

SPRC097 Version 1.00 Readme

September 11, 2003

1

C281x C/C++ Header Files and Peripheral Examples

1 Introduction: ...2

1.1 Where Files are Located (Directory Structure) ..3
2 Understanding The Peripheral Bit-Field Structure Approach ...4

2.1 Traditional #define approach:.. 4
2.2 Bit-field and Structure Approach: ..5

2.2.1 Peripheral Register Structures...5
2.3 Adding Bit-Fields...7

2.3.1 Read-Modify-Write Considerations When Using Bit-Fields: ...8
2.3.2 Code-Size Considerations when using Bit-Fields: ..9

3 Peripheral Example Projects ... 10
3.1 Getting Started.. 10
3.2 Example Program Structure.. 12

3.2.1 Include Files .. 12
3.2.2 Source Code ... 13
3.2.3 Linker Command Files .. 13

3.3 Example Program Flow... 15
3.4 Included Examples:... 16
3.5 Executing the Examples From Flash... 17

4 Steps for Incorporating the Header Files and Sample Code ... 20
4.1 Before you begin... 20
4.2 Including the DSP281x Peripheral Header Files ... 20
4.3 Including Common Example Code.. 23

5 Troubleshooting Tips & Frequently Asked Questions... 25
5.1 Effects of read-modify-write instructions.. 27

5.1.1 Registers with multiple flag bits in which writing a 1 clears that flag........................... 27
5.1.2 Registers with Volatile Bits. ... 28

6 Migration Tips from V.58 to V1.00 ... 29
7 Packet Contents: .. 37

7.1 Header File Support – DSP281x_headers .. 37
7.1.1 DSP281x Header Files – Main Files .. 37
7.1.2 DSP281x Header Files – Peripheral Bit-Field and Register Structure Definition Files 38
7.1.3 Code Composer .gel Files ... 38
7.1.4 Variable Names and Data Sections... 39

7.2 Common Example Code – DSP281x_common... 39
7.2.1 Peripheral Interrupt Expansion (PIE) Block Support .. 39
7.2.2 Peripheral Specific Files.. 40
7.2.3 Utility Function Source Files .. 41
7.2.4 Example Linker .cmd files.. 41

 SPRC097 Version 1.00 Readme

2

1 Introduction:

The DSP281x peripheral header files and example projects included in (SPRC097) facilitate
writing in C/C++ Code for the Texas Instruments ‘281x DSPs. The code can be used as a
learning tool or as the basis for a development platform depending on the current needs of the
user.

• Learning Tool:

Several example Code Composer Studio™† projects for the F2812 eZdsp platform are
included. These examples demonstrate the steps required to initialize the device and utilize
the on-chip peripherals. The provided examples can be copied and modified giving the user
a platform to quickly experiment with different peripheral configurations.

• Development Platform:

The peripheral header files can easily be incorporated into a new or existing project to
provide a platform for accessing the on-chip peripherals using C or C++ code. In addition,
the user can pick and choose functions from the provided code samples as needed and
discard the rest.

To get started this document provides the following information:

• Overview of the bit-field structure approach used in the DSP281x C/C++ peripheral header
files.

• Overview of the included peripheral example projects.

• Steps for integrating the peripheral header files into a new or existing project.

• Troubleshooting tips and frequently asked questions.

• Migration tips for users moving from the previous release V.58 to V1.00.

Finally, this document does not provide a tutorial on writing C code, using Code Composer
Studio, or the C28x Compiler and Assembler. It is assumed that the reader already has a 281x
hardware platform setup and connected to a host with Code Composer Studio installed. The
user should have a basic understanding of how to use Code Composer Studio to download code
through JTAG and perform basic debug operations.

† Code Composer Studio is a trademark of Texas Instruments.
Trademarks are the property of their respective owners.

SPRC097 Version 1.00 Readme

 3

1.1 Where Files are Located (Directory Structure)

As installed, the C281x C/C++ Header Files and Peripheral
Examples (SPRC097) is partitioned into a well-defined directory
structure. This directory structure has been updated for V1.00
of the header files to clearly separate the C/C++ header files
from the peripheral examples and shared source code. This
new portioning of files makes it easy to locate files and
incorporate as few or as many of the files as is desired into a
new or existing project.

Table 1 describes the contents of the main directories for
DSP281x V1.00 release:

Table 1. DSP281x Main Directory Structure

Directory Description

<base> Base install directory. By default this is c:\tidcs\c28\DSP281x\v100. For the rest of this
document <base> will be omitted from the directory names.

<base>\doc Documentation including the revision history from the previous release.

<base>\DSP281x_headers Files required to incorporate the peripheral header files into a project .
The header files use the bit-field structure approach described in Section 2.
Integrating the header files into a new or existing project is described in Section 4.

<base>\DSP281x_examples Example Code Composer Studio projects based on the DSP281x header files. These
example projects illustrate how to configure many of the ‘281x on-chip peripherals. An
overview of the examples is given in Section 3.

<base>DSP281x_common Common source files shared across a number of the DSP281x example projects to
illustrate how to perform tasks using the DSP281x header file approach. Use of these
files is optional, but may be useful in new projects. A list of these files is in Section 6.

Under the DSP281x_headers and DSP281x_common directories the source files are further
broken down into sub-directories each indicating the type of file. Table 2 lists the sub-directories
and describes the types of files found within each:

Table 2. DSP281x Sub-Directory Structure

Sub-Directory Description

DSP281x_headers\cmd Linker command files that allocate the bit-field structures described in Section 2.

DSP281x_headers\source Source files required to incorporate the header files into a new or existing project.

DSP281x_headers\include Header files for each of the 281x on-chip peripherals.

DSP281x_common\cmd Example memory command files that allocate memory on the ‘281x devices.

DSP281x_common\include Common .h files that are used by the DSP281x peripheral examples.

DSP281x_common\source Common .c files that are used by the DSP281x peripheral examples.

 SPRC097 Version 1.00 Readme

4

2 Understanding The Peripheral Bit-Field Structure Approach

The DSP281x header files and peripheral examples use a bit-field structure approach for
mapping and accessing peripheral registers on the TI ‘281x based DSPs. This section will
describe this approach and compare it to the more traditional #define approach.

2.1 Traditional #define approach:

The traditional approach for accessing registers in C-code has been to use #define macros to
create an address label for each register. For example:

/**
* Traditional header file
**/

 // Memory Map
 // Addr Register
#define CPUTIMER0_TIM (volatile unsigned long *)0x0C00 // 0xC00 Timer0 Count Low
 // 0xC01 Timer0 Count High
#define CPUTIMER0_TIM (volatile unsigned long *)0x0C02 // 0xC02 Timer0 Period Low
 // 0xC03 Timer0 Period High
#define CPUTIMER0_TIM (volatile unsigned int *)0x0C04 // 0xC04 Timer0 Control
 // 0xC05 reserved
#define CPUTIMER0_TIM (volatile unsigned int *)0x0C06 // 0xC06 Timer0 Pre-scale Low
#define CPUTIMER0_TIM (volatile unsigned int *)0x0C07 // 0xC07 Timer0 Pre-scale High

This same #define approach would then be repeated for every peripheral register on every
peripheral. Even if the peripheral were a duplicate, such as in the case of SCI-A and SCI-B,
each register would have to be specified separately with its given address. The disadvantages
to the traditional #define approach include:

• Bit-fields within the registers are not easily accessible.

• Cannot easily display bit-fields within the Code Composer Studio watch window.

• Cannot take advantage of Code Maestro, which is the auto-completion feature of Code
Composer Studio.

• The header file developer cannot take advantage of re-use for duplicate peripherals.

SPRC097 Version 1.00 Readme

 5

2.2 Bit-field and Structure Approach:

The bit-field and structure approach uses C-code structures to group together all of the registers
belonging to a particular peripheral. Each C-code structure is then memory mapped over the
peripheral registers by the linker. This mapping allows the compiler to access the peripheral
registers directly using the CPU’s data page pointer (DP). In addition, bit-fields are defined for
many registers allowing the compiler to read or manipulate single bit fields within a register.

2.2.1 Peripheral Register Structures

In Section 2.1 we defined the CPU Timer 0 registers using the traditional #define approach. In
this section, we will define the same CPU Timer 0 registers, but instead will use C-code
structures to group the CPU Timer registers together. The linker will then be used to map the
structure over the CPU-Timer 0 registers in memory.

The following code example shows the C-Code structure that corresponds to a ‘281x CPU-
Timer peripheral:

/**
* CPU-Timer header file using structures
**/

struct CPUTIMER_REGS
{
 Uint32 TIM; // Timer counter register
 Uint32 PRD; // Period register
 Uint16 TCR; // Timer control register
 Uint16 rsvd1; // reserved
 Uint16 TPR; // Timer pre-scale low
 Uint16 TPRH; // Timer pre-scale high
};

Notice the following points:

• The register names appear in the same order as they are arranged in memory.

• Locations that are reserved in memory are held within the structure by a reserved variable
(rsvd1, rsvd2 etc). The reserved structure members are not used except to hold the space
in memory.

