 P</td>
<td>Steareth-21</td>
<td>15,50</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Arlasolve 200 US</td>
<td>Isoceteth-20</td>
<td>15,70</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Brij 35 P</td>
<td>Laureth-23</td>
<td>16,90</td>
<td>Emulsionant o/w</td>
</tr>
<tr>
<td>Brij 700 P</td>
<td>Steareth-100</td>
<td>18,80</td>
<td>Emulsionant o/w</td>
</tr>
</tbody>
</table>

Taula 3.7. Valors de HLB per alguns emulsionants.

Així doncs, els emulsionants amb un valor HLB = 10 seran els que estaran distribuïts equilibradament entre les dues fases.

El número de HLB d’una emulsió es calcula multiplicant els grams d’emulsionant per el seu HLB i igual per al co-emulsionant, després els números que s’obtenen es sumen i el resultat es divideix entre els grams totals d’emulsionants.
Per exemple per calcular el valor de HLB d’una formulació O/W, on es selecciona com emulsionant primari l’Arlacel 165 Flakes (Glyceryl Stearate, PEG-100 Stearate) i com a co-emulsionant el Span 60 (Sorbitan Stearate), es seguirien els següents passos:

<table>
<thead>
<tr>
<th>Emulsionant</th>
<th>Grams %</th>
<th>HLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arlacel 165 Flakes</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Span 60</td>
<td>2.5</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Per l’emulsionant primari: \[4 \times 11 = 44\]
Per el co-emulsionant: \[2.5 \times 4.7 = 11.75\]
Llavors: \[44 + 11.75 = 55.75\]

\[HLB = 55.75 \div 6.5 = 8.57\]

Així doncs com que el HLB ha donat 8.57 i es pròxim a 10 aquesta formulació amb aquest valor d’equilibri entre les fases grassa i aquosa teòricament serà estable.

Una altra forma d’estimar el valor del HLB és mitjançant el mètode de dispersió del tensioactiu en aigua, obtenint així la següent taula.

<table>
<thead>
<tr>
<th>Resultat</th>
<th>HLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>No es dispersa</td>
<td>1-4</td>
</tr>
<tr>
<td>Dispersió dolenta i poc estable</td>
<td>3-6</td>
</tr>
<tr>
<td>Dispersió lletosa després d’una violenta agitació</td>
<td>6-8</td>
</tr>
<tr>
<td>Dispersió lletosa estable</td>
<td>8-10</td>
</tr>
<tr>
<td>Dispersió translúcida</td>
<td>10-13</td>
</tr>
<tr>
<td>Dispersió transparent</td>
<td>+ de 13</td>
</tr>
</tbody>
</table>

Finalment cal destacar la propietat additiva del HLB, de tal manera que es pot calcular el valor resultant de varis emulsionants, en funció de la fracció de cada un d’ells presents a la barreja.

Un altre factor característic molt important per els emulgents, és la temperatura d’inversió de fases (PIT), també anomenada \(T_{HLB}\). Pot passar que al augmentar la temperatura, especialment en sistemes O/W, aquests a ser W/O i al inrevés, aquesta temperatura limitarà quina es la idònia a la qual es pot produir l’emulsió.

Per finalitzar, es pot establir una classificació dels emulgents en base al número de HLB i la funció que realitza.
<table>
<thead>
<tr>
<th>Funció</th>
<th>HLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiespumants</td>
<td>1-3</td>
</tr>
<tr>
<td>Emulgents W/O</td>
<td>3-6</td>
</tr>
<tr>
<td>Humectants</td>
<td>7-6</td>
</tr>
<tr>
<td>Emulgents O/W</td>
<td>8-18</td>
</tr>
<tr>
<td>Detergents</td>
<td>13-15</td>
</tr>
<tr>
<td>Solubilitzants</td>
<td>15-18</td>
</tr>
</tbody>
</table>

Taula 3.9. HLB dels tensioactius segons la funció que desenvolupen.

3.5.1. Acció emulgent

Aquesta és l’acció pròpia d’un emulsionant, formar i estabilitzar l’emulsió. Ja s’ha explicat que és i de quins elements consta una emulsió, per tant ara s’explicarà com es realitza aquesta acció emulsionant.

Una interfase és la zona en la que dues o més fases coexisten. Un sistema emulsionat tendirà a separar les fases, perdent l’excés d’energia lliure superficial, provocat per l’agitació mecànica, per evitar-ho s’haurà de reduir la tensió superficial i això s’aconsegueix amb un emulgent.

La manera d’aconseguir-ho es formar una pel·lícula que faci de barrera i separi la gotícula formada del medi en el que es dispersa. Aquesta barrera que constitueix l’emulsionant pot estar formada per una barrera de molècules, inclòs per partícules sòlides.

Figura 3.4. Formació de la barrera per l’acció emulgent del tensioactiu.

A mesura que augmenti la concentració del tensioactiu les seves molècules s’ordenaran de tal manera que la part hidrófila quedí en la part externa i la lipófila en la part interna, formant una capa que recobrirà tota la gotícula de l’oli.
3.5.2. Poder escumant

La formació d'escuma es deu a la disminució de la tensió superficial com a conseqüència dels emulgents al dissoldres. Això acompanyat d’una agitació violenta, dóna lloc a que es formi una emulsió que tindrà una fase interna contínua d’aire atmosfèric.

Els escumants es fan servir majoritàriament en aerosols, per produir escumes de ràpid trencament, com l’escuma per el rasurament.

3.5.3. Acció humectant

La humectació és la capacitat de mantenir certa humitat en l’epidermis ajudant al factor natural d’hidratació de la pell, és a dir, l’agent humectant ha de mantenir la humitat de la pell i evitar que la crema cosmètica perdi aigua.

Actualment com humectants es fan servir molt la glicerina i el sorbitol.

3.5.4. Acció detergent

L’acció netejadora d’un detergent és el procés mitjançant el qual el tensioactiu separa les partícules de brutícia (pols, greix...) de la superfície d’un sòlid. Amb aquesta actuació s’aconsegueix:

- Orientar la molècula del tensioactiu front al substracte.
- Humectar la molècula de brutícia.
- Eliminar la brutícia de la superfície del cos.
- Dispersar la solució emulsora.
- Estabilitzar les molècules de brutícia dispersa.
Afegint el tensioactiu adequat, una substància en principi immiscible en aigua pot passar a soluble, això s’aconsegueix gràcies a la formació de micel·les, ja que són les responsables de que la substància sigui soluble i químicament estable.

La micel·lació és el procés d’associació de molècules de forma ordenada que donen lloc a una micel·la, que pot ser esfèrica o bé laminar. Durant aquest procés les molècules insolubles del compost es dissolen per l’acció de la micel·la, orientant-se en funció de la seva polaritat.

Gràcies a l’acció solubilitzant del tensioactiu, es poden obtenir sistemes fluids com perfums hidrosolubles i sistemes consistent en gels, productes de gran importància en la cosmètica.

3.5.6. Criteris de selecció d’un emulsionant

L’elecció del surfactant adequat tindrà una gran influència sobre la textura i el comportament d’una emulsió. De fet, si es fa servir un inadequat, l’emulsió podria ser inestable o fins i tot, ni tant sols arribar a formar-se.

Els criteris més comuns que es tenen en compte per l’elecció d’emulsionants són el següents:
- Naturalesa química i concentració de les fases: es seleccionaran els compostos químics similars als de la barreja a emulsionar.
- Variació de la concentració de la barreja en l’emulsionat.
- Força iònica de la barreja a emulsionar: les emulsions W/O es solen preparar amb emulsionants no iònics, al estar en l’interior de les gotes les parts polars de les molècules, no induceixen repulsió entre elles. Les emulsions O/W es poden preparar amb tots dos tipus de tensioactius, encara que està demostrat que són molt més efectives les barreges de tensioactius que un de sol.
- Temperatura de treball.
- Característiques organolèptiques de l’emulsionant.
- Solubilitat: l’emulsionant ha de ser poc soluble en la fase interna però molt soluble en l’externa, encara que té major importància la concentració de tensioactius que es troben en la interfase.
- Compatibilitat cutània.
- Preu.

El mètode que habitualment es segueix per seleccionar un emulsionant es:

a) Es suposa el tipus d’emulsió que es vol obtenir:
 - O/W ó W/O, la naturalesa de les fases i la temperatura de treball.

b) Es calcula la temperatura límit de treball \(T_{HLB} \):

 - per una emulsió O/W:

 \[
 T_{HLB_{\text{min}}} = T + I \quad \text{Equació 3.4}
 \]
 \[
 T_{HLB_{\text{max}}} = T - I \quad \text{Equació 3.5}
 \]

 \(I \) es defineix com la diferència mínima que es vol obtenir entre la temperatura de treball i la d’inversió de fases.
 El valor de \(I \) no està establert, però com a norma general, es pot agafar un valor entre 15 i 20°C.

c) El valor de HLB s’obté a partir:

 \[
 T_{HLB} = K_{oil} \cdot (N_{HLB} - N_{oil}) \quad \text{Equació 3.6}
 \]

Aquesta equació és de caràcter empíric i és el resultat de l’observació de la correlació lineal que hi ha entre el HLB i la \(T_{HLB} \), on \(N_{HLB} \) és la pendent de la recta i igual a 17°C/(unitat de HLB) per tots els oli i 22 per les parafines.
\(N_{oil} \) és l’ordenada en l’origen de la recta i el seu valor depèn del tipus d’oli que es fa servir. I \(K_{oil} \) és una constant donada per el fabricant.

En la taula 3.10. es pot observar alguns tipus de valors de \(N_{oil} \), en el cas que l’oli desitjat no estigués llavors s’haurà d’escollir el més semblant químicament per obtenir el valor.
<table>
<thead>
<tr>
<th>Òli</th>
<th>N<sub>oil</sub></th>
<th>Òli</th>
<th>N<sub>oil</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escuale</td>
<td>6.95</td>
<td>Ciclohexà</td>
<td>10</td>
</tr>
<tr>
<td>Exadecà</td>
<td>7.7</td>
<td>Hexilbencé</td>
<td>10.1</td>
</tr>
<tr>
<td>Tetradecà</td>
<td>7.85</td>
<td>Butilbencé</td>
<td>10.6</td>
</tr>
<tr>
<td>Decà</td>
<td>8.5</td>
<td>Etilbencé</td>
<td>11.4</td>
</tr>
<tr>
<td>Eptà</td>
<td>8.9</td>
<td>Procloroetilé</td>
<td>11.4</td>
</tr>
<tr>
<td>Dodecilbencé</td>
<td>8.9</td>
<td>2-hetilhexanol</td>
<td>12</td>
</tr>
<tr>
<td>Isopropilmiristat</td>
<td>9</td>
<td>Isooctà</td>
<td>9</td>
</tr>
</tbody>
</table>

Taula 3.10. Valors de N_{oil} més comuns.

d) Amb els criteris abans esmentats i el número de HLB es pot seleccionar l’emulsionant que s’adequí a les nostres necessitats en el catàleg del fabricant.

Normalment es treballa amb una barreja de tensioactius, per fer-ho s’agafen emulsionants amb valors N_{HLB} per sobre i per sota del valor calculat i llavors es recalcula tenint en compte les proporcions dels emulgents que subministren el valor de HLB desitjat.

e) Per últim es realitzaran les proves experimentals oportunes per obtenir la crema.
3.6. Estabilitat en les emulsions

Una emulsió és un sistema potencialment inestable, inclòs si s’estabilitza amb un agent emulsionat.

Les lleis de la Termodinàmica, diuen que si una substància en unes condicions inicials de temperatura, pressió, composició, etc., ., passa a tenir unes altres condicions diferents, que redueixen l’energia lliure aquest canvi serà espontani, i per tant inicialment aquesta substància serà inestable.

Aquest canvi no té perquè ser immediat, la velocitat dependrà de les condicions en les que es trobi el sistema, tot i que aquest tendirà inevitablement a disminuir la energia lliure.

Així doncs, seguint aquesta llei les emulsions, són sistemes termodinàmicament inestables, ja que l’energia superficial que fa augmentar l’energia lliure del sistema, és més gran al tenir les gotícules disperses (que tenen major àrea superficial) que si estiguessin juntes formant una sola fase.

Si es modifiquen les condicions termodinàmiques es pot disminuir la velocitat de coalescència de l’emulsió, l’agitació proporciona al sistema una energia que tractarà de compensar la tendència del sistema a reduir la seva energia lliure formant agregats.

Una altra forma d’estabilitzar les emulsions és l’addició de tensioactius que al situar-se entre la interfase líquid/líquid fent disminuir la tensió superficial.

Així doncs, per estabilitzar un sistema, s’han de formar microemulsions, d’aquesta manera s’aconsegueix l’estabilitat mitjançant una acció mecànica molt intensa en la que es fracciona el sistema i forma gotícules tan petites que compensa l’excés d’energia superficial.

Hi ha molts factors que contribueixen a aquest procés de desestabilització, durant la fabricació o durant l’emmagatzematge. Alguns d’aquests problemes s’atribueixen a un disseny deficient en la seva formulació, altres a errors humans i en moltes altres ocasions, una emulsió es “trenca” sense que existeixin raons aparents per justificar-ho.
Els efectes produïts per els canvis de temperatura s’esquematitzen de la següent manera:

<table>
<thead>
<tr>
<th>EFECTES D’INESTABILITAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsió O/W</td>
</tr>
<tr>
<td>Calor</td>
</tr>
<tr>
<td>- Reducció de la viscositat, provocant el creaming i la coalescència.</td>
</tr>
<tr>
<td>- Inversió de fases.</td>
</tr>
<tr>
<td>- Increment la solubilitat de les emulsions en l’oli.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Prevenir-ho</td>
</tr>
<tr>
<td>- Addició d’hidrocoloides</td>
</tr>
<tr>
<td>- Incrementar la dosis de l’emulsionant hidrofílic per incrementar el punt d’inversió de fases (PIT).</td>
</tr>
</tbody>
</table>

Taula 3.11. Problemes d’inestabilitat per canvi de temperatura.

3.6.1. Tipus de problemes o inestabilitats en les emulsions

Els tipus de inestabilitats que poden patir les emulsions són:

- Creaming / sedimentació
- Floculació/ agregació
- Coalescència
- Difusió molecular o Ostwald ripening
- Inversió de fases
3.6.1.1. Creaming i sedimentació

El *creaming* és un procés reversible d’inestabilitat física, que es produeix quan les goticules de la fase grassa ascendeixen fins la superfície formant una *crema*, d’aquí el nom de *creaming* (*cremado*).

La *sedimentació* és el mateix concepte que el *creaming* però es produeix quan la fase grassa descendeix al fons i a la superfície queda l’aigua.

L’emulsió no està “trencada”, la fase grassa encara manté les goticules formades, que fàcilment es poden tornar a dispersar mitjançant una agitació suau. Tot i que no estigui “trencada” un *creaming cosmètic* no es desitjable en cap tipus d’emulsió per ús cosmètic, així doncs una emulsió amb aquest tipus de problema no serà vàlida.

El *creaming* es pot mesurar:

- Mitjançant la inspecció visual:
 - Emulsió O/W: separació d’aigua en el fons.
 - Emulsió W/O: separació d’oli en la superfície.

- Centrifugació:
 - Es mesura el volum de fase separada en funció del temps i la velocitat.
 - Determinació de la “pressió crítica”, és a dir, la velocitat de centrifugació necessària per induir la coalescència de l’oli.
Microscòpia:

- Es mira mostres de diferents capes de l’emulsió.
- Es mesura el ratio del *creaming* en l’aigua.

Els mecanismes que es fan servir per prevenir el *creaming* són:

- Ajustar la densitat.
- Reduir el tamany de partícula.
- Augmentar el ratio de viscositat de la força de cizalla zero (“zero shear rate viscosity”).
- Augmentar la viscositat de l’emulsió mitjançant l’addició d’un agent espessant (com la goma xanthana o metilcelulosa) i d’aquesta manera s’aconsegueix que les gotícules de la fase grassa no puguin ascendir a la superfície tan fàcilment.
- Trencant les gotícules de la fase grassa de tal manera que siguin molt petites. Això es l’*homogenització*. De fet, la majoria de les cremes comercials estan *homogenitzades*. Aquest procés es pot dur a terme de dues formes diferents:

 a) Bombejant el producte a través d’orificis molt petits.

 b) Obligant a passar les gotícules entre els discs trituradors d’un *homogenitzador giratori* o *molí coloïdal*.

3.6.1.2. Floculació

Aquest cas d’inestabilitat es dóna quan les gotícules de la fase dispersa tendeixen a formar agregats o grumolls.

El procés pot ser reversible mitjançant una agitació suau. La velocitat de floculació segueix una equació de segon ordre i depèn de la col·lisió de les gotes de la fase dispersa.

\[
N = k_f \cdot N^2
\]

Equació 3.7

On, \(N \) és la concentració de gotes i \(k_f \) és la constant de floculació.

Aquesta constant depèn directament de la temperatura, ja que fa que augmenti la velocitat de col·lisió de les gotes i inversament la viscositat. I també depèn de la força de repulsió entre les gotes.

Això s’explica perquè en la part superficial de les partícules de la fase dispersa existeixen carregues elèctriques que fan que els ions positius i negatius de les capes que envolten la partícula es redistribueixin. L’efecte que provoca es que la partícula estigui envoltada d’una doble capa d’elèctrica.
En la figura 3.7. es pot observar una capa d’ions, anomenada capa de Stern de signe contrari al de la partícula i d’un gruix igual al del ratio de l’ió atret. De la mateixa manera, s’observa una capa difusa de Gouy que es difon a la resta del líquid. Dins d’aquesta, la capa de solvatació serà la que representarà el límit del moviment relatiu entre partícula i el líquid.

Com més augmenta la distància a la molècula, decreix la diferència de potencial des d’un màxim situat en la superfície de la molècula fins un valor aproximadament zero en la capa neutra.

Quan dues partícules s’aproximen entre sí, la seves capes difuses es superposen i es redistribueixen les seves càrregues en cada capa donant lloc a una força de repulsió impedint d’aquesta manera la floculació.

El resultant d’ambdues forces crearà una barrera energètica. Per distàncies petites el potencial d’atracció serà més gran que el de repulsió i l’emulsió flocularà, en canvi per grans distàncies el potencial de repulsió pot arribar a ser important, donant lloc a emulsions estables.

De tot això es dedueix que l’addició d’electrólits a una emulsió, fa disminuir el potencial de repulsió i per tant es produirà la floculació.

La floculació es pot mesurar:

- Mitjançant la microscòpia:
 - Agregats o grumolls “dèbils” es dispersaran fàcilment.
 - Agregats o grumolls “forts” permaneixen en forma de grans aglomeracions.
Canvis de viscositat en diferents capes de l’emulsió:
- La viscositat incrementa en la superfície en les emulsions O/W i en el fons de les emulsions W/O.

