Planificació, Recursos i Costos

PLANIFICACIÓ, RECURSOS I COSTOS .. 100
FASES DE LA PLANIFICACIÓ ... 102
Anàlisi i Especificació ... 103
Disseny i Arquitectura ... 104
Implementació .. 104
Sortida a Producció .. 104
RECURSOS .. 107
ESTUDI DE COSTOS .. 108
Costos de Desenvolupament ... 108
Costos Hardware ... 108
Costos Software ... 109
Fases de la Planificació

Abans de definir la forma de planificar el projecte, cal dir que ha estat molt **compliment fer una correcta planificació**, tal i com ja es va especificar a l’informe preliminar d’aquest projecte, ja que per qüestions internes de l’empresa, sempre s’ha estat buscant **noves funcionalitats** que inicialment no estaven definides, i modificant aquelles que sí que hi eren.

Principalment, s’han anat modificant funcionalitats de la interfície gràfica d’usuari degut a les limitacions que presentava la API, i afegint de noves en la part del model de dades per a poder exportar el diagrama BPMN a diferents formats de BPM.

Pel que fa a la **metodologia de desenvolupament** emprada a l’empresa BlueIT, s’ha seguit la manera de fer interna, que consta de diferents fases, on, habitualment moltes empreses del sector coincideixen. Les fases són les següents: definició i **anàlisi dels requisits** i especificació, **disseny de la solució** segons l’arquitectura, **implementació** i sortida a **producció** d’un candidat(Release).

I la interacció d’aquestes fases per a poder establir una correcta planificació, el podem resumir en el següent diagrama:
Tal i com es pot veure en la figura anterior, les fases de la planificació i desenvolupament del projecte, es duen a terme en forma de cicle. D’aquesta manera ens garanteix que si es troben errors en qualsevol de les fases de la planificació, tant en l’anàlisi, com en el disseny, com en la implementació, es pugui tornar a la fase anterior per corregir els errors trobats i així poder continuar amb el desenvolupament de l’aplicació.

Si seguim la lògica, la fase de pujada a producció ha d’estar separada de la resta de fases, perquè es suposa que un cop estem en ella, ja es té una aplicació suficientment provada i estable, i que no impliqui més canvis o modificacions/ampliacions de la mateixa.

Anàlisi i Especificació

Aquesta fase, la podem considerar que és una de les fases més determinants de totes, ja que una correcta i concisa especificació, ens afectarà a la resta de fases d’una manera correcta o amb unes certes dificultats si es comenten errors o faltes de definició.

En aquesta fase es recullen totes les dades necessàries per definir totes les funcionalitats que ha de cobrir l’aplicació. Com era d’esperar, s’han realitzat tot un seguit de reunió entre els membres de l’empresa coneixedors de l’abast de l’aplicació. En elles, han estat presents el gerent, cap de projecte, arquitecte i jo mateix. Plantejades les diferents necessitats es dissenya un prototipus inicial.

Un cop dissenyat el prototipus inicial, es pot visualitzar gràficament totes les necessitats que es van expressar en les primeres reunió, i que serviran d’ajuda per als desenvolupadors. Llavors, es van convocar posteriors reunió per a que es donés una valoració inicial i es poguessin modificar o afegir aquells aspectes que no es van tenir en compte inicialment.

Quan tenim tots els requisits i funcionalitats, passem a fer l’especificació de l’aplicació. Juntament amb el cap de projecte i amb l’arquitecte, s’escullen les tecnologies a fer servir i l’arquitectura del sistema més apropriats. Un cop definides es poden definir les funcionalitats que tindrà l’aplicació, els casos d’ús i el model de dades a emprar.

En tot el possible dissenyarem un model de dades el suficientment extensible per a que les futures necessitats i funcionalitats, tinguin cabuda sense haver de fer grans canvis o cap, que afectin el model i el disseny.
Disseny i Arquitectura

Seguint els estàndards de desenvolupament, la fase de disseny ens garanteix una definició més precisa del sistema. Es tracta d’una fase molt important ja que reduirem molt considerablement els costos temporals i de desenvolupament en el cas que es duguin a terme modificacions, per tant hem de ser molt concisos i acurats a l’hora de fer el disseny.

L’arquitectura de l’aplicació, junt amb les tecnologies que es facin servir, també ens garantirà que les possibles modificacions o ampliacions, afectin mínimament als canvis que s’hagin de fer a l’aplicació.