• Uint16 and Uint32 are typedefs for unsigned 16-bit and 32-bit values, respectively. In the
case of the '28x, these are unsigned int and unsigned long. This is done for portability. The
corresponding typedef statements can be found in the file DSP281x_Device.h.

 SPRC097 Version 1.00 Readme

6

The register file structure definition is then used to declare a variable that will be used to access
the registers. This is done for each of the peripherals on the device. Multiple instances of the
same peripheral use the same structure definition. For example, if there are three CPU-Timers
on a device, then three variables of type volatile struct CPUTIMER_REGS can be created as:

/**
* CPU-Timer header file using structures
**/

volatile struct CPUTIMER_REGS CpuTimer0Regs;
volatile struct CPUTIMER_REGS CpuTimer1Regs;
volatile struct CPUTIMER_REGS CpuTimer2Regs;

The volatile keyword is important in the variable declaration. Volatile indicates to the compiler
that the contents of the variable can be changed by hardware and thus the compiler will not
optimize out code that uses a volatile variable.

Each variable corresponding to a peripheral register structure is then assigned to a data section
using the compiler’s DATA_SECTION #pragma. In the example shown below, the variable
CpuTimer0Regs is assigned to the data section CpuTimer0RegsFile.

/**
* DSP281x_headers\source\DSP281x_GlobalVariableDefs.c
**/
/* Assign the variable CpuTimer0Regs to the CpuTimer0RegsFile output section
 using the #pragma compiler statement
 C and C++ use different forms of the #pragma statement
 When compiling a C++ program, the compiler will define __cplusplus automatically
*/

#ifdef __cplusplus // used by C++
#pragma DATA_SECTION("CpuTimer0RegsFile")
#else // used by C
#pragma DATA_SECTION(CpuTimer0Regs,"CpuTimer0RegsFile");
#endif
volatile struct CPUTIMER_REGS CpuTimer0Regs; // variable CpuTimer0Regs
 // of type CPUTIMER_REGS

This data section assignment is repeated for each peripheral register structure variable for the
device. With each structure assigned to its own data section, the linker is then used to map
each data section directly to the memory mapped registers for that peripheral as shown below.

/**
* DSP281x_headers\include\DSP281x_Headers_nonBIOS.cmd
**/
MEMORY
{
 PAGE 1:
 CPU_TIMER0 : origin = 0x000C00, length = 0x000008 /* CPU Timer0 registers
}
SECTIONS
{
 CpuTimer0RegsFile : > CPU_TIMER0, PAGE = 1
}

SPRC097 Version 1.00 Readme

 7

By mapping the variable directly to the same memory address of the peripheral registers, the
user can now access the registers in C-code by simply accessing the required member of the
variable. For example, to write to the CPU-Timer 0 TCR register, the user just has to access
the TCR member of the CpuTimer0Regs variable:

/**
* User’s source file
**/

CpuTimer0Regs.TCR.all = TSS_MASK; // Example of accessing the TCR register

2.3 Adding Bit-Fields

It is often desirable to access bit fields within the registers directly. With the bit-field structure
approach C281x C/C++ Header Files and Peripheral Examples (SPRC097) provides bit-field
definitions for many of the on-chip peripheral registers. For example, a bit-field definition can be
established for each of the CPU-Timer registers. The bit-field definitions for the CPU-Timer
control register is shown below:

/**
* DSP281x_headers\include\DSP281x_CpuTimers.h CPU-Timer header file
**/

struct TCR_BITS { // bits description
 Uint16 rsvd1:4; // 3:0 reserved
 Uint16 TSS:1; // 4 Timer Start/Stop
 Uint16 TRB:1; // 5 Timer reload
 Uint16 rsvd2:4; // 9:6 reserved
 Uint16 SOFT:1; // 10 Emulation modes
 Uint16 FREE:1; // 11
 Uint16 rsvd3:2; // 12:13 reserved
 Uint16 TIE:1; // 14 Output enable
 Uint16 TIF:1; // 15 Interrupt flag
};

A union declaration is then used to allow the register to be accessed in terms of the defined bit
field structure or as a whole 16-bit or 32-bit quantity. For example, the timer control register
union definition is shown below:

/**
* DSP281x_headers\include\DSP281x_CpuTimers.h CPU-Timer header file
**/

union TCR_REG {
 Uint16 all;
 struct TCR_BITS bit;
};

 SPRC097 Version 1.00 Readme

8

Once bit-field and union definitions are established for each of the registers, the CPU-Timer
register structure can be re-written in terms of the union definitions.

/**
* DSP281x_headers\include\DSP281x_CpuTimers.h CPU-Timer header file
**/

struct CPUTIMER_REGS
{
 union TIM_GROUP TIM; // Timer counter register
 union PRD_GROUP PRD; // Period register
 union TCR_REG TCR; // Timer control register
 Uint16 rsvd1; // reserved
 union TPR_REG TPR; // Timer pre-scale low
 union TPRH_REG TPRH; // Timer pre-scale high
};

In C-code the CpuTimer register can now be accessed either by bit-fields or as a single quantity:

/**
* User’s source file
**/

CpuTimer0Regs.TCR.bit.TSS = 1; // Example of accessing a single bit
CpuTimer0Regs.TCR.all = TSS_MASK; // Example of accessing the whole register

The bit-field structure approach has the following advantages:

• Bit-fields can be manipulated without the user needing to determine mask values

• Register files and bit-fields can be viewed in the Code Composer Studio watch window

• When using Code Composer Studio, the editor will prompt you with a list of possible
structure/bit field elements as you type. This auto completion feature makes it easier to
code without having to refer to documentation for the register and bit field names.

2.3.1 Read-Modify-Write Considerations When Using Bit-Fields:

When writing to a single bit-field within a register, a read-modify-write operation is performed in
hardware. That is, the register contents are read, the single bit field is modified and the whole
register is written back. This can happen in a single cycle on the ‘28x.

When the write-back occurs, other bits within the register will be written to with the same value
as what was read. Some registers do not have unions defined because it is not recommended to
access them in this manner. Exceptions are made when it may be beneficial to poll (read) single
bits within the registers. This includes:

• Registers with write-1-to-clear bits such as the event manager flag registers.

• Registers with bits which must be written to in a particular manner whenever accessing the
register such as the watchdog control register.

SPRC097 Version 1.00 Readme

 9

Registers that do not have bit-field and union definitions are accessed without the .bit or .all
designations. For example:

/**
* User’s source file
**/

SysCtrlRegs.WDCR = 0x0068;

2.3.2 Code-Size Considerations when using Bit-Fields:

Using the bit-field definitions to access registers results in code that is easy to read, easy to
modify, and easy to maintain. This approach is also efficient when accessing a single bit within
a register or when polling a bit. Keep in mind, however, that if a number of accesses to one
register are made, then using the defined .bit fields for each access may result in more code
then using .all to write to the register all at once. For example:

/**
* User’s source file
**/

CpuTimer0Regs.TCR.bit.TSS = 1; // 1 = Stop timer
CpuTimer0Regs.TCR.bit.TRB = 1; // 1 = reload timer
CpuTimer0Regs.TCR.bit.SOFT = 1; // Timer Free Run
CpuTimer2Regs.TCR.bit.FREE = 1; // Timer Free Run
CpuTimer2Regs.TCR.bit.TIE = 1; // 1 = Enable Timer Interrupt

This results in very readable code that is easy to modify. The penalty is slight code overhead. If
code size is of greater concern then use the .all structure to write to the register all at once.

/**
* User’s source file
**/

 CpuTimer0Regs.TCR.all = TCR_MASK;

 SPRC097 Version 1.00 Readme

10

3 Peripheral Example Projects

In the DSP281x_examples\ directory of C281x C/C++ Header Files and Peripheral Examples
(SPRC097) there are several example projects that use the DSP281x V1.00 header files to
configure the on-chip peripherals. A listing of the examples is included in Section 3.4.

3.1 Getting Started

To get started, follow these steps to load the DSP281x CPU-Timer example. Other examples
are set-up in a similar manner.

1. Have an F2812 eZdsp or other hardware platform connected to a host with Code
Composer Studio installed.

2. Load the example’s GEL file (.gel) or Project file (.pjt).

Each example includes a Code Composer Studio GEL file to automate loading of the
project, compiling of the code and populating of the watch window. Alternatively, the project
itself can be loaded instead of using the included GEL file.

To load the CPU-Timer example’s GEL file follow these steps:

a. In Code Composer Studio: File->Load GEL

b. Browse to the CPU Timer example directory: DSP281x_examples\cpu_timer

c. Select Example_281xCpuTimer.gel and click on open.

d. From the Code Composer GEL pull-down menu select

DSP281x CpuTimerExample-> Load_and_Build_Project

This will load the project and build compile the project.

3. Review the comments at the top of the main source file: Example_281xCpuTimer.c.

A brief description of the example and any assumptions that are made and any external
hardware requirements are listed in the comments at the top of the main source file.