3.6.1.3. Coalescència.

Aquest procés d’inestabilitat es dóna quan la fase interna de les gotícules es fusiona, llavors es reduceix el nombre de gotícules i dóna lloc a un increment del tamany de partícula.

És el fenomen que té lloc després de la floculació en el que dues molècules de la fase dispersa s’uneixen per formar una altra més gran. Comunament quan passa això es diu que l’emulsió s’ha tallat.

La velocitat de coalescència segueix una equació de primer ordre i depèn directament de la concentració de gotes de la fase dispersa:

\[r_c = k_c \cdot N \] \hspace{1cm} \text{Equació 3.8}

On, \(N \) és la concentració de gotes i \(k_c \) la constant de velocitat de coalescència. Aquesta constant depèn directament de la temperatura i de les propietats del tensioactiu que s’ha fet servir.

La coalescència es pot mesurar:
- Mitjançant la inspecció visual:
 - Separació de l’oli en la superfície en emulsions O/W.
 - Separació d’aigua als fons en emulsions W/O.
- Reducció de la viscositat amb el temps.
- Anàlisis del tamany de partícula.

La coalescència es pot prevenir:
- Evitant el
- Incrementant l’elasticitat interfacial:
 - Utilitzant barreges de tensioactius.
- Induint una absorció irreversible en la fase interfacial:
 - Utilitzant tensioactius polimers (macromolècules)
Incrementar el gruix del film interfacial:
- Mitjançant estructures de cristall líquid en la interfase.

3.6.1.4. Difusió molecular o Ostwald ripening.

Els líquids que componen una emulsió no són del tot immiscibles, donant lloc a una transferència de molècules entre les gotes de la fase dispersa a través de la fase continua. Així, molècules de les gotes més petites que són més solubles es difondran fins molècules majors afavorint el creixement. Aquest fenomen en algunes ocasions pot arribar a ser més important que la coalescència i la floculació.

3.6.1.5. Inversió de fases

Aquest fenomen es pot donar quan la concentració de la fase interna es massa elevada, segons el tipus d’emulsionant que fa servir i de la temperatura alhora de treballar.

Una emulsió O/W pot passar a ser W/O, si s’augmenta la temperatura del sistema i aquest té com emulsionant un tensioactiu no-iònic. Aquest fenomen té lloc perquè el augmentar la temperatura, l’equilibri hidrofilic-lipofilic del tensioactiu varia, podent arribar a invertir-se.

El marge de temperatura a la qual es dóna aquest fenomen s’anomena temperatura d’inversió de fases o PIT (Phase Inversion temperature). Si una emulsió està molt a prop d’aquesta temperatura i es refreda molt ràpidament es poden obtenir emulsions molt estables.
3.7. Criteris de validació de les emulsions cosmètiques

Abans de començar a produir una emulsió cosmètica en una planta de fabricació, s’han de realitzar unes proves al laboratori, per aconseguir que la formulació tingui les propietats i característiques que es desitgen.

Per tal d’assegurar la qualitat del producte final s’han de complir els següents punts:

- L’adequada pureza i qualitat de la matèria primera amb la que es fabrica l’emulsió, ja que d’això depèndrà que es compleixin les característiques físic-químiques i exigències organolèptiques, microbiològiques i toxicològiques.

- Formulació correcta dels compostos.

- Assegurar-se que les matèries primeres no es degradin en el procés de fabricació de l’emulsió.

- Estandaritzar el procés de fabricació.

Els productes finals han de complir unes qualitats i característiques per tal de satisfacir les exigències i necessitats del client. Aquestes es descriuen a continuació.

3.7.1. Qualitats organolèptiques

Són les qualitats com l’olor, el color, l’extensibilitat... responsables de que el producte cosmètic sigui acceptat per l’usuari final.

- L’olor és un factor molt subjectiu, ja que depèn de cada persòna. Alhora d’elaborar una crema cosmètica, es important assegurar-se de que les matèries primeres no tinguin olor o facin el menys possible, perquè no alteri l’olor del perfum que s’hagi escollit.

- El color depèn del tipus de cosmètic que es vulgui obtenir. En el cas de les cremes facial, per exemple, es convenint que el color sigui el més neutre possible, ja que no es vol que quedi cap rastre a la pell; en canvi si es tracta d’un maquillatge el que es busca es l’efecte contrari i que al moment de l’aplicació el color produeixi l’efecte estètic desitjat.

- L’extensibilitat una crema cosmètica que sigui enganxosa i seca no agrada a l’usuari final. Així doncs, ha de tenir un bon lliscament sobre la pell i deixar una sensació delicada i de cura, per tant és una característica molt important en les cremes cosmètiques.

Els passos a seguir per l’avaluació de les característiques sensorials d’una emulsió es descriuen a continuació:
Taula 3.12. Avaluació de les característiques sensorials d’una emulsió.

<table>
<thead>
<tr>
<th>Avaluació sensorial</th>
<th>Característiques</th>
<th>Definició</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aparença de la Formulació</td>
<td>Consistència visual</td>
<td>Es jutja la viscositat aparent de la crema inclinant el recipient.</td>
</tr>
<tr>
<td>2. Estructura de l’emulsió</td>
<td>Consistència al tacte</td>
<td>S’avalua la força requerida per comprimir el producte entre els dits índex i polze.</td>
</tr>
<tr>
<td></td>
<td>Lubricació</td>
<td>S’avalua la capacitat del producte de lliurar fregant-lo entre dos dits.</td>
</tr>
<tr>
<td>3. Aplicació en la pell (durant 30 segons)</td>
<td>Extensibilitat</td>
<td>S’avalua l’extensibilitat del producte sobre la pell fent moviments circulars.</td>
</tr>
<tr>
<td></td>
<td>Untuositat</td>
<td>S’avalua la sensació oliosa quan es frega la crema sobre la pell.</td>
</tr>
<tr>
<td></td>
<td>Blanquejant</td>
<td>S’avalua l’aparença blanquejant de la crema quan s’exten i es frega sobre la pell.</td>
</tr>
<tr>
<td></td>
<td>Absorció</td>
<td>Es jutja la capacitat de l’emulsió de dispersar-se ràpidament dins la pell durant el fregament.</td>
</tr>
<tr>
<td></td>
<td>Sensació enganxosa</td>
<td>Es jutja la sensació enganxosa de la fórmula, just després de l’aplicació.</td>
</tr>
<tr>
<td>4. Sensació posterior (mínim 2 minuts després de l’aplicació)</td>
<td>Sensació enganxosa</td>
<td>Igual que l’anterior, però dos minuts després de l’aplicació.</td>
</tr>
<tr>
<td></td>
<td>Suavitat</td>
<td>Es compara la textura i la suavitat de la pell entre una zona tractada i una altra sense tractar.</td>
</tr>
</tbody>
</table>

3.7.2. Característiques físic-químiques

Anteriorment ja s’ha explicat que les emulsions són sistemes inestables que tendeixen a separat-se i coalescer.

Per tant, les característiques que s’avaluen per evitar-ho són:

- **Determinar el tipus d’emulsió**

Per saber si la fase externa de l’emulsió és oli o aigua, existeixen uns mètodes per averiguar-ho:

 - **Dilució** → una emulsió que tingui la fase externa aquosa intentarà dissoldres en aigua mentre que una de fase externa oli no ho farà.

 - **Coloració** → aquest mètode consisteix en afegir unes gotes de colorant soluble en una de les fases i insoluble en l’altra, així l’emulsió agafa el color de la fase continua, és a dir, l’externa.
Extracte Boswellia Serrata en formulacions cosmètiques

- **Mètode de Clorur de Cobalt**: és semblant a l’anterior perquè també depèn del color, consisteix en posar una mica de clorur de cobalt en un paper de filtre i deixar-lo assecar fins que el paper agafa una tonalitat blavosa, després s’afegeix una gota de l’emulsió al paper i si es tracta d’una emulsió O/W, amb fase externa aquosa, aquesta canviarà a color rosa, es canvi si es tracta d’una emulsió W/O no agafarà color.

- **Conductivitat elèctrica**: aquesta vindrà donada per la conductivitat de la fase externa de l’emulsió. Si la fase externa és aquosa presentarà un petit flux de corrent, en canvi si la fase externa és oliosa no hi haurà cap corrent.

Aquest últim mètode de la conductivitat és el més fiable, alhora de comprovar de quin tipus d’emulsió es tracta. El seguirien, la dilució i el del Clorur de Cobalt i per últim la coloració, que de tots és el que té l’error més elevat, ja que pot arribar a un 25%.

* Determinació del tamany de les gotícules de la fase interna

El tamany mig de les emulsions oscil·la entre 0.5 i 2.5 micres, i com més petites siguin les gotícules més estable serà l’emulsió. Els mètodes que s’utilitzen per mesurar el tamany són:

- **Aspecte de l’emulsió**: el tamany de les gotícules es pot determinar segons la taula 3.1. de l’anterior apartat 3.2 en funció del seu aspecte.

- **Microscopi**: mitjançant microfotografies, però presenta alguns inconvenients ja que sempre s’estima el tamany de les gotes a l’alça degut a que es poden aixafar una mica al preparar la mostra.

- **Comptador de partícules**: només es pot fer servir per emulsions O/W, ja que consisteix en diluir i filtrar l’emulsió per fer passar les gotícules per un forat entre dos elèctrodes que modifiquen la resistència elèctrica en funció del volum de la partícula.

* Determinació del pH

Degut al pH de la pell, les emulsions han de tenir un pH lleugerament àcid, entre valors de 5.5 i 6.5. Però també depèn de tipus de cosmètic que es vulgui fer.
Mantenir aquest pH es complicat degut a que alguns emulgents només actuen com a tal en un determinat rang de pH. Per tant variar el pH d’una emulsió pot provocar problemes d’inestabilitat.

♦ Resistència a la centrifugació

Aquest és un mètode molt útil amb el qual es mesura la tendència d’una emulsió a presentar els problemes d’estabilitat exposats en l’anterior apartat.

Per fer-ho les emulsions, es dilueixen, s’escalfen i han d’aguantar sense separar-se un determinat número de revolucions.

♦ Resistència als canvis de temperatura

Per avaluar la resistència de les emulsions als canvis de temperatura, es fan probes a diferents temperatures durant un temps determinat i s’observen les variacions que es produueixen.

♦ Extensibilitat

Aquesta característica dona una idea de la fluïdesa de la crema, és l’increment de superfície que experimenta una quantitat de crema quan es sotmet a un pes creixent en un interval de temps i en unes condicions determinades, i com ja s’ha esmentat abans és un factor molt important en una crema cosmètica.

♦ Penetrometria

Es la mesura de la penetració d’un con de tamany i pes normalitzat en la crema, en un interval de temps i a una temperatura determinada. Això dona una idea de la consistència de la crema.
3.7.3. Propietats reològiques

Les propietats reològiques són molt importants en l’aplicació de les cremes i per això es important aclarir què és i de que es tracta.

La reologia és la ciència que estudia la deformació i el flux de la matèria, en cosmètica la reologia estudia la reacció del producte sotmès a una força de cizalla aplicada per diferents tipus d’instruments i moviments.

La llei de viscositat de Newton és la que ajuda a entendre aquest concepte. Aquesta llei és la relació entre la força de deformació i la velocitat de deformació, on η es defineix com la viscositat.

\[
\frac{\tau}{D} = \eta
\]

Equació 3.9

on τ és l’esforç de deformació $\tau=F/A$ i D la velocitat de deformació $D=\frac{du}{dy}$.

Quan un cos material es sotmet a una força F, si es per unitat d’àrea, stress, respon a la força amb una deformació strain. Aquesta deformació pot ser molt diversa segons la forma en que la força actua sobre el cos per unitat d’àrea: tirant tensile stress, comprimint compressive stress o shearing stress. La resposta d’aquest cos a aquestes forces dependrà del seu estat físic i de l’escala de temps en que s’aplica.

Un conegut cas de lliscament passa quan s’aplica una força a un fluid viscós.

Hi han dos plànols paral·lels A i B de gran superfície S separats una distància r i entre ells hi ha un líquid que mulla tots dos plànols. S’aplica una força F constant i sostinguda al plànol A mentre el plànol B està fixa i immòbil. El plànol A es mou a velocitat constant U i s’admet que la capa de líquid en contacte amb ell es mou a la mateixa velocitat. El fluid entre els dos plànols es mou a diferents velocitats segons la seva posició, assumint que el plànol B es mou a velocitat 0. Las velocitats intermitges es mouen segons el perfil XY. La relació dels canvis de velocitat del fluid es la tangent dU/dr anomenat shear rate, viscositat.

La força F quan es considera que actua sobre la unitat d’àrea S, s’anomena shear stress (τ) i en alguns llibres esforç de cizalla. Aquestes variables, unes independents i d’altres dependents, descriuen l’estat reològic del fluid.
La viscosidad “η” se define por la siguiente relación:

\[
\eta = \frac{F}{S} \frac{dU}{dr} = \frac{r}{dU/dr} = \frac{\text{shear stress}}{\text{shear rate}}
\]

Equación 3.10

Un fluido ideal es aquel que al aplicarle una fuerza determinada la seva viscosidad aumenta proporcionalmente, es a decir, existe una relación lineal entre ellas. Los fluidos que cumplen esta ley, se llaman newtonianos. Los casos en que no cumplen con esto, se llaman no newtonianos.

Dentro del fluido no newtoniano, en el ser comportamiento no depende del tiempo, se pueden clasificar los siguientes:

- **Plásticos**: necesitan un mínimo de fuerza para comenzar a deformarse y a partir de aquí tienen un comportamiento newtoniano.
- **Pseudoplásticos o viscoelásticos**: la viscosidad disminuye a medida que aumenta la velocidad de deformación.
- **Dilatantes**: son totalmente el contrario que los anteriores, es decir, la viscosidad aumenta a medida que aumenta la velocidad de deformación.

La viscosidad de los materiales, según la relación de esfuerzo de cizalla respecto a la velocidad de cizalla, se comporta tal como se muestra en la gráfica en la que se pueden ver las diferencias que existen entre fluidos newtonianos o ideales y no newtonianos.

También es posible apreciar las curvas de la viscosidad aparente respecto a la velocidad de cizalla de tres fluidos, un dilatante, otro newtoniano y el tercero pseudoplástico que tienen la misma viscosidad aparente a velocidad de cizalla zero.

Figura 3.9
Hi ha fluids en els que la viscositat aparent pot ser depenent del temps, aquest fluids s’anomenen:

- **Tixotrópics**: que es caracteritzen per la disminució de la viscositat a mesura que transcorre el temps. Aquesta és una transformació isotèrmica gel/ sòlid/ gel, que es promou amb l’addició d’agents espessants i surfactants.

- **Tixotropia negativa**: consisteix en l’augment de la viscositat depenent del temps a deformació constant.

- **Reopexics**: són sistemes en el que la seva reforma estructural es realitza més ràpidament quan es sotmet a una nova agitació.

Aquest processos són reversibles i es restableix la viscositat quan són sotmesos de nou a esforços de cisalla.
Extracte Boswellia Serrata en formulacions cosmètiques

Figura 3.11. Tensió de tall vs. velocitat de deformació per sistemes que depenen del temps.

En la cosmètica es poden apreciar tots aquests tipus de comportament viscós, des de purament newtonians, com les locions o les llets, fins a viscoelàstics com les cremes.

La reologia en cosmètica és una característica que s’estudia en els anàlisis de textura de les formulacions. Utilitzar-la presenta els següents avantatges:

- Proporciona resultats quantificats, fiables i objectius dels paràmetres de textura.
- Permeten comparar el comportament de les matèries primes entre si.
- Poden pronosticar la textura dels productes cosmètics en les primes etapes del desenvolupament del producte i per tan optimitzar el temps de desenvolupament.
- Poden pronosticar el comportament de la formulació cosmètica sota condicions reals d’ús durant totes les diferents etapes de la seva vida (fabricació, envasat, transport i ús).

Els estudis de reologia es fan mitjançant experiments de flux i experiments d’oscil·lació. Els dos proporcionen dades complementaries sobre les propietats de flux i l’estructura interna del producte en repòs.

Per mesurar-ho s’aplica una força de cizalla augmentativa durant dos minuts i després una altra decreixent durant els experiments de flux. La força resultant es registrada en funció de la velocitat de la força de cizalla. Una de les formes més útils d’expressar les mesures es registrar la viscositat com a funció de la velocitat de la força de cizalla, la qual proporciona informació de les característiques de flux del producte. Per exemple, una formulació que té una viscositat decreixent quan se li aplica un increment de la
velocitat facilitarà l’envasatge d’ampolles i també millora el vessament del producte. El consumidor associa aquest comportament amb unes bones propietats d’extensió.

El propòsit dels experiments d’oscil·lació és aplicar una molt baixa i periòdica força de cizalla durant molt temps per investigar l’estructura interna del producte en repòs. Els paràmetres resultant són el mòdul d’emmagatzematge G' (expressat en Pa) el qual representa l’elasticitat del producte, i el mòdul de pèrdua G'' (expressat en Pa) que representa la viscositat del producte. La relació G'/G'' representa la tendència del producte a tenir més elasticitat (capacitat de recuperació de deformacions). Una forma predominant elàstica és normalment relacionada amb una estructura de xarxa i consecuentment ajuda a estabilitzar el producte.

3.7.4. Control químic

Aquest control es fa servir per avaluar si el producte compleix amb l’establert en la reglamentació i evitar que el cosmètic pugui contenir algun component tòxic o irritant, mitjançant l’estudi dels seus ingredients.

3.8. Avaluació de la seguretat dels cosmètics

La Directiva Marco sobre Cosmètics de la U.E. és a dir, la 76/768/CEE i les següents legislacions desenvolupades en els Estats membres requereixen que els productes cosmètics no danyin en absolut a l’usuari. Amb aquesta finalitat, tots els productes haurien de formular-se de manera que siguin segurs i a més, haurien d’analitzar-se per assegurar-se de que ho són.

Les proves s’engloben en tres categories:

- Assajos de seguretat microbiològica
- Assajos toxicològics
- Assajos d’irritabilitat i sensibilitat

3.8.1. Control microbiològic

Les emulsions, en especial les O/W tenen un important risc de contaminació microbiològica.

Aquesta contaminació pot provenir de les matèries primeres més susceptibles a contaminar-se, com per exemple l’aigua o alguns extractes vegetals, que poden afavorir-la.
Les bactèries, el fongs i els lleuats es troben per tot arreu. La major part dels cosmètics, especialment els que contenen aigua, constitueixen un alimento potencial i un lloc perfecte de creixement per aquests microorganismes.

Com que generalment els cosmètics no es poden mantenir refrigerats i han de tenir una vida útil de mes de dos dies, la majoria dels cosmètics se’ls ha d’incorporar un conservant.