Implementació

Amb totes les tecnologies definides en la fase anterior, podem començar la fase d’implementació, i començar ha construir l’aplicació segons les funcionalitats i requisits estudiats.

Degut a l’origen propi de l’aplicació, podem dividir la seva implementació en tres mòduls ben diferenciats: Interfície Gràfica d’Usuari, manegadors i llançadors d’events i model de dades amb la gestió de fitxers. D’aquesta manera, podem incidir el desenvolupament en un mòdul sense que es necessiti la resta per a poder passar una sèrie de proves que comproven correcte funcionament, i poder, al mateix temps, refinat el disseny de cadascun dels mòduls.

Per a seguir la metodologia emprada a la empresa, i arribats a aquesta fase de la planificació, és necessari passar un pla de test, que ens garantirà que la versió de l’aplicació pujada a producció(Release), està lliure d’errors i preserva la qualitat en aquesta fase final.

Sortida a Producció

Un cop l’aplicació i versió final, ha passat totes les proves i plans de test, es fa una pujada a producció, per tal que els usuaris que n’han de fer ús des d’altres ordinadors, puguin disposar-ne i l’adaptació dels mateixos sigui sense problemes així com confirmar el bon funcionament tal i com es dula a terme a la fase anterior.
<table>
<thead>
<tr>
<th>Nombre de tarea</th>
<th>Duración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definición del Proyecto</td>
<td>5 días</td>
</tr>
<tr>
<td>Fase d'Anàlisi</td>
<td></td>
</tr>
<tr>
<td>Entrevistes amb l'empresa</td>
<td>4 días</td>
</tr>
<tr>
<td>Definición de contexte i àmbit</td>
<td>3 días</td>
</tr>
<tr>
<td>Especificació de Requisits</td>
<td>3 días</td>
</tr>
<tr>
<td>Definició del model conceptual</td>
<td>9 días</td>
</tr>
<tr>
<td>Fase de Disseny</td>
<td></td>
</tr>
<tr>
<td>Disseny de l'arquitectura</td>
<td>25 días</td>
</tr>
<tr>
<td>Disseny del model de dades de disseny</td>
<td>7 días</td>
</tr>
<tr>
<td>Disseny del formet dels XMLs</td>
<td>3 días</td>
</tr>
<tr>
<td>Disseny de la IOU</td>
<td>2 días</td>
</tr>
<tr>
<td>Disseny del Managers</td>
<td>2 días</td>
</tr>
<tr>
<td>Fase d'Implementació</td>
<td></td>
</tr>
<tr>
<td>Configuració de l'entorn</td>
<td>88 días</td>
</tr>
<tr>
<td>Definició i implementació de la barra d'edició</td>
<td>3 días</td>
</tr>
<tr>
<td>Definició i implementació dels Components</td>
<td>15 días</td>
</tr>
<tr>
<td>Definició i implementació de la zona d'edició</td>
<td>18 días</td>
</tr>
<tr>
<td>Definició i implementació dels panells de propietats</td>
<td>12 días</td>
</tr>
<tr>
<td>Definició i implementació del menú</td>
<td>18 días</td>
</tr>
<tr>
<td>Funcionalitat del menú</td>
<td>14 días</td>
</tr>
<tr>
<td>Funcionalitat de la cèrrega d'ansius</td>
<td>10 días</td>
</tr>
<tr>
<td>Funcionalitat de desa d'ansius</td>
<td>10 días</td>
</tr>
<tr>
<td>Integració amb l'Intranet</td>
<td></td>
</tr>
<tr>
<td>Evaluació i Refinament</td>
<td></td>
</tr>
<tr>
<td>Fase de proves i tests</td>
<td>32 días</td>
</tr>
<tr>
<td>Gestió de canvis requerits per l'usuari</td>
<td>26 días</td>
</tr>
<tr>
<td>Memòria</td>
<td></td>
</tr>
<tr>
<td>Redacció de la Memòria</td>
<td>10 días</td>
</tr>
<tr>
<td>Preparació de la presentació</td>
<td>5 días</td>
</tr>
</tbody>
</table>
A la figura anterior, el diagrama de Gantt, podem veure com ha estat la planificació final que s'ha aplicat al projecte.