4. Perform any hardware setup required by the example.

Perform any hardware setup indicated by the comments in the main source. The DSP281x
CPU-Timer example only requires that the hardware be setup for “Boot to H0” mode. Other
examples may require additional hardware configuration such as connecting pins together or
pulling a pin high or low.

Table 3 shows a listing of the boot mode pin settings for reference. For users with the F2812
eZdsp from Spectrum Digital, refer to the eZdsp’s user’s guide for the jumpers corresponding
to the boot mode selection. For more information on the ‘281x boot modes refer to the
TMS320F28x Boot ROM Reference Guide (SPRU095).

SPRC097 Version 1.00 Readme

 11

Table 3. 281x Boot Mode Settings

GPIOF4 GPIOF12 GPIOF3 GPIOF2 Mode

1 x x x Boot to flash 0x3F7FF6

0 1 X X Call SPI boot loader

0 0 1 1 Call SCI boot loader

0 0 1 0 Boot to H0 SARAM 0x3F8000

0 0 0 1 Boot to OTP 0x3D7800

0 0 0 0 Call parallel boot loader

 Note: X = Don’t Care

5. Load the code

Once any hardware configuration has been completed, from the Code Composer GEL pull-
down menu select

DSP281x CpuTimerExample-> Load_Code

This will load the .out file into the 28x device, populate the watch window with variables of
interest, reset the part and execute code to the start of the main function. The GEL file is
setup to reload the code every time the device is reset so if this behavior is not desired, the
GEL file can be removed at this time. To remove the GEL file, right click on its name and
select remove.

6. Run the example, add variables to the watch window or examine the memory
contents.

7. Experiment, modify, re-build example.

If you wish to modify the examples it is suggested that you make a copy of the entire
DSP281x packet to modify or at least create a backup of the original files first. New
examples provided by TI will assume that the base files are as supplied.

Sections 3.2 and 3.3 describe the structure and flow of the examples in more detail.

8. When done, remove the example’s GEL file and project from Code Composer
Studio.

To remove the GEL file, right click on its name and select remove.

The examples use the header files in the DSP281x_headers directory and shared source in the
DSP281x_common directory. Only example files specific to a particular example are located
within in the example directory.

Note: Most of the example code included uses the .bit field structures to access registers.
This is done to help the user learn how to use the peripheral and device. Using the bit
fields has the advantage of yielding code that is easier to read and modify. This method
will result in a slight code overhead when compared to using the .all method. In addition,
the example projects contained in the SPRC097 download have the compiler optimizer
turned off. The user can change the compiler settings to turn on the optimizer if desired.

 SPRC097 Version 1.00 Readme

12

3.2 Example Program Structure

Each of the example programs has a very similar structure. This structure includes unique
source code, shared source code, header files and linker command files.

3.2.1 Include Files

All of the example source code #include two header files as shown below:

/**
* DSP281x_examples\cpu_timer\Example_281xCpuTimer.c
**/

#include "DSP281x_Device.h" // DSP281x Headerfile Include File
#include "DSP281x_Examples.h" // DSP281x Examples Include File

• DSP281x_Device.h

This header file is required to use the DSP281x peripheral header files. This file includes all
of the required peripheral specific header files and includes device specific macros and
typedef statements. This file is found in the DSP281x_headers\include directory.

• DSP281x_Examples.h

This header file defines parameters that are used by the example code. This file is not
required to use just the DSP281x peripheral header files but is required by some of the
common source files. This file is found in the DSP281x_common\include directory.

DSP281x_GlobalVariableDefs.c
This source file is required to use the DSP281x peripheral header files.

Example Specific Source Code

Common (shared) Source Code
Used by more then one example. Contain generic functions for
setting up peripherls to a defined state or functions that may be
useful to re-use in different applications.

Shared Source Code

DSP281x_Headers_nonBIOS.cmd
Linker file required by the peripheral specific header files.

Memory block specific linker command file

SPRC097 Version 1.00 Readme

 13

3.2.2 Source Code

Each of the example projects consists of source code that is unique to the example as well as
source code that is common or shared across examples.

• DSP281x_GlobalVariableDefs.c

Any project that uses the DSP281x peripheral header files must include this source file. In
this file are the declarations for the peripheral register structure variables and data section
assignments. This file is found in the DSP281x_headers\source directory.

• Example specific source code:

Files that are specific to a particular example have the prefix Example_281x on their
filename. For example Example_281xCpuTimer.c is specific to the CPU Timer example
and not used for any other example. Example specific files are located in the
DSP281x_examples\<example> directory.

• Common source code:

The remaining source files are shared across the examples. These files contain common
functions for peripherals or useful utility functions that may be re-used. Shared source files
are located in the DSP281x_shared\source directory. Users may choose to incorporate
none, some, or all of the shared source into their own new or existing projects.

3.2.3 Linker Command Files

Each example uses two linker command files. These files specify the memory where the linker
will place code and data sections. One linker file is used for assigning compiler generated
sections to the memory blocks on the device while the other is used to assign the data sections
of the peripheral register structures used by the DSP281x peripheral header files.

• Memory block linker allocation:

The linker files shown in Table 4 are used to assign sections to memory blocks on the device.
These linker files are located in the DSP281x_common\cmd directory. Each example will use
one of the following files depending on the memory used by the example.

Table 4. Included Memory Linker Command Files

Memory Linker Command

File Examples
Location Description

F2812_EzDSP_RAM_lnk.cmd DSP281x_common\cmd eZdsp memory map that only allocates
SARAM locations. No Flash, OTP, or CSM
password protected locations are used.

F2810.cmd DSP281x_common\cmd F2810 memory linker command file.
Includes all Flash, OTP and CSM password
protected memory locations.

F2812.cmd DSP281x_common\cmd F2812 memory linker command file. .
Includes all Flash, OTP and CSM password
protected memory locations.

F2812_XintfBoot.cmd DSP281x_common\cmd F2812 boot from XINTF Zone 7

 SPRC097 Version 1.00 Readme

14

• DSP281x header file structure data section allocation:

Any project that uses the DSP281x header file peripheral structures must include a linker
command file that assigns the peripheral register structure data sections to the proper
memory location.

In the v.058 of the header files, this allocation was included in the memory linker file. To
allow for easy separation of the header files from the source code, this allocation has been
split into a separate files as shown in Table 5.

Table 5. DSP281x Peripheral Header Linker Command File

DSP281x Peripheral Header File
Linker Command File

Location Description

DSP281x_Headers_BIOS.cmd DSP281x_headers\cmd Linker .cmd file to assign the header file variables in
a BIOS project. This file must be included in any
BIOS project that uses the header files. Refer to
section 4.2.

DSP281x_Headers_nonBIOS.cmd DSP281x_headers\cmd Linker .cmd file to assign the header file variables in
a non-BIOS project. This file must be included in any
non-BIOS project that uses the header files. Refer to
section 4.2.

SPRC097 Version 1.00 Readme

 15

3.3 Example Program Flow

All of the example programs follow a similar recommended flow for setting up the 281x devices.
Figure 1 outlines this basic flow:

Reset

Boot Sequence

DSP281x_CodeStartBranch.asm

Disable WD (Optional)
Branch to C Init Routine

C Init

Initialize System Control

Initalize GPIO

Initialize PIE Vector Table

Initalize Peripherals

Example Specific Code
Enable Interrupts

main()
{

}

Boot ROM or
Boot from XINTF Zone 7

Used to re-direct code execution from the boot
entry point to the C Init routine.
Code can be configured to disable the WatchDog if
the WD is timing out before main() is reached.
Assigned to the BEGIN section by the linker.
Located at 0x3F8000 for Boot to H0
Located at 0x3F7FF6 for Boot to Flash

C Init Routine. The Compiler's boot.asm which is
automatically included with the runtime library.
This will set OBJMODE to 28x.

Init PLL, Turn on Peripheral Clocks and set the
clock pre-scalers
Disable the WatchDog

Configure GPIO Pins to their peripheral function
or as an input or output as required by the
example.

Initalize the entire PIE Vector Table with pointers
to default Interrupt Service Routines (ISRs) found
in DSP281x_DefaultIsr.c. It is useful for debug
purposes to have the entire table initalized even if
the ISR is not going to be used.

Remap PIE vectors used by the example to ISR
functions found within the example program.

Initalize the peripherals as required by the
example.

Enable the required PIE and CPU interrupts.
Any additional code required for the example.