La funció d’aquest conservant es destruir qualsevol microorganisme que es pugui trobar al producte. El conservant ha de ser suficient per eliminar tots aquells microorganismes que penetrin al producte durant l’ús, que provenen dels dits, llavis i taps oberts. D’aquesta manera, es pot garantir que tan el producte acabat d’elaborar com durant el seu ús, es tant lliure de microorganismes com sigui possible.

Tant en les matèries primeres com el producte acabat s’avalua el contingut microbià. Aquest assaig es du a terme de la següent manera:

Es dilueix un volum conegut de mostra en un volum conegut d’aigua estèril, i es fa servir per inocular una placa d’agar gelificat. Aquesta és una placa de Petri recoberta que conté una capa fina d’agar gelificat, a la qual se l’hi ha afegit un medi nutrient adequat. Si s’incuba, posant-la en un lloc càlid en el termini de dos dies, cada microorganisme viable haurà crescut fins a formar una colònia suficientment gran per poder observar-la i contar-la. A partir d’aquest recompte, es pot calcular el número de microorganismes viables per cada cm³ del producte. Això és el que s’anomena recompte total de viables o RTV i l’objectiu es obtenir un RTV menor a 10 per cm³.

Un fabricant generalment vol saber, no només si el seu producte té una qualitat microbiològica, si no també, si el conservant que l’hi ha afegit serà efectiu. Per provar això, es realitza un assaig de risc de contaminació. Una mostra del producte es contamina deliberadament amb una quantitat coneguda de microorganismes, i posteriorment s’analitza segons s’ha descrit per determinar quants d’ells sobreviuen. Si no sobreviuen més de 10 microorganismes per cm³ del producte el conservant ha fet la seva feina.

3.8.2. Toxicitat

Una substància tòxica és una substància verinosa, per tant, en els cosmètics s’han d’utilitzar productes no tòxics.

Existeixen alguns ingredients que per la pròpia naturalesa d’acció, poden resultar potencialment danyins. Respecte això, la legislació estableix el límits màxims permisibles d’aquestes substàncies en un producte cosmètic, per tant convé estar actualitzats. Substàncies com l’àcid bóric, l’àcid tioglicòlic o el formaldehid estan en continua revisió i s’han d’especificar entre d’altres, el percentatge màxim i el pH màxim permesos.

Tant als EE.UU com a la U.E, a totes les matèries primeres destinades a l’ús en productes de consum se’ls ha de determinar la seva toxicitat potencial. Abans de l’any
2000 quan les proves en animals no estaven prohibides, es feien servir lots d’anims de laboratori (rates o ratolins) per fer les proves de toxicitat, rebien una dosis de la substància a avaluar, proporcional a la seva concentració en el producte determinat, per discernir si causava la mort o qualsevol mal. Els resultats permetien a la legislació establir si un producte podia ser utilitzat lliurement, ser estrictament controlat o ser prohibit.

Ara, tant els assajos de toxicitat com els de reaccions al·lèrgiques, es realitzen directament sobre voluntaris humans, ja que des del 30 de Juny de 2000 va quedar prohibida la comercialització de cosmètics que haguessin estat testats en animals.

3.8.3. Reaccions al·lèrgiques

Un problema de toxicitat molt més difícil és el de les reaccions al·lèrgiques. Existeixen moltes substàncies que són completament inoqües per la majoria de les persones, però en altres poden produir certs tipus de reaccions al·lèrgiques.

L’efecte més comú d’aquestes substàncies és produir un cert tipus d’erupcions a la pell o dermatitis, encara que pot estar associat a un estat de malestar generalitzat en tot el cos. Això es degut a que existeixen dos tipus de reaccions al·lèrgiques:

- La irritació primària
- La sensibilització

3.8.3.1. La irritació primària

La irritació primària és el resultat de l’acció directa d’una substància irritant. Els seus efectes poden ser físics, químics o fisiològics, però generalment es limiten a l’àrea d’aplicació de la substància. Aquesta condició es denomina dermatitis irritant de contacte, i la substància que la provoca s’anomena irritant primari.

S’ha de determinar l’efecte irritant sobre la pell o els ulls, dels productes i compostos amb els quals s’ha elaborat el cosmètic, en el cas de que l’aplicació sigui propera a aquestes zones.

3.8.3.2. La sensibilització

La sensibilització és un procés més greu que la irritació, en el que entra en joc el sistema immunològic de l’organisme. Al entrar en contacte el cosmètic en qüestió amb l’organisme, aquest es defensa generant anticossos com si es tractés d’una malaltia.

3.8.3.3. Irritants i sensibilitzants cosmètics

Alguns coneguts irritants i sensibilitzants s’utilitzen en els diferents productes cosmètics amb freqüència. La veritat es que es fan servir perquè no existeix cap alternativa més segura o perquè la substància es tan valuosa que compensa el seu ús.
Entre aquestes substàncies s’inclouen la *parafenilen diamina* i la *paratoluen diamina*, que es fan servir en elsints capil·lars, i l’*àcid tioglicólic*, que s’utilitza en leslocions permanentes i la *lanolina*, que es un excel·lent emol·lent i substitutiu del “sèu”.

Quan s’incorpora una substància irritant o sensibilitzant conegut en un producte cosmètic, aquest s’ha d’especificar en l’etiqueta, conjuntament amb qualsevol instrucció especial al respecte.

3.8.3.4. *Mecanisme i fisiologia de la irritació*

Un irritant pot causar una resposta relativament ràpida. La severitat de la resposta és més o menys proporcional a la concentració del irritant en la pell.

Per irritar la pell, un irritant potencial ha de penetrar fins a les capes vives de la mateixa. Considerant que les capes externes de la pell es suposa que constitueixen una barrera, resulta sorprenent la quantitat de substàncies que poden traspassar-la.

La reacció a un irritant que penetri fàcilment serà pràcticament immediata. En el cas d’un irritant que penetri lentament, es requereix un ús relativament prolongat del producte, abans de que aquest aconsegueixi nivells irritants.

Quan es produeix la irritació, els símptomes segueixen una seqüència. Aquests són els símptomes de la *dermatitis de contacte*:

- **Irritació**: picor o dolor
- **Eritema**: vermelló de la pell
- **Edema**: inflamació, formació d’ampolles
- **Ezcema**: rebenten les ampolles, alliberen el que contenen i es forma costra.

Fins on arribin els símptomes, dependerà de la concentració del irritant en la pell i de la sensibilitat de la pell de la persona.

En la fisiologia de la irritació, quan un irritant penetra fins les capes vives de la pell, les cèl·lules vives i especialment els *mastocits* de la dermis, poden resultar tan danyats que moren. Quan una cèl·lula mor, internament allibera uns enzims autodestructors especials, que la liqüen, de manera que les seves restes poden ser dispersades. Al mateix temps, aquest procés alliberà *histamina*, una substància senyalitzadora, que compleix dues funcions:

- Estimula els terminals nerviosos del dolor per enviar impulsos al cervell, si estimula uns pocs produeix punxades, però si estimula molts es produeix un dolor continu. Això serveix per cridar la nostra atenció sobre el problema.
- Causa la dilatació dels capil·lars dèrmics, permetent d’aquesta manera, un major flux sanguini a través de la pell, i provocant vermelló o l’*eritema*. El seu propòsit es acelerar la dispersió de l’irritant i les restes de les cèl·lules danyades, i portar materials nous per la seva reparació.
En el cas de que moltes cèl·lules es vegin danyades, la sang proporcionarà flux per diluir les restes de líquid i minimitzar els efectes de l’irritant. L’àrea danyada s’inflamarà, donant lloc a l’edema. La naturalesa de la inflamació varia, ja que pot manifestar-se en forma de petites bombolles, en grans ampolles o àrees disperses toves.

Es possible que aquestes manifestacions eventualment remetin. No obstant, es freqüent que rebentin alliberant líquid o pus, i posteriorment s’assequin formant costres. Aquesta és la reacció de l’eczema.

3.8.3.5. Mecanisme i fisiologia de la sensibilització

A primera vista, una reacció de sensibilització és molt semblant a una irritació. No obstant, darrere de la façana, aquesta implica una sèrie de processos fisiològics més complicats, per el que resulta més difícil donar-li una explicació simple.

En el següent esquema es mostra quin és el mecanisme d’irritació i sensibilització de la pell i quins són les diferents passos que segueixen.
El que succeix, bàsicament, és que el cos tracta a la substància invasora com si es tractes d’una infecció, i posa en funcionament la seva resposta immune per contrarestar la invasió i intentar combatre-la.

L’organisme ha d’aprendre a reconèixer la substància invasora com potencialment danyina. Per poder arribar a conèixer-la, aquesta deu ser similar a alguna cosa que l’organisme ja conegui.

El primer cop que es fa servir una substància sensibilitzadora, probablement no es manifesti cap senyal visible, però el potencial danyi de la substància s’haurà materialitzat, i el sistema de defensa d’antigens i anticossos s’haurà activat en la sang, i quedarà actiu fins que la substància torni a ser utilitzada en el futur.
Si es repeteix l’aplicació de la substància, llavors entrarà en acció el sistema antígen-anticos per combatre-la. Si el sensibilitzant es troba en el producte aplicat sobre la pell, la reacció probablement es produirà només en aquest lloc, i serà molt similar a la dermatitis de contacte causada per un irritant primari amb coïssor, l’eritema, l’aparició d’ampolles i l’ezcema, però en aquest cas, es tracta de dermatitis al·lèrgica de contacte.

3.8.3.6. Assajos d’irritació i sensibilització

En tots els productes i materials s’ha de determinar l’efecte irritant sobre la pell. Als ingredients s’ha d’avaluar la sensibilització i en els productes que són per el contorn d’ulls s’ha d’avaluar la irritació ocular.

3.8.3.7. Prova del pegat per avaluar la reacció de la pell

Encara no existeix un mètode estandar establert per la prova del pegat, però els assajos es realitzen en voluntaris humans. Les mostres a avaluar s’apliquen sobre una tira adhesiva especial per la prova del pegat. La tira es col·loca en l’esquena o al braç del voluntari, i es pot fer en obert, de forma que la mostra estigui en contacte amb l’aire, o al contrari, tapada i que la mostra s’assequi a la pell, per lo qual es fa servir una pel·lícula de plàstic autoadhesiva que cobreix l’àrea que s’avalua.

La mostra normalment no es deixa més de 48 hores, ja que si s’ha de produir alguna reacció, aquesta es donaria en aquest termini de temps. En el cas de que produeixi una reacció al·lèrgica la prova queda immediatament suspesa. Quan es retiren els pegats s’inspecciona la pell en busca d’irritacions, vermellò, picors o formació d’ampolles, i qualsevol reacció es relaciona amb la mostra aplicada en aquesta àrea.

Assaig de sensibilització

Els assajos de sensibilització també es realitzen en voluntaris humans. De nou, aquest assaig s’ha de realitzar a tots els ingredients nous. S’injecta una mostra de la substància a testar, i regularment s’observa qualsevol reacció adversa en el voluntari.

Per exemple, si s’està investigant la fotosensibilització, és a dir, la sensibilitat a la radiació ultraviolada, el voluntari es sotmetrà a un tractament de radiacions ultraviolades. En aquest cas, els investigadors buscaran reaccions adverses a aquest tipus de llum.
4. INTRODUCCIÓ ALS EXTRACTES VEGETALS

L’ús dels extractes vegetals, així com algunes tècniques per la seva obtenció i avaluació quantitativa, es remunten principalment a la civilització egípcia. Existeixen testimonis de l’ús d’olis essencials, perfums i cosmètics, per la trobada de pots intactes, atuells i capses d’or i coure, on es guardaven notes d’essències. Els olis i extractes s’utilitzaven en els processos de momificació i també com a condiments alimentaris.

Un extracte vegetal és el producte líquid obtingut a partir de plantes o part d’elles mitjançant diferents procediment i diversos solvents. Els olis essencials són barreges de variedes substàncies químiques biosintetitzades per les plantes, que donen l’aroma característic a algunes flors, arbres, llavors, etc. Són intensament aromàtics, no grassos, volàtils i lleugers. Són insolubles en aigua i solubles en alcohol, greixos, cerves i olis vegetals. S’oxiden per l’exposició a l’aire.

Estan presents en distines parts de la planta:
- En les flors, com la lavanda o la rosa.
- En tot l’arbre, com succeix amb l’eucaliptus.
- En les fulles, com citronela.
- En la fusta, com el sàndal.
- En l’arrel, com el vetiver.
- En la resina que exhuden l’encens, la mirra i la bergamonta.
- En la pell dels fruits, com la llimona i la taronja.

Dins dels teixits vegetatius, es troben en cèl·lules esfèriques o diferents cavitats, i donant olor a les flors, es troben en les glàndules odoríferes des d’on són alliberats.

La utilitat dels olis essencials en la cosmètica es centra fonamentalment en l’elaboració de perfums. La seva concentració d’aquests principis oscil·la entre el 2% i el 20%, en colònies i perfum respectivament, d’enorme interès econòmic i gran consum. En els últims anys ha cobrat gran importància la aromacosmètica, la finalitat de la qual, és solucionar problemes estètics a partir de l’aplicació d’olis essencials.

En l’aromacosmètica els olis s’utilitzen per el seu poder hidratant, cicatritzant, regulador de les glàndules sebàcies, reafirmant i tonificant de teixits. S’inclouen en la composició de gran quantitat de productes cosmètics com sabons, sals de bany, locions, cremes i gels per tractar problemes d’acne deshidratació i flàccidesa de la pell.

En els següents apartats es revisen els extractes vegetals. Es defineixen conceptes com droga i principi actiu, i s’explica l’origen i l’obtenció d’aquest.

A més, també s’explica quines són les bases analítiques per tal d’identificar i controlar la qualitat i pureza de les drogues, i quins són els mètodes i assaigs més comuns que es fan servir per tal d’aconseguir-ho.
4.1. Concepte de droga

La paraula ‘droga’ prové de l’holandès droguen (assecar) o drogo (substància seca), i no del terme anglosaxó drug, que correctament s’hauria de traduir com a ‘fàrmac’ i no com a ‘droga’, que és com es fa habitualment.

Segons el Diccionari de la Reial Acadèmia de la Llengua Espanyola, droga significa “nom genèric de certes substàncies minerals, vegetals o animals que es fan servir en la medicina, en la indústria o en les Belles Arts”; també s’admet com “substància o preparat medicamentós d’efecte estimulant, depriment o narcòtic”, sent aquesta última definició la més popular.

4.2. Què és un principi actiu?

El concepte de principi actiu ja s’ha explicat en l’apartat 3.4.1.4, així doncs es pot definir com “la substància pura, principal responsable de les accions i efectes farmacològics que té la droga i per tant del seu ús terapèutic, també pot servir per l’elaboració de medicaments”.

4.3. Obtenció

Els productes obtinguts directament de la natura i els seus derivats representen en l’actualitat més del 50% de tots els fàrmacs que es fan servir a la terapèutica. Existeixen diferents fonts d’obtenció de drogues. La de més importància correspon al món biològic terrestre, ja que d’allà s’obtenen la majoria dels productes naturals utilitzats en la terapèutica, tant del regne animal com del regne vegetal. A més, el món marí és font d’obtenció de drogues per la seva riquesa en diferents tipus d’organismes biològics, els quals s’està investigant en l’actualitat. Per últim, s’ha de considerar com a font d’obtenció de principis actius la biotecnologia, ja que mitjançant la realització de cultius de cèl·lules, teixits o òrgans pot arribar a ser una font inesgotable per la producció de certs metabòlits farmacològicament actius.

4.3.1. Drogues obtingudes del regne vegetal

En el regne vegetal, les plantes amb llavors (espermatòfites) són les que tenen la participació més gran, ja que són les més abundants en la natura. Tot i que, també hi ha arbres productors de resines, com el Boswellia Serrata, dels quals es poden obtenir interessants principis actius que es fan servir molt en la terapèutica.

També cal destacar la participació dels tal·lòfits, per exemple alguns fongs productors d’antibiòtics i algues productores de polisacàrids heterogenis, de gran interès per a la indústria farmacèutica i alimentària.

Tots aquests vegetals procedeixen de la flora espontània o poden ser cultivats:
4.3.1.1. Flora espontàn ia

Durant molt de temps les plantes d’aplicació a la terapèutica procedien de la flora espontàn ia, però per l’augment de demanda, la necessitat de disposar de material homogeni i controlat (sobre la seva identitat i riquesa en principis actius) i els condicionants socioeconòmics (falta de mà d’obra) han obligat la seva producció a gran escala, i per tant, el seu cultiu en les zones d’origen o zones allunyades.

La recoll·lecció d’espècies silvestres encara està indicada quan existeixen poblacions naturals amb una alta densitat, per exemple plantes aromàtiques a Espanya, *Matricària*, *Chamomilla recutita*, a Hongria, etc, i quan els cultius són difícils i per tant antieconòmics, en països en els quals la mà d’obra sigui barata o quan la demanda sigui baixa. S’acostuma a recoll·leccar únicament els brots tendres, fulles i parts florides amb l’objectiu d’evitar l’extinció de l’espècie a la zona recoll·lectada.

En ocasions, si el cultiu resulta excessivament difícil o lent i l’explotació de la flora espontàn ia pot induir un gran risc d’extinció de l’espècie vegetal, es fa necessària la recerca de dels principis vegetals en altres fonts vegetals, freqüentment en espècies vegetals pròximes.

4.3.1.2. Cultius

Els cultius són en l’actualitat la principal font d’obtenció de drogues i per a alguns països, sobretot del Tercer Món, una important font d’ingressos.

El seu principal objectiu és aconseguir un augment en la producció d’espècies vegetals amb un alt rendiment en principis actius i un alt grau d’homogeneïtat. No és, per tant, un objectiu dels cultius de plantes medicinals aconseguir un augment en massa vegetal, cosa que passa en altres tipus de produccions agrícoles. Són, a més, objectius secundaris aconseguir plantes més resistentes o immunes i en alguns casos produir espècies medicinals amb les quals es facilitin les feines del procés.

El cultiu de plantes medicinals presenta clars avantatges davant de la utilització de la flora espontàn ia:

- Permet obtenir una matèria prima abundant, homogènia i d’alta qualitat mitjançant el cultiu d’espècies seleccionades.
- Permet controlar algunes de les variables que poden afectar a la producció (selecció de climes apropriats, aportar nutrients al sòl, control de plagues) i, per tant, millorar el rendiment en principis actius.
- Permet l’obtenció de vegetals en el mateix estadi de desenvolupament, cosa que facilitarà les feines de recoll·lecció, assecat i en alguns casos el procediment d’extracció, ja que pot realitzar-se en les proximitats del cultiu.