Tal i com s'havia indicat a diverses seccions d'aquesta memòria, juntament amb la interfície gràfica d'usuari i els manegadors d'aquesta, la planificació del projecte ha estat molt difícil de realitzar, degut als constants canvis i noves funcionalitats que es proposaven per part de l'empresa.

Per tant, amb això, ens venim a referir que l'estructura de la planificació inicial que s'havia programat pel projecte, no s'ajusta gens a la final que es mostra al gràfic. Els principals canvis que s'han realitzat, han estat de tipus temporal com estructural.

Això és, els canvis estructurals de la planificació els hem d'entendre com a noves funcionalitats o eliminacions d'altres delimitades per la API emprada. Aquests canvis estructurals, per tant, donen lloc a canvis temporals, modificant així la durada prevista per cadascuna de les diferents tasques planificades pel projecte.

Si observem el diagrama de Gantt anterior, podem distingir clarament les diferents fases de les quals ha constat el projecte. Fase d'especificació i disseny inicial, l'àmplia fase d'implementació, que ens ajudava a dissenyar les funcionalitats específicament, i per finalitzar la fase de proves i pujada a producció.

Cal comentar, respecte a aquesta planificació final, que l'únic de les fases que no s'ha modificat considerablement, ha estat la fase d'anàlisi i especificació, i que s'ajusta força a la planificada inicialment. La que obviament ha estat àmpliament modificada al llarg del projecte, ha estat la fase de disseny i repercutint a l'hora en la fase d'implementació, degut als constants canvis que es duien a terme.

De totes maneres, sempre s'ha intentat retallar temps en qualsevol de les tasques realitzades en el projecte, ja que la finalitat era tenir-ho enllestit amb la major brevetat possible. I gràcies a un correcte disseny de la interfície gràfica, s'ha facilitat molt el fet d'introduir noves funcionalitats a la aplicació sense que se'n ressentís el seu correcte funcionament.
Recursos

Com ja s'ha comentat, aquest projecte s'ha desenvolupament dintre d'un conveni universitat - empresa. Els recursos que s'han fet servir per tant, són escassos. Bàsicament, les persones implicades en el desenvolupament són bàsicament l'autor d'aquesta memòria i ja està. Ja que es poden comptar amb els dits de la mà, els cops que he pogut demanar ajuda.

Bàsicament la feina realitzada en el projecte és tota la que es pot arribar a fer per llençar una aplicació a producció, des de la planificació i l'anàlisi de requeriments, fins la instal·lació passant per la implementació.

Com tot becari dintre d'una empresa, la manca de recursos era palesa, i s'ha hagut d'adoptar tots els rols que les diferents fases de la planificació necessita: analista, dissenyador i programador. Tasca realmente complicada, ja que cada cop s'adoptava un rol diferent, s'havia d'abstreuure la idea i intenció de la resta de rols, per tal de donar una solució correcta i el suficientment independent de la resta.

La taula que trobem a continuació reflexa la quantitat de feina realitzada en cada moment que s'adoptava un rol diferent, així com les hores i el preu final de cadascun.

<table>
<thead>
<tr>
<th>Rol</th>
<th>Hores Estimades</th>
<th>Hores Reals</th>
<th>€/hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analista</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Dissenyador</td>
<td>30</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>Programador</td>
<td>840</td>
<td>960</td>
<td>6,5</td>
</tr>
</tbody>
</table>
Estudi de Costos

Com s’ha comentat en l’apartat anterior, es tracta d’un projecte desenvolupat en un conveni universitat – empresa i que el client que ha de gaudir de l’aplicació és la pròpia empresa, el principal cost ve donat pel sou dels **desenvolupadors** i el **cost** de les llicències dels programes fets servir.

Costos de Desenvolupament

Si tenim en compte que el sou del becari definit per la UPC és de 6,5€/hora, i que el desenvolupament ha tingut dues fases diferenciades segons el número d’hores: una primera fase de 2 mesos a mitja jornada(6h/dia), i una altra fase amb jornada completa de 5 mesos(8h/dia), ens surt el que queda reflexat a la següent taula.