Additional Functions and
Interrupt Service Routines

Figure 1. Flow for Example Programs

 SPRC097 Version 1.00 Readme

16

3.4 Included Examples:

Table 6. Included Examples

Example Description

adc_seqmode_test ADC Seq Mode Test. Channel A0 is converted forever and logged in a buffer

adc_seq_ovd_tests ADC test using the sequencer override feature available as of silicon Rev C.

adc_soc ADC example to convert two channels: ADCINA3 and ADCINA2. Interrupts are
enabled and EVA is configured to generate a periodic ADC SOC on SEQ1.

cpu_timer Configures CPU Timer0 and increments a count each time the ISR is serviced.

ecan_back2back eCAN self-test mode example. Transmits eCAN data back-to-back at high speed
without stopping.

ev_pwm Event Manager PWM example. This program sets up the EV timers to generate PWM
waveforms. The user can then observe the waveforms using a an oscilloscope.

ev_timer_period Event Manager Timer example. This program sets up EVA and EVB timers to fire an
interrupt on a period overflow. A count is kept each time each interrupt passes through
the interrupt service routine.

flash EV Timer Example project moved from SARAM to Flash. Includes steps that were
used to convert the project from SARAM to Flash. Some interrupt service routines are
copied from FLASH to SARAM for faster execution.

gpio_loopback General Purpose I/O loop back test. In this test, 8 bits of a GPIO Port are configured as
outputs and 8 bits of the same port are configured as inputs. The pins configured as
outputs are externally looped back to the pins configured as inputs. The output data is
read back on the input pins.

gpio_toggle Toggles all of the I/O pins using different methods – DATA, SET/CLEAR and TOGGLE
registers. The pins can be observed using an oscilloscope.

mcbsp_loopback McBSP is configured for loop-back test. Polling is used instead of interrupts.

mcbsp_loopback_interrupts McBSP is configured for loop-back test. Both interrupts and FIFOs are used.

run_from_xintf This example shows how to boot from XINTF zone 7 and configure the XINTF memory
interface on the F2812 eZdsp.

sci_autobaud Externally connect SCI-A to SCI-B and send data between the two peripherals. Baud
lock is performed using the autobaud feature of the SCI. This test is repeated for
different baud rates.

sci_loopback SCI example code that uses the loop-back test mode of the SCI module to send
characters This example uses bit polling and does not use interrupts.

sci_loopback_interrupts SCI example code that uses the internal loop-back test mode to transfer data through
SCI-A. Interrupts and FIFOs are both used in this example.

spi_loopback SPI example that uses the peripherals loop-back test mode to send data.

spi_loopback_interrupts SPI example that uses the peripherals loop-back test mode to send data. Both
interrupts and FIFOs are used in this example.

sw_prioritized_interrupts The standard hardware prioritization of interrupts can be used for most applications.
This example shows a method for software to re-prioritize interrupts if required.

watchdog Illustrates feeding the dog and re-directing the watchdog to an interrupt.

SPRC097 Version 1.00 Readme

 17

3.5 Executing the Examples From Flash

Most of the DSP281x examples execute from SARAM in “boot to H0” mode. One example,
DSP281x_examples\Flash, executes from flash memory in “boot to flash” mode. This example
is the Event Manager timer example with the following changes made to execute out of flash:

1. Change the linker command file to link the code to flash.

Remove F2812_EzDSP_RAM_lnk.cmd from the project and add F2812.cmd or F2810.cmd.
Both F2810.cmd and F2812.cmd are located in the DSP281x_common\cmd\ directory.

2. Add the DSP281x_common\source\DSP281x_CSMPasswords.asm to the project.

This file contains the passwords that will be programmed into the Code Security Module
(CSM) password locations. Leaving the passwords set to 0xFFFF during development is
recommended as the device can easily be unlocked. For more information on the CSM refer
to the TMS320F28x System Control and Interrupts Reference Guide (SPRU078).

3. Modify the code to copy functions that must be executed in SARAM from their load
address in flash to their run address in SARAM.

In particular, the flash wait state initialization routine must be executed out of SARAM. In
the DSP281x examples, functions that are to be executed from SARAM have been
assigned to the ramfuncs section by compiler CODE_SECTION #pragma statements as
shown in the example below.

/**
* DSP281x_common\source\DSP281x_SysCtrl.c
**/

#pragma CODE_SECTION(InitFlash, "ramfuncs");

The ramfuncs section is then assigned to a load address in flash and a run address in
SARAM by the memory linker command file as shown below:

/**
* DSP281x_common\include\F2812.cmd
**/
SECTIONS
{
 ramfuncs : LOAD = FLASHD,
 RUN = RAML0,
 LOAD_START(_RamfuncsLoadStart),
 LOAD_END(_RamfuncsLoadEnd),
 RUN_START(_RamfuncsRunStart),
 PAGE = 0
}

 SPRC097 Version 1.00 Readme

18

The linker will assign symbols as specified above to specific addresses as follows:

Address Symbol

Load start RamfuncsLoadStart

Load end RamfuncsLoadEnd

Run start RamfuncsRunStart

These symbols can then be used to copy the functions from the Flash to SARAM using the
included example MemCopy routine or the C library standard memcopy() function.

To perform this copy from flash to SARAM using the included example MemCopy function:

a. Add the file DSP281x_common\source\DSP281x_MemCopy.c to the project.

b. Add the following function prototype to the example source code. This is done for you in
the DSP281x_Examples.h file.

/**
* DSP281x_common\include\DSP281x_Examples.h
**/

MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

c. Add the following variable declaration to your source code to tell the compiler that these
variables exist. The linker command file will assign the address of each of these
variables as specified in the linker command file as shown in step 3. For the DSP281x
example code this has is already done in DSP281x_Examples.h.

/**
* DSP281x_common\include\DSP281x_Examples.h
**/

extern Uint16 RamfuncsLoadStart;
extern Uint16 RamfuncsLoadEnd;
extern Uint16 RamfuncsRunStart;

d. Modify the code to call the example MemCopy function for each section that needs to be
copied from flash to SARAM.

/**
* DSP281x_examples\Flash source file
**/

MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

SPRC097 Version 1.00 Readme

 19

4. Modify the code to call the flash initialization routine:

This function will initialize the wait states for the flash and enable the Flash Pipeline mode.

/**
* DSP281x peripheral example .c file
**/

InitFlash();

5. Set the required jumpers for “boot to Flash” mode.

The required jumper settings for each boot mode are shown in

Table 7. 281x Boot Mode Settings

GPIOF4 GPIOF12 GPIOF3 GPIOF2 Mode

1 x x x Boot to flash 0x3F7FF6

0 1 X X Call SPI boot loader

0 0 1 1 Call SCI boot loader

0 0 1 0 Boot to H0 SARAM 0x3F8000

0 0 0 1 Boot to OTP 0x3D7800

0 0 0 0 Call parallel boot loader

 Note: X = Don’t Care

For users with the F2812 eZdsp from Spectrum Digital, refer to the eZdsp’s user’s guide for
the jumpers corresponding to the boot mode selection.

For more information on the ‘281x boot modes refer to the TMS320F28x Boot ROM
Reference Guide (SPRU095).

6. Program the device with the built code.

This can be done using SDFlash available from Spectrum Digital’s website
(www.spectrumdigital.com).

7. To debug, load the project in CCS, select File->Load Symbols->Load Symbols Only.

It is useful to load only symbol information when working in a debugging environment where
the debugger cannot or need not load the object code, such as when the code is in ROM or
flash. This operation loads the symbol information from the specified file.

 SPRC097 Version 1.00 Readme

20

4 Steps for Incorporating the Header Files and Sample Code

Follow these steps to incorporate the peripheral header files and sample code into your own
projects. If you already have a project that uses V.58 of the header files then also refer to
Section 6 for migration tips.

4.1 Before you begin

Before you include the header files and any sample code into your own project, it is
recommended that you perform the following:

1. Load and step through an example project.

Load and step through an example project to get familiar with the header files and sample
code. This is described in Section 3.

2. Create a copy of the source files you want to use.

– DSP281x_headers: code required to incorporate the header files into your project

– DSP281x_common: shared source code much of which is used in the example projects.

– DSP281x_examples: example projects that use the header files and shared code.

4.2 Including the DSP281x Peripheral Header Files

Including the DSP281x header files in your project will allow you to use the bit-field structure
approach in your code to access the peripherals on the DSP. To incorporate the header files in
a new or existing project, perform the following steps:

3. #include “DSP281x_Device.h” in your source files.

This include file will in-turn include all of the peripheral specific header files and required
definitions to use the bit-field structure approach to access the peripherals.

/**
* User’s source file
**/

#include “DSP281x_Device.h”

4. Edit DSP281x_Device.h and select the target you are building for:

In the below example, the file is configured to build for the F2812 device.

/**
* DSP281x_headers\include\DSP281x_Device.h
**/

#define TARGET 1
#define DSP28_F2812 TARGET
#define DSP28_F2810 0

SPRC097 Version 1.00 Readme

 21

5. Add the source file DSP281x_GlobalVariableDefs.c to the project.

This file is found in the DSP281x_headers\source\ directory and includes:

– Declarations for the variables that are used to access the peripheral registers.

– Data section #pragma assignments that are used by the linker to place the variables in
the proper locations in memory.

6. Add the appropriate DSP281x header linker command file to the project.

As described in Section 2.2, when using the DSP281x header file approach, the data
sections of the peripheral register structures are assigned to the memory locations of the
peripheral registers by the linker.

To perform this memory allocation in your project, one of the following linker command
files located in DSP281x_headers\cmd\ must be included in your project:

– For non-DSP/BIOS† projects: DSP281x_Headers_nonBIOS.cmd

– For DSP/BIOS projects: DSP281x_Headers_BIOS.cmd

The method for adding the header linker file to the project depends on the version of Code
Composer Studio being used.