Els principals inconvenients d’aquests cultius deriven de la fragilitat de les plantes cultivades i la seva vulnerabilitat, en alguns casos, a l’atac per paràsits, així com de la necessitat de comptar amb períodes de descans del sòl.
4.3.2. Drogues obtingudes del regne animal

La participació del regne animal com a font d’obtenció de drogues és menor que la dels vegetals. Però tot i això, és una font d’obtenció de productes de gran importància com poden ser alguns tipus d’hormones, sueros, gelatina, lanolina i altres compostos.

Aquesta participació més petita del regne animal com a font d’obtenció de drogues podria variar en un futur, ja que en l’actualitat hi ha un gran interès en la recerca de productes animals amb possibles aplicacions a la terapèutica en insectes i animals marins. Per exemple, se sap que certs tipus d’insectes són capaços de transformar compostos inactius dels vegetals, inclosos en la seva dieta, en productes farmacològicament actius.

4.3.3. Drogues obtingudes del regne marí

Traient els problemes que plantegen la recol·lecció i la disposició de material suficient i homogeni d’una forma constant, el mar és en l’actualitat, i probablement ho sigui molt més en un futur, una important font de productes naturals d’utilitat per a l’home.

Algues, esponges, musclos, eriçons i microorganismes marins són una realitat com a font de productes amb interès farmacològic. Alguns s’estan aplicant ja, per exemple els obtinguts d’algues (carragenats amb acció laxant obtinguts del gènere Chondrus sp.; àc. Alfakainic, antihelmíntic de la Diginea simples). Altres molècules d’origen marí es troben en fase d’investigació i en fase d’assaigs clínicos, per exemple les briostatines obtingudes de briozous, Begula neritina, que tenen efecte anticancerigen i immunostimulant i on el seu mecanisme d’acció està relacionat amb el seu efecte sobre la proteïna quinasa C (PKC), o els alcaloides amb activitat anticancerigena obtinguda d’alguns tincats com són les ecteinascidines aïllades de Ecteinascidia turbinata.

4.3.4. Obtenció biotecnològica

També ocupen un important lloc en la producció de productes naturals els mètodes biotecnològics, sobretot tenint en compte la seva projecció de futur. En l’actualitat es fa servir amb dues finalitats.

A) Com a eina d’aplicació en la producció de plantes medicinals esta orientada a la consecució de diferents objectius:

1. Obtenir un alt grau d’homogeneïtat en el material vegetal a cultivar.
2. Arribar, pel contrari, una heterogeneïtat hereditària, per exemple a través de la fusió de protoplast: nucli, cloroplast, ...), aconseguint amb aquesta tècnica una major variabilitat que els híbrids obtinguts entre gèneres.
3. Iniciar la mutagènesis ja que les cèl·lules en cultiu són més sensibles a irradiació i agents químics.
4. Cultivar embrions.
5. Facilitar la propagación vegetativa.
6. Obtener plantes sanes, lliures de virus i d’infeccions per fongs.
7. Realitzar la criopreservació del material genètic necessari per l’establiment de bancs de gens.

B) *Com metodologia per a biosintetitzar principis actius d’utilitat per la terapèutica o transformar productes inactius.*

Els cultius de cèl·lules, teixits i òrgans vegetals són capaços de produir una gran varietat de metabòlits secundaris (terpenoides, alcaloides, fenil-propanoides, etc.); tanmateix, encara hi ha limitacions per la seva funció com a font d’obtenció de fàrmacs, ja que molts principis actius només són biosintetitzats per cèl·lules especialitzades, com els alcaloides morfítics en laticífers o els olis essencials en cabdells glandulosos. Per esta raó, tot i que la producció de metabòlits secundaris mitjançant tècniques de cultiu de cèl·lules mantenen un elevat interès per la indústria farmacèutica i indústries relacionades, són pocs els exemples que es poden donar de la seva producció a gran escala i els fins comercials.

Degut a aquesta complexitat, els cultius de cèl·lules vegetals com a font d’obtenció de fàrmacs i amb interès comercial només queden justificats si del que es tracta és de cultivar cèl·lules que sintetitzen principis actius en major proporció que la planta d’origen i que aquesta planta no sigui molt abundant o resulti difícil la seva adquisició per diferents motius. També estan justificats quan fallen altres mètodes més senzills s’intenta la transformació de compostos actius coneguts, a altres que millorin la seva eficàcia terapèutica.
5. IDENTIFICACIÓ DE DROGUES I PRINCIPIS ACTIUS

5.1. Mètodes d’assaig

La utilització amb finalitat terapèutica de les drogues vegetals, ja sigui la planta directament o bé com a font d’extracció de principis actius, ha d’estar sotmesa a uns estrictes controls abans de que aquestes puguin ser utilitzades com a tals. Aquesta operació comporta, per una part, la identificació del material vegetal, descartant possibles falsificacions i, per altra, la determinació de la seva qualitat i puresa, és a dir, la verificació del control de la seva activitat biològica.

La identificació de les diferents drogues es pot realitzar mitjançant el reconeixement botànic d’aquestes o bé per mètodes fisicoquímics que, a través d’una sèrie d’assaigs de tipus qualitatiu, permeten verificar, ja sigui sobre la droga sencera o polvoritzada o fins i tot sobre extractes de la mateixa (obtinguts pels diferents procediments d’extracció i amb diferents solvents) la seva identitat.

Així doncs, els assaigs i controls de les drogues serveixen per a controlar la seva qualitat:

- Assegurar la identitat de la droga
- Comprovar el seu correcte estat de conservació
- Determinar la quantitat exacta de principi actiu, comprovant que contingui la quantitat necessària per assegurar l’activitat sense arribar als valors que puguin ser tòxics
- Comprovar i assegurar l’absència de substàncies que puguin resultar nocives
- Detectar possibles adulteracions i falsificacions

5.1.1. Assaigs organolèptics

Consisteix en comprovar les característiques apreciables amb els sentits, és a dir, color, gust (sabor),olor (aroma) i textura (sensació de la droga al tacte). L’examen d’aquests caràcters organolèptics justament amb els macroscòpics o morfològics és suficient per identificar la majoria de les drogues que es presenten senceres. Quan es tracta de drogues polvoritzades aquestes observacions no són definitives i només serveixen d’orientació. No obstant, es poden obtenir algunes dades sobre les diferents característiques organolèptiques que aporten pistes de la droga que es pot tractar:

- **Olor**: Els termes generals fets servir per descriure els olors de la droga són: aromàtic, desagradable, en espècie, etc.
- **Color**: La observació del color, per exemple si és o no uniforme o si presenta fragments de diferents colors, podria fer-nos sospitar en una possible barreja de pols. De manera general, els pols procedents de fulles i talls són de color verd; els que procedeixen de l’arrel solen ser de color Marró fosc o Marró vermellós.
- **Sabor**: Pot ser dolç, amarg, àcid, salat, astringent, aromàtic, etc.
<table>
<thead>
<tr>
<th>Color</th>
<th>Sabor</th>
<th>Olor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermell: quina</td>
<td>Dolç: pegadolça</td>
<td>Plantes amb olis essencials:</td>
</tr>
<tr>
<td>Ataronjat: ruibardo</td>
<td>Amarg: nou vòmica, quina, genciana, acíbar</td>
<td>menta, cayella, romaní, eucaliptus, anís</td>
</tr>
<tr>
<td>Castany: cayella, clau</td>
<td>Aromàtic: cayella, clau</td>
<td></td>
</tr>
<tr>
<td>Blanc: goma aràbica</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula 5.1. Taula d'exemples d’organolèptics

5.1.2. Assaigs botànics

L’examen botànic és sempre imprescindible i serveix de punt de partida per assaigs posteriors; és suficient en el cas de moltes drogues no tòxiques quan els principis actius estan en petites quantitats o bé són difícils de valorar.

5.1.3. Estudis morfològics o característiques macroscòpiques

Les drogues que arriben al mercat es presenten en diverses formes comercials. Les drogues poden consistir íntegrament en llavors, flors, fruites, fulles i algunes arrels, però poden també presentar-se tallades, fracturades o seccionades en rodanxes, com passa amb la fusta, les escorces, moltes arrels i alguns rizomes. Altres poden presentar-se més o menys apilotonades, inclús poden haver estat comprimides per premses hidràuliques o poden haver estar polvoritzades i després moldejades en determinades formes. És important estar familiaritzat amb aquestes formes diferents com a pas previ per la seva millor identificació a través dels caràcters morfològics.

Els caràcters morfològics són determinats en cada droga; es coneixen examinant les seves característiques típiques com, per exemple: la forma, el tamany, les marques externes, el seu color o la fractura i el color intern. No obstant, en cada òrgan s’ha d’advertir una sèrie de caràcters generals que són propis:

- **Talls** → si és de tipus llenyós o herbaci, erecte o caigut; secció quadrangular, acanalada, arrodonida, etc; disposició de les fulles; nusos, estries, etc.
- **Fulles** → forma del limbo, tipus de nerviació, presència o no de cabells; textura, superfície, etc.
- **Inflorescència** → disposició de les flors; presència o no de bràctees, etc.
- **Flors** → nombre de peces del calze i de la corol·la; disposició dels estambres; número dels carpels; disposició de l’ovari, etc.
- **Fruits** → tipus; forma i dimensions; característiques del precarpi, etc.
- **Llavors** → tamany, color i forma; presència o no de pèls en el tegument; albúmina, etc.
- **Escorça** → color; estriacions; arrugues; fractura, etc.
- **Tija** → zones de creixement, radis medul·lars, vasos; fractura, etc.
- **Organs subterrans** → forma; aspecte de la superfície; característiques del tall transversal; consistència, etc.
- **Droges no organitzades** → aspecte; coloració; propietats organolèptiques, etc.
L’observació detallada de les característiques morfològiques pròpies de cada òrgan facilita la identificació de les drogues.

5.1.4. Anàlisi microscòpic o característiques microscòpiques

L’observació dels caràcters organolèptics i morfològics quan es tracta de drogues que es presenten en forma polvoritzada no és definitiva. Per això és necessari dur a terme un anàlisi microscòpic que és indispensable no només per confirmar la identitat de les drogues que es presenten d’aquesta forma, o d’altres no polvoritzades, quan les dades morfològiques són insuficients per a la seva identificació, sinó també per descartar la presència de possibles adulterants en aquestes.

5.1.4.1. Talls histològics

Quan es tracta de drogues organitzades i no polvoritzades, senceres o trossejades, la identificació d’aquestes es pot realitzar a través del reconeixement microscòpic dels elements cel·lulars característics, així com els seus continguts cel·lulars. Això és perquè els òrgans vegetals estan formats per teixits, cadascun dels quals té una funció que és essencial per a la vida de la planta, i la seva histologia dóna el caràcter o distribució d’aquests teixits.

S’ha de tenir en compte que el reconeixement histològic no sempre és aplicable a les drogues, ja que algunes no tenen estructura organitzada, o bé estan formades d’unitats microscòpiques. En altres, el coneixement de l’estructura no té gaire importància perquè el seu aspecte macroscòpic és característic. Tot i això, moltes altres tenen una estructura tèpica que és molt útil per a la seva exacta identificació. En aquests casos, els estudis histològics es fan mitjançant talls transversals o longitudinals molt fins.

Les principals característiques anatómiques a observar en els talls histològics dependran de la part de la droga a examinar. A les fulles seran les cèl·lules epidèrmiques, el teixit parenquimàtic, la possible presència i característiques d’estomes i pèls o tricomes. A les arrels i talls, d’epidermis, la presència i naturalesa d’elements esclerificats en el parènquima cortical, regió precíclica. A l’escorça, les característiques del súber, els tipus d’elements esclerosos i els elements secretors. I en quan als fruits i llavors, l’estructura del pericarpi tegument.

Respecte els continguts cel·lulars, els que es volen estudiar són aquells que poden ser identificats a les drogues vegetals mitjançant l’examen microscòpic o per assaigs fisicoquímics. Aquests continguts cel·lulars estan formats tant per productes de reserva com per subproductes del metabolisme de les plantes. Tenen carbohidrats, proteïnes, olis fixes i greix, alcaloides i purines, tanins, glucósids, olis essencials, gomes i mucíglegs, resines, oxalat càlcic, carbonat càlcic i silici. Poden identificar-se sobre el propi tall, directament en alguns casos o més freqüentment amb l’ajuda de reaccions químiques.
5.1.4.2. Drogues polvoritzades

Les drogues polvoritzades tenen molt pocs caràcters morfològics d’identificació i els seus caràcters organolèptics, com color, olor, o gust no acostumen a donar suficient informació per a la seva identificació. A més, aquestes es falsifiquen més, per això s’ha de recorrer al microscopi per l’estudi dels seus elements histològics, ja que aquests al ser elements típics i constants suposen un valuós material de diagnòstic. En la droga polvoritzada moltes cèl·lules estan trencades, excepte les parets lignificades, desapareixen l’ordre dels teixits i llavors es troben fragments dels diferents tipus d’estructures tissulars, així com el contingut cèl·lular dispersats en tota la pòl vegetal.

L’examen microgràfic de les drogues polvoritzades es basa en l’estudi dels elements cèl·lulars i del seu contingut. En un examen microscòpic preliminar de la pòl vegetal, característiques com l’olor i el color, l’aspecte qualitatiu de la reacció amb iode o amb floroglucina i l’existència o falta de cristalls d’oxalat càlcic donen criteris útils per anar classificant la pòl de les drogues en grans grups. Tot i això, les observacions que més informació donen s’obtenen a partir dels caràcters anatòmics i amb l’ajuda d’algunes reaccions químiques per detectar productes cèl·lulars com tanins, greixos, antraquinones, resines, etc.

La inexistència d’elements formes en una preparació indica que no correspon a la pòl d’un vegetal organitzat, pel que podria tractar-se d’una pòl mineral, com talc, sulfat sòdic, carbonat càlcic, etc. o bé d’una droga organitzada.

Pel contrari, en el cas d’existir aquests elements, es detectaran en la mostra cèl·lules o conjunts de cèl·lules més o menys visibles, més o menys fragmentades, i en proporció majoritària, així com els diversos continguts cèl·lulars, resultat del trencament de les cèl·lules.

El microscopi no només és útil en el reconeixement de les drogues a través de l’estudi dels seus elements histològics i en la determinació dels possibles adulterants des del punt de vista histològic sinó que també és utilitzat pel microanàlisi quantitatiu de pòls barrejats o adulterants. Aquesta s’efectua fent un recompte d’un determinat caràcter histològic en una quantitat donada en pòls desconeguts, i comprovant el recompte obtingut amb una mostra aconseguida del mateix pòl en qüestió, de l’adulterat o d’alguns dels pòls de la barreja. S’utilitzen mètodes similars en els recomptes d’espores, filaments de fongs, bactèries, etc.

5.1.5. Assaigs fisicoquímics

Aquestes proves es poden verificar sobre la mateixa droga, sencera o polvoritzada, o, més freqüentment, sobre extractes obtinguts per diferents procediments d’extracció a partir de la planta i amb diferents dissolvents.
5.1.5.1. Mètodes qualitatius

Són assaigs de tipus qualitatiu que permeten la identificació de drogues i el reconeixement de falsificacions, caracteritzant generalment, la presència de determinats compostos específics derivats del metabolisme secundari d’una planta, al ser més útils per a comparar els perfils químics i diferenciar entre les diferents espècies vegetals. Els compostos derivats del metabolisme primari, com per exemple la clorofil·la, carotenoides, àcids fenòlics, etc. són comuns en totes les plantes i perdren interès diagnòstic.

Aquests mètodes es basen en reaccions d’identificació que permeten detectar determinades substàncies químiques característiques d’una planta i l’anàlisi cromatogràfic, que permet separar els diferents components químics d’una espècie determinada.

Les reaccions d’identificació que es fan servir són:

- **Reaccions de coloració o precipitació**

Es tracta de reaccions simples, específiques d’algun principi actiu o component característic d’una droga (alcaloides, antraquinones, etc.), el qual actua com “identificador” d’aquesta droga.

Per exemple, l’aparició de color vermell en l’escorça de la closca sagrada, *Rhamnus purshiana* DC., -degut a les seves antraquinones- al ser tractada amb solució amoniaca, és indicador de la seva possible identitat.

La visnaga, *Amni visnaga* (L.)Lam., es caracteritza per la coloració púrpura que produeixen els seus furocromones quan s’addiciona KOH al residu de l’evaporació de l’extrait alcohòlic dels seus fruits.

La caracterització dels heteròsids cianogenètics de les llavors d’ametlles amargues, *Prunus amygdalus* var. *Amara*, amb el paper pricosòdic, agafa una coloració vermella, que permeti diferenciar-les de les ametlles dolces, *Prunus amygdalus* var. *Dulcis*.

Per últim, s’ha de destacar la reacció de Liebermann, específica dels esteroides, on es veu una coloració blau-verbosa.

Aquestes reaccions a vegades tenen un interès limitat i no són aplicables a totes les drogues degut a les interferències que poden ser observades amb substàncies químiques semblants a aquelles que es volen identificar.

Però tot i això, aquests assaigs són molt útils degut a la seva senzillesa i rapidesa, i en general, es realitzen directament sobre un extracte de la planta, que acostumen a ser l’extrait alcohòlic per ser el més apropriat per detectar la presència dels principis actius més importants.
Fluorescència

Moltes substàncies (per exemple, la quina en solució d’àcid sulfúric dissolt), convenientment il·luminades, emeten llum de diferents longituds d’ona que incideix sobre elles. Generalment la substància emet la llum amb una longitud d’ona major (llum visible) quan aquesta està sota la influència d’una il·luminació de longitud d’ona més curta (llum ultraviolada o llum blau-roenta). Per això, els assaigs analítics basats en la fluorescència amb llum natural no es fan servir molt, ja que són generalment irrellevants per la debilitat de l’efecte fluorescent. Pel contrari, la llum rica en longituds d’ona curta és molt activa en quant a la producció de fluorescència, tal com passa amb la llum fortement ultraviolada (com la que s’obté de l’arc de wolframi o de la llàmpara de vapor de mercuri), que produeix fluorescència visible a la llum natural.

Aquesta fluorescència, normalment en front de la llum UV, de determinats principis pot servir per la caracterització d’algunes drogues; així la belladona, *Atropa belladona* L. Té una cumarina que dona fluorescència blava, a diferència del belego, *hyoscyamus niger* L., i l’estramoni, *Datura stramonium* L., que no la posseeix.

Microsublimació

Aquests assaigs normalment es realitza en drogues amb principis fàcilment sublimables (antraquinonas, alcaloides). L’estudi de les constants cristal·logràfiques, la determinació del punt de fusió o la producció de determinades reaccions colorejades característiques dels vidres formats, serveixen per la identificació de la droga.

5.1.5.2. Anàlisi cromatogràfic

Des de fa alguns anys les diferents tècniques de separació i aïllament dels components de les plantes han passat a una primera plana com a mètode d’aplicació general més útil en l’estudi de substàncies orgàniques i inorgàniques.