<table>
<thead>
<tr>
<th>Fases</th>
<th>Hores</th>
<th>Preu Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase 1</td>
<td>240</td>
<td>1560 €</td>
</tr>
<tr>
<td>Fase 2</td>
<td>800</td>
<td>5200 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>6760 €</td>
</tr>
</tbody>
</table>

A tot això, s’ha de sumar les llicències de les eines de desenvolupament fetes servir, però s’han fet servir frameworks i eines OpenSource (com Eclipse, Java, Tomcat, AdobeFlex2), no afegeix cap cost addicional al del desenvolupador en aquest concepte.

Costos Hardware

D’una altra banda, si mirem la part de la fase de pujada a producció, i implantació del sistema en el servidor de l’empresa es necessitaria una inversió extra en infraestructures i hardware. Es fa la valoració econòmica encara que aquests equips ja hi són a l’empresa.

Servidor: 1500-2000€.
Ordinador client: 700/900€ màquina.
Xarxa LAN: instal·lació i manteniment (300-400€).
Costos Software

Com tota aplicació, es necessita d'un Sistema Operatiu per fer-la funcionar, tant a la banda de la màquina client, com a la banda del servidor. Farem la suposició de que en farem ús de distribucions Windows.

El preu oscil·la entre els 100€ i els 2800€ depenent del número de clients i de la versió.
Conclusions

CONCLUSIONS ..111
CONCLUSIONS GENERALS ..113
OPINIÓ PERSONAL ...115
Conclusions Generals

Un cop tenim una versió estable a la fase de producció i pujada al servidor d’aplicacions de l’empresa, el més lògic i realista que es pot fer per a poder fer una valoració suficientment objectiva del projecte, és agafar la impressió que teniem els primers dies quan es va plantejar aquest projecte, i mirarem de comprovar si s’han cobert els objectius que s’esperaven en un principi i quin ha estat el grau de compliment dels mateixos.

Interficie Gràfica capaç de modelitzar un procés

Realment, aquest objectiu és l’“objectiu” de tot el projecte, i el principal si tenim en compte en quin entorn ens movim, a través de web. Ha estat molt complicat mirar d’emular una aplicació d’escriptori en un entorn web.

A aquestes alcàs podem dir que aquest objectiu principal ha estat assolit. Hem de partir del fet que no existeix al mercat, cap aplicació d’aquest tipus de modelitzador BPM, i les escasses que hi ha, estan implementades íntegrament amb la interfície Flash7 i la API que aquesta integra anteriorment, l’ActionScript 2.0. Per la meva part, s’ha optat per la tecnologia Adobe Flex per partir d’una API que sigui capaç de donar un aspecte d’aplicació d’escriptori a través d’un entorn web.

Arribats a aquest punt, m’agradaria comentar que, de vegades, les empreses dintre dels seus projectes interns, demanen coses que no saben quin abast de dificultat poden arribar a tenir, o si pel contrari són realitzables. I una d’aquestes propostes quasi impossibles, ha estat el meu projecte.

S’han pogut incorporar una sèrie de funcionalitats que apareixen descrites en els requisits no funcionals, sobretot pel que fa als requisits d’aparença i usabilitat. Amb aquestes funcionalitats s’ha aconseguït un aspecte força professional i sobretot corporatiu, que és un aspecte que s’havia de cuidar, ja que l’aplicació finalment s’ha d’executar dintre de la Intranet de l’empresa.

Una de les principals funcionalitats que s’han implementat i que en un principi, semblaven impossibles de dur a terme, són les interaccions amb el ratolí. Com la selecció i múltiple selecció o creació i modificació del model de procés de negoci.

Aquesta ha estat la part més dificultosa de tot el projecte, ja que, com es comenta en la secció que en fa referència, la API feta servir té moltes limitacions, fet que mostra clarament la poca maduresa de l’ActionScript 3.0 quan ens referim a programació orientada a objectes, fins i tot, pel que fa als Events, secció on s’ha hagut de re-implementar part de la API. M’agradaria remarcar que el Garbage Collector que està implementat en aquesta API, és molt deficitari, i són molts els desenvolupadors d’arreu del món que hem patit aquesta deficiència.

Amb aquesta conclusió, queda palès l’inconvenient més gran amb el que m’he hagut d’afrontar.