Code Composer Studio V2.2 and later:

As of CCS 2.2, more then one linker command
file can be included in a project.

Add the appropriate header linker command file
(BIOS or nonBIOS) directly to the project.

Code Composer Studio prior to V2.2

Prior to CCS 2.2, each project contained only one main linker command file. This file can,
however, call additional .cmd files as needed. To include the required memory allocations
for the DSP281x header files, perform the following two steps:

1) Update the project’s main linker command (.cmd) file to call one of the supplied DSP281x
peripheral structure linker command files using the -l option.

/**
* User’s linker .cmd file
**/

/* Use this include file only for non-BIOS applications */
-l DSP281x_Headers_nonBIOS.cmd
/* Use this include file only for BIOS applications */
/* -l DSP281x_Headers_BIOS.cmd */

† DSP/BIOS is a trademark of Texas Instruments

 SPRC097 Version 1.00 Readme

22

2) Add the directory path to the DSP281x peripheral linker .cmd file to your project.

a. Open the menu: Project->Build Options

b. Select the Linker tab and then Select Basic.

c. In the Library Search Path, add the directory path to the location of the
DSP281x_headers\cmd directory on your system.

7. Add the directory path to the
DSP281x header files to your
project.

To specify the directory where the
header files are located:

a. Open the menu:

Project->Build Options

b. Select the Compiler tab

c. Select pre-processor.

d. In the Include Search Path,
add the directory path to the
location of
DSP281x_headers\include on your system.

8. Additional suggested build options:

The following are additional compiler and linker options. The options can all be set via the
Project->Build Options menu.

– Compiler Tab:

 -ml Select Advanced and check –ml

Build for large memory model. This setting allows data sections to reside anywhere
within the 4M-memory reach of the 28x devices.

 -pdr Select Diagnostics and check –pdr

Issue non-serious warnings. The compiler uses a warning to indicate code that is
valid but questionable. In many cases, these warnings issued by enabling -pdr can
alert you to code that may cause problems later on.

– Linker Tab:

 -w Select Advanced and check –w

Warn about output sections. This option will alert you if any unassigned memory
sections exist in your code. By default the linker will attempt to place any
unassigned code or data section to an available memory location without alerting the
user. This can cause problems, however, when the section is placed in an
unexpected location.

SPRC097 Version 1.00 Readme

 23

4.3 Including Common Example Code

Including the common source code in your project will allow you to leverage code that is already
written for the device. To incorporate the shared source code into a new or existing project,
perform the following steps:

1. #include “DSP281x_Examples.h” in your source files.

This include file will include common definitions and declarations used by the example code.

/**
* User’s source file
**/

#include “DSP281x_Examples.h”

2. Add the directory path to the example include files to your project.

To specify the directory where
the header files are located:

a. Open the menu:

Project->Build Options

b. Select the Compiler tab

c. Select pre-processor.

d. In the Include Search Path,
add the directory path to
the location of
DSP281x_common/include
on your system.
Use a semicolon between
directories.

For example the directory path for the included projects is:
..\..\DSP281x_headers\include;..\..\DSP281x_common\include

3. Add a linker command file to your project.

The following memory linker .cmd files are provided as examples in the
DSP281x_common\cmd directory. For getting started the basic
F2812_EzDSP_RAM_lnk.cmd file is suggested and used by most of the examples.

 SPRC097 Version 1.00 Readme

24

Table 8. Included Main Linker Command Files

Main Liner Command File
Examples

Description

F2812_EzDSP_RAM_lnk.cmd Main eZdsp example linker file. Only uses only SARAM
locations that are not protected by the code security module.
This memory map is used for all of the examples to run out of
the box on an F2812 EzDSP. No Flash or OTP locations are
used.

F2812_XintfBoot.cmd Linker command file used for booting from XINTF Zone 7

F2810.cmd Main F2810 linker command file. Includes all Flash and OTP
memory locations.

F2812.cmd Main F2812 linker command file. Includes all Flash, OTP and
XINTF memory.

4. Set the CPU Frequency

In the DSP281x_common\include\DSP281x_Examples.h file specify the proper CPU
frequency. Some examples are included in the file.

/**
* DSP281x_common\include\DSP281x_Examples.h
**/

#define CPU_RATE 6.667L // for a 150MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 7.143L // for a 140MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 8.333L // for a 120MHz CPU clock speed (SYSCLKOUT)

5. Add desired common source files to the project.

The common source files are found in the DSP281x_common\source\ directory.

6. Include .c files for the PIE.

Since all catalog ‘281x applications make use of the PIE interrupt block, you will want to
include the PIE support .c files to help with initializing the PIE. The shell ISR functions can
be used directly or you can re-map your own function into the PIE vector table provided. A
list of these files can be found in section 7.2.1.

SPRC097 Version 1.00 Readme

 25

5 Troubleshooting Tips & Frequently Asked Questions

• In the examples, what do “EALLOW;” and “EDIS;” do?

EALLOW; is a macro defined in DSP281x_Device.h for the assembly instruction EALLOW
and likewise EDIS is a macro for the EDIS instruction. That is EALLOW; is the same as
embedding the assembly instruction asm(“ EALLOW”);

Several control registers on the 28x devices are protected from spurious CPU writes by the
EALLOW protection mechanism. The EALLOW bit in status register 1 indicates if the
protection is enabled or disabled. While protected, all CPU writes to the register are ignored
and only CPU reads, JTAG reads and JTAG writes are allowed. If this bit has been set by
execution of the EALLOW instruction, then the CPU is allowed to freely write to the
protected registers. After modifying the registers, they can once again be protected by
executing the EDIS assembly instruction to clear the EALLOW bit.

For a complete list of protected registers, refer to TMS320F28x Control and Interrupts
Reference Guide (SPRU078).

• Peripheral registers read back 0x0000 and cannot be written to.

Peripheral registers cannot be modified or read unless the clock to the specific peripheral is
enabled. The function InitPeripheralClocks() in the DSP281x_common\source directory
shows an example of enabling the peripheral clocks.

• Memory block L0, L1 reads back all 0x0000.

In this case most likely the code security module is locked and thus the protected memory
locations are reading back all 0x0000. Refer to the TMS320F28x Control and Interrupts
Reference Guide (SPRU078) for information on the code security module.

• Code cannot write to L0 or L1 memory blocks.

In this case most likely the code security module is locked and thus the protected memory
locations are reading back all 0x0000. Code that is executing from outside of the protected
cannot read or write to protected memory while the CSM is locked. Refer to the
TMS320F28x Control and Interrupts Reference Guide (SPRU078) for information on the
code security module

• A peripheral register reads back ok, but cannot be written to.

The EALLOW bit protects some registers from spurious writes by the CPU. If your program
seems unable to write to a register, then check to see if it is EALLOW protected. If it is,
then enable access using the EALLOW assembly instruction. Refer to the TMS320F28x
Control and Interrupts Reference Guide (SPRU078) a complete list of EALLOW protected
registers.

• I re-built one of the projects to run from Flash and now it doesn’t work. What could be
wrong?

Make sure that all initialized sections, such as .econst, are allocated to page 0 in the linker
command file (.cmd). SDFlash will only program sections in the .out file that are allocated
to page 0.

 SPRC097 Version 1.00 Readme

26

• Why do the examples populate the PIE vector table and then re-assign some of the
function pointers to other ISRs?

The examples share a common default ISR file. This file is used to populate the PIE vector
table with pointers to default interrupt service routines. Any ISR used within the example is
then remapped to a function within the same source file. This is done for the following
reasons:

– The entire PIE vector table is enabled, even if the ISR is not used within the example.
This can be very useful for debug purposes.

– The default ISR file is left un-modified for use with other examples or your own project
as you see fit.

– It illustrates how the PIE table can be updated at a later time.

• When I build many of the examples, the compiler outputs the following: remark:
controlling expression is constant. What does this mean?

Many of the examples run forever until the user stops execution by using a while(1) {} loop
The remark refers to the while loop using a constant and thus the loop will never be exited.

• When I build some of the examples, the compiler outputs the following: warning:
statement is unreachable. What does this mean?

Many of the examples run forever until the user stops execution by using a while(1) {} loop.
If there is code after this while(1) loop then it will never be reached. For example in the
McBSP loopback program, depending on which serial word size the example is compiled
for, some code may never be used.

• I changed the build configuration of one of the projects from “Debug” to “Release”
and now the project will not build. What could be wrong?

When you switch to a new build configuration (Project->Configurations) the compiler and
linker options changed for the project. The user must enter other options such as include
search path and the library search path. Open the build options menu (Project->Build
Options) and enter the following information:

– Compiler Tab, Preprocessor: Include search path

– Linker Tab, Basic: Library search path

– Linker Tab, Basic: Include libraries (ie rts2800_ml.lib)

Refer to section 3.5 for more details.

• In the flash example I loaded the symbols and ran to main. I then set a breakpoint but
the breakpoint is never hit. What could be wrong?