De forma esquemàtica, es pot dir que totes les tècniques cromatogràfiques es basen en el mateix principi: la separació de les substàncies presents en una barreja donada, entre dues fases immiscibles, una fixa (fase estacionària), que pot ser sòlida o líquida i una altra que elueix a través de la primera (fase mòbil) i que pot ser un líquid, un gas o la combinació de tots dos. Aquest permet diferenciar entre dos sistemes cromatogràfics: el d’absorció i el de participació.

Per altra banda, segons la naturalesa del suport o fase estacionària de l’eluent o fase mòbil i de les condicions operatòries de temperatura, gradient, etc., que s’estableix amb la finalitat d’obtenir una separació optima dels diferents components d’una barreja determinada, la cromatografia es pot classificar en:
Cromatografia en paper

Aquest tipus de cromatografia depèn de la diferent polaritat que presenten els diferents productes, així com de la seva configuració molecular. Entre els adsorbents que es fan servir es troben diverses substàncies com l’alúmina, l’òxid de magnesi, el carbonat càlcic, el carbò i sucre. La cromatografia d’adsorció és especialment vàlida en l’aïllament i purificació de vitamines, hormones, diversos alcaloides, heteròsids, antraquinones, etc.

Cromatografia en capa fina

En aquest mètode, la separació dels components d’una barreja dependrà dels diferents coefficients de repartiment, que els presenten entre dues fases: una fase aquosa i una fase orgànica no miscible; per tant la separació es basa en la diferència de solubilitat entre dues fases líquides, on es pot modificar aquesta solubilitat per canvis en la força iònica o el pH de cada una d’aquestes fases.

La cromatografia en capa fina, degut al seu baix cost i a que es pot realitzar amb poca quantitat de mostra, és una tècnica que es fa servir molt en els controls de tota classe de productes naturals i com a mètode analític molt important en les farmacopees modernes, d’aquesta manera permet identificar de forma ràpida el nombre de components presents en un material vegetal.

Actualment, la cromatografia de capa fina ha substituït la cromatografia en paper, degut principalment a que els fraccionaments es poden fer més ràpidament fent sevir menys quantitat de barreja.

Cromatografia en columna

Són tècniques analítiques simples, on la separació de les substàncies ve determinada per un conjunt complexa de propietats físiques: velocitat de difusió, solubilitat del solut i naturalesa del dissolvent, capacitat d’adsorció i, intercanvi iònics, etc.

Cromatografia gasosa

Aquesta tècnica es fa servir principalment en l’estudi de les drogues amb components volàtils. La cromatografia gasosa permet identificar olis essencials, alcanfor, àcids vegetals, alguns alcaloides, resines i compostos esteroides.

Cromatografia líquida d’alta resolució (HPLC)

Es una tècnica molt senzilla i molt sensible, que es pot realitzar directament sobre l’extracte aquós o alcoholís d’una droga, sense necessitat de etapes prèvies de purificació. Permet la separació de molècules molt semblants, inclús isòmers. Es pot aplicar a una àmplia gamma de compostos fixes no volàtils, com alcaloides, heteròsids, lipids, esteroides, glúcids, proteïnes, vitamines, etc.
El HPLC és una de les tècniques de laboratori més utilitzades com a eina analítica per separar i detectar compostos químics. És bàsicament una forma millorada de la columna cromatogràfica. En comptes de deixar fluir la mostra a través de la columnà per gravetat, es sotmet a altes pressions, de fins a 400 atmosferes, fent que el procés sigui més ràpid i eficaç.

Segons el tipus de fase fixa i del fenomen físic que provoca la separació, la cromatografia pot ser:

- **Cromatografia d’absorció** → la fase fixa és un sòlid, gairebé exclusivament es fa servir sílice i en menor mesura alúmina.
- **Cromatografia de repartició** → com a fase estacionària s’utilitzen compost uníts químicament a un suport sòlid de sílices. Es subdivideix en cromatografia de fase normal i fase reversa.

 ✤ **Cromatografia de fase normal**, la columna s’omple de partícules de sílica i la fase mòbil que flueix a través d’ella és un solvent no polar. Per tant, els compostos polars de la barreja que es transmetin a través de la columna romandran més temps al pol de la sílica que els compostos no polars. Així doncs, els elements no polars elueixen primer.

 ✤ **Cromatografia de fase reversa**, la columna conté partícules de sílica modificades amb cadenes d’hidrocarburs no polars. La fase mòbil que flueix a través d’ella és un solvent polar. Això vol dir, que les molècules polars es desplaçaran més ràpidament a través de la columna.

- **Cromatografia iònica** → s’utilitzen columnes plenes amb resines d’intercanvi iònic per a separar i determinar ions.
- **Cromatografia d’exclusió per tamany** → la fase fixa està formada per partícules polimèriques o de sílica que contenen una xarxa uniforme de porus, que duen a terme un fraccionament relacionat amb el tamany molecular. Les molècules de major tamany són exclouïdes i elueixen primes, mentre s que les més petites penetren en el porus i són retirades més tard.

Els instruments que constitueixen el HPLC són: un dipòsit de la fase mòbil, una bomba, un injector, un columna de separació i un detector.
Els compostos de la mostra es separen en el mòdul d’injecció de la barreja dins la columna, els diferents components de la mescla passen a través d’aquesta a diferents ritmes, degut a les seves interaccions amb la fase mòbil líquida i la fase estacionària.

Les mostres que tenen major interacció amb la fase mòbil elueixen més ràpidament de la columna i per tant tenen un menor temps de retenció, mentre que al contrari passa el mateix. Les mostres que tenen menys interacció amb la fase mòbil sortiran més lentament i trigaran més temps en sortir.

5.1.6. Assaigs farmacodinàmics i biològics

Són test destinats a establir l’activitat d’una droga. Aquests assaigs comprenen diferents tipus d’estudis i es realitzen en el marc d’altres branques afins a la farmacognòsia com la farmacodinànica i la toxicologia.

- **Estudis d’activitat farmacodinànica** tenen com a finalitat demostrar l’acció o accions que exerceix la droga sobre els organismes vius. Es realitzen treballs sobre animals d’experimentació o amb cèl·lules o organismes aïllats. També es determinen activitats enzimàtiques, és a dir, si una substància és capaç d’activar o inhibir determinats enzims o processos enzimàtics.

- **Estudi de toxicitat** la toxicitat s’estableix realitzant assaigs de toxicitat aguda, toxicitat subaguda i toxicitat crònica. També es realitzen assaigs de tolerància, és a dir, les drogues s’apliquen de forma òptica i s’avalua la seva capacitat de produir irritació al pèl i a les mucoses.
- Estudis específics → per a drogues concretes, es determinen certes activitats específiques com poden ser les següents:

 ✤ Índex d’amarg: per a drogues amargues es valora la seva capacitat d’augmentar les secrecions gàstriques i la sensació d’aperitiu.
 ✤ Índex d’hemòlisis de saponines: es determina la capacitat de certes saponines per allisar els hematies
 ✤ Valoració de tanins: la seva valoració es basa en la capacitat que tenen d’aglutinar els hematies.

- Controls microbiològics → estan destinats a assegurar la qualitat de la droga. S’ha de controlar l’absència de floridura, bacteris nocius, insectes de diversa naturalesa, aràcnids, i la contaminació per rosegadors i altres espècies animals.

5.1.7. Electroforesi

Aquest assaig es basa en el transport de substàncies carregades en un camp elèctric. Per això s’impregna un suport (paper, gelatina, sephadex...) en un electròlit que fa de conductor. En el centre d’aquest es col·loca la substància problema i es sotmet a diferència de potencial generada per dos elèctrodes. El pas de la corrent elèctrica determina la separació de la substància en funció de la naturalesa, càrrega, massa de l’electròlit i concentració d’ions d’aquest, diferència de potencial aplicat, etc. normalment s’aplica a drogues amb alcaloides.
6. CONTROL DE QUALITAT I PURESA DE DROGUES

És necessari sotmetre les diferents drogues que s’introduïen al mercat, no només a un reconeixement o examen d’identitat, sinó també a diferents assaigs de qualitat i puresa, que permetin saber el seu grau de conservació o alteració i el seu valor farmacològic, confirmant la inexistència d’adulterants i valorant el contingut dels seus principis actius.

Els assaigs que es fan servir per aquestes valoracions són, per una part, assaigs fisicoquímics quantitatius, alguns són de tipus generals, aplicables a totes les espècies (humitat, cendres, residus de productes fitosanitaris, contaminació microbiològica, contaminació radioactiva, etc.) i altres de tipus específics, útils per quantificar o valorar determinats principis actius relacionats amb l’activitat bacteriològica, que prèviament han estat aïllats (alcaloides, tanins, heteròsids, etc.), com són els volumètrics, espectrofotomètrics, fluorimètrics, espectroscòpies, etc. Per altra banda, estan els assaigs biològics que valoren o avaluen el valor terapèutic d’una droga, quantificant la seva acció farmacològica en un ésser viu, ja sigui un animal sencer o un òrgan aïllat.

El control de qualitat i puresa d’una droga en realitat comença amb l’examen preliminar de l’aspecte de la droga, ja que no només permet reconèixer-la, sinó que normalment indica l’estat de la qualitat d’aquesta. Generalment, els problemes que es poden detectar en aquesta valoració preliminar van relacionats amb defectes de la seva dessecació, transport, emmagatzematge o recol·lecció.

6.1. Assaigs fisicoquímics quantitatiu generals

Aquestes proves són aplicables a qualsevol droga i, tot i que no valoren els principis actius relacionats amb l’activitat biològica, ja que es necessiten mètodes més específics, són recomanats en determinats casos per la seva utilització en la normalització de drogues.

6.1.1. Percentatge d’humitat

S’entén per “humitat” l’aigua lliure que conté el material vegetal. Per una bona conservació de les drogues, el contingut en aigua ha de ser inferior a un 10%, per tant una humitat fins el 5% no es considera excessiva. Les plantes contenen diversos tipus d’enzimes com les hidrolases, oxidases, polimerases, etc., que donen lloc a diferents reaccions enzímàtiques després de la recol·lecció de la planta fresca o en la droga insuficientment deshidratada, provocant amb això conseqüències perjudicials tant per l’aspecte i característiques organolèptiques com pel contingut en principis actius i les seves activitats terapèutiques, a més d’afavorir el desenvolupament dels microorganismes i la fermentació durant la conservació. Per evitar aquestes reaccions enzímàtiques que es donen en un entorn humit, és necessari reduir al màxim el contingut d’aigua de la planta, aconseguint-ho amb una dessecació adequada.

Igualment, és molt important conèixer la proporció d’aigua que conté el material vegetal, ja que moltes vegades els resultats dels anàlisis realitzats sobre el contingut d’una planta venen expressats en relació al de la droga seca.
Existeixen un gran nombre de mètodes per la determinació de la humitat, s’utilitzen uns o altres depenent del tipus de droga.

6.1.1.1. Mètode gravimètriec

És la determinació de la pèrdua d’aigua per dessecació en una estufa. Aquest mètode és útil quan es tracta de drogues que no contenen substàncies volàtils, ja que quan el material vegetal es posa durant molt de temps a escalfar es poden volatilitzar, a més de l’aigua lliure, les matèries volàtils.

6.1.1.2. Mètode volumètriec

És la determinació del contingut d’aigua per arrossegament azeotròpic. En aquest mètode l’aigua de la droga es arrossegada per destil·lació amb un dissolvent no miscible amb el qual forma una barreja azeotròpica, quan es sotmeta a una temperatura constant d’ebullició, en una columna de destil·lació amb reflux. L’aigua s’acumula en una trampa i es llegixe directament el seu volum. Els vapors de l’azeòtrop es condensen per refrigeració, separant-se l’aigua del dissolvent en dues capes, i així es pot mesurar el volum de l’aigua separada de la droga. Els dissolvents que es fan servir poden ser: benzè (amb un punt d’ebullició de 80ºC) que arrossega l’aigua lentament, toluè (amb un punt d’ebullició de 110ºC) i xilè (és una barreja de tres isòmers de punt d’ebullició que està entre els 136 i 140ºC). Els dos últims permeten un arrossegament més ràpid i més complet però tenen alguns inconvenients com, per exemple, la possible caramel·lització de productes termolàbils, o la condensació de les gotes d’aigua en el nivell superior del refrigerant, entre d’altres.

6.1.1.3. Mètode de Karl Fisher

Aquest mètode es fa servir molt en la indústria farmacèutica, però també en l’alimentaria, la química i la petroquímica. S’aplica sobretot a drogues de preu elevat i a productes químics que contenen petites quantitats d’humitat. Es basa en la relació entre un reactiu de color fosc (dissolució de iode, anhidrid sulfurós i piridina en metanol anhidre) i l’aigua, produint-se una pèrdua de color. En el punt final de la reacció, quan no queda aigua, queda el color del reactiu. La reacció bàsica és una reducció del iode pel diòxid de sofre en presència d’aigua:

\[
H_2O + I_2 + SO_2 \rightarrow 2 HI + SO_3
\]

S’ha d’evitar la interferència de la humitat atmosfèrica, per tan la determinació s’ha de realitzar en una atmosfera de nitrogen sec. Els principals inconvenients d’aquest mètode són la inestabilitat del reactiu i la possibilitat de que existeixin en la mostra substàncies, diferents de l’aigua, capaces de reaccionar amb el reactiu.

Altres mètodes químics per la determinació de l’aigua fan el tractament de la mostra amb diferents carburs, nitrurs i hidrurs i la mesura del gas que es despren. Per a l’anàlisi d’aquest es fa servir normalment la cromatografia gasosa.
6.1.2. Contaminació microbiològica

Les drogues vegetals estan freqüentment contaminades per microorganismes presents a la terra, l’ambient, etc. Aquesta contaminació varia generalment entre 10^3 i 10^6 germens per gram de planta per quasi tots els sapròfits habituals, decantant-se a vegades la presència de estreptococs fecals, pseudomones i enterobacteris.

Generalment, la planta és contamina en el moment de la recol·lecció, disminuint posteriorment la taxa de contaminació en el procés de assecat. Tot i això, els següents processos de manipulació de la planta (trituració, embalatge emmagatzematge, etc.) poden aportar contaminació suplementària.

Excepcions a alguns casos justificats i autoritzats, es permet tenir en la planta un màxim de 10^6 bactèries i 10^5 llevats per gram. Si la taxa de contaminació està entre 10^6 i 10^9 s’exigeix realitzar una descontaminació, amb l’objectiu de verificar l’absència de qualsevol tipus d’alteració.

6.1.3. Residus de productes fitosanitaris

Aquest tipus de substàncies poden presentar-se en les drogues, com a conseqüència de l’aplicació de pesticides durant el cultiu de l’espècie vegetal i, posteriorment, a causa de la fumigació del producte emmagatzemat. La naturalesa i problemes que generen aquests residus tòxics són essencialment els mateixos que els de la indústria alimentària, cosmètics drogues i espècies. En aquest sentit es recomana que per a cada espècie importada s’indiqui la naturalesa exacta dels tractaments fitosanitaris als que ha estat sotmesa, sent important que es conegui per cada droga que arribi al mercat l’origen d’aquesta.

La majoria de les drogues contenen residus pesticides, tot i que dintre dels límits acceptables. Els mètodes cromatogràfics en capa fina (CCF), de gases (CG) i d’alta resolució (CLAR) són útils per a la determinació de derivats organoclorats i d’urea, els mètodes enzimàtics, per a compostos organofosforats, els mètodes colorimètrics, per a derivats d’urea, les tècniques espectroscòpiques s’apliquen al paracuat (herbicida dipiridínic), triazines i metalls pesats.

6.1.4. Naturalesa i taxa d’elements estranyos

L’obtenció de drogues vegetals en condicions de completa puresa és bastant difícil i per això totes les farmacopees contenen especificacions referents als percentatges permesos d’altres parts de la planta o d’altres matèries orgàniques, ja que és inevitable la presència de petites quantitats d’aquestes. Per altra banda, les drogues que contenen quantitats apreciables de matèries orgàniques estranyes com excréments d’animals, pèls, insectes, etc., no s’han d’acceptar, tot i que el percentatge d’aquestes substàncies sigui insuficient per determinar l’exclusió de la droga respecte al contingut de matèries estranyes, ja que és un perill i fa que aquesta no sigui apta pel consum humà. Aquesta
recherche de matières étrangères généralement est determinada durant l’anàlisi organolèptic i macroscòpic de la droga.

6.1.5. Determinació de cendres

La incineració de les drogues vegetals produeix una cendra inorgànica que, en el cas de moltes drogues, varia entre límits amplis. Però, en altres casos, el contingut de cendres totals és important i indica la cura que s’ha tingut alhora de preparar-la.

En la determinació de cendres totals, el carboni s’ha de cremar a una temperatura el més baixa possible (450º), ja que sino es perden els clorurs alcalins, volàtils a altes temperatures. Si encara existeix carboni després d’escalfar a temperatura moderada, s’han de separar les cendres hidrosolubles i calcinar de nou el residu. Les cendres es poden separar mitjançant l’addició d’alcohol i una nova calcinació.

Generalment, les cendres totals es componen de carbonats, fosfats, silicats i silici. Per produir una cendra més consistent es pot utilitzar el concepte de la cendra sulfúrica, que requereix del tractament de la droga amb àcid sulfúric diluït abans de començar la ignició. Aquest mètode aporta resultats més constants en sulfats no volàtils i la ignició es realitza a temperatura més elevada (600ºC).

Si les cendres totals es tracten amb àcid clorhídric diluït, es pot determinar el percentatge de cendres insolubles en àcids. Aquestes, normalment, estan compostes per silici.

Els elements de les cendres poden ser posteriorment caracteritzats i eventualment dosificats pels mètodes clàssics de colorimetria, complexometria o fotometria de flama.

6.1.6. Determinació de metalls pesats

En els últims anys, s’ha observat various vegades una contaminació ambiental per metalls pesats com plom, cadmi i mercuri i ha donat lloc a un gran nombre de publicacions al respecte. Però no s’ha investigat massa sobre la contaminació de drogues vegetals per aquests metalls. En general s’accepten els criteris establerts pels aliments d’origen vegetal. Pel plom es permet un màxim de 0,5 ppm pels fruits i arrels i un màxim de 1,2 ppm pels vegetals verds; pel cadmi un màxim de 0,1 ppm pels fruits i vegetals verds i 0,005 ppm per les arrels; i pel mercuri es permet un màxim de 0,03 ppm pels cereals.
6.1.7. Determinació d’olis essencials

Per la seva determinació s’utilitza generalment un mètode de destil·lació, ja sigui per destil·lació amb aigua o per destil·lació amb aigua i vapor d’aigua, mitjançant una columna de destil·lació o sohxlet.