7 Adobe Flash: programa incorporat al paquet de disseny Adobe Studio ©.
Guardar/Carregar XML que interpreti el motor de workflow

Partint de la total impossibilitat d’escriure fitxers en la màquina local, quan executem una aplicació d’internet/intranet, degut a lògics i comprensibles motius de seguretat, s’ha hagit de configurar un servidor d’aplicacions per a que ens pugui ajudar en aquesta comesa. Una de les peticions de funcionalitat per part de l’empresa que havia de tenir en un principi, era que els fitxers es guardessin a la màquina local. Sense comentaris.

El servidor d’aplicacions que s’ha fet servir ha estat Tomcat, degut a la seva gratuïtat i la seva potència. Un cop pujat a producció, podem garantir que gràcies a aquesta solució, hem pogut cobrir un objectiu bàsic del projecte. El fet de poder guardar i carregar els fitxers, tant del model gràfic del diagrama com el que enviemen al motor jBPM de l’empresa, ens garantitza tenir la persistència necessària del treball fet, per tant, l’usuari torna a tenir la sensació de que es troba dintre d’una aplicació d’escriptori sense estar-hi.

D’aquesta manera s’ha pogut garantir la funcionalitat del guardat de fitxers, ja que no es podia fer localment, tal i com ho fan les habituals aplicacions d’escriptori. Podem concloure que els objectius de usabilitat han estat coberts.

Creació de Components i Plantilles

Sense tenir res predefinit, seria una mica farragós posar-se a definir un diagrama BPM des de zero. Per tant, l’usuari pot definir components i plantilles, totalment personalitzats, per a fer servir com a objectes habituals i que li ajudin en la seva tasca de la definició del procés BPM.

Aquesta part ha estat força complicada de fer, ja que se li ha hagit de donar unes funcionalitats a la interfície gràfica d’usuari força complexes. En concret, el "drag&drop", que altres APIs integren directament, i encara que aquesta també la integra, no està suficientment desenvolupada com per donar la funcionalitat que es requeria. Per tant, s’ha reimplementat part de la funcionalitat de la API que s’ha necessitat. Podem afirmar que s’ha completat satisfactòriament aquest objectiu.

Podem concloure, per tant, que s’han cobert satisfactòriament tots els objectius establerts inicialment per aquest projecte. Així doncs, l’empresa pot disposar d’una aplicació única al mercat, un modelitzador de BPM a través de web per a fer servir des de qualsevol lloc sense necessitat d’instal·lació de software a la màquina client.
Opinió Personal

Sens dubte, i com a d'altres companys ja els hi haurà passat, el fet de realitzar el projecte final de carrera en una empresa, ha estat una bona experiència i sobretot molt profitosa, ja que es comprèn la manera de com les empreses gestionen els projectes i els duen a terme.

Però l'aspecte més important que s'ha de remarcar, i que sense ell hauria estat impossible acabar aquest projecte, ha estat la formació rebuda a la Facultat d'Informàtica de Barcelona, no tan sols pels coneixements teòrics que s'han aprèn, sinó la forma d'aplicar tots aquests coneixements i els hàbits per portar-los a terme. Encara recordo quan estava a classe i el comentari general era: "i això per a que ens servirà?".

Donaria qualsevol cosa per estar assegut de nou al costat dels companys i poder explicar que segurament tot el que ens expliquen els professors serveix, i molt.

També m'agradaria indicar que un dels aspectes més importants, pel que fa als hàbits apresos a la facultat, és sens dubte la dinàmica del treball en equip, que des del primer dia de facultat s'意图a inculcar. Ajuda a poder planificar i organitzar-te el temps en aquelles tasques a les que has estat encarregat, també ajuda a poder fer petites incursions a la direcció de grups de treball, en la que tots ens un futur no molt llunyà i volem poder aspirar.

El fet d'haver desenvolupat un producte que no existeix en el mercat, ha estat un gran al·lícit i m'ha ajudat a buscar, remenar, observar, filtrar, comprendre tot de conceptes i poder-los aplicar al meu projecte, per tal de donar un aspecte suficientment únic i original.

I un aspecte que també fa falta remarcar, són la diversitat d'assignatures optatives que s'ofereixen en la facultat. En el meu cas, ha estat imprescindible haver cursat les assignatures de caire empresarial que oferta la facultat, en especial SIO. Sense els conceptes que en aquesta assignatura s'imparteixen, segurament hauria d'haver-los aprèn per la meva banda, amb la consequent pèrdua de temps en la planificació. Així, d'aquesta manera, he pogut entendre des del primer moment la funcionalitat que havia d'abraçar el meu projecte.