In the Flash example, the InitFlash function and several of the ISR functions are copied out
of flash into SARAM. When you set a breakpoint in one of these functions, Code Composer
will insert an ESTOP0 instruction into the SARAM location. When the ESTOP0 instruction
is hit, program execution is halted. CCS will then remove the ESTOP0 and replace it with
the original opcode. In the case of the flash program, when one of these functions is
copied from Flash into SARAM, the ESTOP0 instruction is overwritten code. This is why the
breakpoint is never hit. To avoid this, set the breakpoint after the SARAM functions have
been copied to SARAM.

SPRC097 Version 1.00 Readme

 27

• The eCAN control registers require 32-bit write accesses.

The compiler will instead make a 16-bit write accesses if it can in order to improve codesize
and/or performance. This can result in unpredictable results.

One method to avoid this is to create a duplicate copy of the eCAN control registers in RAM.
Use this copy as a shadow register. First copy the contents of the eCAN register you want
to modify into the shadow register. Make the changes to the shadow register and then write
the data back as a 32-bit value. This method is shown in the DSP281x_examples\
ecan_back2back example project.

5.1 Effects of read-modify-write instructions.

When writing any code, whether it be C or assembly, keep in mind the effects of read-modify-
write instructions.

The ‘28x DSP will write to registers or memory locations 16 or 32-bits at a time. Any instruction
that seems to write to a single bit is actually reading the register, modifying the single bit, and
then writing back the results. This is referred to as a read-modify-write instruction. For most
registers this operation does not pose a problem. A notable exception is:

5.1.1 Registers with multiple flag bits in which writing a 1 clears that flag.

For example, consider the PIEACK register. Bits within this register are cleared when writing a 1
to that bit. If more then one bit is set, performing a read-modify-write on the register may clear
more bits then intended.

The below solution is incorrect. It will write a 1 to any bit set and thus clear all of them:

/**
* User’s source file
**/

 PieCtrl.PIEAck.bit.Ack1 = 1; // INCORRECT! May clear more bits.

The correct solution is to write a mask value to the register in which only the intended bit will
have a 1 written to it:

/**
* User’s source file
**/

 #define PIEACK_GROUP1 0x0001
 ……
 PieCtrl.PIEACK.all = PIEACK_GROUP1; // CORRECT!

 SPRC097 Version 1.00 Readme

28

5.1.2 Registers with Volatile Bits.

Some registers have volatile bits that can be set by external hardware.

Consider the PIEIFRx registers. An atomic read-modify-write instruction will read the 16-bit
register, modify the value and then write it back. During the modify portion of the operation a bit
in the PIEIFRx register could change due to an external hardware event and thus the value may
get corrupted during the write.

The rule for registers of this nature is to never modify them during runtime. Let the CPU take the
interrupt and clear the IFR flag.

SPRC097 Version 1.00 Readme

 29

6 Migration Tips from V.58 to V1.00

This section will guide you through the steps needed to migrate projects that are currently built
using V.58 of the header files to V1.00.

1. Create a copy of your project to work with or back-up your current project.

2. Create a copy of the header file source you want to use or create a back-up of the
header files.

– DSP281x_headers: code required to incorporate the header files into your project

– DSP281x_common: shared source code much of which is used in the example projects.

– DSP281x_examples: example projects that use the header files and shared code.

3. File name changes

The filenames of the standard files have changed slightly since the V.58 release. Previously
all standard header files and example code files began with DSP28. In anticipation of future
‘28x devices, the prefix DSP28 has been changed to DSP281x.

– Update the project file:

If your project uses the example .c files, then open the project file (.pjt) in a text editor.
Using a search and replace method, change all instances of DSP28 to DSP281x. It is
advised that you review the change before it is made. That is, use the find next option,
review the change and then perform the replacement.

– Update your source:

In your source code if you have included DSP28_Device.h this should be changed to
DSP281x_Device.h.

4. Load the project into Code Composer Studio

Code Composer will complain that it cannot find some of the source files. This is due to the
new directory structure used for V1.00. This change was done to better partition the header
files from the example code.

As you are prompted for each source file location, browse to the new location of the file.

– DSP281x_GlobalVariableDefs.c is located in DSP281x_headers\source

– All other .c files can be found in DSP281x_common\source

– Memory linker .cmd files are located in DSP281x_common\cmd

– If you were using the file: EzDSP_RAM_lnk.cmd, then remove this file from the project
and replace it with F2812_EzDSP_RAM_lnk.cmd located in DSP281x_common\cmd

 SPRC097 Version 1.00 Readme

30

5. Follow all of the steps in section 4 to incorporate the header files and example
source into your existing project. Some of these steps may already be complete.

Some of the major differences between V.58 and V1.00 are highlighted below:

– Section 4.2 step 6: Include the header linker command file. The linker files have now
been split into memory specific and peripheral header file specific files.

– Section 4.2 step 7: Update the include search path for the new location of the header
files.

– Section 4.3 step 1 & 2: If your project uses any of the sample code, include
DSP281x_Examples.h in your source code. This file contains the example specific
information that used to be part of DSP281x_Device.h.

6. Build the project.

The compiler will highlight areas that have changed. Most of the changes will be bit-name
or register name corrections to align with the peripheral user guides. Some example errors
and their solutions are outlined below.

– Register name has changed to align with the user’s guide:

Example: struct "EVA_REGS" has no field "CAPCON".

Solution: Refer to Table 9 for register changes. Table 9 shows that CAPCON for EV-A
was changed to GPTCONA. Update the code to use CAPCONA.

– Bit field name has changed to align with the user’s guide:

Example error: struct "FOTPWAIT_BITS" has no field "OPTWAIT" Solution:

Solution: Refer to Table 10 for bit name changes. Table 10 shows that OPTWAIT was
changed to OTPWAIT. Update the code to use OTPWAIT.

– Register was removed and is no longer used.

Example: struct "DEV_EMU_REGS" has no field "M0RAMDFT”

Solution: Refer to Table 9 for register changes. Table 9 indicates that this register was
removed and no longer needs to be initialized. Remove the code that initializes this
register.

– Register bit-field definitions for a register were removed:

Example: expression must have struct or union type

This error occurs when the .bit or the .all is used to access a register that no longer has
a union defined.

Solution: Examine the source code that caused this error. For example:

SysCtrlRegs.SCSR.all = 0x0002;

Refer to Table 10 for bit name changes. Table 10 indicates the bit field was removed for
this register because of the sensitivity of other bits to read-modify-write instructions.
Modify the code to not use .bit or .all:

SysCtrlRegs.SCSR = 0x0002;

SPRC097 Version 1.00 Readme

 31

– Register bit-field definitions for a register were added:

Example: a value of type "int" cannot be assigned to an entity of
type "union PLLCR_REG"

This error occurs when a register that has a bit-field definition is accessed without
specifying the .bit or the .all union member.

Solution: Look at the source that caused the error. For example:

SysCtrlRegs.PLLCR = 0x000A;

Refer to Table 10 for bit name changes. Table 10 indicates that bit fields were added for
this register. The solution is to access the register using the .all union member:

SysCtrlRegs.PLLCR.all = 0x000A;

7. Enabling the PIE.

In V.58 the PIE block was enabled in the IntPieCtrl() function. In the examples this occurred
before the PIE vector table was initialized. The PIE enable has been removed from the
IntPieCtrl() function and is now done after the PIE table initialization. Users should take
care to insure the PIE is properly enabled in their projects.

8. PLL lock time change.

As of Rev C F2810/12 silicon, the lock time of the PLL has changed to 131072 CLKIN
cycles. Make sure this change is reflected in your code.

9. M0RAMDFT, M1RAMDFT, L0RAMDFT, L1RAMDFT and H0RAMDFT were removed:

On F2810/12 prior to Rev C silicon initialization of these registers was required. This is no
longer required as of Rev C silicon and the code that initializes them should be removed.

 SPRC097 Version 1.00 Readme

32

Table 9. Register Name Changes

 Register Name

Peripheral Old New Comment

DevEmuRegs

 M0RAMDFT - Register removed. Init no longer needed.

 M1RAMDFT - Register removed. Init no longer needed.

 L0RAMDFT - Register removed. Init no longer needed.

 L1RAMDFT - Register removed. Init no longer needed.

 H0RAMDFT - Register removed. Init no longer needed.

EcanaRegs

 CANLNT CANTSC Alignment with user’s guide.

 CANMID CANMSGID Alignment with user’s guide.

 CANMCF CANMSGCTRL Alignment with user’s guide.

 MDRL MDL Alignment with user’s guide. Register can
now be accessed as .byte or .word

 MDRH MDH Alignment with user’s guide.

Register can now be accessed as .byte or
.word

EvaRegs

 EXTCON EXTCONA Alignment with user’s guide.

 CAPCON CAPCONA Alignment with user’s guide

 CAPFIFO CAPFIFOA Alignment with user’s guide

McbspaRegs

 PCR1 PCR Alignment with user’s guide.