Es posa una porció de la droga pesada en un matràs de destil·lació amb aigua o una barreja d’aigua amb glicerina. En el matràs, que està connectat a un recipient col·lector i a un refrigerant, es calenta fins l’ebullició. El destil·lat format, és una barreja de vapor d’aigua i olis essencials, és condensa, es recull en un tub graduat i es mesura el volum recollit de l’oli. Normalment quan es tracta d’essències amb un pes específic igual o superior a 1,00 es procedeix a la separació de l’aigua posant un volum conegut de xilè en el col·lector, realitzant la lectura de l’essència junt amb el xilè.

El temps que es necessita per la destil·lació completa de l’essència varia segons la naturalesa de la droga i el seu grau de polvorització, però són suficients, generalment, unes quatre hores.

6.1.8. Índex de refracció

La determinació de l’índex de refracció és especialment útil per a saber la pureza de les essències i olis fixos.

L’índex de refracció d’una substància ve donat per la relació entre la velocitat de la llum a l’aire i la velocitat en la substància d’assaig.

Per una llum d’una determinada longitud d’ona, l’índex de refracció d’un producte ve donat pel sinus de l’angle d’incidència dividit pel sinus de l’angle de refracció. L’índex de refracció varia amb la temperatura.

Per aquest assaig es fa servir el refractòmetre d’Abbe, en el qual l’angle mesurat és l’”angle limit” per la reflexió total entre el vidre d’elevat índex de refracció i la substància en estudi. Per aquest mitjà i, per selecció d’una determinada longitud d’ona de la llum, a la qual es realitzen les mesures, és possible calibrar l’instrument en índexs de refracció directament. El raig de la llum que emergeix és el que es veu en l’instrument i l’angle limit ve indicat per la línia de separació de les parts clara i fosca del camp visual. En aquest instrument, la necessitat d’una font de llum monocromàtica s’elimina amb la incorporació d’un “compensador” de dispersió situat a la base del tub del refractòmetre. Aquest compensador consisteix en dos prísmes de visió directa, aquests poden girar en sentits oposats. El sistema de dispersió variable constituït per aquests dos prísmes poden compensar la dispersió resultant del refractòmetre i del material que s’examina.
6.2. Assaigs fisicoquímics quantitatius específics

Aquest tipus de proves tenen com a finalitat poder valorar el contingut de principis actius d’una droga. Són assaigs específics que es basen en reaccions químiques característiques de la funció química de la substància a valorar. Es poden fer servir diversos mètodes: volumètrics, espectrofotomètrics, fluorimètrics, espectroscòpia de ressonància magnètica nuclear (RMN), etc.

La valoració a realitzar amb aquestes tècniques dependrà tant de la naturalesa química dels principis actius com de la quantitat previsible d’aquests en la planta. Prèviament, s’haurà de realitzar l’extracció i purificació dels components actius que es vulguin valorar.

Una droga pot ser valorada respecte a un principi actiu concret responsable de l’activitat terapèutica o a un conjunt de components d’estructura similar. En aquest últim cas, el resultat final normalment és del component majoritari.

6.2.1. Mètodes volumètrics

L’anàlisi volumètric es basa en la determinació d’una substància per la seva reacció amb un volum mesurat d’una substància estandarditzada coneguda. Aquest procés s’anomena valoració o titulació.

La reacció química passa de manera estequiomètrica, en presència d’un indicador que pot produir canvis en el color, la conductivitat elèctrica, el potencial elèctric de la solució o altres canvis físics.

6.2.2. Mètodes espectrofotomètrics

Aquest mètodes s’apliquen a la majoria dels principis actius i estan basats en la capacitat d’absorció energètica que presenten algunes molècules exposades a una determinada intensitat d’energia i amb una longitud d’ona concreta, de forma que la concentració d’una solució problema depèn exclusivament de l’absorció d’energia radiant per aquest sistema i s’anomena absorbància o densitat òptica (A).

Aquest principi ve determinat per la llei de Beer, Lamber i Boguer:

\[
\text{Concentració del problema} = \frac{\text{Absorbància del problema}}{\text{Absorbància del patró}} \times \text{Concentració del patró}
\]

Equació 6.1.

L’espectre d’absorció d’una substància pura, en condicions determinades de dissolvent i temperatura, està format per una sèrie de valors d’A observats a diferents longituds d’ona en una solució de concentració constant (1 mol/L), quan l’espessor de la capa travessada per la llum és d’1cm. Aquests espectres d’absorció tenen valor per identificar, determinar l’estructura i la puresa i analitzar els components d’una droga.
L’absorció de les radiacions ultraviolades, visibles i infraroses depenen de l’estructura de les molècules i es característica per a cada substància química.

- L’espectrofotometria ultraviolada-visible, utilitza feixos de l’espectre electromagnètic i radiacions del camp UV de 80 a 400 nm, principalment de 200 a 400 nm i fa servir feixos de llum visible de 400 a 800 nm, per el que es de gran utilitat per caracteritzar les solucions en la regió ultraviolada i visible de l’espectre.

- La regió infraroja avarca les regions de l’espectre comprès entre els nombros de 12800 a 10 cm\(^{-1}\) aproximadament, lo que correspon a les longituds d’ona de 0.78 a 1000 µm. Aquesta regió es divideix en 3 porcions denominades:
 - Infraroig pròxim: 0.75-2.5 µm
 - Infraroig fonamental: 2.5 – 25 µm
 - Infraroig llunyà: 25 – 1000 µm

L’anàlisi dels màxims d’absorció que, a determinades longituds d’ona de l’espectre ultraviolada, visible o infraroig, presenten els components d’una droga, permet la quantificació d’aquestes. Per aquesta valoració quantitativa es prepara, abans, una corba patró a partir de les absorbàncies d’una sèrie de solucions-tipus dels composts pur, fent servir una longitud d’ona concreta, generalment aquella a la que el compost doni un màxim d’absorció. Un cop determinada l’absorbància de la solució problema es pot saber la seva composició mitjançant la corba estàndard.

6.2.3. Espectroscòpia RMN

L’espectroscòpia de ressonància magnètica nuclear (RMN) és una tècnica utilitzada principalment en l’elucidació d’estructures moleculars, encara que també es pot utilitzar amb fins quantitatius.

Aquesta tècnica s’associa amb la determinació de l’estructura dels compostos orgànics. Tot i això, l’ús de l’espectroscòpia RMN-\(^1\)H ha estat descrit per la determinació d’atropina i escopolamina en extractes de belladona, beleny o estramoní. La intensitat integrada de la senyal N-CH\(_3\) del patró intern (escopina), és comparada amb les de la hiosciamina i escopolamina en la solució Cl\(_2\)CD. Mitjançant la transformació de Fourier, la RMN-\(^{13}\)C s’ha revelat com mètode útil, tot i que amb certes limitacions per a determinar els senòsids.

6.2.4. Fluorimetria

Aquesta tècnica utilitza la fluorescència produïda per un compost a la llum ultraviolada per la seva determinació quantitativa. L’instrument que es fa servir, és un fluororímetre, constituït per una font ultraviolada emesa. Entre certs límits, la intensitat de la fluorescència d’un producte donat està relacionada amb la seva concentració.

Normalment se selecciona un estret marge de longituds d’ona per la mesura, posant un filtre entre la solució fluorescent i la cèl·lula fotoelèctrica. La concentració d’una
Extracte Boswellia Serrata en formulacions cosmètiques

substància en solució s’obté per referència a una corba-patró, construïda sometent solucions-tipus al procés fluorimètric.

Quan es fan servir extractes de plantes és necessari assegurar-se de que la substància a determinar es l’única que produeix en la solució una fluorescència a la longitud d’ona mesurada i de que no existeixin altres substàncies que puguin absorir la llum a aquesta longitud d’ona de la fluorescència.

6.2.5. Mètodes combinats

Els mètodes espectromètrics, principalment l’espectroscòpia de masses, combinats amb la cromatografia de gasos són en l’actualitat d’ús creixent.

6.3. Assaigs biològics

L’estandarització i la valoració d’algunes drogues és realitzada sobre la base del seu efecte en éssers vius, a través dels assaigs biològics o bioassaigs. Aquests assaigs són realitzats en animals vius u òrgans intactes o seccionats i a vegades indiquen la potència d’una droga.

Aquests assaigs es caracteritzen per ser més selectius i sensibles que els fisicoquímics però són més cars, requereixen generalment molt de temps per a realitzar-los i són menys exactes, ja que depenen de molts factors que poden condicionar la resposta obtinguda.

Generalment es fan servir amb drogues potents, quan els assaigs fisicoquímics, destinats a comprovar la pureza i el contingut dels seus principis actius, són insuficients per a determinar el valor terapèutic d’aquesta. Potser perquè no indiquen la veritable activitat de la droga o bé no són suficientment específics. S’ha de tenir en compte que en molts casos l’acció de la droga no és deguda a un únic principi actiu, sinó que existeix una acció sinèrgica entre diverses substàncies, també poden existir en la mateixa droga productes amb accions oposades, cosa que dificultaria la valoració de l’acció terapèutica. En altres casos, l’acció farmacològica de la droga correspon a un principi actiu no conegut. Finalment, existeixen algunes situacions en que el principi actiu no té unes característiques definides que permetin la seva valoració fisicoquímica. Totes aquestes circumstàncies justifiquen l’ús dels bioassaigs.

Actualment, l’ús d’aquests tipus d’assaigs ha disminuït bastant degut al gran avenç aconseguit amb les tècniques analítiques, que permeten de manera senzilla i fàcil obtindre valoracions molt precises.

Entre les drogues que es fan servir en els bioassaigs trobem les cardioactives, les saponines, els derivats antraquinònics, les drogues midriàtiques, els antibiòtics, les vitamines, etc.
Per una altra part, l’assaig biològic és de gran importància quan es vol introduir una nova droga en terapèutica. Aquest tipus d’experiència ha adquirit un gran desenvolupament, existint molts assaigs nous, dotats de gran sensibilitat i especificitat.
7. EXTRACTE BOSWELLIA SERRATA

Els següents apartats tracten de l’extracte Boswellia Serrata. S’explica la seva història, d’on s’obté, les seves propietats i aplicacions, a més també es fa un incís en els àcids Boswellics, que són els actius responsables de les seves propietats antiinflamatòries.

7.1. Història

La utilització d’herbes en medicina, perfumeria i cosmètica es remunta a abans de l’any 2000 A.C. Es poden trobar referències en els manuscrits de papir dels egipcis del regnat de Khufu (2800 A.C.) on es registren l’ús d’herbes medicinals, al igual que en la cultura xinesa es troba a *Yellow Emperor’s Book of Internal Medicine* i a la literatura Vèdica de la Índia, ambdós divulgats fins la data des d’abans de l’any 200 A.C. Entre els centenars de plantes i extractes terapèutics, es troba la Frankincense.

Els antics Egipcis ja en van fer bon ús d’aquesta planta, la cremaven com encens i utilitzaven les cendres per pintar-se al voltant del ulls de color negre (kohl) característic, s’han trobat restes de la planta sense cremar en gerros d’ornamentació en nombroses tombés reials.

La Frankincense també s’ha utilitzat molt en propòsits cerimonials. El Vell Testament conté nombroses referències del seu ús en aquesta àrea i encara ara es continua fent servir en moltes cultures i religions.

Una raó de que es fes servir tant freqüentment era que la cremaven com encens i al inhalar l’aroma que es desprenia donava una sensació de calma i relaxació. Els fums induïen a la respiració lenta i constant, i permetien que la ment es centrés en la meditació i en l’oració.

A banda de l’encens, l’exudat gomós de l’arbre, es va fer servir en l’Antic Egipte, Grècia, Roma i en la medicina Ayurvedica Índia, per alleujar malalties, com artritis, bronquitis, trastorns intestinals, disenteria i infeccions.

7.2. Origen

Somàlia, Etiòpia i Oman antigament eren les fonts d’obtenció tradicionals per la Frankincense i inclòs avui en dia la majoria del material comercial disponible prové d’aquestes regions. La Frankincense o olibanum, com s’anomena normalment, s’obté d’un grup d’arbres grans naturals d’Àfrica, Orient Mitjà i parts del nord-est d’Àsia i Índia (família Burseraceae, del gènere Boswellia). Allà són espècies nombroses i en comercialitzen:
Extracte _Boswellia Serrata_ en formulacions cosmètiques

- _Boswellia Carterii_, que es troba principalment a l’Orient Mitjà.
- _Boswellia Frereana_, que es troba en Àfrica.
- _Boswellia Serrata_, que es troba a l’Índia i Àsia.

Típicament, els arbres creixen en paisatges secs i àrids i sobreviuen en sòls pobres on moltes altres plantes lluiten per créixer.

L’exudat resinós produït per aquest arbre, rep diferents noms. El nom científic és _Boswellia Serrata_, que prové de l’arbre d’on s’obté. També s’anomena, com ja s’ha dit anteriorment, olibanum, té l’origen del llatí _Olium Libanum_ (oli del Líban), mentre que el nom Frankincense, és el nom, que data de la França medieval, on significava “encens real”, i per últim sallai sugal que es com s’anomena a l’Índia.

7.3. Obtenció

Comercialment aquest exudat resinós s’obté fent una profunda incisió longitudinal al tronc de l’arbre. El líquid produït inicialment s’asseca a l’aire lliure i després d’algunes setmanes, les incisions s’aprofundeixen per produir un major flux.

Aquesta capa original protegeix l’arbre contra malalties i el fluid fresc d’una ràpida solidificació, permetent que es formin llàgrimes més grans d’olibanum. Després de dos o tres mesos, les llàgrimes s’han endurit en un sòlid groc translúcide que llavors pot ser collit.

7.4. Composició química

La composició química del _Boswellia_ varia entre les diferents espècies i també amb les diferents estacions. No obstant això, normalment conté un 5% d’olis volàtils, un 65% de resina i un 30% de goma. L’anàlisi addicional demostra que l’oli volàtil és una barreja complexa d’hidrocarburs terpènics, tals com pinene, dipenté o limonene. La resina es composa principalment d’àcids Boswellics i la goma està formada per galactosa, arabinosa i basorin.

7.5. Aplicació farmacològica

Com molts dels extractes usats tradicionalment de la planta, la Frankincense està recomanada pel tractament de malalties i dolences. Desafortunadament, l’extens nombre
d’extractes potencialment útils de la planta fa que sigui difícil diferenciar entre els que són autènticament útils i els que s’han fet servir per mites i folklore popular.

Recentment la ciència ha pogut demostrar que els àcids Boswellics continguts a l’olibanum són un excel·lent antiinflamatori, aquesta troballa avala varis remeis tradicionals on s’utilitzava la Frankincense per:

- Reumatisme crònic i dolors musculars
- Artritis/inflamaciones
- Colitis ulcerosa i malaltia de Crohn (tuberculosis intestinal)
- Asma bronquial/ problemes respiratoris
- Trastorns hepatobiliars
- Al·lèrgies

En termes de la pell, la inflamació és un important procés de defensa. Alarma de la presència de perills potencials, protegint el cos contra malalties, la llum del sol i substàncies que poden causar molèstia.

El procés involucra la interacció de molts tipus de cèl·lules i missatgers químics, però el resultat final es caracteritza per vermelló, dòlor, calor i inflamació de la pell. En termes simplificats, l’àcid araquidònic present en la membrana de la cèl·lula, mitjançant una sèrie de processos metabòlics, dóna lloc a diversos factors pro-inflamatori. Els més important d’aquest són les leucotriens, són substàncies químiques que causen que els fluids i els glòbuls blancs de les cèl·lules sortint dels capil·lars, donant lloc a una inflamació local i un envermelhament. També provoquen els danys dels radicals lliures, les respostes autoimmunes, l’adherència de la cèl·lula i la migració d’agents inflamatoris a l’àrea perllongant la inflamació.

Les propietats antiinflamatòries de la resina s’atribueixen a la presència d’àcids Boswellics, els quals han demostrat inhibir dos enzims pro-inflamatoris:

- 5-lipoxigenasa, generadora de leucotriens inflamatoris
- Elastasa leucocítica humana (HLE)

HLE és una proteasa sèrica, que dóna lloc al dany dels teixits, que a la vegada provoca el procés inflamatori. Aquesta acció conjunta front a la inflamació és exclusiva dels àcids Boswellics, i fa que l’extracte Boswellia Serrata sigui un producte indispensable per prevenir el dany crònic dels teixits.

L’efecte principal d’inhibir la 5-lipoxigenasa és disminuir la inflació de la pell, com es pot veure en la figura 7.1.
Figura 7.1. Procés d’inflamació.

Mentre que el tractament de la pell irritada o danyada és més un treball per a la indústria farmacèutica, certs productes cosmètics, per el seu mètode d’acció poden causar irritació a la pell, per això cal fer servir agents calmants per prevenir-ho. Entre els productes especialment irritants i on es fan servir aquest agents calmants, es troben les cremes depilatòries, l’escuma d’afaitar, after-shaves, sabons i productes per la neteja de la pell.

7.5.1. Activitat de l’enzim 5-lipoxigenasa

L’àcid araquidònic (AA) és un àcid gras essencial, omega-6 format per una cadena de 20 carbonis, amb quatre enllaços dobles (àcid icosatetraenoic) en les posicions 5, 8, 11 i 14.

Aquest àcid està present en les membranes de les cèllules corporals, i es el precursor en la producció d’eicosanoides.

La seva formulació química estructural és:

$$\text{CH}_3(\text{CH}_2)_4\text{CH=CHCH}_2\text{CH=CHCH}_2\text{CH=CHCH}_2\text{CH=CH(CH}_2)_3\text{COOH}$$
La presència de dobles enllaços ofereix a la molècula vari s llocs potencials d’oxidació, enzimàtica i química, que junt amb el posterior reordenament, permet la formació de diferents lipids amb distintes activitats biològiques.

Les dues principals rutes oxidatives enzimàtiques de l’àcid araquidònic són:

- **Via de la lipoxigenasa (LOX)** → els seus productes principals són els leucotriens, HETE, HPETE i les lipoxines.
- **Via de la ciclooxigenasa (COX)** → els seus productes principals són les prostaglandines i el tromboxà.

La 5-*lipoxigenasa* (LO) és l’enzim més important de la família i es localitza sobre tot en cèl·lules que participen en la resposta inflamatorià com neutròfils, eosinòfils, macròfags i mastòcits. La 5-LO es troba en el citosol però necessita translocar-se es la membrana nuclear per interaccionar amb la seva proteïna activadora (FLAP) i poder oxigenar l’AA per formar el 5-HPETE. Aquest a la vegada pot ser transformat per la 5-LO en un epòxid altament inestable, el leucotriè A4 (LTA4), que es l’intermediari comú de la síntesi dels leucotriens.

Per tant els leucotriens són els responsables de:

- Promoure la resposta inflamatorià.
- Promoure reaccions al·lèrgiques.
- Desordres i malalties intestinals.