Estic molt orgullós d'haver format part de l'alumnat d'aquesta facultat, i estic molt satisfet d'haver realitzat aquest projecte.
Bibliografia

BIBLIOGRAFIA .. 117
LLIBRES CONSULTATS ... 119
ENLLAÇOS DE REFERÈNCIA 120
Llibres Consultats

Farré, Olivé, Quer (2003). Enginyeria del software: Diseny II. Edicions UPC

Fernández, Jorge (2004). Transparències Teoria SIO. CPET
Enllaços de referència

Web d'Adobe Flex:

Web de l'estàndard BPMN:
http://www.bpmn.org/

Web de l'estàndard UML:
http://www.uml.org

Web del IDE Eclipse:
http://www.eclipse.org/

Web de Java:
http://java.sun.com/
Annexos

ANNEXOS ... 122
ANNEX 1: BPMN .. 124
ANNEX 1: BPMN

Com ja s’ha comentat anteriorment, el modelitzador està basat en l’estàndard BPMN (Business Process Management Notation) per tal de fer el diagrama de procés de negoci correctament.

BPMN va ser desenvolupat per la BPMI amb els següents objectius:

- Donar una notació fàcilment reconeixible per qualsevol des de l’analista del negoci, el desenvolupador tècnic i fins la gent pròpia del negoci.
- Crear un pont estandarditzat entre el disseny de processos de negoci i la seva implementació.
- Assegurar que els llenguatges per a l’execució de processos de negoci puguin ser visualitzats amb una notació comú.

Obtenint com a resultats:

- Defineix la notació i semàntica d’un BPD.
- Defineix un mapping de BPMN a BPEL4WS.
- Proveeix la capacitat d’entendre els procediments interns en una notació gràfica i dona a les organitzacions la habilitat de comunicar-los d’una manera estàndard.
- Millora les capacitat de les notacions de processos de negoci tradicionals per manejar els conceptes de processos de negoci B2B.

Un BPD és un diagrama dissenyat per ser fet servir per les persones que dissenyen i administren processos de negoci. Les quatre categories bàsiques d’elements que es poden trobar en un BPD són:

- Objectes de flux.
- Objectes de connexió.
- Swimlanes.
- Artefactes.

To seguit es definiran els diferents elements que formen part d’aquest estàndard de notació per modelar processos de negoci.

Activitats

És un treball o tasca que és executat dins d’un procés de negoci. Pot ser atòmica o no, i n’hi ha de tres tipus:

- Procés.
- Subprocés.
- Tasca.

8 BPMI: sigles de Business Process Management Initiative.
9 BPD: sigles de Business Process Diagram.
10 BPEL4WS: sigles de Business Process Execution Language For WebServices.
11 B2B: sigles de Business To Business.
És una **activitat executada dins d’una companyia**. És dibuixat com un gràfic d’objectes de flux, els quals són un conjunt d’altres **activitats i les seves transaccions**. Cada procés pot tenir els seus propis subprocessos continguts dins d’una Pool.

En la següent figura podem veure els tipus d’activitats que existeixen i la seva representació.

![Figura 42: Representació gràfica de Activitats en BPMN](image)

Gateways

Són **elements de modelat que serveixen per controlar com interactua** el flux de seqüència mentre convergeix i divideix dins d’un procés.

De gateways en tenim de **diferents tipus**:

- **Decisió exclusiva — Merge (XOR)**: són elements dins d’un procés de negoci on el flux de seqüència pot prendre dos o més alternatives. Pot ser vis com una pregunta feta en un punt del procés. D’aquests a la seva hora en tenim de dos tipus:
 - **Basat en Dades**: basats en condicions booleanes. Les condicions són avaluades en un ordre específic, la primera que avaluu CERT determina el flux.

![Figura 43: Representació Gateway XOR de Dades](image)
- **Basat en Events**: gestió de sistemes distribuïts. Les alternatives estan basades en events que tenen lloc. Habitualment l'event és la recepció d'un missatge.

[Diagrama](#)

Figura 44: Representació Gateway XOR de Events

- **Decisió Inclusiva – Merge (OR)**: similars als XOR basats en dades, amb la diferència que la avaluació CERT d'una condició no exclou la avaluació de l'altra condició.