SPRC097 Version 1.00 Readme

 33

Table 10. Summary of Bit-Name Changes from V.58 to V1.00

 Bit Name

Peripheral Register Old New Comment

AdcRegs

 ADCMAXCONV MAX_CONV MAX_CONV1

MAX_CONV2

Field was split into two parts:

MAX_CONV1 0:3 &

MAX_CONV2 4:6

 ADCTRL1 rsvd2 SEQ_OVRD New Feature as of Rev C

CpuTimerRegs

 TCR OUTSTS reserved Feature not implemented on F281x

 FORCE reserved Feature not implemented on F281x

 POL reserved Feature not implemented on F281x

 TOG reserved Feature not implemented on F281x

 FRCEN reserved Feature not implemented on F281x

 PWIDTH reserved Feature not implemented on F281x

DevEmuRegs

 DEVICEID PARTID reserved Feature no longer supported

 M0RAMDFT - - Removed. Init no longer needed.

 M1RAMDFT - - Removed. Init no longer needed.

 L0RAMDFT - - Removed. Init no longer needed.

 L1RAMDFT - - Removed. Init no longer needed.

 H0RAMDFT - - Removed. Init no longer needed.

EcanaRegs

 CANMC SCM SCB Alignment with user’s guide.

 LNTM TCC Alignment with user’s guide.

 LNTC MBCC Alignment with user’s guide.

 CANBTC TSEG2 TSEG2REG Alignment with user’s guide.

 TSEG1 TSEG1REG Alignment with user’s guide.

 SJW SJWREG Alignment with user’s guide.

 ERM reserved Feature not implemented on F281x

 ERM reserved Alignment with user’s guide.

 BRP BRPREG

 CANGIFO TCOIFO TCOFO Alignment with user’s guide.

 MAIFO MTOFO Alignment with user’s guide.

 CANGIM SIL GIL Alignment with user’s guide.

 TCOIM TCOM Alignment with user’s guide.

 MAIM MTOM Alignment with user’s guide.

 CANGIF1 TCOIF1 TCOF1 Alignment with user’s guide.

 MAIF1 MTOF1 Alignment with user’s guide.

 SPRC097 Version 1.00 Readme

34

Table 4 Continued - Summary of Bit-Name Changes from V.58 to V1.00

 Bit Name
Peripheral Register Old New Comment

EcanaRegs continued

 CANTIOC TXIN reserved Feature not implemented

 TXOUT reserved Feature not implemented

 TXDIR reserved Feature not implemented

 CANRIOC RXIN reserved Feature not implemented

 RXOUT reserved Feature not implemented

 RXDIR reserved Feature not implemented

 CANMSGID MSGID_L EXTMSGID_L Alignment with user’s guide.

 MSGID_H EXTMSGID_H

STDMSGID

Due to 16-bit size limit for bit-fields,
this was broken into two parts

EvaRegs

 GPTCONA TCOMPOE TCMPOE Alignment with user’s guide.

 rsvd2 T1CTRIPE

T2CTRIPE

Correction

 EXTCONA QEPIQEL QEPIQUAL Correction

 COMCONA rsvd C1TRIPE

C2TRIPE

C3TRIPE

FCMP1OE

FCMP2OE

FCMP3OE

Correction

 CAPCONA CAPQEPN CAP12EN Alignment with user’s guide.

EvbRegs

 GPTCONB TCOMPOE TCMPOE Alignment with user’s guide.

 T1CTRIP T3CTRIPE Correction

 T2CTRIP T4CTRIPE Correction

 EXTCONB QEPIQEL QEPIQUAL Correction

 COMCONB rsvd3 C4TRIPE

C5TRIPE

C6TRIPE

FCMP4OE

FCMP5OE

FCMP6OE

Correction

 CAPCONB CAPQEPN CAP45EN Alignment with user’s guide.

SPRC097 Version 1.00 Readme

 35

Table 4 Continued - Summary of Bit-Name Changes from V.58 to V1.00

 Bit Name

Peripheral Register Old New Comment

McbspaRegs

 XCERA XCEA0-XCEA15 XCERA0-XCERA15 Alignment with user’s guide.

 XCERB XCEB0-XCEB15 XCERB0-XCERB15 Alignment with user’s guide.

 XCERC XCEC0-XCEC15 XCERC0-XCERC15 Alignment with user’s guide.

 XCERD XCED0-XCED15 XCERD0-XCERD15 Alignment with user’s guide.

 XCERE XCEE0-XCEE15 XCERE0-XCERE15 Alignment with user’s guide.

 XCERC XCEF0-XCEF15 XCERF0-XCERF15 Alignment with user’s guide.

 XCERG XCEG0-XCEG15 XCERG0-XCERG15 Alignment with user’s guide.

 MFFCT TXDLY FFTXDLY Alignment with user’s guide.

 MFFRX IL RXFFIL Alignment with user’s guide

 INT_CLR RXFFINT_CLEAR Alignment with user’s guide

 INT RXFFINT_FLAG Alignment with user’s guide

 ST RXFFST Alignment with user’s guide

 RRESET RXFIFO_RESET Alignment with user’s guide

 OVF_CLR RXFFOVF_CLEAR Alignment with user’s guide

 OVF RXFFOVF_FLAG Alignment with user’s guide

 MFFTX IL TXFFIL Alignment with user’s guide

 INT_CLR TXFFINT_CLEAR Alignment with user’s guide

 INT TXFFINT_FLAG Alignment with user’s guide

 ST TXFFST Alignment with user’s guide

 XRESET TXFIFO_RESET Alignment with user’s guide

 SPCR1 REMPTY RFULL Correction

 SRGR2 GYSNC GSYNC Correction

 CLKSP resvd Correction

SciaRegs

 SCIRXST RXERR RXERROR Alignment with user’s guide.

 SCIFFTX resvd SCIRST Correction

 SCIFFRX RSOVF_CLR RXFFOVRCLR Alignment with user’s guide.

ScibRegs

 SCIRXST RXERR RXERROR Alignment with user’s guide.

 SCIFFTX resvd SCIRST Correction

 SCIFFRX RSOVF_CLR RXFFOVRCLR Alignment with user’s guide.

SpiaRegs

 SPIFFTX TXFFINTINTCLR TSFFINTCLR Alignment with user’s guide.

 TXFIFORESET TXFIFO Alignment with user’s guide.

 rsvd SPIFFENA

SPIRST

Correction

 SPICCR RESET SPISWRESET Alignment with user’s guide.

 SPICTL OVERRUN OVERRUNINTENA Alignment with user’s guide.

 SPRC097 Version 1.00 Readme

36

Table 4 Continued - Summary of Bit-Name Changes from V.58 to V1.00

 Bit Name

Peripheral Register Old New Comment

SysCtrlRegs

 PCLKCR SCIENCLKA SCIAENCLK Alignment with user’s guide.

 SCIENCLKB SCIBENCLK Alignment with user’s guide.

 SCSR WDOVERRIDE

WDENINT

 Register bit fields were removed due
to WDOVERRIDE sensitivity to read-
modify-write instructions

Use: SysCtrlRegs.SCSR = MASK

 LPMCR0 - LPM

QUALSTDBY

Bit fields added. Use .all or .bit to
access this register.

 LPMCR1 - XINT1

XNMI

WDINT etc…

Bit fields added. Use .all or .bit to
access this register.

 PLLCR DIV Bit fields added. Use .all or .bit to
access this register.

FlashRegs

 FBANKWAIT OPTWAIT OTPWAIT Typo correction

SPRC097 Version 1.00 Readme

 37

7 Packet Contents:

This section lists all of the files included in the release.

7.1 Header File Support – DSP281x_headers

The DSP281x header files are located in the <base>\DSP281x_headers\ directory.

7.1.1 DSP281x Header Files – Main Files

The following files must be added to any project that uses the DSP281x header files. Refer to
section 4.2 for information on incorporating the header files into a new or existing project.

Table 11. DSP281x Header Files – Main Files

File Location Description

DSP281x_Device.h DSP281x_headers\include Main include file. Include this one file in any of
your .c source files. This file in-turn includes all of
the peripheral specific .h files listed below. In
addition the file includes typedef statements and
commonly used mask values. Refer to section 4.2.

DSP281x_GlobalVariableDefs.c DSP281x_headers\source Defines the variables that are used to access the
peripheral structures and data section #pragma
assignment statements. This file must be included
in any project that uses the header files. Refer to
section 4.2.

DSP281x_Headers_BIOS.cmd DSP281x_headers\cmd Linker .cmd file to assign the header file variables
in a BIOS project. This file must be included in
any BIOS project that uses the header files. Refer
to section 4.2.

DSP281x_Headers_nonBIOS.cmd DSP281x_headers\cmd Linker .cmd file to assign the header file variables
in a non-BIOS project. This file must be included
in any non-BIOS project that uses the header files.
Refer to section 4.2.

 SPRC097 Version 1.00 Readme

38

7.1.2 DSP281x Header Files – Peripheral Bit-Field and Register Structure Definition
Files

The following files define the bit-fields and register structures for each of the peripherals on the
281x devices. These files are automatically included in the project by including
DSP281x_Device.h. Refer to section 4.2 for more information on incorporating the header files
into a new or existing project.