7.6. Els àcids Boswellics

Els àcids Boswellics són una sèrie de molècules pentacícliques de triterpé, produïdes per les plantes del gènere Boswellia. Com molts altres, els àcids Boswellics apareixen en la resina de la planta i poden arribar a ser el 30%.

Els àcids Boswellics són àcids orgànics, estan formats per un grup triterpé pentacílic, un grup carboxílic i almenys un grup funcional.

L’àcid α-boswellic i β-boswellic, C₃₀H₅₀O₃, tots dos tenen un grup addicional i els diferencien l’estructura del triterpé. L’àcid acetil-α-boswellic i l’àcid acetil-β-boswellic, C₃₂H₅₂O₄, substitueixen el grup hidroxil per un grup acetil. Finalment dintre dels àcids Boswellics també s’inclouen els àcids acetil-keto-β-boswellic que estan implicats en l’apoptosi de les cèl·lules cancerigenes, particularment en tumors cerebrals i les cèl·lules afectades per leucèmia.
Els àcids acetils boswellics també exhibeixen un comportament antiinflamatori, ja que inhibeixen la síntesi dels leucotriens, intervenint directament en l’activitat de l’enzim 5-lipoxigenasa amb una reacció no-redox.

7.6.1. Estructura dels tipus d’àcids Boswellics

En la següent figura es pot observar l’estructura molecular dels àcids Boswellics més importants:

Figura 7.2. Estructura dels àcids Boswellics.
7.6.2. Anàlisi de la resina Boswellia Serrata per HPLC

El procediment que es descriu a continuació representa un mètode específic i eficaç allora de determinar els principis actius constituents de la Frankincense. El procés consisteix en l’extracció d’una mostra de la resina de Boswellia, en l’anàlisi d’aquesta mitjançant tècniques de HPLC i la comparació dels resultats obtinguts amb uns estàndards. L’objectiu es confirmar la presència d’àcids triterpènics que formen part de l’extracte Boswellia Serrata.

7.6.2.1. Productes per a l’estudi

Les substàncies que s’han utilitzat per realitzar aquest anàlisi són:

- Resina de Boswellia Serrata
- Compostos estàndards
- Metanol
- Àcid acètic
- Aigua

7.6.2.2. Procediment d’extracció de la mostra

El procediment d’extracció s’ha realitzat mitjançant el mètode Soxhlet. Com a solvent s’ha utilitzat el metanol, per cada 10 grams de resina de Frankincense extreta s’han fet servir 150ml de solvent.

Es posen 4 grams de resina de Boswellia en el tub d’extracció Soxhlet i s’extreuen amb 60ml de metanol a temperatura ambient durant un temps òptim de 3 hores. Després de l’evaporació del solvent, el residu es pesa i es disso len 10mg d’extracte sec en 1ml de sulfòxid de dimetil.

7.6.2.3. Paràmetres del HPLC

Les condicions en que s’ha realitzat el HPLC són:

- Flux \(\rightarrow 0.56 - 0.90 \text{ml/min} \)
- Temperatura \(\rightarrow 28^\circ\text{C} \)
- Columna \(\rightarrow \text{fase estacionària de siliques} \)
- Línia A \(\rightarrow \text{àcid acètic – metanol – aigua (0.20: 80: 20 v/v/v)} \)
- Línia B \(\rightarrow \text{metanol – àcid acètic (100: 0.2 v/v)} \)
- Durada \(\rightarrow 50 \text{minuts} \)
- Longitud d’ona \(\rightarrow 210 – 250 – 280 \text{nm} \)
Els solvents del procés són:

<table>
<thead>
<tr>
<th>Minuts</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>inicials</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>35</td>
<td>39</td>
<td>61</td>
</tr>
<tr>
<td>40</td>
<td>32</td>
<td>68</td>
</tr>
<tr>
<td>45</td>
<td>31</td>
<td>69</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Taula 7.1. Taula de solvents.

7.6.2.4. Resultats i conclusions

Mitjançant la tècnica de HPLC s’han pogut separar i identificar fins a 10 àcids triterpènics diferents en la mostra de Frankincense. Durant el procés s’ha observat quan es separaven els compostos, dels 0 al 20 minuts s’han separat els àcids keto-boswellics i dels 35 als 40 minuts finals s’han trobat els àcids boswellics acetilats.
Figura 7.3. Estructura dels diferents àcids triterpenics presents a la Frankincense.

En l’anàlisi d’absorbència amb les diferents longituds d’ona s’han trobat a 210nm els àcids α- i β-boswellics, a la longitud de 250nm es troba l’àcid 11-keto-β-boswellic i finalment en 280nm està l’àcid 9,11-dehidro-α- i β-boswellic.

Figura 7.4. Espectre UV dels principals àcids acetilats triterpenics de la Frankincense.
7.7. Els terpens

Els terpens es troben principalment en plantes, s’obtenen de les flors, les fulles o els fruits en forma d’olis essencials mitjançant destil·lació amb vapor d’aigua. En els organismes animals són més estranyos, i actuen fonamentalment com precursors en la síntesi d’esteroides. Molts terpens tenen un olor i un sabor característic i es fan servir en perfumeria, cosmètica o en la indústria alimentària.

Terpens, és la denominació genèrica d’una sèrie de compostos naturals que formalment es consideren polímers de l’isopré. L’isopré (2-metil-1,3-butadiè), amb la fórmula empírica C₅H₈, és un hidrocarbur doblement insaturat que s’utilitza com a una unitat bloc de cinc carbonis en la biosíntesi dels terpens, activat per fosforilació, en forma d’isopentenilpirofosfat (“isopré actiu”). Els vincles entre aquestes unitats es construeixen amb la unió cap-cua, de dos, tres, quatre, sis, vuit o més molècules d’isopré.

Prengent com unitat de terpè la de 10 àtoms de carboni (dos unitats d’isopré), es pot distingir entre monoterpenes (C₁₀), sesquiterpenes (C₁₅), diterpenes (C₂₀), triterpenes (C₃₀).... A més de la simple combinació de les molècules d’isopré per formar hidrocarburs, en la natura també tenen lloc reaccions posteriors de formació d’anells, desplaçaments, oxidació o substitució. Els alcohols, aldehids, esters d’àcids carboxílics i altres compostos així formats contribueixen a la gran diversitat química que representa aquest grup. Segons el nombre d’anells que contenen, també es poden classificar en terpens acíclics, monocíclics, bicíclics o tricíclics. Sovint presenten activitat òptica, que normalment s’indica especificant l’angle de gir (+/-) i la configuració relativa (D/L).

Des del punt de vista farmacèutic, els grups actius de naturalesa terpènica més interessant són: monoterpenes i sesquiterpenes constituent dels olis essencials, derivats de...
monoterpenes corresponents als iridoides, lactones sesquiterpeniques que formen part
dels principis amargs, alguns diterpenes que posseeixen activitats farmacològiques i per
últim, triterpenes i esteroides entre els que es troben les saponines i els heteròsids
cardiotònics.

7.7.1. Tipus de terpens.

Els terpens es classifiquen d’acord amb el número de parells d’unitats d’isopré que
contenen:

❖ **Hemiterpenes** → consta d’una sola unitat d’isopré. Un exemple d’hemiterpé és l’isopré
mateix.

❖ **Monoterpenes** → esta format per dos unitats d’isopré i tenen la fórmula molecular
C_{10}H_{16}. Exemples de monoterpenes són: geraniol, limonene o terpineol.

❖ **Sesquiterpenes** → esta format per tres unitats d’isopré i tenen la fórmula molecular
C_{15}H_{24}. Un exemple de sesquiterpenes és el farnesol. El prefixe *sesqui* significa un i mig.

❖ **Diterpenes** → es componen de quatre unitats d’isopré i tenen la fórmula molecular C_{20}H_{32}.
Uns exemples de diterpenes són: cafestol, cembrene o taxadiene.

❖ **Sesterterpenes** → són terpens amb 25 carbonis i cinc unitats d’isopré, són escassos en
relació als altres. El prefixe *sester* significa dos i mig.

❖ **Tetraterpenes** → esta format per un total de vuit unitats d’isopré i tenen la fórmula
molecular C_{40}H_{56}. Tetraterpenes biològicament importants inclouen acíclics licopens, monocíclic gamma-caroté i la
biciclic α i β- carotens.

❖ **Triterpenes** → consta de sis unitats d’isopré i tenen la fórmula molecular C_{30}H_{48}.
Aquest es troben freqüentment en resines i exudats vegetals. De la llana d’ovelles
s’extreu una cera que per saponificació dóna lanosterol, esteromer de l’eufol, un triterpè
tetraciclic molt freqüent en els extractes de la planta de la família euforbiacea. Molts
triterpenes són pentaciclics com els àcids Boswellics, la β-amirina i el lupeol.
7.7.2. Biosíntesi dels terpens.

Les unitats d’isopré dels terpens, tenen la seva gènesi en la condensació de dos molècules d’acetilcoenzima-A (AcCoA), aquestes donen acetoacetil-CoA que és a la vegada es condensen amb una altra molècula de AcCoA donant lloc al 3-hidroxi-3-metilglutaril-CoA. Aquest compost es redueix per convertir-se en àcid mevalònic (3,5-dihidroxi-3-metilvalerianic) i posteriorment per fosforilació i descarboxilació, es transforma en isopentenilpirofosfat (IPP), el qual, per isomerització dona lloc al dimetilalil-pirolosfats (DAMPP), un compost altament reactiu.

La condensació, mitjançant la unió cap-cua d’aquest dos últims compostos origina el genaril-pirolosfats (GPP) que posseeix 10 àtoms de carboni i es precursor d’un gran número de principis actius vegetals (monoterpens, iridiodes, alguns alcaloides, etc). L’acoblament a aquest GPP de noves unitats de IPP origina molècules de major pes molecular, incrementant el número de carbonis de cinc en cinc: sesquiterpens (C-15), diterpens (C-20), triterpens (C-30), etc.

Figura 7.5. Formació d’estructures terpèniques.
Així doncs la biosíntesis dels terpens es pot resumir en quatre etapes:

- **Etapa 1** → síntesi de l’isopenenilpirofosfat (IPP): via àcid mevalònic (MVA), via no-àcid mevalònic o via de 1-desoxi-D-xilosa-5-fosfat (DOXP).

- **Etapa 2** → isomerització del IPP a dimetililpirofosfat (DMAPP), addició repetitiva d’IPP i DMAPP.

- **Etapa 3** → elaboració de molècules de prenilpirofosfat.

- **Etapa 4** → modificacions enzimàtiques dels esquelets.
8. SOOTHEX ®

El Soothex® és un ingredient cosmètic desenvolupat per Quest International. És una barreja de dipropilenglicol i l’extracte de la planta India, Boswellia Serrata.

La barreja de Soothex® esta formada per un 10% d’extracte Boswellia Serrata dissolt en un 90% de dipropilenglicol. Gràcies als àcids Boswellics que conté l’extracte, aquest producte té efectes antiirritants i antiinflamatoris, molt útils i beneficiosos en aplicacions cosmètiques ja que:

- **Prevé la irritació** → inhibeix l’enzim pro-inflamatori.
- **Redueix la irritació dels surfactants a la pell** → és antiirritant en formulacions que continguin surfactants.
- **Té efectes calmants** → es pot utilitzar en cremes problemàtiques com depilatòries o exfoliants àcides.
- **Redueix molèsties com** → picor, vermelló, coïsor, sequetat, etc.

Per tant, té un us molt important en productes per la cura de la pell, on tots aquest beneficis són desitjats i necessaris.

8.1. Propietats fisicoquímiques

A continuació es presenten unes taules amb les propietats del producte, el mètode i les condicions que s’han fet servir per avaluar-les, així com els assaig microbiològics als que s’ha sotmès:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Mètode & condicions</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aparença</td>
<td>Visual</td>
<td>Clar/lleugerament viscós</td>
</tr>
<tr>
<td>Color</td>
<td>Visual</td>
<td>Marró/ groguenc</td>
</tr>
<tr>
<td>Olor</td>
<td>Olfactiva</td>
<td>Olibanum</td>
</tr>
<tr>
<td>Contingut en aigua</td>
<td>Karl Fischer</td>
<td>Màxim 1.5%</td>
</tr>
<tr>
<td>Valor àcid</td>
<td>Titulació</td>
<td>Min 7mg KOH/g-màx 15mg KOH/g</td>
</tr>
<tr>
<td>Residu de metanol</td>
<td>Cromatografia de gasos</td>
<td>Màxim 300ppm</td>
</tr>
<tr>
<td>Índex de refracció</td>
<td>a 20°C</td>
<td>Min 1.440- màx 1.460</td>
</tr>
<tr>
<td>Densitat</td>
<td>a 20°C</td>
<td>Min 1.019-màx 1.042</td>
</tr>
<tr>
<td>Àcids Boswellics</td>
<td>HPLC</td>
<td>Presents</td>
</tr>
<tr>
<td>Punt flash</td>
<td>>100°C</td>
<td>Fred, sec i fosc</td>
</tr>
<tr>
<td>Emmagatzematge</td>
<td></td>
<td>2 anys</td>
</tr>
</tbody>
</table>

Taula 8.1. Propietats fisicoquímiques del Soothex®
<table>
<thead>
<tr>
<th>Assaig microbiològic</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bactèries</td>
<td>Màxim 300 cfu/g</td>
</tr>
<tr>
<td>Fongs/llevats</td>
<td>Màxim 100 cfu/g</td>
</tr>
<tr>
<td>Bactèries gram negatiu</td>
<td>Absents en 1g</td>
</tr>
<tr>
<td>Pseudomonas Aeruginosa</td>
<td>Absents en 1g</td>
</tr>
<tr>
<td>Stafilococos aureis</td>
<td>Absents en 1g</td>
</tr>
<tr>
<td>Candida Albicans</td>
<td>Absents en 1g</td>
</tr>
</tbody>
</table>

Taula 8.2. Característiques microbiològiques

8.2. Aplicacions cosmètiques

El Soothex® és un producte ideal que es pot utilitzar en tot tipus de productes cosmètics, ja sigui en cremes, locions, xampús, gels de bany, desodorants, antitranspirants o tovalloletes.

En les formulacions s'ha d’incorporar en la fase oliosa, ja que es soluble en una gran varietat d’olis cosmètics. La dosis recomanada per les formulacions és d’un percentatge del 0.5% a un 3%. És totalmente compatible amb tot tipus d’emulsionants o surfactants i és estable en un ampli rang de pH.

Degut a aquestes característiques i el seu important efecte antiirritant i antiinflamatori, el Soothex® es pot incorporar en formulacions com:

- **Productes que continguin actius “irritants”:**
 - Cremes depilatòries
 - Locions permanents, tints capil·lars (pH alcalins)
 - Sabons i gel de bany
 - Desodorants/antitranspirants
 - Cremes amb AHA (pH àcid)
 - Productes anti-acne
 - After-shave
 - Cremes despigmentants

- **Productes per pells sensibles o hipòallèrgèniques:**
 - Cremes infantils
 - Cremes solars

- **Productes d’ús diari:**
 - Cremes o locions
 - Gels de bany, xampús, sabons
8.3. Seguretat

El Soothex® és una dissolució d’un 10% d’extracte de Boswellia Serrata en dipropilenglicol (DPG). Per fer la fitxa de seguretat s’ha fet servir proves i test de la literatura publicada dels dos ingredients que el componen:

- **Boswellia Serrata** → les monografies del Research Institute for Fragrances Materials (RIFM) de l’Olibanum no van donar cap causa de preocupació en les proves realitzades de toxicitat aguda, irritació, sensibilització, farmacologia i activitat antitumoral. A més en les proves no es va observar cap estructura alterada per mutagènesi.
- **Dipropilenglicol** → les monografies del RIFM per a aquest producte de toxicitat aguda i crònica, irritació, sensibilització, metabolisme, nutricionals i estudis farmacològics han demostrat que la seva utilització en productes cosmètics és segura i a més esta avalada per el CIR (Cosmetic Ingredient Review).

En les taules següents es presenten les fitxes de toxicitat per l’extracte i per el DPG:

Taula 8.3. Taula de toxicitat de l’extracte Boswellia Serrata

<table>
<thead>
<tr>
<th>Test</th>
<th>Mètode</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicitat aguda oral</td>
<td>Prova en rates (Weir, 1971)</td>
<td>LD50>5.0g/kg (RIFM)</td>
</tr>
<tr>
<td>Toxicitat aguda cutànies</td>
<td>Prova en conills (Weir, 1971)</td>
<td>LD50>5.0g/kg (RIFM)</td>
</tr>
<tr>
<td>Irritació cutànies</td>
<td>Pegat en humans amb 8% de petrolatum (Kligman, 1971)</td>
<td>No hi ha irritació (RIFM)</td>
</tr>
<tr>
<td>Sensibilització cutànies</td>
<td>Pegat en humans amb 8% de petrolatum (Kligman, 1971)</td>
<td>No hi ha sensibilització (RIFM)</td>
</tr>
</tbody>
</table>
Dipropilenglicol

<table>
<thead>
<tr>
<th>Test</th>
<th>Mètode</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicitat aguda oral</td>
<td>Prova en rates (Hanzlink et al 1939)</td>
<td>LD50=14.8g/kg (RIFM)</td>
</tr>
<tr>
<td>Toxicitat aguda cutànica</td>
<td>Prova en conills (Moreno, 1974)</td>
<td>LD50>5.0g/kg (RIFM)</td>
</tr>
<tr>
<td>Toxicitat crònica</td>
<td>Prova 5% d’aigua per veure en rates durant 77 dies</td>
<td>No massa efecte perjudicial (RIFM)</td>
</tr>
<tr>
<td>Sensibilització cutànica</td>
<td>10 aplicacions durant 12 dies en conills (Rowe, 1963)</td>
<td>No hi ha sensibilització (RIFM)</td>
</tr>
<tr>
<td>Irritació cutània</td>
<td>Màxim un 20% de petrolatum (Epstein, 1974)</td>
<td>No hi ha irritació (RIFM)</td>
</tr>
</tbody>
</table>

Taula 8.4. Taula de toxicitat de DPG.

Així doncs segons els estudis realitzats per el RIFM i aquestes dades el Soothex® no presenta cap signe de toxicitat aguda, ni d’irritació, ni de sensibilització a la pell.

8.4. Anàlisi del Soothex® per HPLC

Aquest estudi consisteix l’anàlisi d’una mostra de Soothex® mitjançant la tècnica de HPLC, els resultats es comparen amb uns patrons estàndard per tal de confirmar l’existència dels principis actius de la Frankincense.

En aquest apartat es determina els àcid Boswellics mitjançant el mètode HPLC que formen part del Soothex®.