[Diagrama](#)

Figura 45: Representació Gateway OR de Events
- **Decisions paral·leles**: proveeixen mecanismes per a sincronitzar/crear flux paral·lel. No són requerits per crear flux paral·lel, però poden ser fets servir per clarificar situacions complexes.

![Diagrama de Decisions paral·leles](image1.jpg)

Figura 46: Representació Gateway Decisions Paral·leles

- **Decisions complexes**: gestionen situacions que no poden ser tractades amb els altres gateways. Poden ser fets servir per compactar altres gateways simples.

![Diagrama de Decisions complexes](image2.jpg)

Figura 47: Representació Gateway Decisions Complexes
Events

És "alguna cosa que passa" durant el curs d’un procés de negoci. Afecten el flux del procés i usualment tenen una causa i un impacte.

Existeixen de tres tipus:

- **Inici**: indica on comença un procés. No té fluxos de seqüència entrants. Un event d’entrada és opcional. És recomanable si el procés és complex. Si hi ha un event de fi, "ha d’existir" almenys un d’inici. Existeixen diversos tipus d’events d’inici.

 ![Figura 48: Representació dels Events Iniciadors](image)

- **Intermedis**: tenen lloc entre els events d’inici i final. Són fets servir per representar gràficament on es mostraran els missatges i retards dins del procés. Interrompren el flux normal a través de la gestió de excepcions i mostrar el treball extra requerit per a la compensació.

 ![Figura 49: Representació dels Events Intermedis](image)

- **Finalitzadors**: indiquen el fi d’un procés de negoci. No té fluxos de seqüència de sortida. Poden haver molts events de fi dins d’un mateix procés.

 ![Figura 50: Representació dels Events Finalitzadors](image)
Artefactes

Aquest element de BPMN, proveeixen la capacitat de mostrar informació addicional sobre els processos. No estan relacionats directament amb el flux de seqüència/missatges del procés.

Existeixen de tres tipus:

- **Objecte de dades**: proveeixen informació sobre el que fa el procés. Poden ser fets servir per a representar elements electrònics o físics.

![Diagrama de BPMN](image)

Figura 51: Representació de l'Artefacte Objecte de Dades

- **Anotacions**: proveeixen informació addicional per al lector d'un diagrama BPMN. No afecten al flux del procés i no mapegen a BPEL4WS.

![Diagrama de BPMN](image)

Figura 52: Representació de l'Artefacte Anotacions
- **Grup**: proveeix un mecanisme visual per agrupar elements d'un procés informalment. Poden expandir-se més enllà dels limites d'un diagrama.

![Diagrama de Grup](image)

Figura 53: Representació de l'Artefacte Grup

Connectors

Defineixen els objectes gràfics fets servir per *connectar dos objectes* junts i com *progressa el flux dins d'un procés*. Hi ha dues formes de connectar objectes.

- **Un flux** (de seqüència o de missatges): es fa servir per mostrar l'ordre en que les activitats s'executen. Tenen una sola font i un sol destí (events, activitats i gateways).

![Diagrama de Flux](image)

Figura 54: Representació Connector de flux
- **Associació**: és feta servir per associar informació i artefactes amb objectes de flux.

![Diagrama de la associació](image)

Figura 55: Representació Connector d'Associació

Swimlanes

BPMN fa servir el conec de "swimlanes" per ajudar a **fer particions i organitzar activitats**. BPEL4WS s'enfoca a processos privats específics interns a un participant (organització). **BPMN pot dibuixar més d'un procés privat junt amb la col·laboració entre ells.**

Existeixen de dos tipus:

- **Pool**: és un contenidor gràfic per fer particions d'un conjunt d'activitats d'altres pools, quan es modelen situacions B2B. Creuen tot el diagrama. Els fluxos de seqüència no poden creuar els límits d'un pool, això es fa mitjançant flux de missatges. Poden ser vistos com una "caixa negra" o "caixa blanca".

![Diagrama de pools](image)

Figura 56: Representació gràfica BPMN de Pools
- **Lanes**: és una sub-participació d'un pool. S'extén a tota la longitud del pool. Són fetes servir per organitzar i categoritzar dins del pool. Són fetes servir per:
 - Rols interns (Director, Associats)
 - Sistemes (Aparcaciones)
 - Departaments interns (Finances)

Figura 57: Representació gràfica dels Lanes