Table 12. DSP281x Header File Bit-Field & Register Structure Definition Files

File Location Description

DSP281x_Adc.h DSP281x_headers\include ADC register structure and bit-field definitions.

DSP281x_CpuTimers.h DSP281x_headers\include CPU-Timer register structure and bit-field definitions.

DSP281x_DevEmu.h DSP281x_headers\include Emulation register definitions

DSP281x_ECan.h DSP281x_headers\include eCAN register structures and bit-field definitions.

DSP281x_Ev.h DSP281x_headers\include Event manager (EV) register structures and bit-field
definitions.

DSP281x_Gpio.h DSP281x_headers\include General Purpose I/O (GPIO) register structures and
bit-field definitions.

DSP281x_Mcbsp.h DSP281x_headers\include McBSP register structure and bit-field definitions.

DSP281x_PieCtrl.h DSP281x_headers\include PIE control register structure and bit-field definitions.

DSP281x_PieVect.h DSP281x_headers\include Structure definition for the entire PIE vector table.

DSP281x_Sci.h DSP281x_headers\include SCI register structure and bit-field definitions.

DSP281x_Spi.h DSP281x_headers\include SPI register structure and bit-field definitions.

DSP281x_SysCtrl.h DSP281x_headers\include System register definitions. Includes Watchdog, PLL,
CSM, Flash/OTP, Clock registers.

DSP281x_Xintf.h DSP281x_headers\include External memory interface (XINTF) register structure
and bit-field definitions.

DSP281x_XIntrupt.h DSP281x_headers\include External interrupt register structure and bit-field
definitions.

7.1.3 Code Composer .gel Files

The following Code Composer Studio .gel files are included for use with the DSP281x Header
File peripheral register structures.

Table 13. Included GEL Files

File Location Description

DSP281x_Peripheral.gel DSP281x_headers\gel Provides GEL pull-down menus to load the DSP281x data structures
into the watch window.
You may want to have CCS load this file automatically by adding a
GEL_LoadGel(“<base>DSP281x_headers\/gel\DSP281xperipheral.gel”)
function to the standard F2812.gel that was included with CCS.

DSP281x_GpioQuickRef.gel DSP281x_headers\gel Provides a quick reference for the General Purpose I/O ports on the
F281x DSPs. It simply prints out the MUX information into a debugger
window.

SPRC097 Version 1.00 Readme

 39

7.1.4 Variable Names and Data Sections

This section is a summary of the variable names used and data sections allocated by the
DSP281x_headers\source\DSP281x_GlobalVariableDefs.c file.

Peripheral Starting Address Structure Variable Name

ADC 0x007100 AdcRegs

Code Security Module 0x000AE0 CsmRegs

Code Security Module Password Locations CsmPwl

CPU Timer 0 0x000C00 CpuTimer0Regs

Device and Emulation Registers 0x000880 DevEmuRegs

eCAN 0x006000 ECanaRegs

eCAN Mail Boxes 0x006100 ECanaMboxes

eCAN Local Acceptance Masks 0x006040 ECanaLAMRegs

eCAN Message Object Time Stamps 0x006080 ECanaMOTSRegs

eCAN Message Object Time-Out 0x0060C0 ECanaMOTORegs

Event Manager A (EV-A) 0x007400 EvaRegs

Event Manager B (EV-B) 0x007500 EvbRegs

Flash & OTP Configuration Registers 0x000A80 FlashRegs

General Purpose I/O Data Registers 0x0070E0 GpioDataRegs

General Purpose MUX Registers 0x0070C0 GpioMuxRegs

McBSP Registers 0x007800 McbspaRegs

PIE Control 0x000CE0 PieCtrlRegs

7.2 Common Example Code – DSP281x_common

7.2.1 Peripheral Interrupt Expansion (PIE) Block Support

In addition to the register definitions defined in DSP281x_PieCtrl.h, this packet provides the
basic ISR structure for the PIE block. These files are:

Table 14. Basic PIE Block Specific Support Files

File Location Description

DSP281x_DefaultIsr.c DSP281x_common\source Shell interrupt service routines (ISRs) for the entire PIE vector
table. You can choose to populate one of functions or re-map
your own ISR to the PIE vector table. Note: This file is not
used for DSP/BIOS projects.

DSP281x_DefaultIsr.h DSP281x_common\include Function prototype statements for the ISRs in
DSP281x_DefaultIsr.c. Note: This file is not used for
DSP/BIOS projects.

DSP281x_PieVect.c DSP281x_common\source Creates an instance of the PIE vector table structure initialized
with pointers to the ISR functions in DSP281x_DefaultIsr.c.
This instance can be copied to the PIE vector table in order to
initialize it with the default ISR locations.

 SPRC097 Version 1.00 Readme

40

In addition, the following files are included for software prioritization of interrupts. These files are
used in place of those above when additional software prioritization of the interrupts is required.
Refer to the example and documentation in DSP281x_examples\sw_prioritized_interrupts for
more information.

Table 15. Software Prioritized Interrupt PIE Block Specific Support Files

File Location Description

DSP281x_SWPrioritizedDefaultIsr.c DSP281x_common\source Default shell interrupt service routines (ISRs).
These are shell ISRs for all of the PIE interrupts.
You can choose to populate one of functions or
re-map your own interrupt service routine to the
PIE vector table. Note: This file is not used for
DSP/BIOS projects.

DSP281x_SWPrioritizedIsrLevels.h DSP281x_common\include Function prototype statements for the ISRs in
DSP281x_DefaultIsr.c. Note: This file is not
used for DSP/BIOS projects.

DSP281x_SWPrioritizedPieVect.c DSP281x_common\source Creates an instance of the PIE vector table
structure initialized with pointers to the default
ISR functions that are included in
DSP281x_DefaultIsr.c. This instance can be
copied to the PIE vector table in order to initialize
it with the default ISR locations.

7.2.2 Peripheral Specific Files

Several peripheral specific initialization routines and support functions are included in the
peripheral .c source files in the DSP281x_common\src\ directory. These files include:

Table 16. Included Peripheral Specific Files

File Description

DSP281x_GlobalPrototypes.h Function prototypes for the peripheral specific functions included in these files.

DSP281x_Adc.c ADC specific functions and macros.

DSP281x_CpuTimers.c CPU-Timer specific functions and macros.

DSP281x_ECan.c Enhanced CAN specific functions and macros.

DSP281x_Ev.c Event Manager (EV) specific functions and macros.

DSP281x_Gpio.c General-purpose IO (GPIO) specific functions and macros.

DSP281x_Mcbsp.c McBSP specific functions and macros.

DSP281x_PieCtrl.c PIE control specific functions and macros.

DSP281x_Sci.c SCI specific functions and macros.

DSP281x_Spi.c SPI specific functions and macros.

DSP281x_SysCtrl.c System control (watchdog, clock, PLL etc) specific functions and macros.

DSP281x_Xintf.c External memory interface (XINTF) specific functions and macros.

DSP281x_XIntrupt.c External interrupts specific functions and macros.

Note: The specific routines are under development and may not all be available as of this release. They will be
added and distributed as more examples are developed.

SPRC097 Version 1.00 Readme

 41

7.2.3 Utility Function Source Files

Table 17. Included Utility Function Source Files

File Description

DSP281x_CodeStartBranch.asm Branch to the start of code execution. This is used to re-direct code execution
when booting to Flash, OTP or H0 SARAM memory. An option to disable the
watchdog before the C init routine is included.
If booting from XINTF Zone 7, use DSP281x_XintfBootReset.asm instead.

DSP281x_XintfBootReset.asm This file is used to boot from XINTF Zone 7. An option to disable the watchdog
before the C init routine is included.
If booting to H0, Flash or OTP, use DSP281x_CodeStartBranch.asm instead.

DSP281x_DBGIER.asm Assembly function to manipulate the DEBIER register from C.

DSP281x_usDelay.asm Assembly function to insert a delay time in microseconds. This function is cycle
dependant and must be executed from zero wait-stated RAM to be accurate.
Refer to DSP281x_examples\adc for an example of its use.

DSP281x_CSMPasswords.asm Include in a project to program the code security module passwords and
reserved locations.

7.2.4 Example Linker .cmd files

Example memory linker command files are located in the DSP281x_common\cmd directory. For
getting started using the 281x devices, the basic F2812_EzDSP_RAM_lnk.cmd file is suggested
and used by many of the included examples.

Table 18. Included Main Linker Command Files

Main Liner Command File

Examples
Description

F2812_EzDSP_RAM_lnk.cmd eZdsp memory linker example. Only allocates SARAM
locations. This memory map is used for all of the examples that
run out of the box on an F2812 EzDSP.

No Flash, OTP, or CSM password protected locations are used.

F2810.cmd F2810 memory linker command file. Includes all Flash, OTP
and CSM password protected memory locations.

F2812.cmd F2812 memory linker command file. . Includes all Flash, OTP
and CSM password protected memory locations.

F2812_XintfBoot.cmd F2812 memory linker command file to illustrate booting from
XINTF Zone 7