8.4.1. Productes per a l’estudi

Les substàncies que s’utilitzen per realitzar aquest anàlisi són:

- Soothex®
- Compostos estàndard (patrons)
- Metanol
- Àcid fosfòric
- Acetonitril
- Aigua
Per fer les mostres per el HPLC es dilueixen 10ml de Soothex® en 25ml de metanol.

8.4.2. Paràmetres del HPLC

Les condicions en que es realitza el HPLC són:

- Flux → 0.95ml/min
- Temperatura → 28ºC
- Injecció → 10µl de les mostres
- Columna → fase estacionària síliques
- Línia A → àcid fosfòric 0.1% en aigua
- Línia B → acetonitril
- Longitud d’ona → 210 a 254nm

Els solvents dels procés són:

<table>
<thead>
<tr>
<th>minuts</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicials</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Taula 8.5. Taula de solvents

8.4.3. Resultats i conclusions

Com es pot observar en els següents gràfics, comparant els resultats obtinguts de la mostra de Soothex® amb els estàndards, es confirma l’existència d’àcids Boswellics en el producte.

Es poden observar els pics que representen i identifiquen les estructures dels àcids, el producte es composa majoritàriament d’àcids α i β Boswellics, d’àcids 11-keto-β-Boswellics, 3-O-acetil-11-keto-β-Boswellics i 3-O- acetil-(α&β)-Boswellics.

A les diferents longituds d’ona de l’anàlisi d’absorbència s’ha trobat a 210nm els àcids 3-O-acetil-(α&β)-Boswellics i els (α&β)-Boswellics i a 254nm es detecten els àcids 3-O-acetil-11-keto-β-Boswellics i els 11-keto-β-Boswellics.

Tot i que l’àcid acètic té l’avantatge de ser fàcilment extraïble en cas de que es vulgui recol·lectar els compostos abans de la separació. Per aquest estudi s’ha fet servir acetonitril com a solvent perquè ofereix una millor transparència UV a la longitud d’ona de 210nm i incrementa l’estabilitat.
Extracte Boswellia Serrata en formulacions cosmètiques

Per perfil de HPLC a 210 nm s’obtenen les següents gràfiques:

Les gràfiques per els estàndards:

![Diagrama de gràfiques per els estàndards](image)

Soothex DPG

![Diagrama de gràfiques de Soothex DPG](image)
Extracte Boswellia Serrata en formulacions cosmètiques

Per perfil de HPLC a 254 nm s’obtenen les següents gràfiques:

Les gràfiques per els estàndards:

1. **Soothex DPG**
 - 16.70 min
 - 27.87 min

2. **Estàndard Àcid 11-keto-β-boswellic**
 - 16.807 min

3. **Estàndard Àcid 3-O-acetyl-11-keto-β-boswellic**
 - 27.807 min
8.5. Proves test amb Soothex®

Treballs recents han demostrat que l’extracte purificat de la Frankincense Índia, Boswellia Serrata que conté àcids Boswellics redueix la irritació associada a aquest tipus de productes cosmètics.

Com exemple tot seguit es mostren dos estudis on es proven els efectes antiirritants i antiinflatoris del Soothex®, el primer sobre una crema depilatòria i el segon sobre un surfactant on es poden observar aquesta reducció.

8.5.1. Estudi 1- Efecte del Soothex® en una crema depilatòria.

8.5.1.1. La fórmula

Aquest estudi in-vivo consisteix en fer una comparativa entre dues cremes depilatòries O/W, una amb Soothex® i l’altra sense. Totes dues contenen com components actius un 2% d’hídròxid de potàss i un 10% de tioglicolat potàssic.

Per fer-ho es va preparar una crema depilatòria i es va marcar com a crema base. Després es va preparar una altra crema, on es va afegir un 2.5% de Soothex® (Boswellia Serrata) i aquesta es va marcar com a crema prova. El Soothex® es va afegir a la fase oli abans de fer l’emulsió i aquest 2.5% es va compensar en la fórmula amb l’aigua.

<table>
<thead>
<tr>
<th>Fase A</th>
<th>Crema prova</th>
<th>Crema base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aigua</td>
<td>65.5</td>
<td>68.00</td>
</tr>
<tr>
<td>Hídròxid de potàss</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Tioglicolat potàssic</td>
<td>10.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fase B</th>
<th>Crema prova</th>
<th>Crema base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulgent</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Cetyl alcohol</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Petrolatum</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Soothex</td>
<td>2.50</td>
<td>----</td>
</tr>
</tbody>
</table>

Taula 8.6. Taula d’ingredients de les cremes

8.5.1.2. Aplicació de la fórmula

L’estudi es va realitzar en 19 voluntaris, principalment dones d’edats entre 18 i 50 anys. Les proves es van fer en l’interior dels avantbraços per facilitar l’aplicació del producte i perquè aquest àrea generalment té pèl més fi i escàs. Alhora de la prova cap
dels voluntaris presentava signes de problemes en la pell com dermatitis, excemes, cremades, etc. I cap d’ells havien estat utilitzant productes autobroncejadors.

Es van fer servir plantilles per marcar dos llocs d’aproximadament 5cm² en cadascun dels avantbraços a 10 i 15 cm dels canells. Un d’ells es va deixar sense crema i en l’altre es van aplicar 5g de la crema base amb l’ajut d’un plàstic en la zona desitjada i es va seguir el mateix procediment amb la crema prova Boswellia en l’avantbraç contrari.
La crema es va deixar en contacte amb la pell durant 20 minuts i un cop va passar aquest temps es va netejar bé la zona amb cotó.

La part de cada braç en blanc es va fer servir com a controlador de la vermelló degut als factors ambientals, tals com la temperatura.

8.5.1.3. Mesura de la vermelló de la pell

Per mesurar la irritació de la pell es va fer servir un cromatògraf Minolta. Els valors obtinguts donen qualsevol evidència d’irritació a la pell. Es van fer mesures a cada avantbraç al cap de 20 minuts de la primera aplicació i després en intervals de 10 minuts durant una hora aproximadament (t=30, t=40, t=50, t=60, t=70, t=80).

Per eliminar les diferències entre els avantbraços dret i esquerre i els factors ambientals que poden influir en la prova, es va determinar també els valors obtinguts en les zones sense tractar, que es va prendre com a blanc.
Els valors positius volen dir que hi va haver un increment en la vermelló de la zona tractada amb la crema comparada amb la zona sense tractar. Inversament, un valor negatiu significa una disminució de la vermelló de la zona de prova comparada amb la zona sense aplicació. Aquest resultats per tant indiquen el grau al qual cada crema irrita la pell i qualsevol canvi que es pugui donar mentre transcorri el temps d’aplicació.

8.5.1.4. Resultats

Per cada interval de temps després de l’exposició inicial es va calcular la mitjana de les lectures recollint el resultat a la *taula 8.7*.

<table>
<thead>
<tr>
<th>Temps</th>
<th>Crema prova</th>
<th>Crema base</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>-1.23</td>
<td>-0.59</td>
</tr>
<tr>
<td>30</td>
<td>0.135</td>
<td>0.996</td>
</tr>
<tr>
<td>40</td>
<td>-0.242</td>
<td>1.193</td>
</tr>
<tr>
<td>50</td>
<td>-0.071</td>
<td>0.671</td>
</tr>
<tr>
<td>60</td>
<td>-0.239</td>
<td>0.632</td>
</tr>
<tr>
<td>70</td>
<td>-0.227</td>
<td>0.825</td>
</tr>
<tr>
<td>80</td>
<td>-0.317</td>
<td>0.378</td>
</tr>
</tbody>
</table>

Taula 8.7. Taula de resultats

La *figura 8.1* mostra la mitja dels valors obtinguts dels 19 voluntaris.

Figura 8.1. Gràfica de resultats
8.5.1.5. Discussió.

Els resultats confirmen que la crema depilatòria que conté Soothex redueix la vermel·la, ja que només s’observa un petit canvi en les valors d’irritació de la pell.

També s’ha de notar que ambdues cremes depilatòries tendeixen a produir un efecte inicial blanquejant, associada amb la irritació de la pell. Això es pot atribuir a l’efecte dels components actius de les cremes, l’hidròxid de potassi i el tioglicotal potàssic.

8.5.2. Estudi 2- Efecte del Soothex® en una formulació antitranspirant

En aquest estudi in-vivo es comprova l’acció antirrítant del Soothex® en diferents productes antitranspirants.

8.5.2.1. La fórmula

Per fer-ho s’incorpora el producte en una formulació d’un antitranspirant en tres dosis diferents per avaluar el seu potencial antirritant i es fa una comparació entre ells, la formulació base i dos controls, un positiu que produeix irritació i un de negatiu que no és irritant.

- Antitranspirant base
- Antitranspirant base + 0.5% Soothex®
- Antitranspirant base + 1.0% Soothex®
- Antitranspirant base + 2.0% Soothex®
- Control positiu: 0.3% Sodium Lauryl Sulphate (SLS)
- Control negatiu: aigua destil·lada

Com a control positiu es fa servir el Sodium Lauryl Sulphate, perquè es una substància coneguda com irritant degut a les seves característiques, i com a control negatiu s’utilitza l’aigua destil·lada que és inoqua i no provoca cap mena d’irritació ni problemes sobre la pell.
Taula d’ingredients dels productes per les proves:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antitranspirant base</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Aigua</td>
</tr>
<tr>
<td>2.</td>
<td>Aluminium Chlorhydrate</td>
</tr>
<tr>
<td>3.</td>
<td>PPG-15 Stearyl Ether</td>
</tr>
<tr>
<td>4.</td>
<td>Steareth-2</td>
</tr>
<tr>
<td>5.</td>
<td>Steareth-21</td>
</tr>
<tr>
<td>6.</td>
<td>Perfume</td>
</tr>
<tr>
<td>7.</td>
<td>Disodium EDTA</td>
</tr>
<tr>
<td>8.</td>
<td>Butylated Hydroxytoluene</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antitranspirant base + 0.5% Soothex®</td>
<td>% w/w</td>
</tr>
<tr>
<td>Antitranspirant base</td>
<td>99.50</td>
</tr>
<tr>
<td>Dipropylene Glycol</td>
<td>0.45</td>
</tr>
<tr>
<td>Boswellia Serrata gum</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antitranspirant base + 1.0% Soothex®</td>
<td>% w/w</td>
</tr>
<tr>
<td>Antitranspirant base</td>
<td>99.00</td>
</tr>
<tr>
<td>Dipropylene Glycol</td>
<td>0.90</td>
</tr>
<tr>
<td>Boswellia Serrata gum</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antitranspirant base + 2.0% Soothex®</td>
<td>% w/w</td>
</tr>
<tr>
<td>Antitranspirant base</td>
<td>98.00</td>
</tr>
<tr>
<td>Dipropylene Glycol</td>
<td>1.80</td>
</tr>
<tr>
<td>Boswellia Serrata gum</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Taula 8.9. Antitranspirant base amb diferents dosis de Soothex®.

8.5.2.2. *Aplicació de la fórmula*

L’estudi es va realitzar en 30 voluntaris, d’ambdós sexes i d’edats entre 18 i 60 anys. Les proves es van fer en l’interior de l’avantbràc esquerre per facilitar l’aplicació del producte i perquè aquest àrea generalment té pèl més fi i escàs. Alhora de la prova cap dels voluntaris presentava signes de problemes en la pell.

En el següent gràfic es pot observar el nombre de voluntaris de cada edat que es van sotmetre a l’estudi dels antitranspirants.
Figura 8.2. Edat i sexe dels voluntaris

Es van fer servir plantilles per marcar dos llocs d’aproximadament 5cm2 en cadascun dels avantbraços a 10 i 15 cm dels canells. Es van aplicar els dos pegats, es van posar 0.2ml de mostra de cada producte i es van deixar actuar durant 24 hores.

8.5.2.3. Mesura de la vermelló de la pell i resultats

Els resultats de les proves es contrasten amb els valors de la següent taula, que serveix per classificar el mal que pateix la pell.

<table>
<thead>
<tr>
<th>Marge de valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>No apareix cap evidència de mal cutani</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>Eritema poc perceptible o molt lleu</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>Eritema definit o pell esquerdada, cap eritema però sequedat definida de la pell amb possible fissura epidèrmica.</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>Eritema ben definit i sequedat ben definida, pot tenir fissures epidèrmiques.</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>Eritema moderat amb butllofes o esquerdes profundes</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>Eritema moderat amb edema poc perceptible o eritema sever i ampolles</td>
</tr>
</tbody>
</table>

Taula 8.10. Marge de valors i classificació del dany

Els resultats de les proves es presenten numèricament en la taula 8.11 i gràficament en la figura 8.3.
Extracte Boswellia Serrata en formulacions cosmètiques

Prova del producte

<table>
<thead>
<tr>
<th>Prova del producte</th>
<th>Dia 1</th>
<th>Dia 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antitranspirant base</td>
<td>0</td>
<td>0.19</td>
</tr>
<tr>
<td>Antitranspirant base + 0.5% Soothex®</td>
<td>0</td>
<td>0.14</td>
</tr>
<tr>
<td>Antitranspirant base + 1.0% Soothex®</td>
<td>0</td>
<td>0.09</td>
</tr>
<tr>
<td>Antitranspirant base + 2.0% Soothex®</td>
<td>0</td>
<td>0.14</td>
</tr>
<tr>
<td>Control positiu- 0.3% Sodium Lauryl Sulphate</td>
<td>0</td>
<td>0.57</td>
</tr>
<tr>
<td>Control negatiu- Aigua destil·lada</td>
<td>0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Taula 8.11. Resultats numèrics.

Es pot observar que la base antitranspirant produeix una mica d’irritació, en comparació amb el control positiu, el Sodium Lauryl Sulphate un conegut irritant, que provoca una gran irritació inicial i comparat amb el control negatiu, l’aigua destil·lada que no provoca cap reacció.

Entre tots els valors es pot veure que els que són més baixos són els antitranspirants amb Soothex® que són els que provoquen menys irritació gràcies a l’efecte que aquest té sobre la pell.

![Figura 8.3. Gràfica de comparació de resultats](image)

8.5.2.4. Discussió

Es pot veure que sota les condicions d’aquest estudi, s’observa una irritació lleu en tots els productes antitranspirants. Però queda clar que afegint com a mínim un 0.5% de Soothex® en la formulació es pot reduir notablement la irritació i inflamació a la pell provocada per aquest productes.
En l’annex 3 estan els resultats de les proves de cada antitranspirant i els controls per els 30 voluntaris.
9. CONCLUSIONS

Aquest projecte m’ha servit per millorar i ampliar els meus coneixements sobre cosmètica i extractes vegetals.

He aprofundit en la teoria de les emulsions, en les seves propietats, components, característiques i principis actius, especialment en els extractes vegetals. He comprès les tècniques i els diferents mètodes d’identificació i anàlisi necessaris per garantir la qualitat i puresa dels extractes vegetals.

Les conclusions a les que s’arriba són:

1) El Real Decret 1599/1997 determina les condicions tècnic-sanitàries, el control sanitari i els requisits que han de complir les instal·lacions on s’elaboren els productes cosmètics a Espanya.

2) Qualsevol empresa que intervingui en l’elaboració d’un producte o en alguna de les etapes del procés com l’envàs o el condicionament, han d’estar autoritzades per la Direcció General de Farmàcia i Productes Sanitaris (DGFPS).

3) Per poder comercialitzar un producte cosmètic, prèviament s’han de tenir caracteritzades les matèries primeres, així com conèixer perfectament la legislació vigent de cada país.

4) Els fabricants s’han d’assegurar de la innocuïtat dels seus productes, per tant abans de treure’ls al mercat, s’han de realitzar estudis de seguretat microbiològica, toxicològica i d’irritabilitat i sensibilitat de la pell.

5) Les principals emulsions que es troben en la indústria cosmètica són, O/W (oil-water) i W/O (water-in-oil), aquestes es diferencien per la proporció relatives d’oli i aigua que hi ha en les formulacions.

6) Les emulsions O/W són adients per elaborar cremes amb tacte lleuger i fresc ideal per pells grasses. En canvi quan es tracta de pells seques, ja que tenen un tacte oliós i creen una barrera protectora que ajuda a mantenir la humitat i la hidratació de la pell.

7) Totes les cremes, independentment de contenir el principi actiu, tenen altres substàncies com per exemple, emulsionants, que donen estabilitat i milloren la sensació agradable amb el contacte amb la pell, agents espessants que augmenten la viscositat i olís que preveuen la pèrdua d’aigua i solubilitzen els filtres solars.

8) Com que les emulsions són sistemes inestables, és molt important escollir un bon emulsionant. Alhora de fer-ho s’ha de tenir en compte la naturalesa química del producte, la força iònica de la barreja a emulsionar, la temperatura de treball, la compatibilitat cutànies i per últim, i no menys important, el preu.
9) Quan una crema no és estable, es de guet a que no hi ha una bona unió entre els diferents productes utilitzats, d’aquesta manera es poden produir diferents inestabilitats, com per exemple: creaming, sedimentació, floculació, coalescència, etc.

10) Els productes finals han de complir unes qualitats i característiques adequades per tal de satisfer les exigències i necessitats del client.

11) És necessari sotmetre les diferents drogues que s’introduïxen al mercat, a exàmens de reconeixement i d’identitat i a diferents assaigs de qualitat i pureza, per tal de saber el seu grau de conservació o alteració i el seu valor farmacològic valorant el contingut dels seus principis actius.

12) Els principis actius són una sèrie de substàncies medicinals que elaboren les plantes en el seu metabolisme i que tenen diferents interessos en funció de les seves propietats. Són els responsables de donar les qualitats i propietats que caracteritzen cadascuna de les cremes, és a dir, hidratants, anti-arrugues, anti-acne, calmants, etc.

13) L’extracte Boswellia Serrata és un producte que s’obté de la natura i que s’ha utilitzat durant molt de temps en diferents cultures degut a les seves propietats calmants i antiinflamatories.

14) Els àcids Boswellics inhibeixen l’activitat de la 5-lipoxigenasa i fa que inflamació de la pell disminueixi.

15) L’ànàlisi del Soothex® ha confirmat l’existència d’àcids Boswellics procedents de l’extracte Boswellia Serrata.

16) El Soothex® es composa majoritàriament d’àcids α i β Boswellics, d’àcids 11-keto-β-Boswellics, 3-O-acetil-11-keto-β-Boswellics i 3-O-acetil-(α&β)-Boswellics.

17) Els estudis de la crema depilatòria i l’antitranspirant demostren l’eficàcia del Soothex® com agent antiirritant i antiinflamatori.
10. BIBLIOGRAFIA

Llibres:

- Croda Inc. *The Croda Guide to Emollients for Personal Care*.

Revistes:

Pàgines web:

- Asociación Nacional de Perfumería i Cosmética. [http://www.stanpa.es]
- Empresa Givaudan. [http://www.givaudan.com/givcom/]